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The evaluation of computer intrusion detection systems (which we refer to as intrusion detection systems)
is an active research area. In this article, we survey and systematize common practices in the area of
evaluation of such systems. For this purpose, we define a design space structured into three parts: workload,
metrics, and measurement methodology. We then provide an overview of the common practices in evaluation
of intrusion detection systems by surveying evaluation approaches and methods related to each part of the
design space. Finally, we discuss open issues and challenges focusing on evaluation methodologies for novel
intrusion detection systems.
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1. INTRODUCTION

Intrusion detection is a common cyber security mechanism whose task is to detect
malicious activities in host and/or network environments. The detection of malicious
activities enables timely reaction to, for example, stop an ongoing attack. Given the im-
portance of intrusion detection, the research and industrial communities have designed
and developed a variety of intrusion detection systems (IDSes).

With the increasing variety and complexity of IDSes, the development of IDS evalua-
tion methodologies, techniques, and tools has become a key research topic. The benefits
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of IDS evaluation are manyfold. For instance, one may compare multiple IDSes in
terms of their attack detection accuracy to deploy an IDS that operates optimally in a
given environment, thus reducing the risks of a security breach. Further, one may tune
an already deployed IDS by varying its configuration parameters and investigating
their influence through evaluation tests.

The research and industrial communities have performed a broad set of activities
related to IDS evaluation, such as generation of attack traces (see Lippmann et al.
[2000]), construction of IDS evaluation environments,1 and analysis and development
of IDS evaluation methodologies (see Ranum [2001] and McHugh [2000]). Given the
significant amount of existing practical and theoretical work related to IDS evaluation,
a structured classification is needed to improve the general understanding of the topic
and to provide an overview of the current state of the field. Such an overview would
be beneficial for identifying and contrasting advantages and disadvantages of different
IDS evaluation methods and practices. It would also help in identifying requirements
and best practices for evaluating both current and future IDSes.

In this article, we survey the common practices in IDS evaluation by analyzing exist-
ing work related to each of the standard evaluation components—workloads, metrics,
and methodology. The presented survey includes 126 references out of which 66 are
peer-reviewed research publications and technical reports, and 60 are links to specific
tool information sites, relevant data, and similar. The benefits of the presented survey
are manyfold. For researchers, the survey provides a comprehensive review of the exist-
ing work related to IDS evaluation identifying open research questions and promising
directions for future research. IDS evaluation practitioners may use it as a basis for
identifying useful approaches in the planning of IDS evaluation studies.

The article is organized as follows. In Section 2, we survey the common practices in
IDS evaluation. In Section 3, we discuss open issues and challenges, present guide-
lines for planning IDS evaluation studies based on the lessons learned, and provide a
summary. In Appendix A, we provide an overview of major developments in the area
of IDS evaluation in a chronological manner.

1.1. Background: Security Mechanisms and Intrusion Detection Systems

A given system is considered secure if it has the properties of confidentiality, integrity,
and availability of its data and services (see Stallings [2002]). Attacks are deliberate
attempts to violate the previously mentioned security properties.

Kruegel et al. [2005] take an attack-centric approach to classify security mechanisms
used to enforce the previously mentioned properties. They distinguish between attack
prevention, attack avoidance, and attack detection mechanisms; the first class includes
mechanisms that prevent attackers from reaching, and interacting with, the target,
such as access control; the second class includes mechanisms that modify the data
stored in the target such that it would be of no use to an attacker, such as data
encryption; and the third class includes mechanisms that detect ongoing attacks under
the assumption that an attacker can reach the target and interact with it—a security
mechanism that belongs to this class is intrusion detection.

According to Scarfone and Mell [2007], intrusion detection is “the process of mon-
itoring the events occurring in a computer system or network and analyzing them
for signs of possible incidents, which are violations or imminent threats of violation
of computer security policies, acceptable use policies, or standard security practices.”
Given the preceding definition, an IDS can be seen as the software that automates the
intrusion detection process.

In Table I, we categorize IDSes into types according to the properties we consider
relevant for evaluating different systems: the platform they monitor, the employed

1http://www.nsslabs.com/.
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Table I. Categorization of Intrusion Detection Systems

Property IDS Type Description
Monitored
platform

Host based An IDS that monitors the activities on the system (i.e., the host) where
it is deployed to detect local attacks—attacks executed by users of the
targeted system itself (e.g., Open System SECurity (OSSEC)).2

Network based An IDS that monitors network traffic to detect remote attacks—attacks
carried out over a network connection (e.g., Snort [Roesch 1999]).

Hybrid An IDS that is a combination of host and network-based IDSes (see Jin
et al. [2009]).

Attack
detection
method

Misuse based An IDS that evaluates system and/or network activities against a set of
signatures of known attacks (e.g., Snort [Roesch 1999]); therefore, it
is not able to detect zero-day attacks—attacks that exploit
vulnerabilities that have not been publicly disclosed before the
execution of the attacks.

Anomaly based An IDS that uses a baseline profile of regular network and/or system
activities as a reference to distinguish between regular and
anomalous activities, the latter being treated as attacks (see Avritzer
et al. [2010]); therefore, it is able to detect zero day as well as known
attacks, yet it may often mislabel regular activities as anomalous,
which is its major disadvantage. A typical anomaly-based IDS is
trained by monitoring regular activities to construct baseline activity
profiles.

Hybrid An IDS that uses both misuse-based and anomaly based attack
detection methods (see Modi and Patel [2013]).

Deployment
architecture

Nondistributed A noncompound IDS that can be deployed only at a single location (e.g.,
Snort [Roesch 1999]).

Distributed A compound IDS that consists of multiple intrusion detection
subsystems that can be deployed at different locations and
communicate to exchange intrusion detection-relevant data, such as
attack alerts (e.g., OSSEC, which can be configured to operate in a
distributed manner). Distributed IDSes can detect coordinated
attacks targeting multiple sites in a given time order.

attack detection method, and their deployment architecture. We refer the reader to
Debar et al. [1999] for an in-depth categorization of IDSes.

2. INTRUSION DETECTION SYSTEM EVALUATION DESIGN SPACE

In this section, we present an IDS evaluation design space structured into three parts:
workloads, metrics, and measurement methodology. Although they have a lot in com-
mon when it comes to evaluation, different types of IDSes (see Section 1.1) pose chal-
lenges and requirements that apply specifically to each IDS type. When a given category
or part of the design space relates closely to a particular IDS type, we stress such a
relation in our discussions.

2.1. Workloads

In Figure 1, we depict the workload part of the IDS evaluation design space. To evaluate
an IDS, we need both malicious and benign workloads. These can be used separately
(e.g., as pure malicious or pure benign workloads) to measure the capacity of an IDS
as in Bharadwaja et al. [2011] and Jin et al. [2011], or its attack coverage as in Reeves
et al. [2012]. Pure benign workloads are workloads that do not contain attacks, whereas
pure malicious workloads are workloads that contain only attacks. Alternatively, one
can use mixed workloads (i.e., workloads that are a mixture of pure benign and pure
malicious workloads) to subject an IDS under test to realistic attack scenarios as in Yu
and Dasgupta [2011], Avritzer et al. [2010], and Sinha et al. [2006].

2http://www.ossec.net/.
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Fig. 1. IDS evaluation design space: workloads. There are three types of workloads with respect to workload
content: pure benign (workloads that do not contain attacks), pure malicious (workloads that contain only
attacks), and mixed. There are two types of pure benign, pure malicious, or mixed workloads with respect to
their form: executable and trace. There are two methods for generating pure benign executable workloads:
the use of workload drivers (Section 2.1.1) and manual generation (Section 2.1.2). There are two methods
for generating pure malicious executable workloads: the use of an exploit database (Section 2.1.3), and
vulnerability and attack injection (Section 2.1.4). There are two methods for generating pure benign, pure
malicious, or mixed workloads in trace form: acquisition (Section 2.1.5) and generation (Section 2.1.6).

IDS evaluation workloads normally take an executable form for live testing of an IDS,
or a trace form, generated by recording a live execution of workloads for later replay.
The trace replay is performed with tools designed to process trace files—a common
combination is the use of the tool tcpdump for capturing network traces for subsequent
replay by tcpreplay.3,4

A major advantage of using workloads in executable form is that they closely resem-
ble a real workload as monitored by an IDS during operation. However, a malicious
workload in executable form requires a specific victim environment that can be ex-
pensive and time consuming to set up (see Debar et al. [1998]). In contrast, such an
environment is not always required for replaying workload traces. Further, multiple
evaluation runs are typically required to ensure statistical significance of the observed
system behavior. However, replicating evaluation experiments when using executable
malicious workloads is usually challenging, as the execution of attacks might crash the
victim environment or render it in an unstable state. Moreover, the process of restoring
the environment to an identical state as before the execution of the attacks may be time
consuming.

In the following, we first discuss different methods for the generation of benign and
malicious workloads in executable form (see Figure 1). We discuss the use of workload
drivers and manual generation approaches for generating pure benign workloads. We
also discuss the use of an exploit database and vulnerability and attack injection
techniques for generating pure malicious workloads. We note that mixed workloads
in executable form can be generated by using the previously mentioned methods for
generating pure benign and pure malicious workloads in combination. Finally, we
discuss methods for obtaining pure benign, pure malicious, or mixed workloads in a
trace form, distinguishing between trace acquisition and trace generation.

2.1.1. Workloads → Pure Benign → Executable Form → Workload Drivers. For the purpose
of live IDS testing, a common practice is to use benign workload drivers to generate

3http://www.tcpdump.org/.
4http://tcpreplay.synfin.net/.

ACM Computing Surveys, Vol. 48, No. 1, Article 12, Publication date: September 2015.

http://www.tcpdump.org/
http://tcpreplay.synfin.net/


Evaluating Computer Intrusion Detection Systems: A Survey of Common Practices 12:5

artificial pure benign workloads with different characteristics. Some of the commonly
used workload drivers are SPEC CPU2000 for CPU-intensive workloads5; iozone and
Postmark for file I/O (input/output)-intensive workloads6,7; httpbench, dkftpbench,
and ApacheBench for network-intensive workloads8,9,10; and UnixBench for system-
wide workloads that exercise not only the hardware but also the operating system.11

Experiments using the mentioned tools were performed in Griffin et al. [2003], Patil
et al. [2004], Chung and Mok [2006], Riley et al. [2008], Zhang et al. [2008], Jin et al.
[2009, 2011], Lombardi and Di Pietro [2011], and Reeves et al. [2012]. As expected, the
CPU- and file I/O-intensive drivers have been employed mainly for evaluating host-
based IDSes, whereas the network-intensive drivers have been employed for evaluating
network-based IDSes. We look at the IDS properties typically quantified using these
drivers when we discuss IDS evaluation methodologies in Section 2.3.

A major advantage of using benign workload drivers is the ability to customize the
workload in terms of its temporal and intensity characteristics. For instance, one may
configure a workload driver to gradually increase the workload intensity over time,
as typically is done when evaluating the workload processing capacity of an IDS. A
disadvantage is that the workloads generated by such drivers often do not closely
resemble real-life workloads. In the case when realistic benign workloads are needed
(e.g., to be used as background activities mixed with attacks), a reasonable alternative
is the manual generation of benign workloads.

2.1.2. Workloads → Pure Benign → Executable Form → Manual Generation. Under man-
ual generation of workloads, we understand the execution of real system users’ tasks
known to exercise specific system resources, which is typically applied in the context of
evaluating host-based IDSes. For example, a common approach is to use file encoding
or tracing tasks to emulate CPU-intensive tasks (e.g., Dunlap et al. [2002] perform ray
tracing, Srivastava et al. [2008] perform video transcoding, Lombardi and Di Pietro
[2011] perform mp3 file encoding), file conversion and copying of large files to emulate
file I/O-intensive tasks (e.g., Lombardi and Di Pietro [2011] and Allalouf et al. [2010]
use the UNIX command dd to perform file copy operations), and kernel compilation to
emulate mixed (i.e., both CPU- and file I/O-intensive) tasks (e.g., performed by Wright
et al. [2002], Dunlap et al. [2002], Riley et al. [2008], Lombardi and Di Pietro [2011],
and Reeves et al. [2012]).

