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Chameleon: A Hybrid, Proactive Auto-Scaling
Mechanism on a Level-Playing Field

André Bauer, Nikolas Herbst, Simon Spinner, Ahmed Ali-Eldin, and Samuel Kounev

Abstract—Auto-scalers for clouds promise stable service quality at low costs when facing changing workload intensity. The major
public cloud providers provide trigger-based auto-scalers based on thresholds. However, trigger-based auto-scaling has reaction times
in the order of minutes. Novel auto-scalers from literature try to overcome the limitations of reactive mechanisms by employing
proactive prediction methods. However, the adoption of proactive auto-scalers in production is still very low due to the high risk of
relying on a single proactive method.
This paper tackles the challenge of reducing this risk by proposing a new hybrid auto-scaling mechanism, called Chameleon,
combining multiple different proactive methods coupled with a reactive fallback mechanism. Chameleon employs on-demand,
automated time series-based forecasting methods to predict the arriving load intensity in combination with run-time service demand
estimation to calculate the required resource consumption per work unit without the need for application instrumentation.
We benchmark Chameleon against five different state-of-the-art proactive and reactive auto-scalers one in three different private and
public cloud environments. We generate five different representative workloads each taken from different real-world system traces.
Overall, Chameleon achieves the best scaling behavior based on user and elasticity performance metrics, analyzing the results from
400 hours aggregated experiment time.

Index Terms—Auto-Scaling, Elasticity, Workload Forecasting, Service Demand Estimation, IaaS Cloud, Benchmarking, Metrics
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1 INTRODUCTION

O VER the past decade, the cloud computing paradigm
gained significant importance in the ICT domain as

it addresses manageability and efficiency of modern In-
ternet and computing services at scale. Cloud computing
provides on-demand access to data center resources (e.g.,
networks, servers, storage and applications). Infrastructure-
as-a-Service (IaaS) cloud providers promise stable service
quality by leveraging trigger-based auto-scaling mechanism
to deal with variable workloads. However, depending on
the type of resources and deployed software stack, scaling
actions may take several minutes to be effective. In practice,
business-critical applications in clouds are usually still de-
ployed with over-provisioned resources to avoid becoming
dependent on an auto-scaling mechanism with its possibly
wrong or badly-timed scaling decisions.

Sophisticated, state-of-the-art auto-scaling mechanisms
from the research community focus on proactive scaling,
aiming to predict and provision required resources in ad-
vance of when they are needed. An extensive survey [1]
groups auto-scalers into five classes according to the pre-
diction mechanisms they use: (i) threshold-based rules,
(ii) queueing theory, (iii) control theory, (iv) reinforcement
learning, and (v) time series analysis. With a few exceptions,
like at Netflix, proactive auto-scalers are not yet broadly
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used in production. This might be a result of the need for
application-specific fine-tuning, and the lack of knowledge
about the performance of an auto-scaler in different con-
texts. Auto-scalers employed in production systems are re-
sponsible to dynamically trade-off user-experienced perfor-
mance and costs in an autonomic manner. Thus, they carry
a high operational risk. We pose ourselves the following
research questions: (RQ1) How can the risk of using auto-
scaling features in operation be minimized by leveraging multiple
different proactive mechanisms applied in combination with con-
ventional reactive mechanisms? (RQ2) How can a level-playing
field for state-of-the-art auto-scalers be established to increase the
trust towards a broader adoption of auto-scalers in production?
(RQ3) How well does the proposed Chameleon approach perform
compared to state-of-the-art auto-scaling mechanisms in realistic
deployment and application scenarios?

In this paper, we propose a new hybrid auto-scaling
mechanism called Chameleon combining multiple differ-
ent proactive methods coupled with a reactive fallback.
Chameleon reconfigures the deployment of an application
in a way that the supply of resources matches the current
and estimated future demand for resources as closely as
possible according to the definition of elasticity [2]. It con-
sists of two integrated controllers: (i) a reactive rule-based
controller taking as input the current request arrival rate
and service demands estimated in an online fashion, and
(ii) a proactive controller that integrates three major build-
ing blocks: (a) an automated, dynamic on-demand forecast
execution based on an ensemble of the seasonal ARIMA [3]
and tBATS [4] stochastic time series modeling frameworks,
(b) an optional descriptive software performance model as
an instance of the Descartes Modeling Language (DML) [5]
enabling the controller to leverage structural application
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knowledge by transformation into product-form queueing
networks, and (c) the LibReDE resource demand estimation
library [6] for accurate service-time estimations at run-time
without the requirement of application instrumentation.
Chameleon is available as open-source project1 together
with the experiment data presented in this paper.

In the evaluation, we benchmark Chameleon against
four different proactive auto-scaling mechanisms covering
the mentioned domains, as well as one commonly used reac-
tive auto-scaler based on average CPU utilization thresholds
and finally, a scenario without the use of an active auto-
scaler. We conduct seven rows of extensive and realistic
experiments of up to 9.6 hours duration in three different in-
frastructure cloud environments: (i) in a private CloudStack-
based cloud environment, (ii) in the public AWS EC2 IaaS
cloud, as well as (iii) in the OpenNebula-based IaaS cloud
of the Distributed ASCI Supercomputer 4 (DAS-4) [7]. We
generate five different representative workload profiles each
taken from different real-world system traces: BibSonomy,
Wikipedia, Retailrocket, IBM mainframe transactions and
FIFA World Cup 1998. The workload profiles drive a CPU-
intensive web application as benchmark scenario that is
comparable to the LU worklet from SPEC’s Server Efficiency
Rating Tool SERTTM22. As elasticity measurement method-
ology and experiment controller, we employ the elasticity
benchmarking framework BUNGEE [2] enabling extensive
and repeatable elasticity measurements. The results are an-
alyzed with a set of SPEC endorsed elasticity metrics [8]
in addition to metrics capturing the user-perspective. For
each experiment row, the metric results are used to conduct
three competitions: (i) a rating based on the deviation from
the theoretically optimal auto-scaling behavior, (ii) a pair-
wise competition, and (iii) a score-based ranking of metric
speedups aggregated by an unweighted geometric mean.
The results of the individual metrics and the three com-
petitions show that Chameleon manages best to match the
demand for resources over time in comparison to the other
proactive auto-scalers.

The contributions of this work are manifold and we
summarize the highlights as follows: In Section 2, we
address RQ1 and present the Chameleon approach that
integrates reactive and proactive scaling decisions based
on time series forecasts, combined with online service de-
mand estimates used as input to product-form queueing
networks. Afterwards, in Section 3, we address RQ2 and
present the design of a broad auto-scaler evaluation for
compute intensive workloads. We propose the auto-scaler
deviation metric as a new way to aggregate and rank auto-
scalers. Section 4 addresses RQ3 by discussing the results of
extensive experiments that demonstrate the superior auto-
scaling capabilities of Chameleon compared to a set of state-
of-the-art auto-scaling mechanisms. We include a discussion
of threads to validity in Section 4.4, summarize related work
in Section 5, before we conclude and outline ongoing and
future work in Section 6.

1. Chameleon: http://descartes.tools/chameleon
2. SPEC SERTTM2: https://spec.org/sert2

2 CHAMELEON AUTO-SCALER

This section describes the operating principle of Chameleon:
the generation and optimized combination of reactive and
proactive scaling decisions. A design overview is depicted
and explained in the following subsection. In Section 2.2,
we discuss the proactive decision logic based on an algo-
rithm in pseudo code. Then, in Section 2.3, we present the
logic behind conflicting scaling event resolution. Finally, our
assumptions are listed.

2.1 Design Overview
The Chameleon mechanism consists of four main compo-
nents: (i) a controller, (ii) a performance data repository,
(iii) a forecast component and (iv) the service demand
estimation component based on LibReDE [9]. The perfor-
mance data repository contains a time series storage and an
optional descriptive performance model instance of the ap-
plication to be scaled dynamically in form of the Descartes
Modeling Language (DML) [5]. The design and the flow
of information is depicted in Figure 1. The central part
of Chameleon is the controller. It communicates with the
three remaining components and the managed infrastruc-
ture cloud. The functionality of the controller is divided
into two parallel sequences: the reactive cycle (red) and the
proactive cycle (dashed blue).

Fig. 1: Design overview of Chameleon.

During the reactive cycle, the controller has three
main tasks: (R1) at first, the controller communicates with
the cloud management and periodically polls (e.g., every
minute) information on the current state of the application
delivered via asynchronous message queues. Within the
application run-time environment, a monitoring agent [10]
is deployed to fill the message queues. The collected infor-
mation includes CPU utilization averages per node and the
number of request arrivals. Average residence and response
times per request type on a node can be provided (but are
not required to). (R2) Then, the new information is stored
in the performance data repository for the current time
window. (R3) With this information, the controller decides,
if the system needs to be scaled, based on the computed
average system utilization and a standard threshold-based
approach. The average system utilization is derived from
the arrival rate and the estimated service demand based on
the service demand law from queueing theory.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TPDS.2018.2870389

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

http://descartes.tools/chameleon
https://spec.org/sert2


IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, MONTH YEAR 3

The proactive cycle is planned in longer intervals, e.g.,
4 minutes, for a set of future scaling intervals. It involves
six tasks: (P1) at first, the controller queries the performance
data repository for available historical data and checks for
updates in the structure of the DML performance model.
(P2) Then, the available time series data is sent to the
controller. (P3) Afterwards, the time series of request arrival
rates is forwarded to the forecast component and data
about the CPU utilization and request arrivals per node
(plus residence and response times if available) is sent to
the service demand estimation component. (P4) Then, the
new available forecast values are sent to the controller.
(P5) The LibReDE service demand estimation component
estimates the time a single request needs to be served on
the CPU of a node and sends the estimated value to the
controller. (P6) Finally, the controller scales the application
deployment based on the estimated service demands, the
forecast request arrivals and structural knowledge from the
DML descriptive performance model.

Having the flow of the two cycles described, the follow-
ing two paragraphs now focus on the forecast and service
demand estimation components.

FORECAST COMPONENT: The forecast component pre-
dicts the arrival rates for a configurable number of future
reconfiguration intervals. In order to reduce overhead, the
forecast component is not called in fixed periods. If an
earlier forecast result still contains predicted values for
requested future arrival rates, no new time series forecast
is computed. In case, a drift between the forecast and the
recent monitoring data is detected, a new forecast execu-
tion is triggered. To detect a drift between monitoring and
forecast values, we compare the forecast accuracy with the
mean absolute scaled error metric (MASE) [11] considering
a configurable threshold value, e.g., 0.4. The MASE metric
is suitable for almost all situations and the error is based on
the in-sample mean absolute error from the random walk
forecast. For a 20% forecast, the random walk forecast would
predict the last value of the history for the entire horizon.
Thus, the investigated forecast is better than the random
walk forecast if the MASE value is < 1 and worse if the
MASE value is > 1.

For the dynamic on-demand forecast executions, we se-
lect an ensemble of the following two stochastic time series
modeling frameworks as implemented in R forecast pack-
age [12]: (i) sARIMA seasonal, auto-regressive, integrated
moving averages [3] and (ii) tBATS trigonometric, Box-
Cox transformed, ARMA errors using trend and seasonal
components [4]. Due to the capability of both methods to
capture seasonal patterns as soon as the data contains two
full periods (in our auto-scaling context days), they are
considered as complex. We consider the more lightweight
approaches that can only estimate trend extrapolations (like
splines) as insufficient for auto-scaling decisions in the
order of minutes and even hours into the near future. We
observe that the time overhead for the forecast executions
can vary significantly dependent on the data characteristics
and that longer running forecast execution tend to have a
lower forecast accuracy. For applicability in an auto-scaling
context, timely and accurate forecast results with reason-
able overhead are required. Thus, we design the forecast
component in a way that the two methods are not run in

parallel, but the method that is more likely to have the more
accurate result is automatically selected before execution.
This selection is performed based on a re-implementation
of the meta-learning approach for forecast method selection
using data characteristics as in [13].

SERVICE DEMAND ESTIMATION COMPONENT: The Li-
bReDE library offers eight different estimation approaches
for service demands on a per request type basis [9]. Among
those eight, there are estimators based on regression, op-
timization, Kalman filters, and the service demand law.
LibReDE supports to dynamically select an optimal ap-
proach via parallel execution and cross-validation of the
estimated error. Furthermore, configuration parameters of
the estimation approaches can be tuned automatically for a
given concrete scenario [14]. To minimize estimation over-
heads, the service demand law based estimator is used. As
input, the request arrivals per resource and the average
monitored utilization are required. Request response and
residence times can be provided optionally as they are re-
quired by some of the estimators and for an enhanced cross-
validation based on utilization and response time errors. For
complex service deployments, LibReDE requires structural
knowledge about the application deployment to have a
defined mapping of what services are deployed on which
resources. Chameleon can provide this information from a
DML performance model instance.

2.2 Decision Management

In the proactive cycle, the controller determines events
(i.e., scaling actions) for each forecast. Decisions are cre-
ated based on the rules in the Decision Logic (see the
simplified Algorithm 1). Then, these decisions are im-
proved/optimized and finally, they are added to the Event
Manager, see Section 2.3. There, the decisions are scheduled
according to their target execution time.

The Decision Logic determines for each event the number
of instances that need to be removed or added. Algorithm 1
shows the step-by-step approach. The associated param-
eters that a user needs to specify are up resp threshold
(the upper response time threshold related to the SLO),
pro up util threshold (the system utilization threshold for
upscaling), down resp threshold (the lower response time
threshold related to the SLO), target utilization (the target
system utilization for downscaling, and slo (the acceptable
response time as SLO).

In the second line, the algorithm loads the user ser-
vices. These services form the application’s interface to
the users, e.g., a login request. Then, the future system
utilization is calculated by multiplying the predicted ar-
rival rate with the average service demand of all ser-
vices (Line 3). Afterwards, the utilization of a single VM
is calculated, the response time of all user services are
calculated, and the maximum response time is returned.
This is done by adding the residence times of each called
service. Hereby, we model each service as an M/M/1/∞
queue. The residence time of each internal service is
computed with the formula: residence time R = S

100−ρ
where S is the service demand and ρ the system uti-
lization. The calculated response time can lie in one of
the following intervals: (i) [0, down resp threshold · slo],
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ALGORITHM 1: Proactive decision logic.

1 Decision Logic at time t in the future
2 services = model.getServices(); // gets all services

3 ρS = getArrRateForecast() · AvgServDemand(services);
// calculates the future system utilization

4 ρ = ρS / getRunningVMs(); // calculates the future average

utilization on each VM

5 response = calcEnd2EndRespTime(ρ, services);
// calculates the maximum response time of all services

6 amount = 0; // the number of VMs for adding or releasing

7 if response ≥ up resp threshold · slo then
8 while response ≥ up resp threshold · slo or

ρ ≥ pro up util threshold do
9 amount++;

10 ρ = ρS / (getRunningVMs()+amount); // calculates

the new average utilization

11 response = calcEnd2EndRespTime(ρ, services);
12 else if response ≤ down resp threshold · slo then
13 while response ≤ down resp threshold · slo and

ρ ≤ target utilization do
14 amount−−;
15 ρ = ρS / (getRunningVMs()+amount); // calculates

the new average utilization

16 response = calcEnd2EndRespTime(ρ, services);
17 if response > up resp threshold · slo or ρ >

pro up util threshold then
18 amount++; // undo as one condition is violated

19 break;
20 return decision(amount, t);

(ii) (down resp threshold · slo, up resp threshold · slo)
or (iii) [up resp threshold · slo,∞).

If the response time lies in the second interval, the
calculated response time has an acceptable value. The al-
gorithm skips the if-else block and returns a NOP deci-
sion (as the amount is zero) (Line 20). When the response
time lies within the last interval, i.e., the response time is
greater than up resp threshold · slo, the number of VMs
are iteratively increased until the new response time drops
below up resp threshold · slo and the new average VM
utilization ρ is less than pro up util threshold (Line 8-
11). The new average VM utilization ρ is calculated by
dividing the system utilization ρS by the new amount
of VMs and the response time is computed based on
this utilization. Finally, the algorithm returns a new de-
cision with the number of the additional VMs required
for this service (Line 20). If the response time is less than
down resp threshold · slo, the number of VMs are itera-
tively decreased until the new response time is greater than
down resp threshold · slo or the average VM utilization ρ
is greater than target utilization (Line 13-16). The recalcu-
lation of the response time is analogous to Line 8-11. Finally,
a new decision is returned with the amount of VMs that can
be released (Line 20).

During an interval of the proactive cycle (we use 4 min-
utes), two proactive decisions are made based on the logic
of Algorithm 1. The time between the two decisions and
the respective scheduled events are equidistant (we use 2
minutes), see Figure 2. As proactive decisions are calculated
based on the current observations and predictions, some
rules are needed to adjust/improve these decisions before
adding them as events to the Event Manager (see Section 2.3).
Note that we improve the pair of events in each interval of

the proactive cycle (and not more) as a trade-off between
decision stability and reactivity of the approach. Basically,
there are three possibilities when combining two decisions.
(i) Both decisions want to scale up the system, (ii) want to
scale down the system, (iii) or they have contrary scaling
decisions. If one of the decisions is a NOP, no combination
is required. Hence, six different cases can be distinguished.

The first possibility (both decisions plan to scale up) has
two cases. Firstly, the first decision wants to scale up n VMs
and the second one wants to scale up m instances, where
n ≥ m. The resulting first event allocates n extra VMs. The
second event triggers the allocation of 0 new VMs (6= NOP).
In the second case m > n and so, the first event scales up n
VMs and second one allocates m− n VMs.