Provided that it is based on a realistic activity model, this approach of benign work-
load generation enables the generation of workloads with a behavior similar to the
one observed by an IDS during regular system operation. Thus, it is suitable when
realistic benign workloads are required (e.g., for training and evaluation of anomaly
based IDSes). In addition, it is suitable for generation of workload traces capturing
realistic workloads executed in a recording testbed, a topic that we discuss later in
Section 2.1.6. However, the manual benign workload generation does not support work-
load customization as workload drivers do and might require a substantial amount of
manpower.

In Table II, we provide an overview of the use of the discussed methods for generating
pure benign workloads in practice. We also provide stepwise guidelines (see Selection
Guidelines section in Table II) for selecting an approach from those presented in Table II

5http://www.spec.org/cpu2000/.
6http://www.iozone.org/.
7http://fsbench.filesystems.org/bench/postmark-1_5.c.
8http://freecode.com/projects/httpbench.
9http://www.kegel.com/dkftpbench/.
10http://httpd.apache.org/docs/2.2/programs/ab.html.
11https://github.com/kdlucas/byte-unixbench.
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Table II. Practices for Generating Pure Benign Workloads in Executable

Reference Method/Workload Type/Approach or Workload Driver
Allalouf et al.
[2010]

M / I/O intensive / Creating, deleting and truncating files, appending data to files;
M / Mixed / Compilation of libraries

Chung et al. [2013] M / CPU intensive / Compiling Java code; M / Network intensive /
Web surfing, Telnet sessions; M / I/O intensive / Reading PDF files;
W / CPU-intensive / SPEC CPU2000

Dunlap et al.
[2002]

M / CPU intensive / Ray tracing; M / Mixed / Kernel compilation; W / Network
intensive / SPECweb9912

Griffin et al. [2003] M / CPU intensive / Building SSH server; W / I/O intensive / Postmark
Jin et al. [2011] W / I/O intensive / iozone; W / Network intensive / Apachebench,

dkftpbench
Jou et al. [2000] M / Network intensive / Executing traceroute
Laureano et al.
[2007]

M / CPU intensive / Executing Linux commands (ps, who); M / Mixed / Executing
Linux commands (find, ls); M / Network intensive / Downloading files

[Meng and Li 2012] M / Network intensive / Web surfing, transmitting files
Patil et al. [2004] M / I/O intensive / File read operations; W / CPU intensive / Am-utils13; W / I/O

intensive / Postmark
Reeves et al. [2012] M / Mixed / Server and kernel compilation; W / CPU intensive / SPEC CPU2000;

W / Mixed / lmbench14

Riley et al. [2008] M / Mixed / Kernel compilation, executing insmod; W / Mixed / Unixbench;
W / Network intensive / Apachebench

[Srivastava et al.
2008]

M / CPU intensive / Encoding files; M / I/O intensive / Copying files;
M / Mixed / Video file compression and decompression, kernel compilation

[Wright et al. 2002] M / Mixed / Kernel compilation; W / Network intensive / Webstone15; W / Mixed /
lmbench

[Zhang et al. 2008] W / I/O intensive / iozone

Selection Guidelines

1. Select a method for generating workloads—that is, the use of workload drivers (“workload drivers” in
Table II) or manual generation—by taking the advantages and disadvantages of the different
methods into account (see Sections 2.1.1 and 2.1.2). In Section 2.3, in the context of IDS evaluation
methodologies, we present IDS evaluation scenarios where the different methods are applied for
evaluating various IDS properties.

2. Select the type of workloads (e.g., CPU- or I/O intensive) that is required for evaluating the
considered IDS property. For instance, CPU- and/or I/O-intensive workloads are required for
evaluating the performance overhead of a host-based IDS, and network-intensive workloads are
required for evaluating any property of a network-based IDS. In Section 2.3, we present IDS
evaluation scenarios where workloads of the different types are used for evaluating IDS properties.

3. Depending on the selection made in step 1, select an approach for manually generating workloads or
a workload driver. This is normally done based on subjective criteria (e.g., prior experience with using
a given workload driver). In an effort to provide general recommendations for selecting an approach
for manually generating workloads/a workload driver, we mark the most popular
approaches/workload drivers in bold. Based on what is reported in the surveyed work, we argue that
the popularity of the workload drivers marked in bold is due to high configurability,
representativeness of the workloads they generate, and ease of use.

Form W, workload drivers; M, manual generation.

to apply in a given IDS evaluation study—that is, to evaluate a given IDS property
(e.g., workload processing capacity or performance overhead, see Section 2.3).

2.1.3. Workloads → Pure Malicious → Executable Form → Exploit Database. Pure malicious
workloads in executable form are used for evaluating the attack detection coverage
of IDSes (see Section 2.3). As pure malicious workloads in executable form, security

12http://www.spec.org/web99/.
13http://www.am-utils.org/.
14http://www.bitmover.com/lmbench/.
15http://www.mindcraft.com/webstone/.
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Table III. Popular Exploit Repositories

Exploit Vulnerable Vulnerability
Exploit Database Verification Software Identifiers

C
V

E

O
S

V
D

B

B
u

gT
ra

q

Inj3ct0r (http://www.0day.today) x
Exploit database (http://www.exploit-db.com/) x x x x
Packetstorm (http://packetstormsecurity.com/) x x
SecuriTeam (http://www.securiteam.com/exploits/) x x
Securityfocus (http://www.securityfocus.com/) ◦ x x

Categorization Criteria
Criteria Description
Exploit
verification

An exploit repository that fulfills this criterion maintains a record for each hosted attack
script indicating whether the script has been empirically verified to successfully exploit a
specific vulnerability. This helps IDS evaluators to identify attack scripts that they can
easily adapt to their specific requirements.

Vulnerable
software

An exploit repository that fulfills this criterion provides a download link to the specific
vulnerable software that can be exploited by different attack scripts. This helps IDS
evaluators to quickly obtain the vulnerable software and use it to experiment with the
scripts.
◦ marks partial fulfillment of this criterion—an exploit repository that partially fulfills
this criterion provides a link to the Web site of the vendor of the vulnerable software
instead of a download link to the software, due to which it takes more time for an IDS
evaluator to obtain the vulnerable software.

Vulnerability
identifiers

An exploit repository that fulfills this criterion can be searched based on standard
vulnerability identifiers. This enables IDS evaluators to quickly locate an attack script
that exploits a given vulnerability. Common Vulnerabilities and Exposures (CVE),16

Open Sourced Vulnerability Database (OSVDB),17 and BugTraq18 are the defacto
standard vulnerability enumeration systems.

researchers typically use an exploit (i.e., an attack script) database. They have a choice
of assembling an exploit database by themselves or by using a readily available one.

Exploit database → Manual assembly. A major disadvantage of the manual assembly
is the high cost of the attack script collection process. Locating the attack scripts needed
for exploiting specific vulnerabilities and obtaining the required vulnerable software
typically is time consuming. In addition, once the needed attack scripts are found, they
usually have to be adapted to exploit the vulnerabilities of the victim environments,
especially when the attack scripts exploit local system vulnerabilities for evaluating
host-based IDSes. This includes time-consuming adaptation of employed exploitation
techniques and the like.

Depending on the size of a manually assembled exploit database, the previously
mentioned activities might require a considerable amount of manpower to be completed
in a reasonable time frame. For instance, Mell et al. [2003] report that based on previous
experiences, a single attack script requires approximately one person-week to modify
the script’s code, to test it, and to integrate it in an IDS evaluation environment. Mell
et al. also report that in 2001, the average number of attack scripts used for evaluating
IDSes was in the range of 9 to 66. We observe that some recent works, such as Lombardi
and Di Pietro [2011], use as low as four attack scripts.

To assemble an exploit database, IDS evaluators normally obtain attack scripts
from public exploit repositories. In Table III, we list popular exploit repositories

16http://cve.mitre.org/.
17http://www.osvdb.org/.
18http://www.securityfocus.com/archive/1.
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characterized according to the criteria exploit verification, vulnerable software, and
vulnerability identifiers (see Categorization Criteria section in Table III). Given that
an exploit repository hosts a limited number of attack scripts, an IDS evaluator nor-
mally does not search only a single repository, but searches as many as it takes until
the desired number of attack scripts is obtained. In this process, we recommend that
an IDS evaluator prioritizes the exploit repository “Exploit database” (marked in bold
in Table III), as it fulfills more criteria than any other repository presented in Table III
(see the Categorization Criteria section for an overview of the benefits of a reposi-
tory fulfilling the exploit verification, vulnerable software, and vulnerability identifiers
criteria).

Publicly available attack scripts normally do not feature techniques for evaluating
the ability of an IDS to detect evasive attacks—that is, attacks that are specifically
crafted such that an IDS might not detect them. Adapting publicly available attack
scripts to feature techniques for evaluating the ability of an IDS to detect evasive at-
tacks normally requires an in-depth knowledge of the architecture and inner working
mechanisms of the IDS, a topic that we discuss in detail in Section 2.3.1. Such knowl-
edge may be challenging to obtain if the evaluated IDS is a closed source. Thus, IDS
evaluators use third-party tools when executing attack scripts, such as Nikto.19 Cheng
et al. [2012] provide an overview of IDS evasion techniques and discuss the use of the
previously mentioned and similar tools for evaluating IDSes.

Exploit database → Readily available exploit database. To alleviate the issues men-
tioned previously, many researchers employ penetration testing tools as a readily avail-
able exploit database. We discuss the Metasploit framework in detail, as it is the most
popular penetration testing tool used extensively in both past and recent IDS evalua-
tion experiments (e.g., by Nasr, Kalam, and Fraboul [2012]).20 Some other penetration
testing tools are Nikto, w3af,21 and Nessus.22

The interest in Metasploit is not surprising, given that Metasploit enables a cus-
tomizable and automated platform exploitation by using an exploit database that is
maintained up-to-date and is freely available. However, although convenient, penetra-
tion testing frameworks have some critical limitations. Gad El Rab [2008] analyzes
the Metasploit’s database, showing that most of the exploits are executed from remote
sources, and therefore they are most useful when evaluating network-based IDSes and
are of limited use for evaluating host-based IDSes.

To provide an up-to-date characterization of Metasploit’s exploit database, we ana-
lyzed the exploit database of Metasploit version 4.7, the most recent release at the time
of this writing. In Table IV, we categorize Metasploit’s exploits according to the execu-
tion source, target platforms, and exploit rank criteria (see the Categorization Criteria
section).23 Similarly to Gad El Rab, we observe that Metasploit’s exploit database
contains mostly remote exploits, which makes it most useful for evaluating network-
based IDSes. We also observe that a big portion of the exploits in the Metasploit’s
database have a “great” and “excellent” rank. This indicates that an IDS evaluator
can use many attack scripts from Metasploit’s database without crashing the victim
platform(s). Finally, as we can see in Table IV, most of the remote and local exploits
exploit vulnerabilities of Windows platforms.

19http://cirt.net/nikto2.
20http://www.metasploit.com/.
21http://w3af.org/.
22http://www.tenable.com/products/nessus-vulnerability-scanner.
23https://github.com/rapid7/metasploit-framework/wiki/Exploit-Ranking.
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Table IV. Characterization of Metasploit’s Exploit Database

Execution Source
Remote Local

������������Exploit Rank
Target Platforms
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Manual 4 3 1 5 2 15 0
Low 10 10 0
Average 1 1 4 1 8 1 120 3 139 2 2
Normal 2 7 2 251 6 268 2 2
Good 2 14 1 159 9 185 0
Great 2 1 1 3 8 1 3 147 17 183 2 2 4
Excellent 1 70 1 1 30 2 5 89 84 283 2 8 1 11
Total (per platform) 2 3 1 78 4 1 1 66 2 14 9 781 121 4 2 12 1
Total 1,083 19

Categorization Criteria
Criteria Description
Execution
source

An exploit can be executed from a remote (i.e., a remote exploit) or a local source (i.e., a
local exploit). Remote exploits are used for evaluating network-based IDSes, whereas
local exploits are used for evaluating host-based IDSes. The amount of remote and
local exploits in an exploit database indicates its suitability for evaluating network-
and host-based IDSes.