The second possibility (both decisions want to scale
down the system) has also two cases. Firstly, the first deci-
sion wants to scale down n VMs and the second one wants
to scale down m instances, where n ≥ m. As the down-
scaling policy of Chameleon is conservative, the first event
releases m VMs and the second one triggers the releasing of
0 VMs (6= NOP). In the second case, m > n and thus, the
first event scales n VMs down and the second one releases
m− n VMs.

The last option is that the decisions request opposite
scaling actions. There are also two cases. Firstly, the first
decision wants to release n VMs and the second one wants
to allocate m VMs with n ≥ m or m > n. To handle
contrary decisions, Chameleon uses a shock absorption
factor 0 < ξ ≤ 1. Thus, the first event scales b(ξ · d1)c
VMs down and the second one scales d(ξ · (d1 + d2))e VMs
up. The second case is complementary to the first case.
The first event allocates d(ξ · d1)e VMs and the second one
releases b(ξ · (d1 + d2))c VMs. If ξ = 1, the contrary actions
are executed without modifications. With decreasing ξ the
distance between the opposite actions decreases. In other
words, ξ influences the degree of oscillation in a proactive
interval.

2.3 Event Manager

As Chameleon consists of a proactive and reactive cycle,
the management of events created by the two cycles is
required. The event manager of Chameleon has to accept
events, resolve conflicts, and schedule events. An event
carries information on its type, either proactive or reactive,
the amount of VMs to allocate or release, its trustworthiness,
and its planned execution time. In contrast to reactive events
that are always considered as trustable, a proactive event
is trustable only when the MASE (mean absolute scaled
error) [11] of the associated forecast is lower than a tolerance
value, see Section 2.1. A reactive event should be executed
immediately, whereas a proactive event has an execution
time in the future. As the proactive and reactive cycle have
different interval lengths, their respective events may have
different execution times. An overview of how events are
planned and scheduled is shown in Figure 2. In order to
handle all the constrains, the manager has to resolve the
following conflicts:

SCOPE CONFLICT: Each proactive event has an asso-
ciated scope, which is a time interval before the event
execution in which no other event should occur. That is,
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Fig. 2: Exemplary illustration of Chameleon’s working mode.

the scope has a fixed length (based on the equidistant time
intervals between two events) and ends when the associated
event is executed. As proactive events are scheduled in
longer intervals, reactive events can be triggered during the
scope of a proactive event. This leads to a scope conflict
with two cases: (i) If the proactive event is trustable and the
associated action is UP or DOWN, then the reactive events
are skipped. Figure 2 shows an example of this case. In the
scope of the proactive event p5,0 for instance, two reactive
events r10 and r11 are triggered. As p5,0 is trustable and its
action is not a NOP, p5,0 is scheduled and both reactive cycle
events are skipped. (ii) If the proactive event is not trustable
or contains the action NOP, skip the proactive event and
execute the reactive one. In Figure 2, the proactive event p1,0
for instance, is not trustable and hence, it is ignored. That is,
the reactive events r2 and r3 that are triggered during the
scope of p1,0 are executed without modification.

TIME CONFLICT: Each event can be identified by its ex-
ecution time. The time conflict describes the problem when
two proactive events with the same execution time appear.
This conflict occurs since Chameleon plans proactive events
throughout the forecast horizon, however, a new forecast
is executed as soon as a drift between the forecast and the
monitored load is detected. In such a situation, for some
intervals there may be proactive events based on the old
forecast and respective events based on the newly con-
ducted forecast. Given that the proactive events based on the
new forecast have more recent information, the proactive
events based on the older forecast are simply skipped. In
Figure 2, the values of forecast f1 have a deviation from the
measured values greater than the tolerance limit. Therefore,
the forecast f2 is executed although the forecast horizon of
f1 is still active. In this situation, the proactive events p4,1
and p2,2 are scheduled at the same time. As p2,2 has more
recent information, e.g., the current service demand, p2,2 is
executed and p4,1 is skipped accordingly.

DELAY CONFLICT: The execution time of the forecast
component ranges between seconds and minutes. Thus,
some forecasts may take longer so that the creation of proac-
tive events is delayed, i.e., the event can not take place in the
equidistant time interval. In order to prevent such delays,
the proactive event of the previous forecast is used for this

execution time. An example of this conflict is depicted in
Figure 2. Here, through the long computing time, illustrated
by the blue box of forecast f2, the proactive event p1,2 is
delayed. Thus, the proactive event p3,1 of forecast f1 is
executed and p1,2 is ignored.

2.4 Assumptions and Limitations

We make following assumptions explicit: (i) in order to
obtain sARIMA or tBATS forecasts with a model of the
seasonal pattern, the availability of 2 days of historical
data is required. With fewer historical data, the forecasts
cover only trend and noise components resulting in a de-
creased accuracy and fewer proactive scaling decisions. (ii)
The monitoring values of request arrivals per resource of
the application are accurately provided by the monitoring
infrastructure, e.g., by polling from a load-balancer or from
an instrumented run-time middleware. Chameleon does not
rely on utilization measurements. (iii) The service level ob-
jective at the application level, which is monitored, is based
on the response time of the application. (iv) Chameleon
is currently focused on scaling CPU intensive, request-
based applications as it relies on the respective service
demand estimation models that perform best for CPU-
bound workloads. (v) The optional DML descriptive per-
formance model instance can be transformed to a product-
form queueing network, whereby each service is modelled
as an M/M/1/∞ queue. (vi) As a possible limitation to
usability for the Chameleon approach in comparison to
existing simplistic reactive auto-scaling mechanisms, we
are aware of a setup effort that comes in connection with
the forecast and service demand estimation components.
However, Chameleon is designed in a way that it would
also work with replaced forecast mechanisms and service
demand estimation components as long as they work com-
pliant to the defined required interfaces. The overhead of
running Chameleon is optimized and comparable to the
other proactive policies considered in the evaluation. Es-
pecially, the compute intense forecast executions are only
triggered when the forecast arrivals drift away from the
monitored ones.
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3 EVALUATION METHODOLOGY AND SETUP

In this section, we introduce the evaluation methodology
and setup. First, we summarize the methodological ratio-
nale of the BUNGEE experiment controller, the selected
workloads used in the evaluation, and the auto-scaled appli-
cation. Then, in Section 3.3, the five auto-scalers considered
in the evaluation are introduced. Finally, we define the set
of elasticity and user-oriented metrics used to evaluate and
compare the different auto-scalers.

3.1 Elasticity Benchmarking Framework
In order to evaluate the two approaches, we use the
BUNGEE Cloud Elasticity Benchmark controller [2]. The
working principle is depicted in Figure 3. On the left side,
the system under test (SUT) is depicted. It contains the IaaS
cloud that hosts the multi-tier applications and the scal-
ing controller. On the right side, the experiment controller
(BUNGEE) with its four phases is illustrated. First, the
controller constructs for the SUT a discrete mapping func-
tion that determines for each load intensity the associated
minimum amount of resources required to meet the SLOs
(Service Level Objectives). Then, the second phase, called
benchmark calibration, uses the mapping from step one to
generate identical changes in the curve of the demanded
resource units on every platform under comparison. Based
on this mapping and a predefined workload profile, the
measurement phase stresses the SUT while BUNGEE mon-
itors the supplied VMs. Finally, in the elasticity evaluation
phase, the elasticity and user-oriented metrics based on the
collected monitoring data are calculated.

Fig. 3: Experiment setup.

3.2 Workload and Application
To conduct representative experiments, authentic workloads
with time-varying load intensity profiles are required. To
this end, we collect existing traces from real-life systems
that cover up to several month. For a feasible experiment
run duration of up to 10 hours, we pick a randomly selected
subset from the traces covering up to three days and acceler-
ate the replay time by the factor 7.5 during the experiments
so that one day in the traces corresponds to 3.2 hours in the
experiments. This way, we trade-off experiment duration
and covered time intervals for a realistic setup stressing the
auto-scaling mechanisms. A higher time speed-up factor to
replay more days within 10 hours experiments time would
render the experiments unrealistic, e.g., as the induced
changes in demand might exceed the provisioning delays

and frequency of resource allocations technically supported
by the cloud platforms.

FIFA: The FIFA World Cup 19983 trace is a popular trace
that represents the HTTP requests to the FIFA servers during
the world championship between April and June 1998. This
trace was analyzed in the paper of Arlitt and Tai [15]. For
our experiments, we use a sub-trace of three days.

BIB: The BibSonomy trace consisting of HTTP requests
to servers of the social bookmarking system BibSonomy (see
the paper of Benz et al. [16]) during April 2017. Here, we use
2 days for benchmarking the auto-scalers.

IBM: The IBM CICS transactions trace capturing four
weeks of recorded transactions on a z10 mainframe CICS
installation. From this trace, one weekday was extracted for
the experiments.

WIKI: The German Wikipedia4 trace containing the page
requests to all German Wikipedia projects during December
2013. Here, we use two days from this trace.

RETAIL: The Retailrocket5 trace containing HTTP re-
quests to servers of an anonymous real-world e-commerce
website during June 2015. Similar to German Wikipedia, we
use 2 days for the evaluations.

All traces contain 96 data points per day. In case of
German Wikipedia, we needed to transform hourly samples
using interpolation so that it ends up with 96 data points
per day.

The auto-scaling mechanisms are configured to monitor
and auto-scale a CPU-intensive Java web application - an
implementation of the LU worklet from SPEC’s Server Effi-
ciency Rating Tool SERTTM2 - as a benchmark application.
The application calculates the LU Decomposition [17] of a
random generated n×n matrix, where n is the GET param-
eter of each HTTP request. The application is deployed on
WildFly application servers in all three private and public
infrastructure cloud environments. We deploy the appli-
cation in our private cloud infrastructure that is Apache
CloudStack6 cloud that manages 11 identical, virtualized
Xen-Server hosts (HP DL160 Gen9, 8 cores @2.6GHz). To
cover setups with background noise, the application is also
deployed in both the public AWS EC2 IaaS cloud and in
the OpenNebula7-based IaaS cloud of the Distributed ASCI
Supercomputer 4 (DAS-4) [7]. For all experiments, the auto-
scaling mechanism, the load-driver, and the experiment
controller are not part of the SUT and are located outside
the cloud. The VMs in each scenario have the specification
of a m4.large (2 cores and 8GB) instance. To avoid measure-
ment perturbations due to VM image copying, all VMs are
initialized ahead of the experiments. All VMs except for one
are shutdown at the beginning of each experiment. In the
public AWS EC2 cloud, the quota for the number of VMs is
set to 20. In order to have comparable scaling ranges over
the experiments, the amount of VMs is limited to 18 (20 VMs
minus a load-balancer VM for the experiment and a domain
controller VM for the WildFly cluster).

3. FIFA Source: http://ita.ee.lbl.gov/html/contrib/WorldCup.html
4. Wiki Source: https://dumps.wikimedia.org/other/

pagecounts-raw/2013/
5. Retailrocket Source: https://www.kaggle.com/retailrocket/

ecommerce-dataset
6. Apache CloudStack: https://cloudstack.apache.org/
7. OpenNebula: https://opennebula.org/
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3.3 Competing Auto-Scalers

For the evaluation, we select five representative auto-scalers
that have been published in the literature over the past
decade. We identify two groups of auto-scalers differing in
the way they treat the workload information. The first group
are auto-scalers that build a predictive model based on
long-term historical data [18], [19], [20]. The second group
consists of auto-scalers that only use recent history to make
auto-scaling decisions [21], [22]. The selected methods have
been published in the following years: 2008 [23] (with an
earlier version published in 2005 [18]), 2009 [21], 2011 [19],
2012 [22], and 2014 [20]. This is a representative set of the
development of cloud auto-scalers designs across the past
10 years. We describe each of these in more detail.

REACTIVE: Based on the work of Chieu et al. [21], this
auto-scaler realizes a scaling mechanism based on thresh-
olds as provided, e.g., by AWS EC2. Here, the user can set
a condition to add new instances in increments or based
on the amount of currently running resources when the
average utilization is higher than a specified threshold over
a specified period. Similarly, the user can set a condition
to remove instances. An additional cool-down parameter
defines a duration after an action, during which the metrics
are not evaluated. This allows to avoid possible oscillations
by delaying the next possible action. In our experiments,
we set the cool-down parameter to 0 and the condition-true
period to 2 minutes for both directions. As thresholds, we
use 80% CPU utilization for scaling up and 60% for scaling
down while adding/removing the fixed amount of 1 unit.

ADAPT: Ali-Eldin et al. [22] propose an autonomic elas-
ticity controller that changes the number of VMs allocated
to a service based on both monitored load changes and
predictions of future load. We refer to this technique as
Adapt. The predictions are based on the rate of change
of the request arrival rate, i.e., the slope of the workload,
and aims at detecting the envelope of the workload. The
designed controller adapts to sudden load changes and pre-
vents premature release of resources, reducing oscillations
in the resource provisioning. Adapt tries to improve the
performance in terms of number of delayed requests and
the average number of queued requests, at the cost of some
resource over-provisioning.

HIST: Urgaonkar et al. [23] propose a provisioning
technique for multi-tier Internet applications. The proposed
methodology adopts a queueing model to determine how
many resources to allocate in each tier of the application.
A predictive technique based on building Histograms of
historical request arrival rates is used to determine the
amount of resources to provision at an hourly time scale.
Reactive provisioning is used to correct errors in the long-
term predictions or to react to unanticipated flash crowds.
We refer to this technique as Hist.

REG: Iqbal et al. propose a regression-based auto-scaler
(hereafter called Reg) [19]. This auto-scaler has a reactive
component for scale-up decisions and a predictive compo-
nent for scale-down decisions. When the capacity is less
than the load, a scale-up decision is taken and new VMs
are added to the service in a way similar to Reactive. For
scale-down, the predictive component uses a second order
regression to predict future load. The regression model is

recomputed using the complete history of the workload
each time a new measurement is available. When the current
load is lower than the provisioned capacity, a scale-down
decision is taken using the regression model. This auto-
scaler does not perform on the level of other mechanisms
in our experiments due to two factors; first, building a
regression model for the full history of measurements for
every new monitoring data point is a time consuming task.
Second, distant past history becomes less relevant as time
proceeds. After contacting the authors, we have modified
the algorithm such that the regression model is evaluated
only for the past 60 monitoring data points.

CONPAAS: ConPaaS, proposed by Fernandez et al. [20],
scales a web application in response to changes in through-
put at fixed intervals of 10 minutes. The predictor forecasts
the future service demand using standard time series anal-
ysis techniques, e.g., Linear Regression, Auto Regressive
Moving Averages (ARMA), etc. The code for this auto-scaler
is open source hosted by the authors themselves8.

Each auto-scalers is called every 2 minutes and receives a
set of input values and returns the amount of VMs that have
to be added or removed. The input consists of the following
parameters: (i) the accumulated number of requests during
the last 2 minutes, (ii) the estimated service demand per
request determined by LibReDE as used in Chameleon, and
(iii) the number of currently running VMs. The competing
auto-scalers are available online9. We do not change default
configurations as also used in a simulative evaluation [24].

3.4 Metrics for Comparing Auto-scalers

In order to compare and quantify the performance of
different auto-scalers, we use a set of both system- and
user-oriented metrics. The system-oriented metrics consist
of elasticity metrics that are endorsed by the Research
Group of the Standard Performance Evaluation Corporation
(SPEC) [8]. As user-oriented metrics, we report the amount
of adaptations, the average amount of VMs, and the av-
erage and median response time in combination with the
percentage of SLO violations. However, we do not take cost-
based metrics into account, as they would directly depend
on the applied cost model of a provider and thus could be
biased. When using only individual metrics for judging the
performance of auto-scalers, the results can be ambiguous.
Hence, we use 3 different methods for deriving an overall
result from the individual metrics: (i) We calculate the auto-
scaling deviation of each auto-scaler from the theoretically
optimal auto-scaler. (ii) We perform pairwise comparisons
among the auto-scalers. (iii) We compute the gain of using
an auto-scaler via an elastic speedup metric. Each elasticity
and aggregate metric is explained in the remainder of this
subsection. For the following equations, we define: (i) T
as the experiment duration and time t ∈ [0, T ], (ii) st as
the resource supply at time t, and (iii) dt as the demanded
resource units at time t. The demanded resource units dt
is the minimal amount of VMs required to meet the SLOs

8. ConPaaS auto-scaler:
https://github.com/ema/conpaas/tree/master/conpaas-services/
src/conpaas/services/webservers/manager/autoscaling

9. Competing auto-scalers: https://github.com/ahmedaley/
Autoscalers [24]
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under the load intensity at time t. ∆t denotes the time
interval between the last and the current change either in
demand d or supply s. The curve of demanded resource
units d over time T is derived by BUNGEE, see Section 3.1.
The resource supply st is the monitored number of running
VMs at time t.

PROVISIONING ACCURACY θU AND θO : These metrics
describe the relative amount of resources that are under-
provisioned, respectively, over-provisioned during the mea-
surement interval, i.e., the under-provisioning accuracy θU
is the amount of missing resources required to meet the
SLO in relation to the current demand normalized by the
experiment time. Similarly, the over-provisioning accuracy
θO is the amount of resources that the auto-scaler supplies
in excess of the current demand normalized by the experi-
ment time. Values of this metric lie in the interval [0,∞),
where 0 is the best value and indicates that there is no
under-provisioning or over-provisioning during the entire
measurement interval.

θU [%] :=
100

T
·
T∑
t=1

max(dt − st, 0)

dt
∆t

θO[%] :=
100

T
·
T∑
t=1

max(st − dt, 0)

dt
∆t

WRONG PROVISIONING TIME SHARE τU AND τO : These
metrics capture the time in percentage, in which the system
is under-provisioned , respectively over-provisioned, during
the experiment interval, i.e., the under-provisioning time
share τU is the time relative to the measurement duration,
in which the system has insufficient resources. Similarly,
the over-provisioning time share τO is the time relative to
the measurement duration, in which the system has more
resources than required. Values of this metric lie in the in-
terval [0, 100]. The best value 0 is achieved when no under-
provisioning, respectively no over-provisioning, is detected
within a measurement.