Target
platforms

Each exploit is designed to exploit a vulnerability of a single or multiple target plat-
forms (i.e., multi-platform exploits), such as Linux, Solaris, and Windows. An exploit
database covering a wide range of platforms is beneficial, because, for example, it can
be used to evaluate a variety of IDSes for different target platforms.

Exploit rank Each exploit in Metasploit’s database is ranked according to its impact on the target
platform as shown below. The use of attack scripts that do not crash the target platform
(e.g., scripts ranked as “excellent”) significantly reduces the time spent on restoring it
(see Section 2.1).

Manual: An exploit of this rank almost never successfully exploits a vulnerability and
nearly always crashes the target platform.

Low: An exploit of this rank almost never successfully exploits a vulnerability or
successfully exploits a vulnerability in less than 50% of the cases if the target platform
is popular.

Average: An exploit of this rank is unreliable and rarely successfully exploits a
vulnerability.

Normal: An exploit of this rank successfully exploits a vulnerability, but only a
vulnerability of a specific version of the target platform and cannot reliably autodetect
a vulnerable platform.

Good: An exploit of this rank has a default target platform (i.e., a platform that the
exploit almost always successfully exploits), which is popular.

Great: An exploit of this rank has a default target platform and detects a vulnerable
platform.

Excellent: An exploit of this rank almost always successfully exploits a vulnerability
and never crashes the target platform.

2.1.4. Workloads → Pure Malicious → Executable Form → Vulnerability and Attack Injection. An
alternative approach to the use of an exploit database is the use of the vulnerability
and attack injection technique. Vulnerability and attack injection enables live IDS
testing by first artificially injecting exploitable vulnerable code in a target platform
and then attacking the platform. Although not yet mature, this technique is useful in
cases where collection of attack scripts that exploit vulnerabilities is unfeasible. As
the injected vulnerable code may be exploitable remotely or locally, vulnerability and
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Fig. 2. Use of vulnerability and attack injection to evaluate a network-based IDS.

attack injection is useful for evaluating both host- and network-based IDSes. However,
injecting attacks such that the sensors of an IDS under test are exercised may require
in-depth knowledge of the architecture and inner working mechanisms of the IDS.

Vulnerability and attack injection relies on the principles of the more general re-
search area of fault injection. Fault injection is an approach for validating specific fault-
handling mechanisms and assessing the impact of faults in actual systems. In recent
years, the interest in software fault injection has increased providing a basis for many
research works on emulation of software faults. A specific application of software fault
injection is injection of software faults that represent security vulnerabilities. Fonseca
et al. [2014] proposed an approach that enables the automated vulnerability and attack
injection of Web applications, which is suitable for evaluating network-based IDSes.

We discuss a scenario where the approach of Fonseca et al. is applied for evaluating
a network-based IDS that monitors network traffic to a database, which communicates
with a Web application, to detect Standard Query Language (SQL) injection attacks.
Fonseca et al. built a Vulnerability Injector, a mechanism that injects vulnerabilities in
the source code of Web applications, and an Attack Injector, a mechanism that exploits
the injected vulnerabilities. To inject vulnerabilities, the Vulnerability Injector first
analyzes the application source code searching for locations where realistic vulnerabil-
ities can be injected by code mutation. The Attack Injector then interacts with the Web
application to deliver attack payloads.

In Figure 2, we depict the approach of Fonseca et al. First, the Vulnerability Injector
injects a vulnerability in the Web application (1. Inject vulnerability in Figure 2), fol-
lowed by the Attack Injector, which delivers an attack payload with a given signature—
that is, an attack identifier (2. Attack). The attack payload is targeted at the database
(Attack). Fonseca et al. developed a database proxy that monitors the communication
between the application and the database to identify the presence of attack signatures.
When the proxy identifies the signature of the delivered attack payload (3. Identify sig-
nature in Figure 2), it notifies the Attack Injector that the attack payload has reached
the database (4. Notify). In this way, the Attack Injector builds a “ground truth” knowl-
edge. Ground truth is information about the attacks used as malicious workloads in a
given IDS evaluation study (e.g., time of execution of the attacks). The output of an IDS
under test is compared with ground truth information to quantify the attack detection
accuracy of the IDS, a topic that we discuss in detail in Section 2.2.

2.1.5. Workloads → Pure Malicious/Pure Benign/Mixed → Trace Form → Trace Acquisition. Un-
der trace acquisition, we understand the process of obtaining real-world production
traces from an organization (i.e., nonpublic, proprietary traces) or obtaining publicly
available traces that are intended for use in security research.

Trace acquisition → Real-world production traces. Real-world production traces sub-
ject an IDS under test to a workload as observed during operation in a real production
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environment. However, they are usually difficult to obtain mainly due to the unwilling-
ness of industrial organizations to share operational traces because of privacy concerns.
Thus, real-world traces are usually anonymized by using tools for that purpose. Such is
the tool tcpmkpub, which anonymizes network traces by modifying recorded network
packets at multiple layers of the TCP/IP network stack.24

Some organizations are reluctant even toward trace anonymization due to the possi-
bility of information leakages. For instance, trace files may be deanonymized to reveal
sensitive internal information (e.g., IP addresses, port numbers, network topologies).
Coull et al. [2007] demonstrate the severity of trace deanonymization by revealing
anonymized information with 66% to 100% accuracy based on the traces provided by
the Lawrence Berkeley National Laboratory (LBNL).25

When it comes to the use of anonymization techniques on traces for IDS evaluation,
Seeberg and Petrovic [2007] identify the following challenging requirements: (1) dur-
ing anonymization, the smallest possible amount of intrusion detection relevant data
should be removed, and (2) assurance needs to be attained that no private and other
sensitive information remains in the trace files after anonymization. For an IDS evalu-
ator, the first requirement is of greatest concern, as an anonymizer might remove data
that is relevant for a given IDS under test. Therefore, the provisioning of extensive and
accurate metadata on how a given trace file has been anonymized is crucial.

Another challenge is that attacks in real-world production traces are usually not
labeled and traces may contain unknown attacks making the construction of the ground
truth time consuming since attacks have to be labeled manually. Lack of ground truth
information severely limits the usability of trace files in IDS evaluation. For instance,
it might be impossible to quantify the false-negative detection rate of an IDS under
test (see Section 2.2).

Trace acquisition → Publicly available traces. In contrast to real-world traces, one
can obtain publicly available traces without any legal constraints. However, the use
of such traces has certain risks. For instance, publicly available traces often contain
errors and quickly become outdated after their release since the recorded attacks have
limited shelf-life. Consequently, claims on the generalizability of results from IDS eval-
uation studies based on publicly available traces can often be questioned. An in-depth
knowledge about the characteristics of recorded activities in publicly available traces
(e.g., types and distributions of recorded attacks) is a requirement for the accurate
interpretation of results from IDS evaluation studies based on such traces.

The DARPA and the derived Knowledge Discovery and Data Mining Cup 1999 (KDD-
99) datasets are the result of one of the most notable efforts up-to-date to provide
publicly available data for security research. In three consecutive years (i.e., 1998, 1999,
and 2000), three separate editions of the DARPA datasets have been made available.
Since they contain local and remote attacks, the DARPA datasets are suitable for
evaluating host- and network-based IDSes. They also contain training data, which
makes them useful for evaluating anomaly based IDSes. However, the DARPA and
KDD-99 datasets are currently considered outdated and have been often criticized
(see Sommer and Paxson [2010] and McHugh [2000]). Despite the criticism, these traces
are still used in many recent IDS evaluation experiments (e.g., by Yu and Dasgupta
[2011] and Raja et al. [2012]).

In Table V, we provide an overview of popular repositories of publicly available traces
categorized according to multiple criteria (see the Categorization Criteria section): the

24http://www.icir.org/enterprise-tracing/tcpmkpub.html.
25http://www.icir.org/enterprise-tracing/.
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Table V. Repositories of Publicly Available Traces

Trace
Repository Content Activities Labeled Realistic Anonymized Metadata

Access
Restrictions

CAIDA Mixed Network No Yes Partiallya Yes Partialb

DEFCON Pure
malicious

Network No No No No No

DARPA/KDD-
99

Mixed Network/Host Yes No No Yes No

ITA Pure benign Network n/a Yes Partiallyc No No
LBNL/ICSI Pure benign Network n/a Yes Yes Yes No
MAWILab Mixed Network Yes Yes Yes Yes No

Categorization Criteria

Criteria Description
Content The traces hosted in a given repository may contain only benign activities (pure benign),

only attacks (pure malicious), or both benign activities and attacks (mixed, see Figure 1).

Activities The traces hosted in a given repository may contain network and/or host activities. The
former are needed for evaluating network-based IDSes and the latter for evaluating
host-based IDSes.

Labeled The attacks recorded in the traces hosted in a given repository may or may not be labeled.
Labeled attacks enable an IDS evaluator to observe whether the IDS under test detects the
recorded attacks.

Realistic The traces hosted in a given repository may or may not be realistic. A trace is considered to
be realistic if it has been captured during regular operation of a network or host
environment and has not been modified after capturing [Shiravi et al. 2012]. Realistic
traces enable the representative evaluation of IDSes.

Anonymized The traces hosted in a given repository may or may not be anonymized. Anonymized traces
may lack information that is crucial for intrusion detection (see Section 2.1.5).

Metadata Metadata on how activities stored in trace files have been recorded and anonymized may or
may not be provided. Metadata is important for accurately interpreting results from IDS
evaluation experiments where traces have been used as workloads (see Section 2.1.5).

Access
restrictions

The traces hosted in a given repository may be available to the general public or only to
certain individuals satisfying specific requirements, such as employment by a research
organization or a government agency.

Selection Guidelines

1. Select the trace repositories with the appropriate value of the Activities criterion with respect to the type
of the tested IDS (i.e., network- or host-based IDS)—that is, “network” for evaluating network-based
IDSes and “host” for evaluating host-based IDSes (see the description of the Activities criterion in the
Categorization Criteria section of this table).

2. Select the trace repositories with the appropriate value of the Content criterion with respect to the
evaluated IDS property–for example, “pure malicious” for evaluating attack detection coverage, “mixed”
for evaluating attack detection accuracy, and so on (see the description of the Content criterion in the
Categorization Criteria section of this table). In Section 2.3, we provide details on the use of pure
malicious, pure benign, or mixed workloads for evaluating different IDS properties (see Table VIII).

3. Select the repository with values of the Labeled, Realistic, Anonymized, Metadata, and Access
restrictions criteria such that the benefit of using the repository is maximal (see the Categorization
Criteria section of this table for an overview of the benefits of a trace repository fulfilling or not fulfilling
the previously mentioned criteria).

aThe IP addresses recorded in some trace files are anonymized.
bSome trace files are available only to members of CAIDA’s membership program.
cSome trace files are anonymized such that IP addresses are modified and all packet contents are removed.
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Cooperative Association for Internet Data Analysis (CAIDA),26 the Defense Readiness
Condition (DEFCON),27 the DARPA/KDD–99,28,29 the Internet Traffic Archive (ITA),30

the LBNL/ISCI (International Computer Science Institute), and the MAWILab trace
repositories.31 We also provide stepwise guidelines (see the Selection Guidelines sec-
tion of Table V) for selecting a trace repository from those presented in Table V to
use in a given IDS evaluation study—that is, to evaluate a given IDS property (see
Section 2.3).