τU [%] :=
100

T
·
T∑
t=1

max(sgn(dt − st), 0)∆t

τO[%] :=
100

T
·
T∑
t=1

max(sgn(st − dt), 0)∆t

INSTABILITY υ: This last metric describes the time in
percentage in which the supply and the demand curves are
not changing in the same direction, i.e., the instability υ
measures the fraction of time in which the demand change
and the supply change have different signs. Values of this
metric lie in the interval [0, 100], where 0 is the best value
and means that demand and supply are always moving in
the same direction.

υ[%] :=
100

T − t1
·
T∑
t=2

min(|sgn(∆st)− sgn(∆dt)|, 1)∆t

AUTO-SCALING DEVIATION σ: In order to quantify the
performance of auto-scalers and rank them, we propose
to calculate the deviation of a given auto-scaler compared
to the theoretically optimal auto-scaler. For the calcula-
tion of the deviation between two auto-scalers, we use
the Minkowski distance dp. Here, the vectors consist of

a subset of the aforementioned system- and user-oriented
evaluation metrics. We take the provisioning accuracy θ, the
wrong provisioning time share τ , the instability υ, and the
SLO violations ψ into account. The metrics are specified as
percentages. The closer the value of a metric is to zero, the
better the auto-scaler performs with respect to the aspect
characterized by the respective metric, i.e., the closer the
auto-scaling deviation is to zero, the closer the behavior of
the auto-scaler to the theoretically optimal auto-scaler.

The first step is to calculate the elasticity metrics. Then,
we calculate the overall provisioning accuracy θ and the
overall wrong provisioning time share τ . Hereby, we use a
weighted sum for both metrics consisting of both compo-
nents and a penalty factor 0 < γ < 1. This penalty can
be set individually (in our case, γ is set to 0.5 to reflect
custom preference), with γ > 0.5 indicating that under-
provisioning is worse than over-provisioning, γ = 0.5 in-
dicating that under- and over-provisioning are equally bad,
and γ < 0.5 indicating that over-provisioning is worse than
under-provisioning. This can be expressed as follows:

θ[%] := γ · θU + (1− γ) · θO
τ [%] := γ · τU + (1− γ) · τO

In the last step, the Minkowski distance dp between
the auto-scaler and the theoretically optimal auto-scaler
is calculated. As the theoretically optimal auto-scaler is
assumed to know when and how much the demanded
resources change, the values for provisioning accuracy θ,
wrong provisioning time share τ , instability υ, and the
SLO violations ψ are equal to zero. In other words, if an
auto-scaler is compared to the theoretically optimal auto-
scaler, the Lp-norm can be used as ‖x − 0‖p = ‖x‖p with
x = (θ, τ, υ, ψ), i.e., in our case the auto-scaling deviation σ
between an auto-scaler and the theoretically optimal auto-
scaler is defined as follows:

σ[%] := ‖x‖4 =
(
θ4 + τ4 + υ4 + ψ4

) 1
4

PAIRWISE COMPETITION κ: Another approach for rank-
ing the auto-scalers is to use the pairwise comparison
method [25]. Here, for each auto-scaler the value of each
metric is pairwise compared with the value of the same
metric for all other auto-scalers. As values near to zero are
better, the auto-scaler with the lowest value gets one point. If
a metric for both auto-scalers is equal, both auto-scalers get
each half a point. In addition, we divide the reached score of
each auto-scaler by the maximum achievable score. In other
words, the pairwise competition κ shows how much of the
achievable points each auto-scaler collected.

ELASTIC SPEEDUP ε: Besides the auto-scaling deviation
and the pairwise competition, we want to introduce a fur-
ther method that calculates for each auto-scaler its gain
based on its scaling behavior compared to the no auto-
scaling scenario. This approach allows to rank the auto-
scalers by taking only the elasticity metrics into account.
In other words, the elasticity metrics x = (θU , θO, τU , τO, υ)
of an auto-scaler are compared to the metrics of the no auto-
scaling scenario. To this end, the geometrical mean of the
ratio between each metric pair is calculated. Mathematically,
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the elastic speedup κ for an auto-scaler a based on the no
auto-scaling scenario b can be formulated as:

εb :=

(
θU,b
θU,a

· θO,b
θO,a

· τU,b
τU,a

· τO,b
τO,a

· υb
υa

) 1
5

This section answers RQ2 from the Section 1 outlining
the design of a level playing field for auto-scaler competi-
tions. The results in the following section underline that our
evaluation methodology is representative and repeatable
with a strong connection of human perceived auto-scaler
performance reflected in the metric values and illustrations.

4 EXPERIMENT RESULTS

In this section, we benchmark Chameleon and the other
auto-scalers. We have conducted 7 different sets of exper-
iments with 6 auto-scalers. Section 4.1 explains how to
interpret the results of the measurements. Afterwards, in
Section 4.2, the measurements in the private cloud and the
public cloud are presented and compared. In Section 4.3, the
results of all measurements are combined, illustrated and
discussed. Afterwards, we discuss threats to validity and
finally, conclude the evaluation with a list of key findings.

4.1 Introduction to the Results
We first introduce the format in which results are presented
before discussing the detailed results. To this end, the ex-
periment results for the German Wikipedia trace are shown
Figure 4. This diagram shows the Chameleon measurement
(top left) compared with the measurements for all compet-
ing auto-scalers: Reactive (top right), Adapt (middle left),
Hist (middle right), ConPaaS (bottom left) and Reg (bottom
right). For each auto-scaler, the x-axis shows the time of the
measurement in minutes; the y-axis shows the number of
concurrently running VMs. The blue curves represent the
supplied VMs of each auto-scaler; the black dashed curves
represent the required amount of VMs. The interpretation of
the curves are the same as in the single experiment example.

When comparing the scaling behavior of the different
auto-scalers for the German Wikipedia trace, a first obser-
vation is that the auto-scalers can be grouped into two
categories: (i) tendency to over-provision the system (Hist,
Reactive, Adapt and Chameleon), (ii) tendency to under-
provision the system (ConPaaS and Reg). Furthermore, Reg
and ConPaaS have a high rate of oscillations during the
measurement. Chameleon is the first auto-scaler that meets
the demand surge in the beginning of the experiment and
then tends to allocate slightly more VMs than required
for the remaining time. Adapt, for instance, has a similar
behavior as Chameleon but it allocates more VMs. Reactive
allocates almost the right amount of VMs during the increas-
ing and constant load, but is too slow when scaling down.
In contrast, Hist roughly meets the demand and holds the
amount of allocated VMs for about 30 to 60 minutes after
which it drops to the current demand.

To provide a quantitative comparison, the elasticity met-
rics (see Section 3.4) and user-oriented metrics are computed
and listed in Table 1. The first column shows the metrics
and the following ones represent the different auto-scalers
with the last one corresponding to the no auto-scaling

Metric Cham. Adapt Hist ConPaas Reg React. No AS
θU (accU ) 1.57% 1.68% 2.37% 14.69% 16.08% 2.10% 25.93%
θO (accO) 11.15% 17.51% 33.55% 15.67% 4.34% 28.94% 19.38%
τU (tsU ) 5.70% 9.16% 12.75% 47.41% 51.04% 12.27% 70.48%
τO (tsO) 73.25% 80.94% 71.95% 32.07% 25.24% 80.77% 26.28%
υ (inst) 5.83% 7.09% 4.75% 12.66% 12.88% 4.97% 2.94%
ψ (SLO) 2.95% 15.47% 11.86% 59.73% 80.71% 7.15% 85.95%
σ (AS dev.) 39.49% 45.24% 42.75% 62.54% 81.71% 46.67% 88.13%
κ (p. comp.) 77.78% 50.00% 50.00% 41.67% 41.67% 52.78% 36.11%
ε (ES) 2.30 1.78 1.51 0.91 1.19 1.56 1.00
#Adapt. 61 66 26 112 102 49 0
Avg. #VMs 10.795 12.343 11.571 11.191 9.3761 10.451 9
Avg. resp. t. 0.62 s 1.22 s 1.06 s 3.31 s 4.20 s 0.82 s 4.38 s
Med. resp. t. 0.43 s 0.48 s 0.48 s 5.00 s 5.00 s 0.46 s 5.00 s

TABLE 1: Metric overview for the German Wikipedia trace.

scenario. The rows of the table show the values of different
metrics with the best value highlighted in bold. For the
elasticity metrics, as well as for the metrics SLO violations,
auto-scaling deviation, average response time and median
response time it generally holds that the lower the value the
better the auto-scaler performs. In contrast, for the pairwise
competition and elastic speedup, a higher value is better.

When comparing individual metrics (see Table 2), only
the aspect characterized by the respective metric is con-
sidered. For instance, in the German Wikipedia scenario,
Chameleon has the best values for θU , τU , and ψ. Reg has the
best values for θO and τO, but the highest ψ compared to all
other auto-scalers. Therefore, we evaluate the performance
of the auto-scalers based on σ, κ, and ε. Chameleon has
the best values for each of these aggregate metrics. This
is supported by also looking at the average and median
response time for which Chameleon also exhibits the best
values.

4.2 Auto-Scaling in Private vs. Public IaaS Clouds
In this section, we run additionally the experiments with
the FIFA World Cup 1998 trace in the AWS EC 2 and in
the DAS-4 environment in order to evaluate the behavior of
the different auto-scalers when running in a public cloud.
In contrast to our private cloud, in AWS we observe a high
performance variation for each VM and a high degree of
background noise. The resulting scaling behavior of a subset
of the auto-scalers is depicted in Figure 5. The figures are
structured as explained in Section 4.1; the left column shows
Chameleon and Reactive in the private cloud scenario and
the right column shows the same auto-scalers in the public
AWS EC2 scenario. While Chameleon scales in a similar
manner in both scenarios, a bigger difference is observed
for Reactive, as the diagrams in Figure 5 show. In contrast
to Chameleon that makes decisions based on the amount
of requests and the service demands, the scaling decisions
of Reactive are only based on the observed CPU load of

θU ,
θO

Accuracy as the relative amount of resource units that are under-
(accU ) resp. over-provisioned (accO) normalized by time.

τU ,
τO

Wrong provisioning time share as the relative amount of time in
under- (tsU ) resp. over-provisioned (tsO) state.

υ
Instability (inst) as the relative amount of time in which demand
and supply are not parallel.

ψ The relative amount of SLO violations.
σ Deviation from theoretically optimal auto-scaler (AS dev.).
κ The portion of wins in the pairwise competition (p. comp.).
ε The elastic speedup score (ES) compared to no auto-scaling.

TABLE 2: Metric overview and explanation.
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Fig. 4: Comparison of the auto-scalers for the German Wikipedia trace.
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Fig. 5: Comparison of the auto-scalers in both the private cloud scenario and public AWS EC2 cloud.

the system. While the system is in an under-provisioned
state, the CPU load drops significantly for a certain time
and Reactive scales down as since CPU usage indicates a
low load. After the CPU load starts increasing, Reactive tries
to scale up the system again. Such drops in the CPU load
seem to follow a scheme. Therefore, we assume that AWS
EC2 performs migrations in the background for migrating
the VMs from overloaded hosts to hosts with less load.
After such migrations, the CPU usage drops given that
more resources are available on the new host. The associated
metrics are listed in Table 3. While in the private scenario,
Chameleon achieved the best value for the auto-scaling de-
viation metric, in the public scenario, Chameleon achieved
the best values for the pairwise competition and elastic
speedup metrics, in addition to the auto-scaling deviation
metric. Reactive has in the private scenario the best score
for pairwise competition and elastic speedup, while in the
public scenario, it exhibits average performance for the
aggregate metrics.

4.3 Overall Evaluation

As the previous subsections show only selected subsets
of the experiment results, an overview of all results is

Metric Chameleon Reactive No ASprivate AWS EC2 private AWS EC2
θU (accU ) 3.23% 1.64% 1.56% 13.36% 14.75%
θO (accO) 21.95% 21.31% 40.20% 9.19% 27.41%
τU (tsU ) 13.09% 11.04% 5.20% 57.49% 48.93%
τO (tsO) 74.05% 67.92% 87.14% 25.49% 44.77%
υ (inst) 16.36% 15.95% 14.68% 19.02% 12.66%
ψ (SLO) 8.65% 5.04% 2.70% 49.30% 62.14%
σ (AS dev.) 43.88% 39.81% 46.76% 54.80% 66.83%
κ (p. comp.) 61.11% 69.44% 66.67% 44.44% 44.44%
ε (ES) 1.58 1.93 1.93 1.27 1.00
Avg. resp. t. 0.89 s 0.62 s 0.60 s 2.68 s 3.32 s
Med. resp. t. 0.45 s 0.26 s 0.45 s 3.23 s 5.00 s

TABLE 3: Metrics of private vs. public AWS EC2 scenarios.

presented and discussed here. In our experiment design,
each auto-scaler is observed for 18 days on 5 different traces
where one day takes 3.2 hours. The experiments took in total
over 400 hours, during which about 107 million requests
were sent and 5000 adaptations were performed by the
auto-scalers. In other words, during one hour about 275.000
requests arrived at the system on average and the system
experienced about 13 adaptions on average.

Table 4 shows the average metrics over all traces. Here,
each row represents a metric and each column an auto-
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scaler. As previously, the best values are highlighted in
bold. When comparing the auto-scalers based on the auto-
scaling deviation, the lowest deviation from the theoreti-
cally optimal auto-scaler for all experiments is achieved by
Chameleon, followed by Hist, Adapt, Reactive, ConPaaS,
and finally, Reg. In a pairwise competition, the most points
are collected by Chameleon, followed by Hist, Reactive,
Adapt, Reg, and finally, ConPaaS. When taking the elastic
speedup into account, the best performance is achieved by
Chameleon, followed by Reactive, Adapt, Reg, Hist, and
finally, Hist. To summarize, Chameleon achieves the best
results for all three aggregate metrics.

Metric Cham. Adapt Hist ConPaaS Reg React.
θU (avg. accU ) 3.63% 6.45% 4.70% 15.55% 15.69% 6.98%
θO (avg. accO) 17.88% 19.94% 52.64% 25.98% 10.51% 34.47%
τU (avg. tsU ) 13.32% 30.43% 22.75% 42.04% 43.71% 25.41%
τO (avg. tsO) 65.06% 51.41% 62.35% 41.69% 33.42% 62.08%
υ (avg. inst.) 13.91% 16.60% 11.95% 17.42% 17.02% 12.99%
ψ (avg. SLO) 10.29% 32.76% 15.59% 44.11% 60.16% 21.96%
σ (avg. AS dev.) 39.63% 46.90% 46.43% 54.03% 63.46% 48.14%
κ (avg. p. comp.) 69.44% 50.00% 58.33% 36.51% 42.46% 55.56%
ε (avg. ES) 2.02 1.48 1.38 1.10 1.41 1.49

TABLE 4: Average metrics over all experiments.

Trace Cham. Adapt Hist ConPaaS Reg Reactive
Bib 1.33 5.33 2.00 5.00 4.33 2.00
Fifa (AWS EC2) 1.00 3.00 3.33 5.33 4.33 4.00
Fifa (DAS-4) 1.33 2.33 3.00 5.66 5.33 3.00
Fifa (private) 1.67 3.67 3.00 5.33 5.67 1.67
IBM 1.00 4.67 3.33 3.67 3.67 4.67
Wiki 1.00 2.67 3.00 5.33 5.33 3.00
Retail 1.00 2.33 3.33 6.00 4.33 4.00
Avg. Ranking 1.19 3.43 3.00 5.19 4.71 3.19

TABLE 5: Average ranking for each experiment over the
three competitions.

To rank the auto-scalers, we compute the average rank
of each auto-scaler over all experiment setups. First, we
compute the ranks of each auto-scaler for the auto-scaling
deviation, the pairwise competition, and the elastic speedup
over all experiments. Then, we determine the average rank
of each auto-scaler as the arithmetic mean over the three
ranks. The ranks are listed in Table 5. Here, each column
represents an auto-scaler and each row an experiment. The
entries in each cell represent the rank in the associated
experiment. As usual, the best values are highlighted in
bold. Chameleon has the smallest average rank of 1.19. This
means that Chameleon exhibits the best rank on average
among all traces and experiments. The second best auto-
scaler based on this ranking is Hist, followed by Reactive,
Adapt, Reg, and ConPaaS. Except for Chameleon, the auto-
scalers in competition show a significant variance in their
ranks over the experiments. That is, none of competing
auto-scalers, with exception of Chameleon, outperforms the
others in all 7 experiment rows.

In order to visualize the scaling behavior of all auto-
scalers, Figure 6 shows a spider chart, also known as
radar chart, of each auto-scaler. Each spiderweb contains
six edges, where the edges represent the elasticity metrics
and the SLO violations, and shows the results for each
trace in the private cloud scenario. The smaller and thin-
ner the stretched areas are, the better the respective auto-
scaler performs. Based on these diagrams, we can conclude
that Chameleon tends to slightly over-provision allocating

slightly more VMs than required. In contrast, Hist tends to
over-provision but has a worse over-provisioning accuracy
than Chameleon. Reactive has the worst over-provisioning
time share and the second worst over-provisioning accuracy.
Adapt tends to a balance of under- and over-provisioning
with a slight tendency to over-provision. In the under-
provisioned states, Adapt has only a few VMs less than
required Reg and ConPaaS have (due to their oscillations)
no tendency to either under-provision or over-provision the
system. Both auto-scalers exhibit the highest SLO violations.
Besides comparing the tendencies, the stability of each
auto-scaler over all traces can be investigated. Chameleon
exhibits a stable scaling behavior for all five traces as all
areas are oriented in one direction and the areas have
less deviation to each other. The other auto-scalers have
either areas with different orientation or areas with a higher
variance than Chameleon. Hence, the other auto-scalers can
be seen as less stable than Chameleon.