2.1.6. Workloads → Pure Malicious/Pure Benign/Mixed → Trace Form → Trace Generation. Un-
der trace generation, we understand the process of generating traces by the IDS evalu-
ator himself. To avoid the issues with acquiring traces (see Section 2.1.5), researchers
generate traces in a testbed environment or deploy a honeypot to capture malicious
activities.

Trace generation → Testbed environment. Traces that contain benign and malicious
workloads can be generated in a testbed environment by using the previously men-
tioned methods for generating workloads in executable form and capturing the work-
loads in trace files. The generation of traces in a testbed environment may be chal-
lenging. For instance, the costs of building a testbed that scales to realistic production
environments may be high. Further, generating large-scale workloads for recording,
especially when performed manually (see Section 2.1.2), may be time consuming and
require a considerable amount of manpower. Finally, the method used for trace gener-
ation may produce faulty or simplistic workloads. For instance, Sommer and Paxson
[2010] warn that activities captured in small testbed environments differ fundamen-
tally from activities in a real-life environment.

An approach to alleviate the issue of generating faulty workloads is to observe the
network and/or host activities in a production environment to construct a realistic
activity model. The latter can then be used as a basis for the generation of realistic live
workloads for the purpose of recording trace files. The DARPA datasets were generated
according to the preceding approach. Cunningham et al. [1999] observed the network
activities in an Air Force base by deploying network traffic sniffers to record types and
amounts of used network services, information that they used as a basis for generating
and recording benign workloads.

Although useful, the use of the preceding approach results in one-time datasets (i.e.,
datasets that resemble the real world only for a given time period after the trace
generation). This issue has motivated a current research direction focusing on the
generation of traces in a testbed environment in a customizable manner. For instance,
Shiravi et al. [2012] proposed the use of workload profiles enabling the specification and
customization of malicious and benign network traffic that can be captured in trace
files. They introduced α-profiles for the specification of attack scenarios with attack
description languages and β-profiles for the specification of mathematical distributions
or behaviors of certain entities (e.g., distribution of network packet sizes). The α-
and β-profiles support the generation of datasets that can be modified, extended, and
reproduced. Using the specifications defined in the profiles, manually or using scripted

26http://www.caida.org/data/.
27http://cctf.shmoo.com/.
28http://www.ll.mit.edu/ideval/data/.
29http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html.
30http://ita.ee.lbl.gov/html/traces.html.
31http://www.fukuda-lab.org/mawilab/.
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Fig. 3. Honeypots of different levels of interaction.

agents, one can generate both malicious and benign workloads in a testbed environment
for recording.

Trace generation → Honeypots. By mimicking real systems and/or vulnerable
services, honeypots enable the interaction and recording of host and/or network
malicious activities performed by an attacker without revealing their purpose. Since
honeypots are usually isolated from production platforms, most of the interactions that
they observe are malicious, making honeypots ideal for generation of pure malicious
traces. However, given that honeypots interact with real attackers, the outcome of a
trace generation campaign performed by using a honeypot (e.g., amount and types of
recorded attacks) is uncertain, as it cannot be planned in advance and controlled.

Based on their level of interaction with attackers, honeypots can be categorized
into low-interaction, high-interaction, and pure honeypots. Low-interaction honeypots
mimic only specific vulnerable services by using scripts, high-interaction honeypots
mimic production systems by using actual operating systems, and pure honeypots are
full-fledged production systems equipped with logging tools.

Low-interaction honeypots are not flexible, can be easily detected by attackers, and
cannot interact with zero-day attacks. However, they are not expensive to maintain and
are useful for recording malicious activities that can be easily labeled. High-interaction
and pure honeypots are flexible, can interact with zero-day attacks, and are not eas-
ily detectable; however, they are expensive to maintain and require time-consuming
analysis of recorded activities for the purpose of labeling recorded attacks to construct
ground truth. There are also hybrid honeypots, which combine the advantages of low-
and high-interaction honeypots. In Figure 3, we present commonly used honeypots of
the previously mentioned levels of interaction.

2.2. Metrics

In Figure 4, we depict the metrics part of the IDS evaluation design space. We distin-
guish between two metric categories: performance-related metrics and security-related
metrics. Under performance-related metrics, we consider metrics that quantify the non-
functional properties of an IDS under test, such as capacity (e.g., see Meng and Li
[2012]) and resource consumption (e.g., see Sinha et al. [2006]). In this article, we focus
on security-related metrics. Under security-related metrics, we consider metrics that
quantify the attack detection accuracy of an IDS. We distinguish between basic and
composite security-related metrics (see Figure 4). We provide an overview of the most
commonly used basic and composite security-related metrics in Table VI. In this table,

ACM Computing Surveys, Vol. 48, No. 1, Article 12, Publication date: September 2015.



Evaluating Computer Intrusion Detection Systems: A Survey of Common Practices 12:15

Fig. 4. IDS evaluation design space: metrics. There are two types of metrics with respect to the aspect of IDS
behavior they quantify: security related (quantify IDS attack detection accuracy) and performance related
(quantify nonfunctional IDS properties). There are two types of security-related metrics with respect to metric
form: basic (Section 2.2.1) and composite, which are metrics derived from basic metrics (Section 2.2.2). There
are two types of composite metrics with respect to used measurement method (Section 2.2.2): cost based and
information theoretic.

we also show the notation, formulas, and value domains of used symbols (including
variables).32

2.2.1. Metrics → Security Related → Basic. The basic metrics quantify various individual
attack detection properties. Although they are quantified individually, these properties
need to be analyzed together to accurately characterize the attack detection efficiency of
an IDS. For instance, the false-negative rate β = P(¬A|I) quantifies the probability that
an IDS does not generate an alert when an intrusion occurs; therefore, the true-positive
rate 1 − β = 1 − P(¬A|I) = P(A|I) quantifies the probability that an alert generated
by an IDS is really an intrusion. The false-positive rate α = P(A|¬I) quantifies the
probability that an alert generated by an IDS is not an intrusion but a regular benign
activity; therefore, the true-negative rate 1 − α = 1 − P(A|¬I) = P(¬A|¬I) quantifies
the probability that an IDS does not generate an alert when an intrusion does not
occur. In IDS evaluation experiments, the output of the IDS under test is compared
with ground truth information to calculate the basic metrics.

Other basic metrics are the positive predictive value (PPV) and the negative predic-
tive value (NPV). The first quantifies the probability that there is an intrusion when
an IDS generates an alert, whereas the latter quantifies the probability that there is
no intrusion when an IDS does not generate an alert. These metrics are calculated by
using the Bayesian theorem for calculating a conditional probability (Table VI). PPV
and NPV are interesting from a usability perspective, such as in situations when an
intrusion alert triggers an attack response. In these situations, low values of PPV and
NPV indicate that the considered IDS is not optimal for deployment. For example, a
low value of PPV (therefore a high value of its complement 1 − P(I|A) = P(¬I|A))
indicates that the considered IDS may often cause the triggering of attack response
actions when no real attacks have actually occurred.

2.2.2. Metrics → Security Related → Composite. Security researchers often combine the
basic metrics to analyze relationships between them. Such an analysis is used to
discover an optimal IDS operating point (i.e., an IDS configuration that yields optimal
values of both the true- and false-positive detection rate) or to compare multiple IDSes.

32In Table VI, P and p denote a probability, R denotes the set of real numbers, R
+ denotes the set of positive

real numbers excluding zero, and R
+
0 denotes the set of positive real numbers including zero.
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Table VI. Common Metrics for Quantifying IDS Attack Detection Accuracy

Metric Form Metric Annotation/Formula

Basic

False-negative rate β = P(¬A|I)
True-positive rate 1 − β = 1 − P(¬A|I) = P(A|I)
False-positive rate α = P(A|¬I)
True-negative rate 1 − α = 1 − P(A|¬I) = P(¬A|¬I)
Positive predictive value P(I|A) = P(I)P(A|I)

P(I)P(A|I)+P(¬I)P(A|¬I)

Negative predictive value P(¬I|¬A) = P(¬I)P(¬A|¬I)
P(¬I)P(¬A|¬I)+P(I)P(¬A|I)

Composite
Expected cost Cexp = Min(CβB, (1 − α)(1 − B)) +

Min(C(1 − β)B, α(1 − B))
Intrusion detection capability CID = I(X;Y )

H(X)

Notations and Properties of Used Symbols

Symbol Meaning Formula/Value Domain
A Alert event: An IDS generates an attack alert n/a
I Intrusion event: An attack is performed n/a
Cα Cost of an IDS generating an alert when an

intrusion has not occurred
Cα ∈ R

+
0

Cβ Cost of an IDS failing to detect an intrusion Cβ ∈ R
+

C Cost ratio: The ratio between the costs Cα

and Cβ

C = Cβ/Cα : C ∈ R
+
0

B Base rate: Prior probability that an intrusion
event occurs

B = P(I) : B ∈ R → [0; 1]

X IDS input: Discrete random variable used to
model input to an IDS such that X = 0
represents a benign activity and X = 1
represents a malicious activity (i.e., an
intrusion)

X = 0 ∨ X = 1

Y IDS output: Discrete random variable used to
model the generation of alerts by an IDS
such that Y = 0 represents no alert and
Y = 1 represents an alert

Y = 0 ∨ Y = 1

H(X) Uncertainty of X: Entropy measure
quantifying the uncertainty of the IDS
input X

H(X) = −∑
x p(x)logp(x) : x = 0 ∨ x =

1, p(x) ∈ R → [0; 1]

I(X;Y) Mutual information: The amount of
information shared between the random
variables X and Y —in other words, the
amount of reduction of the uncertainty of the
IDS input (X) after the IDS output (Y ) is
known

I(X; Y ) = ∑
x
∑

y p(x, y)log p(x,y)
p(x)p(y) : x =

0 ∨ x = 1, y = 0 ∨ y = 1, p(x) ∧ p(y) ∧
p(x, y) ∈ R → [0; 1], 0 ≤ I(X; Y ) ≤ H(X)

In this section, we focus on comparing the applicability of composite security-related
metrics for the purpose of comparing IDSes, which includes the identification of optimal
IDS operating points.

A receiver operating characteristic (ROC) curve plots true-positive rate against the
corresponding false-positive rate exhibited by a detector. In the context of IDSes, an
ROC curve depicts multiple IDS operating points of an IDS under test, and as such, it
is useful for identifying an optimal operating point or for comparing multiple IDSes.

An open issue is how to determine a proper unit and measurement granularity for
the false-positive and true-positive rates based on which an ROC curve is plotted.
Different units of measurement might yield different rates, and therefore the selection
of a proper unit is considered as a task that needs to be performed with care. Gu et al.
[2006] acknowledge the importance and scope of the preceding issue by referring to it as
a “general problem for all the existing [IDS] evaluation metrics.” They discuss this issue
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Table VII. Values of 1 − β, PPVID , Cexp, Crec, and CID for IDS 1 and IDS 2

IDS1 IDS2
α PPVZRC 1 − β PPVID Cexp/rec CID 1 − β PPVID Cexp/rec CID

0.005 0,9569 0.9885 0,9565 0.016 0.9159 0.973 0,9558 0.032 0.8867
0.010 0,9174 0.99 0,9167 0.019 0.8807 0.99047 0,9167 0.019 0.8817
0.015 0,8811 0.9909 0,8801 0.022 0.8509 0.99664 0,8807 0.017 0.8635

Fig. 5. IDS comparison with ROC curves (a) and the intrusion detection effectiveness metric (b, c).

in the context of the evaluation of network-based IDSes and state that depending on
the unit of analysis in a network-based IDS, at least two different units of measurement
exist (i.e., a unit of packet and flow), which makes the comparison of IDSes with these
units of analysis challenging. Gu et al. [2006] recommend the conversion of different
units of measurement to the same unit when possible for a fair and meaningful IDS
comparison (e.g., conversion of a packet-level to a flow-level unit by defining a flow as
malicious when it contains a malicious packet). Next, we analyze and demonstrate the
use of ROC curves and related metrics through a case study scenario.

Case study #1. Let’s consider the comparison of two IDSes, IDS1 and IDS2, and
analyze the relationship between the true-positive (1 − β) and the false-positive (α)
detection rate. We assume that for IDS1, 1 − β is related to α with a power function
(i.e., 1 − β = αk) such that k = 0.002182. We assume that for IDS2, 1 − β is related to α
with an exponential function (i.e., 1 − β = 1 − 0.00765e−208.32α). We obtain the values
of k, α, and the coefficients of the exponential function from Gaffney and Ulvila [2001].
We calculate the values of 1 − β for IDS1 and IDS2 for α = {0.005, 0.010, 0.015}. The
respective values are shown in Table VII.

In Figure 5(a), we depict the ROC curves that express the relationship between 1−β
and α for IDS1 and IDS2. The ROC curves intersect approximately at 1 − β = 0.99 and
α = 0.01. Thus, the better IDS cannot be identified in a straightforward manner. An
IDS is considered as better if it features a higher true-positive detection rate (1 − β) at
all operating points along the ROC curve.

An intuitive solution to the preceding problem, as suggested by Durst et al. [1999],
is to compare the area under the ROC curves (i.e., AUC1 :

∫ α=0.015
α=0.005 α0.002182dα and

AUC2 :
∫ α=0.015
α=0.005 (1 − 0.00765e−208.32α)dα). However, Gu et al. [2006] consider such a

comparison as unfair, as it is based on all operating points of the compared IDSes,
whereas in reality a given IDS is always configured according to a single operating
point.

The ROC curves depicted in Figure 5(a) do not express the impact of the rate of
occurrence of intrusion events (B = P(I)), known as base rate, on α and 1 − β. The
attack detection performance of an IDS should be assessed with respect to a base
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rate measure for such an assessment to be accurate (see Axelsson [2000]). The error
occurring when α and 1 − β are assessed without taking the base rate into account is
known as the base-rate fallacy.

To address the preceding issue, Nasr et al. [2012] propose a metric called intrusion
detection effectiveness (EID). EID is calculated based on comparing the ideal and actual
performance of an IDS depicted in the form of IDS operation curves called zero reference
curve (ZRC) and actual IDS operation curve, respectively. An IDS operation curve plots
PPV, which contains measure of the base rate B (see Table VI), against α. Given a
specific value of B, the ZRC plots PPV (denoted by PPVZRC), calculated assuming an
ideal operation of the tested IDS—that is, the IDS does not miss attacks (1 − β = 1).
The actual IDS operation curve plots the actual PPV (denoted by PPVID) exhibited by
the IDS. The value of EID is the normalized variance between the ZRC and the actual
IDS operation curve over the interval [0, TFP], where TFP is the maximum acceptable
α exhibited by the IDS—that is, EID = 1

∫ TFP
0 PPVZRCdα

(
∫ TFP

0 PPVZRCdα − ∫ TFP

0 PPVIDdα),

EID ∈ [0; 1], such that the lesser the EID, the better the performance of the IDS under
test.

In Table VII, we present PPVZRC and PPVID for IDS1 and IDS2, calculated assuming
that B = 0.1. In Figure 5(b) and (c) (the axes are in logarithmic scale), we depict the
ZRC and the actual IDS operation curve for IDS1 and IDS2. These curves are very
similar due to the high PPVs (i.e., close to the ideal PPV — PPVZRC) exhibited by IDS1
and IDS2. We calculate EID of 0.0004 for IDS1 and EID of 0.0011 for IDS2 assuming
that TFP = 0.01, based on which we conclude that IDS1 performs better.

Although EID expresses the impact of the base rate on α and 1 − β, it suffers from
the same issue as the metric proposed by Durst et al. [1999]—that is, a comparison of
IDSes based on EID may be misguiding, as it is based on multiple operating points of
the compared IDSes (see Gu et al. [2006]).

Cost-based and information-theoretic metrics. Due to the issues mentioned previ-
ously, researchers have proposed novel metrics that can be classified into two main
categories: (1) metrics that use cost-based measurement methods and (2) metrics that
use information-theory measurement methods (see Figure 4). In the following, we dis-
cuss metrics that belong to these categories, focusing on the expected cost and intrusion
detection capability metrics described in the seminal works of Gaffney and Ulvila [2001]
and Gu et al. [2006].

Cost-based metrics. Gaffney and Ulvila [2001] propose the measure of cost as an
IDS evaluation parameter. They combine ROC curve analysis with cost estimation by
associating an estimated cost with each IDS operating point. The measure of cost is
relevant in scenarios where a response that may be costly is taken (e.g., stopping a
network service) when an IDS generates an attack alert. Gaffney and Ulvila introduce
a cost ratio C = Cβ/Cα, where Cα is the cost of an IDS alert when an intrusion has not
occurred, and Cβ is the cost of not detecting an intrusion when it has occurred. Gaffney
and Ulvila use the cost ratio to calculate the expected cost Cexp of an IDS operating at a
given operating point (see Table VI). Using Cexp, one can compare IDSes by comparing
the estimated costs when each IDS operates at its optimal operating point. The IDS
that has lower Cexp associated with its optimal operating point is considered better. An
IDS operating point is considered optimal if it has the lowest Cexp associated with it
compared to the other operating points.

The formula of Cexp (see Table VI) can be obtained by analyzing the decision tree
depicted in Figure 6(a). The decision tree shows the costs that may be incurred by an
IDS (e.g., Cα and Cβ) with respect to the operation of the IDS (i.e., generation of alerts)
and the responses that can be taken; uncertain events (e.g., the generation of an alert)
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Fig. 6. Decision tree for calculating expected cost (a) and relative expected cost (b).

are depicted by circles and actions are depicted by squares. In Figure 6(a), we depict
the probabilities p1 = P(A), p2 = P(I|A) = PPV, and p3 = P(I|¬A) (see Table VI).
The formula of Cexp is obtained by “rolling back” the tree depicted in Figure 6(a)—that
is, from right to left, the expected cost at an event node is the sum of products of
probabilities and costs for each branch, and the expected cost at an action node is the
minimum of expected costs on its branches. The formula of Cexp shown in Table VI
can be derived using the basic algebra of probability theory (see Gaffney and Ulvila
[2001]).

Meng [2012] proposed a cost-based IDS evaluation metric called relative expected cost
(Crec). This metric is intended for comparing modern IDSes that use false alert filters
(e.g., see Chiu et al. [2010]). A false alert filter detects false alerts generated by an IDS.
The response taken when a false alert filter labels an alert as false is filtering out the
alert before it is reported by the IDS. Crec is based on the previously discussed expected
cost metric. In contrast to Cexp, Crec measures cost associated with the accuracy of an
IDS’s false alert filter at classifying alerts as true or false, which can be used as an IDS
comparison parameter. Crec can be associated with each IDS operating point on an ROC
curve and can be used for comparing IDSes same as Cexp.

The formula of Crec (Crec = CβB + α(1 − B)) can be obtained in a way similar to
obtaining the formula of Cexp—that is, by “rolling back” the decision tree depicted in
Figure 6(b) (see Meng [2012]). This tree is a modified version of the tree depicted in
Figure 6(a). In Figure 6(b), p1 denotes the probability that the false alert filter reports
a true alert, p2 denotes the conditional probability of true alert given that the filter
reports a true alert, and p3 denotes the conditional probability of true alert given that
the filter reports a false alert. In the context of the work of Meng, α and β denote the
false-positive and false-negative rate exhibited by a false alert filter. Further, Bdenotes
the prior probability of a false alert, and Cα and Cβ denote the cost of classifying a false
alert as a true alert, and the cost of classifying and filtering out a true alert as a false
alert, respectively. C is the cost ratio Cβ/Cα.

Although the discussed cost-based metrics enable straightforward comparison of
IDSes, they depend on the cost ratio C. To calculate the cost ratio, one would need a
cost-analysis model that can estimate Cα and Cβ , which might be difficult to construct
in reality. Cost-analysis models take parameters into consideration that might not be
easy to measure, or might not be measurable at all (e.g., man-hours, system downtime).
Further, Cexp and Crec enable the comparison of IDSes based on a subjective measure,
making the metrics unsuitable for objective comparisons [Gu et al. 2006]. However,
cost-based metrics may be of value when the relationships between the different attack
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Fig. 7. IDS comparison with the expected cost and relative expected cost metric (a) and the intrusion
detection capability metric (b).

detection costs (e.g., cost of missing an attack, cost of a false alert) can be estimated
and when such estimations would be considered as sufficiently accurate. For instance,
given a statement such as “a false alert is twice as costly as a missed attack,” a cost-
based metric would be crucial to identify an optimal IDS operating point. Next, we
demonstrate the use of the expected cost metric (Cexp) and the relative expected cost
metric (Crec) for comparing IDSes through a case study scenario.

Case study #2. First, we compare IDS1 and IDS2 (see Case study #1) using Cexp. The
IDS that has lower Cexp associated with its optimal operating point (i.e., the point that
has the lowest Cexp associated with it) is considered better. To determine the optimal
operating points of IDS1 and IDS2, we calculate Cexp for each operating point of the
two IDSes. To calculate Cexp, we assume that C = 10 (i.e., the cost of not responding to
an attack is 10 times higher than the cost of responding to a false alert) and B = 0.10.
We present the values of Cexp in Table VII. The optimal operating point of IDS1 is
(0.005, 0.9885) and of IDS2 is (0.015, 0.99664). Since the minimal Cexp of IDS1 (0.016)
is smaller than the minimal Cexp of IDS2 (0.017), we conclude that IDS1 performs
better. In Figure 7(a), we depict the ROC curves annotated with the minimal Cexp of
IDS1 and IDS2.

We now compare IDS1 and IDS2 using Crec. The IDS that has lower Crec associated
with its optimal operating point (i.e., the point that has the lowest Crec associated with
it) is considered better. To calculate Crec, we assume that C = 10 and B = 0.10, and
that IDS1 and IDS2 use false alert filters. We present the values of Crec in Table VII.
For the sake of simplicity, we assume that α and 1 −β exhibited by IDS1 and IDS2 (see
Case study #1 and Table VII) correspond to α and 1 − β exhibited by the IDS’s false
alert filters. This results in identical values of Crec and Cexp. Using the same approach
for comparing IDSes as the one we used when comparing IDSes using Cexp, we conclude
that IDS1 performs better than IDS2 in terms of incurred costs that are associated with
the accuracy of the IDS’s false alert filters. In Figure 7(a), we depict the ROC curves
annotated with the minimal Crec of IDS1 and IDS2.

Information-theoretic metrics. Another approach for evaluating the attack detection
accuracy of an IDS is the information-theoretic approach. Gu et al. [2006] propose a
metric called intrusion detection capability (CID, see Table VI). They model the input to
an IDS as a stream of a random variable X (X = 1 denotes an intrusion, X = 0 denotes
benign activity), and the IDS output as a stream of a random variable Y (Y = 1
denotes IDS alert, Y = 0 denotes no alert). The input and output stream have a certain
degree of uncertainty reflected by the entropies H(X) and H(Y ), respectively. Thus, Gu
et al. model the number of correct guesses of an IDS (i.e., I(X; Y )) as mutual shared

ACM Computing Surveys, Vol. 48, No. 1, Article 12, Publication date: September 2015.



Evaluating Computer Intrusion Detection Systems: A Survey of Common Practices 12:21

information between the random variables X and Y (i.e., I(X; Y ) = H(X) − H(X|Y )).
CID is obtained by normalizing I(X; Y ) with H(X) (see Table VI).