4.4 Threats to Validity
Although our experimental analysis covered a wide range
of different scenarios, the results may not be generalizable
to other types of applications, for example, applications that
are not interactive or CPU intensive. In principle, for the
evaluated competing auto-scalers a comparable behavior
has been observed in related works on auto-scaler evalu-
ation for workflows [26] and in simulation [24]: platoons for
Hist, some oscillations for ConPaaS and Reg, and an tightly
following the demand of the Adapt policy. It is still worth
noting that, as discussed in previous studies [24], [26], most
of the auto-scalers evaluated in this paper are sensitive to
their configuration for a given scenario.

The repeatability of performance related experiments
in public cloud environments is limited due to the fact
that there is no control given about the placement and co-
location of VMs with other workloads running on the cloud.
This can cause significant performance variability [27]. To
alleviate this problem, we conduct most experiments in a
private environment under controlled conditions, however,
for completeness, we also include experiments conducted
in two different public cloud deployments (DAS-4 and
AWS EC2) with a different degree of background load.
Furthermore, we conduct long running experiments while
not stressing the cloud’s APIs much with on average 13
adaptations per hour.

We address the threat of possible bias by using multiple
and established sets of metrics that have been officially
endorsed by SPEC [8]. In this paper, the detailed elasticity
metrics are combined to aggregate metrics in an unweighted
manner, treating under-provisioning and over-provisioning
as being equally bad. In the case where under-provisioning
is considered worse than over-provisioning, the results for
Chameleon would further improve due to its tendency to
slightly over-provision.

4.5 Summary of Evaluation Findings
We summarize the main findings of the experimental eval-
uation as follows:

I: The Chameleon auto-scaler performs best in the evalu-
ated scenarios based on average competition results, under-
provisioning time share, under-provisioning accuracy and
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Fig. 6: Scaling behavior of all auto-scalers.

SLO violations. Chameleon tends to a reliable slight over-
provisioning. II: The proposed way of combining proactive
and reactive scaling decisions improves the auto-scaling
performance. This answers RQ1 from Section 1. III: Adapt
manages to closely follow the demand with a relatively
high number of adaptations. IV: Hist and Reactive tend to
stronger over-provisioning than others. V: ConPaaS and Reg
exhibit unstable behavior in some situations and can not be
considered as reliable in the covered scenarios. VI: Reactive
relies on accurate CPU utilization measurements. It shows
decreased performance in a public cloud context, where
overbooking of virtual resources may cause significant in-
terference with background load. VII: In the conducted
experiments, Chameleon exhibits consistent scaling behav-
ior, whereas the other auto-scalers show more variance.
VIII: Among the investigated state-of-the-art auto-scalers,
no mechanism outperforms the other ones in all traces, see
Table 5.

5 RELATED WORK

The topic of auto-scaling has been a popular research
topic in the resource management community over the
past decade. There have been multiple recent efforts to
survey the state-of-the-art in auto-scaling, for example:
(i) G. Galante and L. de Bona [28], (ii) B. Jennings and

R. Stadler [29], and (iii) T. Lorido-Botran et al. [1], and
recently (iv) C. Qu et al. [30]. These surveys provide an
overview on the current state of research on auto-scaling.
The survey by Lorido-Botran et. al [1] proposes a classifica-
tion of auto-scalers into five groups:

THRESHOLD-BASED RULES: These are auto-scalers that
react to load changes based on pre-defined threshold rules
for scaling a system. As the scaling decisions are triggered
by performance metrics and predefined thresholds, they are
easy to deploy. Thus, they are popular with commercial
cloud providers and clients. Common threshold-based auto-
scalers are designed for instance by R. Han et al. [31] or
M. Maurer et al. [32].

QUEUEING THEORY: Queueing theory is usually used to
determine the relationship between incoming and outgoing
jobs in a system. Proactive auto-scalers in this category rely
on a model of the system for predicting the future resource
demand. A simple approach is to model each VM as a queue
of requests. State-of-the-art auto-scalers are proposed, e.g.,
by B. Urgaonkar et al. [23] (Hist) or Q. Zhang et al. [33].

CONTROL THEORY: Similarly to queueing theory, auto-
scalers that use control theory also employ a model of
the application. Hence, the performance of such controllers
depends on the application model and the controller itself.
A new approach in recent research is to combine this type
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auto-scalers with queueing theory. For example, popular
hybrid auto-scalers of this group are from P. Padala et al. [34]
or A. Ali-Eldin et al. [22] (Adapt).

REINFORCEMENT LEARNING: Instead of having explicit
knowledge or a model of the application, approaches in this
category aim to learn the best action for a specific state. The
learning is based on a trial-and-error approach converging
towards an optimal policy. This allows the controller to be
proactive. However, finding the best option for a particular
state can take a long time. G. Tesauro et al. [35] or J. Rao
et al. [36], for example, propose such auto-scalers. Auto-
scalers based on reinforcement learning are highly depen-
dent on the initial extensive training phase and therefore we
do not consider them in our evaluation.

TIME SERIES ANALYSIS: Auto-scalers that use time se-
ries analysis are the most common representatives of proac-
tive scaling. They allow to predict the future behavior of
sequences of job arrivals. A variety of forecasting methods
based on time series analysis exist in the literature. The
choice of forecasting technique and its associated parame-
ters influences the forecasting accuracy. Common examples
of this type of auto-scalers are proposed by G. Pierre and
C. Stratan [37] (ConPaaS) or W. Iqbal et al. [19] (Reg).

The recent survey [30] highlights the importance of
combining reactive and proactive auto-scaling mechanisms.
Existing previous auto-scalers try to leverage both reactive
and proactive methods [19], [22], [23], [38]: For example,
Reg [19] limits up-scaling to reactive and down-scaling to
proactive decisions. Adapt [22] detects the slope of the re-
cent workload observations and is thus limited to short-term
predictions. Hist [23] leverages reactive scaling only in the
presence of workload anomalies considered as flash crowds.
Biswas et. al. [38] adopt a broker approach for optimizing
profit of stakeholders. Thus, proactive and reactive scaling
decisions are merged implicitly.

In contrast to the state-of-the-art on hybrid auto-
scalers that combine reactive and proactive mechanisms,
Chameleon (i) leverages long-term predictions from time
series analysis in combination with (ii) predictive models
from queueing theory also integrating a (iii) reactive fall-
back mechanism. Two explicit reactive and proactive cycles
generate scaling decisions covering current and future auto-
scaling intervals. The challenge of handling contradicting
reactive and proactive events is not covered explicitly in
related approaches. Thus, we consider the conflict resolution
and scaling decision optimization as part of the Chameleon
logic as new.

We identify only two cases of the previous work compar-
ing multiple and different, proactive auto-scaling policies.
The work of Padadopoulos et al. [24] establishes theoretical
bounds on the worst case performance using simulation.
The related experimental evaluation in Ilyushkin et al. [26],
compares auto-scaler performance for the different type of
workflow applications in one deployment. To the best of
our knowledge, currently only the above two works contain
a comparably broad set of auto-scalers in their evaluations.
Thus, this paper contains the first broad experimental eval-
uation covering different deployments and traces with a
representative set of auto-scaling algorithms.

6 CONCLUSION

In this paper, we present the hybrid, proactive auto-scaler
Chameleon and benchmark it against four other state-of-
the-art proactive auto-scalers and one reactive auto-scaler.
Chameleon combines forecasting (time series analysis) and
service demand estimation (queueing theory), which can
optionally be enriched with application knowledge cap-
tured a descriptive software performance model to increase
the timeliness and accuracy of the auto-scaling reconfigura-
tions. The forecast and the service demand estimation are re-
alized by integrating established open-source tools provided
by the research community. In the evaluation, we employ
a set of elasticity and user-oriented metrics to benchmark
Chameleon in comparison to other auto-scalers. We run
experiments in a private CloudStack-based environment, in
the public AWS EC2 IaaS cloud and in the OpenNebula-
based IaaS Cloud of the Distributed ASCI Supercomputer 4
(DAS-4). For representative and repeatable measurements,
the BUNGEE elasticity benchmarking framework is used.
We conduct more than 400 hours of experiments. The work-
load scenarios consist of a CPU intensive Java Enterprise
application (endorsed to SPEC SERTTM2) driven by five
different real-world load traces. For the other auto-scalers,
we observe typical scaling behavior characteristics. Further-
more, the performance of the state-of-the-art auto-scalers
depends on the workload characteristics and thus, none of
the other auto-scalers outperforms the others for all traces
covered. In contrast, Chameleon achieves in all setups and
among all traces the best scaling behavior.