CID incorporates the uncertainty of the input stream H(X) (i.e., the distribution of
intrusions in the IDS input) and the accuracy of an IDS under test I(X; Y )—that is,
CID incorporates the base rate B, the true-positive rate (1 − β), and the false-positive
rate (α). For the definition of the relationship between CID, on the one hand, and B,
1 − β, and α, on the other hand, we refer the reader to Gu et al. [2006]. Given this
relationship, a value of CID may be assigned to any operating point of an IDS on the
ROC curve. With this assignment, one obtains a new curve (i.e., a CID curve).

The information-theoretic approach is generic and enables the evaluation of IDSes
of different designs. For instance, Meng and Kwok [2013] discuss the application of the
intrusion detection capability metric for quantifying the attack detection accuracy of
IDSes that use false alert filters. They fine-tuned this metric and developed another
called false alarm reduction capability, RCFA = I(X;Y )

H(X) . In the context of the work
of Meng and Kwok, X denotes the input to a false alert filter (i.e., alerts generated
by an IDS) and Y denotes the filter’s output. Meng and Kwok [2013] show that the
information-theoretic approach can be applied in practice for evaluating IDSes that use
false alert filters by evaluating Snort [Roesch 1999] configured to use a variety of false
alert filters. Next we show how one can compare IDSes using the intrusion detection
capability metric (CID) through a case study scenario.

Case study #3. Assuming a base rate of B = 0.10, we calculated CID for the operating
points of IDS1 and IDS2 (see Case study #1) presented in Table VII. In Figure 7(b),
we depict the CID curves of IDS1 and IDS2. A CID curve provides a straightforward
identification of the optimal operating point of an IDS (i.e., the point that marks the
highest CID). One can compare IDSes by analyzing the maximum CID of each IDS and
considering as better performing the IDS whose optimal operating point has higher
CID associated with it. From Table VII, one would consider IDS1 to perform better
since it has greater maximum CID (0.9159) than the maximum CID of IDS2 (0.8867). In
contrast to the previously discussed expected cost metric, CID is not based on subjective
measures such as cost, which makes it suitable for objective comparison of IDSes.

2.3. Measurement Methodology

Under measurement methodology, we understand the specification of the IDS proper-
ties of interest (e.g., attack detection accuracy, capacity) and of the employed workloads
and metrics for evaluating the properties.

After examining IDS evaluation experiments covering different types of IDSes, we
identified nine IDS properties that are commonly considered in practice. In Table VIII,
we present these properties, some of which are grouped into categories. For the sake
of clarity, we also present definitions of the IDS properties attack detection accuracy,
attack coverage, performance overhead, and workload processing capacity. Further,
in Table VIII, we provide an overview of the workload and metric requirements (see
Sections 2.1 and 2.2) for evaluating the different properties.

In Table IX, we list references to the surveyed publications where representative
studies that investigate the respective properties can be found. Table IX compares the
surveyed work in terms of types of tested IDSes (see Table I) and considered IDS prop-
erties. This enables the identification of common trends in evaluating IDS properties
for different types of IDSes. Next, we discuss such trends and provide recommenda-
tions and key best practices, which we identified based on reported benefits of applying
the practices. We also present observed quantitative values (e.g., acceptable perfor-
mance overheads and attack detection speeds) and relevant observations (e.g., evasion
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Table VIII. IDS Evaluation Design Space: Measurement Methodology

Workloads Metrics
IDS Property [Content] [Aspect] [Form]

Attack Detection Related
Attack detection accuracy Mixed Security related Basic, composite
Attack coverage Pure malicious Security related Basic
Resistance to evasion techniques Pure malicious,

mixed
Security related Basic

Attack detection and reporting speed Mixed Performance related n/a
Resource Consumption Related

CPU consumption Pure benign Performance related n/a
Memory consumption
Network consumption
Performance overhead Pure benign Performance related n/a
Workload processing capacity Pure benign Performance related n/a

Definitions of IDS Properties

IDS Property Definition
Attack detection accuracy The attack detection accuracy of an IDS in the presence of mixed

workloads.

Attack coverage The attack detection accuracy of an IDS in the presence of
attacks without any background benign activity.

Performance overhead The overhead incurred by an IDS on the system and/or network
environment where it is deployed. Under overhead, we
understand performance degradation of users’ tasks/operations
caused by (a) consumption of system resources (e.g., CPU,
memory) by the IDS and/or (b) interception and analysis of the
workloads of users’ tasks/operations (e.g., network packets) by
the IDS.

Workload processing capacity The rate of arrival of workloads to an IDS for processing in
relation to the amount of workloads that the IDS discards (i.e.,
does not manage to process). For instance, in the context of
network-based IDSes, capacity is normally measured as the rate
of arrival of network packets to an IDS over time in relation to
the amount of discarded packets over time. The capacity of an
IDS may also be defined as the maximum workload processing
rate of the IDS such that there are no discarded workloads.

techniques to which current IDSes are vulnerable) that may serve as reference points
for designing and evaluating future IDSes.

Attack detection accuracy/attack coverage. As expected, these properties are evalu-
ated for IDSes of all types. Due to the longevity of their presence on the IDS evaluation
scene, at this time the DARPA and the KDD-99 Cup datasets (see Section 2.1.5) rep-
resent standard workloads for comparing novel anomaly based IDSes with their past
counterparts in terms of their attack detection accuracy. For the sake of representa-
tiveness, we recommend the evaluation of a single IDS using not the DARPA and the
KDD-99 Cup datasets but workloads that contain current attacks (see Section 2.1). We
observed that the attack detection rates of IDSes reported in the surveyed work vary
greatly—that is, between 8% and 97%, measures that largely depend on the configura-
tions of the tested IDSes (see Section 2.2) and the applied evaluation methodologies.

Attack detection and reporting speed. This property is typically evaluated for dis-
tributed IDSes. Each node of a distributed IDS typically reports an ongoing attack to
the rest of the nodes, or to a designated node, when it detects a malicious activity (see
Table I). Thus, the attack detection speed of a distributed IDS is best evaluated by
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Table IX. Comparison of Practices in Evaluating IDS Properties

Reference IDS Type IDS Properties
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Avritzer et al. [2010] N A Hy x
Ahmed et al. [2011] N M N x
Chung and Mok [2006] N A H x x x
Chung et al. [2013] D M N x x x x
Garfinkel and Rosenblum [2003] N Hy H x x
Hassanzadeh and Stoleru [2011] D M N x x x x
Jin et al. [2009]
Jin et al. [2011] N Hy Hy x x x
Jou et al. [2002] N Hy N x x
Kannadiga and Zulkernine [2005] D A N x x
Sinha et al. [2006] N M N x x x
Laureano et al. [2007]
Lombardi and De Pietro [2011]
Reeves et al. [2012]
Roesch [1999] N A H x x

Dehnert [2012]
Raja et al. [2012]
Riley et al. [2008]

N A H x x

Sen et al. [2008] D A N x x x
Srivastava et al. [2008] N A H x x x
Sun et al. [2013] D A N x x
Zhang et al. [2008] N A H x x

measuring the time needed for the IDS to converge to a state in which all of its nodes,
or the designated nodes, are notified of an ongoing attack (see the work of Hassan-
zadeh and Stoleru [2011] and Sen et al. [2008], who consider delays up to 3 seconds
acceptable). The fast detection and reporting of an attack by an IDS node is important
for the timely detection of coordinated attacks targeting multiple sites.

Resistance to evasion techniques. We observe that the evaluation of attack detec-
tion accuracy/attack coverage is prioritized over evaluation of resistance to evasion
techniques. Sommer and Paxson [2010] confirm this trend, stating that resistance to
evasion techniques is of limited importance from a practical perspective since most
real-life attacks perform mass exploitation instead of targeting particular IDS flaws.
However, a single successful IDS evasion attack poses the danger of a high-impact in-
trusion; therefore, it is a good practice to consider the resistance to evasion techniques
in IDS evaluation studies.

We observed that Metasploit (see Section 2.1.3) is considered the optimal tool for exe-
cuting IDS evasive attacks, which is required for evaluating resistance to evasion tech-
niques. This is because Metasploit provides a freely available and regularly maintained
attack execution environment supporting a wide range of IDS evasive techniques. By
analyzing the decision-making processes of the IDSes proposed in the surveyed work
for labeling an activity as benign or malicious, we observed that many IDSes are vul-
nerable to temporally crafted attacks (e.g., short-lived or multistep attacks executed by
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delaying the execution of the attack steps, see Srivastava et al. [2008]). The execution
of such attacks is supported by Metasploit.

Resource consumption related. These properties are typically evaluated for
IDSes deployed in resource-constrained environments. An example is the evaluation of
the resource consumption of a distributed IDS operating in wireless ad hoc networks,
which enables the measurement of the power consumption of its nodes. This is impor-
tant since the computing nodes in a wireless ad hoc network typically rely on a battery
as a power source delivering a limited amount of power. Since the power consump-
tion of software (i.e., of an IDS node) is difficult to measure, it can be best observed
by using a model that estimates power consumption based on resource consumption
measurements (see Hassanzadeh and Stoleru [2011]).

The network consumption in particular is often evaluated for distributed IDSes (see
Sen et al. [2008]). The nodes of a typical distributed IDS exchange messages that
contain information relevant for intrusion detection (see Table I). This may consume
a significant amount of the network bandwidth of the environment where the IDS is
deployed. For instance, Sen et al. [2008] consider the exchange of 120 messages over
160 seconds as a very high network consumption.

Performance overhead. This property is normally evaluated for host-based IDSes
since they are known to cause performance degradation of the tasks running in the
system where they are deployed. Performance overhead is evaluated by executing tasks
twice, once with the tested IDS being inactive and once with it being active (see Laure-
ano et al. [2007]). The differences between the measured task execution speeds reveal
the imposed performance overhead. Performance overhead is normally evaluated us-
ing workloads in executable form generated by workload drivers (see Section 2.1.1).
Workload drivers enable the straightforward generation of live customized workloads
in a repeatable manner. In general, overheads under 10%, relative to the execution
time of tasks measured when the tested IDS is inactive, are considered acceptable.

Workload processing capacity. This property is normally evaluated for network-based
IDSes that monitor workloads at high rates. For instance, some studies consider work-
load rates as high as 1 million packets per second and report percentage of discarded
packets of around 50%. Workload processing capacity is best evaluated using traces or
workloads generated by workload drivers, as they allow for the generation of workloads
at user-defined speeds. This enables the accurate measurement of the workload pro-
cessing capacity of an IDS (e.g., of the particular network traffic speed such that a given
network-based IDS under test does not discard packets, see Table VIII). Further, it is a
good practice to evaluate the workload processing capacity of an IDS together with its
resource consumption (e.g., Sinha et al. [2006] observe the resource consumption of an
IDS for various workload intensities). This enables an IDS evaluator to observe how
resource consumption scales as workload intensity increases.

Next we survey common approaches for evaluating the IDS properties presented in
Table VIII. In addition, we demonstrate through case studies how these approaches
and the discussed best practices have been applied in the surveyed work—that is, we
round up the IDS evaluation design space by demonstrating the applicability of the
different types of workloads and metrics with respect to their inherent characteristics
(see Sections 2.1 and 2.2).

2.3.1. Measurement Methodology → Attack Detection-Related Properties. We start by con-
sidering the properties attack coverage, attack detection accuracy, and resistance to
evasion techniques. Note that we do not discuss the IDS property attack detection and
reporting speed. The approach for evaluating this property is almost identical to that
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Table X. Attack Coverage of Snort

Targeted Vulnerability (CVE ID) Platform Detected
CVE-2011-3192 Apache x
CVE-2010-1870 Apache Struts �
CVE-2012-0391 Apache Struts x
CVE-2013-2251 Apache Struts x
CVE-2013-2115/CVE-2013-1966 Apache Struts �
CVE-2009-0580 Apache Tomcat x
CVE-2009-3843 Apache Tomcat x
CVE-2010-2227 Apache Tomcat x
�, detected; x, not detected.

of attack detection accuracy with the only difference being in the used metrics (i.e.,
performance-related metrics that quantify time instead of security-related metrics).

Attack coverage. The attack coverage of an IDS is typically evaluated with the goal
of measuring the ability of the IDS to detect various attacks targeted at the specific
system/network environment that it protects [Mell et al. 2003]. Given that the attack
coverage of an IDS is its attack detection accuracy in the presence of attacks without
any background benign activity (see Table VIII), it is evaluated by using pure malicious
workloads. The used pure malicious workloads should not have IDS evasive charac-
teristics, as such workloads are used for evaluating resistance to evasion techniques,
which is a separate property. Further, only basic metrics that do not contain measures
of false alerts are used (e.g., true-positive rate). Note that an IDS might generate false
alerts only in the presence of background benign activity.

Case study #4. We evaluate the attack coverage of the network-based IDS
Snort [Roesch 1999], which uses misuse-based attack detection techniques. We con-
sider a scenario where Snort is deployed in, and monitors the network traffic of, a
server hosting Web applications using the Apache 2.2.16 server software, extended
with the Tomcat 6.0.35 and Struts 1.3.10 frameworks. We tested Snort 2.9.22 using
a database of signatures dated July 11, 2013. Given the architecture of the platform
protected by Snort, attacks relevant for evaluating the attack coverage of Snort in this
scenario are attacks targeting Apache, Tomcat, and Struts.

We used the Metasploit framework to generate pure malicious workloads (see
Section 2.1.3). We use Metasploit’s exploit database for the sake of convenience—
Metasploit provides a readily available exploit database that contains attack scripts
targeting the platforms Apache, Tomcat, and Struts. We executed eight attack scripts
from a host that we refer to as the attacking host. To eliminate benign network traffic
destined for the Web server, we used a firewall to isolate the Web server in a way such
that it was reachable only for the attacking host. In Table X, we list the CVE identifiers
of the vulnerabilities targeted by the executed attack scripts and the respective target
platforms. In Table X, we present the results of the study. Snort detected two attacks,
thus exhibiting a true-positive rate of 0.25.

Resistance to evasion techniques. The evaluation of the IDS property resistance to
evasion techniques involves the execution of attacks using techniques such that there
is a strong possibility that a tested IDS does not detect the attacks. The decision about
what evasion techniques should be used in a given study is based on knowledge about
the IDS’s decision-making process for labeling an activity as benign or malicious. For
instance, one may evade an IDS that matches string content of network packets to
signatures by modifying the content of malicious packets in a way such that the IDS
cannot match them to signatures—a technique known as string obfuscation.
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Table XI. Resistance to Evasion Techniques of Snort

Evasion Technique Targeted Vulnerability (CVE ID)
CVE-2010-1870 CVE-2013-2115/CVE-2013-1966

HTTP::uri_use_backslashes � �
HTTP::uri_fake_end � �
HTTP::pad_get_params � x
HTTP::uri_fake_params_start � �
HTTP::uri_encode_mode (u-random; hex-random) � x
HTTP::pad_method_uri_count � �
HTTP::method_random_valid � x
HTTP::header_folding � �
HTTP::uri_full_url � �
HTTP::pad_post_params � x
HTTP::uri_dir_fake_relative � �
HTTP::pad_uri_version_type (apache; tab) � �
HTTP::uri_dir_self_reference � �
HTTP::method_random_case � �
�, detected; x, not detected.

As workloads for evaluating resistance to evasion techniques, one may use pure
malicious or mixed workloads. Pure malicious workloads are used to determine which
evasion techniques can be used for successfully evading an IDS, not taking into account
benign activity as a factor. Mixed workloads are used in scenarios where benign activ-
ities are important for evading an IDS. For instance, a network-based IDS designed to
detect multistep attacks (i.e., attacks that consist of several sequential attacks) may be
constrained in the number of network packets that it can buffer for the purpose of at-
tack tracking. Thus, one may evade the IDS by delaying the execution of the sequential
attacks and generating benign network traffic between the executions.

The metrics used for quantifying resistance to evasion techniques are basic metrics
that do not contain measures of false alerts (e.g., true-positive rate), as the goal is to
measure the accuracy of an IDS in detecting only evasive attacks.

Case study #5. Following up on the results of Case study #4 (see Table X), we now
investigate whether Snort is still able to detect the attacks targeting the vulnera-
bilities CVE-2010-1870 and CVE-2013-2115/CVE-2013-1966 when evasion techniques
are applied. We used Metasploit to apply IDS evasive techniques to the considered
attacks, as it enables the convenient execution of a wide range of IDS evasive attacks
(see Section 2.3). Given that Snort matches string content of network packets to sig-
natures [Roesch 1999], we used the string obfuscation evasion techniques provided by
Metasploit. The applied IDS evasion techniques modify HTTP request strings stored in
malicious network packets. In Table XI, we list the evasion techniques that we applied
to each of the executed attacks (for details on the techniques, see Foster [2007]).

In Table XI, we present the detection score of Snort. It can be observed that Snort
detected most of the executed evasive attacks and failed to detect the attack tar-
geting the vulnerability CVE-2013-2115/CVE-2013-1966 when the evasive techniques
HTTP::pad_get_params, HTTP::uri_encode_mode, HTTP::method_random_valid, and
HTTP::pad_post_params were applied. Snort detected 24 out of 28 attack executions,
thus exhibiting a true positive rate of 0.85.

Attack detection accuracy. By evaluation of the attack detection accuracy of an IDS,
we mean evaluation of the accuracy of the IDS in detecting attacks mixed with benign
activities (see Table VIII). Attack detection accuracy is quantified using security-related
metrics that include measures of false alerts (see Section 2.2.2). This is important, as an
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Table XII. Attack Detection Accuracy of Snort:
Basic Metrics (seconds=120)

Configuration Metrics
α 1 − β PPV NPV

count=6 0.0008 0.333 0.9788 0.9310
count=5 0.0011 0.416 0.9768 0.9390
count=4 0.0013 0.5 0.9771 0.9473
count=3 0.0017 0.624 0.9761 0.9598
count=2 0.0024 0.833 0.9747 0.9817
Default configuration 0.0026 0.958 0.9762 0.9953

IDS under test might mislabel some benign activities as malicious. We demonstrated
quantification of attack detection accuracy in Section 2.2.2.

Case study #6. We evaluate the attack detection accuracy of Snort 2.9.22 using a
database of signatures dated July 11, 2013. We used the DARPA datasets as mixed
workloads (see Section 2.1.5); we replayed a trace file from the 1998 DARPA datasets
with tcpreplay.33,34 To calculate values of security-related metrics that contain mea-
sures of false alerts, we used the ground truth files provided by the Lincoln Laboratory
at MIT.35 These files contain information useful for uniquely identifying each attack
recorded in the trace file that we replayed, such as time of execution. We compared the
ground truth information with the alerts produced by Snort to calculate the number of
detected and missed attacks as well as the number of false alerts. This is required for
calculating values of security-related metrics.

With its default configuration enabled, Snort detected almost all attacks. However,
Snort also issued false alerts—Snort’s rule with ID 1417 led to mislabeling many be-
nign Simple Network Management Protocol (SNMP) packets as malicious. Therefore,
we examined the influence of the configuration parameter threshold on the attack
detection accuracy of Snort. The parameter threshold is used for reducing the num-
ber of false alerts by suppressing signatures that often mislabel benign activities as
malicious. A signature may be suppressed such that it is configured to not generate an
alert for a specific number of times (specified with the keyword count) during a given
time interval (specified with the keyword seconds).

The measurement of the attack detection accuracy of an IDS for different configura-
tions of the IDS enables the identification of an optimal operating point (see Section 2.2).
We measured the attack detection accuracy of Snort for five different configurations
where the signature with ID 1417 was suppressed by setting the value of count to 2,
3, 4, 5, and 6, whereas seconds was set to 120. We also measured the attack detec-
tion accuracy of Snort when its default configuration was used, according to which the
signature with ID 1417 is not suppressed.

In Table XII, we present values of basic security-related metrics (see Section 2.2.1).
One can observe that the values of α and 1−β decrease as the value of count increases—
increasing the value of count leads to decreasing the number of generated false alerts,
which is manifested by the decreasing values of α. However, increasing the value of
count also leads to worsening of the true-positive rate 1 − β. This is a typical trade-off
situation between the true- and the false-positive rate of an IDS. Next, we calculate
values of composite security-related metrics.

33The trace file that we replayed is available at http://www.ll.mit.edu/ideval/data/1998/testing/week1/
monday/tcpdump.gz.
34We used tcpreplay in all IDS evaluation studies presented in this article where we replayed traces.
35We discussed the importance of ground truth information in Section 2.1.5. The ground truth files that we
used are available at http://www.ll.mit.edu/ideval/data/1998/Truth_Week_1.llist.tar.gz.
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Fig. 8. Attack detection accuracy of Snort: composite metrics. ROC curve and estimated costs (a) and CID
curve (b) (� marks an optimal operating point).

In Figure 8(a), we depict an ROC curve providing an overview of the trade-off men-
tioned earlier. In addition, in Figure 8(a), we annotate the depicted operating points
with the associated estimated costs Cexp. The values of the estimated costs are values
of the expected cost metric (see Section 2.2.2). To calculate values of the expected cost
metric, we assumed a cost ratio C of 10. The base rate B is 0.10.36 Once we calculated
the cost associated with each operating point, we were able to identify the optimal
operating point (i.e., the operating point that has the lowest Cexp associated with it)—
(0.0026, 0.958). Based on our findings, we conclude that Snort operates optimally in
terms of cost when configured with its default settings.

In Figure 8(b), we depict the values of the intrusion detection capability metric
CID (see Section 2.2.2) for the considered operating points. The CID curve depicted in
Figure 8(b) enables the identification of the optimal operating point of Snort in terms
of intrusion detection capability (i.e., the point that marks the highest CID)—(0.0026,
0.958), which marks a CID of 0.883. We conclude that Snort operates optimally in terms
of intrusion detection capability when configured with its default settings.

2.3.2. Measurement Methodology → Resource Consumption–Related Properties. The resource
consumption–related properties are evaluated using pure benign workloads that (1) are
considered as regular for the environment where the IDS under test operates or (2) ex-
hibit extreme behavior in terms of their intensity. The first are used for evaluating the
resource consumption of an IDS under regular operating conditions, whereas the latter
for evaluating the resource consumption of an IDS that processes high-rate workloads.
The metrics used for quantifying IDS resource consumption are performance-related
metrics that quantify resource utilization (e.g., CPU utilization).

There are mainly two approaches for evaluating IDS resource consumption: black-
box and white-box testing. Black-box testing assumes the measuring of the resource
consumption of an IDS as resource consumption of the IDS process that is active
in the system where the IDS is deployed. This approach is commonly adopted in IDS
evaluation experiments; however, it does not provide insight into the resource demands
of the individual IDS components. Such insight is normally important for optimizing
the IDS configuration. White-box IDS testing usually assumes the use of an IDS model
that decomposes the IDS into its components and estimates their individual resource
consumption. Dreger et al. [2008] construct an IDS model shown to estimate CPU
and memory consumption of an IDS with a relative error of 3.5%. An alternative to

36This is an approximate estimation of the actual base rate. Accurate base rate is not relevant for the purpose
of this case study.
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Fig. 9. CPU consumption of Snort (a) and packet drop rate of Snort (b) (� marks the data point whose x
value is the network traffic speed that corresponds to the maximum workload processing rate of Snort such
that there are no discarded workloads).

modeling is code instrumentation. However, this approach is unfeasible in case the
tested IDS is not open source.