We see potential to extend our proposed Chameleon ap-
proach towards multi-dimensional and nested auto-scaling.
Here, Chameleon would have to scale multiple tiers of a
distributed application either horizontally (by adding fur-
ther nodes) or vertically (by adding resources to existing
nodes). Deciding between the two options would require a
significant extension to the decision logic that may for exam-
ple be based on machine learning. Auto-scaling on nested
resource layers like virtual machines or containers poses a
new challenge on its own. As another direction of extension,
we started working on integrating awareness of the applied
cost model. In the presence of long accounting intervals
per resource, Chameleon could leverage knowledge from
the forecast executions to delay or skip scaling events. This
would result in a shifted trace-off with decreased elasticity
results but lowered costs.

REFERENCES

[1] T. Lorido-Botran, J. Miguel-Alonso, and J. A. Lozano, “A Review
of Auto-scaling Techniques for Elastic Applications in Cloud Envi-
ronments,” Journal of Grid Computing, vol. 12, no. 4, pp. 559–592,
2014.

[2] N. Herbst, S. Kounev, A. Weber, and H. Groenda, “BUNGEE:
An Elasticity Benchmark for Self-Adaptive IaaS Cloud Environ-
ments,” in SEAMS 2015. IEEE Press, 2015, pp. 46–56.

[3] G. E. Box and more, Time Series Analysis: Forecasting and Control.
John Wiley & Sons, 2015.

[4] A. M. D. Livera, R. J. Hyndman, and R. D. Snyder, “Forecasting
Time Series With Complex Seasonal Patterns Using Exponential
Smoothing,” Journal of the American Statistical Association, vol.
106, no. 496, pp. 1513–1527, 2011.

[5] S. Kounev, N. Huber, F. Brosig, and X. Zhu, “A Model-Based Ap-
proach to Designing Self-Aware IT Systems and Infrastructures,”
IEEE Computer, vol. 49, no. 7, pp. 53–61, July 2016.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TPDS.2018.2870389

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, MONTH YEAR 14

[6] S. Spinner, G. Casale, F. Brosig, and S. Kounev, “Evaluating Ap-
proaches to Resource Demand Estimation,” Elsevier Performance
Evaluation, vol. 92, pp. 51 – 71, October 2015.

[7] H. Bal and more, “A Medium-Scale Distributed System for Com-
puter Science Research: Infrastructure for the Long Term,” IEEE
Computer, vol. 49, no. 5, pp. 54–63, May 2016.

[8] N. Herbst and more, “Ready for Rain? A View from SPEC
Research on the Future of Cloud Metrics,” CoRR, vol.
abs/1604.03470, 2016.

[9] S. Spinner, G. Casale, X. Zhu, and S. Kounev, “LibReDE: A library
for Resource Demand Estimation,” in ACM/SPEC ICPE 2014.
ACM, 2014, pp. 227–228.

[10] S. Spinner, J. Walter, and S. Kounev, “A Reference Architecture
for Online Performance Model Extraction in Virtualized Environ-
ments,” in ACM/SPEC ICPE 2017. ACM, 2016, pp. 57–62.

[11] R. J. Hyndman and A. B. Koehler, “Another Look at Measures of
Forecast Accuracy,” International Journal of Forecasting, pp. 679–
688, 2006.

[12] R. J. Hyndman and Y. Khandakar, “Automatic Time Series
Forecasting: The Forecast Package for R,” Journal of Statistical
Software, vol. 26, no. 3, pp. 1–22, 2008.

[13] X. Wang, K. Smith-Miles, and R. Hyndman, “Rule Induction for
Forecasting Method Selection: Meta-learning the Characteristics
of Univariate Time Series,” Neurocomputing, vol. 72, no. 10 - 12,
pp. 2581 – 2594, 2009.

[14] J. Grohmann, N. Herbst, S. Spinner, and S. Kounev, “Self-Tuning
Resource Demand Estimation,” in IEEE ICAC 2017, July 2017.

[15] M. Arlitt and T. Jin, “A Workload Characterization Study of the
1998 World Cup Web Site,” IEEE Network, vol. 14, no. 3, pp. 30–
37, 2000.

[16] D. Benz and more, “The social bookmark and publication man-
agement system bibsonomy,” VLDB, vol. 19, no. 6, pp. 849–875,
2010.

[17] J. R. Bunch and J. E. Hopcroft, “Triangular factorization and inver-
sion by fast matrix multiplication,” Mathematics of Computation,
vol. 28, no. 125, pp. 231–236, 1974.

[18] B. Urgaonkar et al., “An Analytical Model for Multi-Tier Internet
Services and its Applications,” in ACM SIGMETRICS, 2005.

[19] W. Iqbal, M. N. Dailey, D. Carrera, and P. Janecek, “Adaptive
Resource Provisioning for Read Intensive Multi-tier Applications
in the Cloud,” Future Generation Computer Systems, vol. 27, no. 6,
pp. 871–879, 2011.

[20] H. Fernandez, G. Pierre, and T. Kielmann, “Autoscaling Web
Applications in Heterogeneous Cloud Infrastructures,” in IEEE
IC2E, 2014.

[21] T. Chieu and more, “Dynamic Scaling of Web Applications in a
Virtualized Cloud Computing Environment,” in IEEE ICEBE 2009.
IEEE, 2009, pp. 281–286.

[22] A. Ali-Eldin, J. Tordsson, and E. Elmroth, “An Adaptive Hybrid
Elasticity Controller for Cloud Infrastructures,” in IEEE NOMS
2012. IEEE, 2012, pp. 204–212.

[23] B. Urgaonkar and more, “Agile Dynamic Provisioning of Multi-
tier Internet Applications,” ACM TAAS, vol. 3, no. 1, p. 1, 2008.

[24] A. Papadopoulos and more, “PEAS: A Performance Evaluation
Framework for Auto-Scaling Strategies in Cloud Applications,”
ACM ToMPECS, vol. 1, no. 4, pp. 1–31, August 2016.

[25] H. A. David, “Ranking from Unbalanced Paired-Comparison
Data,” Biometrika, vol. 74, pp. 432–436, 1987.

[26] A. Ilyushkin and more, “An Experimental Performance Evaluation
of Autoscalers for Complex Workflows,” ACM Transactions on
Modeling and Performance Evaluation of Computing Systems
(ToMPECS), vol. 3, no. 2, pp. 8:1–8:32, 2018.

[27] A. Iosup, N. Yigitbasi, and D. Epema, “On the Performance
Variability of Production Cloud Services,” in CCGrid 2011, 2011,
pp. 104–113.

[28] G. Galante and L. de Bona, “A Survey on Cloud Computing
Elasticity,” in IEEE UCC 2012. IEEE, 2012, pp. 263–270.

[29] B. Jennings and R. Stadler, “Resource Management in Clouds: Sur-
vey and Research Challenges,” Journal of Network and Systems
Management, vol. 23, no. 3, pp. 567–619, 2015.

[30] C. Qu, R. N. Calheiros, and R. Buyya, “Auto-scaling web
applications in clouds: A taxonomy and survey,” ACM Comput.
Surv., vol. 51, no. 4, pp. 73:1–73:33, Jul. 2018. [Online]. Available:
http://doi.acm.org/10.1145/3148149

[31] R. Han, L. Guo, M. M. Ghanem, and Y. Guo, “Lightweight Re-
source Scaling for Cloud Applications,” in IEEE/ACM CCGrid
2012. IEEE, 2012, pp. 644–651.

[32] M. Maurer, I. Brandic, and R. Sakellariou, “Enacting Slas in Clouds
Using Rules,” in Euro-Par 2011. Springer, 2011, pp. 455–466.

[33] Q. Zhang, L. Cherkasova, and E. Smirni, “A Regression-based
Analytic Model for Dynamic Resource Provisioning of Multi-tier
Applications,” in IEEE ICAC 2007. IEEE, 2007, pp. 27–27.

[34] P. Padala and more, “Automated control of multiple virtualized
resources,” in ACM European Conference on Computer Systems.
ACM, 2009, pp. 13–26.

[35] G. Tesauro, N. K. Jong, R. Das, and M. N. Bennani, “A Hybrid
Reinforcement Learning Approach to Autonomic Resource Allo-
cation,” in IEEE ICAC 2006. IEEE, 2006, pp. 65–73.

[36] J. Rao and more, “VCONF: a Reinforcement Learning Approach
to Virtual Machines Auto-configuration,” in ACM ICAC 2009.
ACM, 2009, pp. 137–146.

[37] G. Pierre and C. Stratan, “ConPaaS: a Platform for Hosting Elastic
Cloud Applications,” IEEE Internet Computing, vol. 16, no. 5, pp.
88–92, 2012.

[38] A. Biswas, S. Majumdar, B. Nandy, and A. El-Haraki, “A hybrid
auto-scaling technique for clouds processing applications with
service level agreements,” Journal of Cloud Computing, vol. 6,
no. 1, p. 29, Dec 2017.
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