Case study #7. We demonstrate the common black-box IDS resource consumption
testing. We measure the CPU consumption of Snort 2.9.22 in two scenarios where we
configured Snort to use the pattern matcher ac and ac-split, respectively.37 Although
ac-split is known to consume less memory resources than ac,38 it may increase the CPU
consumption of Snort. The goal of this study is to determine whether the use of ac-split
over ac is advisable by taking CPU consumption into account. To this end, we deployed
Snort in a host with a dual-core CPU, each core operating at 2GHz, 3GB of memory,
and a Debian OS. To generate pure benign workloads, we replayed a trace file from the
LBNL/ICSI trace repository (see Table V) at the speed of 6Mbps.39

In Figure 9(a), we depict the CPU utilization of Snort, which we measured with the
tool top.40 The top tool enables the measurement of the CPU utilization of any active
system process, and thus it is an example of a typical tool used for black-box IDS
resource consumption testing. We used top to sample the CPU utilization of the Snort
process at every 10 seconds for 5 minutes. We repeated the measurements 30 times and
averaged the results. In Figure 9(a), one may observe that in the considered scenario,
the use of the ac-split pattern matcher does not cause significant increase in the CPU
consumption of Snort when compared to the use of ac.

2.3.3. Measurement Methodology → Workload Processing Capacity. The IDS workload pro-
cessing capacity is evaluated using pure benign workloads that exhibit extreme be-
havior in terms of intensity. The goal is to observe the rate of arrival of workloads to
an IDS under test for processing in relation to the amount of workloads that the IDS
discards (see Table VIII). The identification of a maximum workload processing rate of
an IDS such that there are no discarded workloads may also be considered. Similar to

37The use of a pattern matcher helps to speed up the process of evaluating network packets against Snort
signatures by reducing the number of signatures against which each packet is evaluated. When a packet is
intercepted by Snort, a pattern matcher evaluates the content of the packet against a set of patterns used
to group multiple signatures. If a match is found, the packet is then evaluated only against the signatures
that belong to the respective group of rules.
38http://manual.snort.org/node16.html.
39ftp://ftp.bro-ids.org/enterprise-traces/hdr-traces05/lbl-internal.20041004-1313.port003.dump.anon.
40http://linux.die.net/man/1/top.
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evaluating resource consumption, an IDS capacity can be evaluated using a black-box
or a white-box testing approach.

Wheres black-box capacity testing does not pose significant challenges, white-box
testing is more challenging given that multiple evaluation tests that target specific
IDS components involved in processing workloads need to be defined and performed.
This requires in-depth knowledge on the design of the IDS under test. White-box
testing enables the identification of the particular component of an IDS that is a
performance bottleneck. Hall and Wiley [2002] propose an approach for white-box IDS
capacity testing. They define a methodology consisting of individual tests for measuring
the capacity of the components of workload processing mechanisms of network-based
IDSes (i.e., the packet flow and capture, the state tracking, and the alert reporting
component).

Case study #8. We demonstrate the common black-box IDS capacity testing. We
measure the rate of dropped packets by Snort 2.9.22 when it monitors network traffic
at speeds in the range of 50Mbps to 400Mbps, in steps of 50Mbps. We deployed Snort
in a host with a dual-core CPU, each core operating at the speed of 2GHz, 3GB of
memory, and a Debian OS. We generated network traffic by replaying a trace file from
the LBNL/ICSI trace repository.38 We used network workloads in trace form, as the
use of traces enables the straightforward generation of network traffic at customized
speeds in a repeatable manner (see Section 2.3).

To measure the packet drop rate of Snort, we first started the Snort process, then
replayed the network trace file, and finally we stopped the Snort process. When a Snort
process is stopped, it displays a set of statistics measured with Snort’s built-in perfor-
mance profiling tools, which includes the packet drop rate averaged over the lifetime
of the process. We repeated the measurements 30 times and averaged the results. In
Figure 9(b), we depict the packet drop rate of Snort in relation to the speed of the mon-
itored network traffic. Starting at network traffic speed of 50Mbps, the packet drop
rate increases almost linearly as the network traffic speed increases. Note that the
drop rate of Snort is 0 when it monitors network traffic at the speed of, as well as less
than (not depicted in Figure 9(b)), 50Mbps—that is, 50Mbps is the maximum workload
processing rate of Snort such that there are no dropped packets.

2.3.4. Measurement Methodology → Performance Overhead. The IDS performance over-
head is evaluated using pure benign workloads in executable form that do not exhibit
extreme behavior in terms of intensity but are extreme in terms of the exercised set of
hardware resources. Depending on the type of workloads that the IDS under test mon-
itors (e.g., network packets, file I/O operations), an overhead evaluation experiment
may consist of five independent experiments, each with a workload that is CPU inten-
sive, memory intensive, file I/O intensive, network intensive, or mixed. We provided an
overview of such tasks in Sections 2.1.1 and 2.1.2.

The execution of the tasks mentioned earlier is performed twice, once with the IDS
under test being inactive and once with it being active. The differences between the
measured task execution speeds reveal the performance overhead imposed by the IDS.

Case study #9. We evaluate the performance overhead of the host-based IDS OSSEC
2.8.1. OSSEC performs file integrity monitoring at real time by intercepting and ana-
lyzing file I/O operations (e.g., writing to a file). We measure the overhead imposed by
OSSEC on file operations reading or writing data of various record sizes.

We deployed OSSEC in a host with an ext3 filesystem. Given that OSSEC monitors
file I/O operations, we generated pure benign workloads that are file I/O intensive. We
used the workload driver iozone (see Section 2.1.1) to generate workloads consisting
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Fig. 10. Performance overhead imposed by OSSEC on file write (a) and read (b) operations.

of file operations that write and read data of record sizes in the range of 4KB to
16MB. For the purpose of this study, we use iozone because it enables the fine-granular
customization of file I/O-intensive workloads (see Section 2.3).

In Figure 10(a) and (b), we depict the execution speeds of the generated file write
and read operations. We measured the execution speeds twice, once with OSSEC being
inactive and once with it being active. We repeated the measurements 30 times and av-
eraged the results. The difference in the speeds shown in the figure reveal the overhead
imposed by OSSEC. For instance, the execution speed of the operation reading data of
a record size 4KB is 2763641KB/sec when OSSEC is not running and 1138420KB/sec
when OSSEC is running.

3. CONCLUDING REMARKS

3.1. Future Topics in IDS Evaluation

We now discuss relevant future topics in the area of IDS evaluation, which includes
open issues and challenges that apply to evaluating novel IDSes.

High-speed IDSes. Due to the ever-increasing amount of network traffic, much at-
tention has been given to designing high-speed network-based IDSes (e.g., see Le
and Prasanna [2013]). These IDSes use workload processing components specifically
designed for efficiently processing high-rate workloads (e.g., pattern matchers, see Sec-
tion 2.3.2). When it comes to designing high-speed network-based IDSes and evaluating
their workload processing capacity, current work is biased in favor of designing novel
pattern matchers and evaluating their impact on IDS capacity [Lin and Lee 2013]. Lin
and Lee profiled the source code of the IDSes Snort and Bro to identify performance
bottlenecks.41 They discovered that workload processing components used for detecting
current IDS evasive attacks (e.g., packet reassembly mechanisms) are often bigger per-
formance bottlenecks than pattern matchers. This indicates that novel white-box IDS
evaluation methods and tests targeting the previously mentioned components should
be designed to better understand how these components affect the workload processing
capacity of IDSes. This is challenging, as it requires in-depth knowledge on the designs
of tested IDSes. Further, in contrast to current practice in IDS capacity testing (see

41http://www.bro.org/.
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Section 2.3.3), the needed tests would involve the generation of workloads that contain
modern IDS evasive attacks to exercise the targeted workload processing components.

IDSes for virtualized environments. IDSes for virtualized environments, where a
virtual machine monitor (VMM) hosts multiple virtual machines (VMs), are becoming
common with the growing proliferation of virtualized data centers. Such IDSes (i.e.,
VMM-based IDSes) are deployed in the virtualization layer, usually with components
inside the VMM and in a designated OS (see Jin et al. [2011]). This enables them to
monitor the network and/or host activities of all colocated VMs at the same time. Next
we list key issues related to evaluating VMM-based IDSes.

(1) Inaccurate metrics. Existing IDS evaluation metrics (see Section 2.2) are defined
with respect to a fixed set of hardware resources available to the IDS [Hall and Wiley
2002]. However, many virtualized environments—cloud environments in particular—
have elastic properties. In other words, resources might be provisioned and used by
VMs on demand (e.g., the Xen VMM allows for hot plugging virtual CPUs and memory
on VMs). This implies that the hardware resources available to an IDS running in a
virtualized environment may change over time, which may influence IDS performance.
Thus, metrics calculated as a function of an elasticity metric are needed for the accurate
measurement of the performance of such an IDS. An elasticity metric would quantify
the resource provisioning time and the amount of provisioned hardware resources as
the system load changes. The construction of an elasticity metric poses many chal-
lenges, such as determining which specific system features the metric should reflect
(e.g., scalability, precision/speed of resource provisioning).

(2) Challenging definition of a baseline workload profile. A VMM-based IDS monitors
the activities of multiple VMs at the same time. In modern data centers, the number of
VMs colocated on a VMM can vary due to VM migration—a new VM may arrive or an
existing one may be removed from a VMM due to, for example, load balancing. Thus,
one can expect that in a real-world setting, the VMs’ activities monitored by a VMM-
based IDS would change drastically over time. Given this diversity, we argue that it
is challenging to define a baseline workload profile that is representative for “normal”
workload for a given virtualized environment, which is needed for IDS training (see
Table I). A solution would be the development of a model allowing to estimate the
characteristics of the VMs’ activities monitored by a VMM-based IDS for different VM
deployment scenarios and to identify baseline workload profiles.

(3) Challenging generation of workload traces. A typical VMM-based IDS combines
hardware-level information about VMs (e.g., CPU register values) with high-level
domain-specific knowledge (e.g., kernel data structures, see Srivastava et al. [2008])
to detect attacks. As a result, we argue that it is a significant challenge to capture
workload trace files that contain the exact information required by a VMM-based IDS.
Given the complexity of recording procedures, it is expected that replay procedures
would also be challenging. Thus, a systematic classification structuring the various
types of information used by VMM-based IDSes would be an important contribution.
This can be used as a basis to design configurable recording and replay mechanisms.

IDSes for detecting APTs (advanced persistent threats)/zero-day attacks. The detec-
tion of APTs is becoming an increasingly important topic due to the escalating number
of incidents and severity of APTs. An APT is a carefully executed attack with the
objective of intruding a given domain and remaining undetected for an extended pe-
riod of time. The execution of an APT consists of multiple steps, such as executing
a zero-day attack and deploying malware to establish a command and control chan-
nel. Therefore, the detection of APTs is performed by composite IDSes consisting of
mechanisms for detecting a variety of malicious activities in a coordinated manner,
such as host-, anomaly-based IDSes for detecting zero-day attacks (see Table I) and
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network-, misuse-based IDSes for discovering command and control channels. An ex-
ample of such an IDS is Deep Discovery by TrendMicro.42

The rigorous and realistic evaluation of IDSes designed to detect APTs/zero-day at-
tacks is an issue that has not been thoroughly addressed so far. Since mechanisms used
for detecting APTs are anomaly- or misuse-based IDSes, their attack detection accu-
racies can be quantified using the discussed security-related metrics (see Section 2.2).
However, the generation of IDS evaluation workloads that contain APTs/zero-day at-
tacks is an open issue. One of the first methodologies for evaluating IDSes designed to
detect APTs/zero-day attacks has been published only recently by NSS Labs (for more
information on NSS Labs, see Appendix A).43 This methodology involves the use of
high-interaction honeypots for capturing zero-day attacks (see Section 2.1.6) that can
be executed as part of IDS evaluation workloads.

Given the increasing demand for approaches to evaluate IDSes designed to detect
APTs/zero-day attacks, the focus of the IDS evaluation community may shift in the
near future toward addressing related issues. For instance, of great importance is
the design and evaluation of novel honeypots that capture zero-day attacks such that
the attacks can be used as IDS evaluation workloads with minimal investment of time.
An example is a high-interaction honeypot that specializes in constructing ground
truth—that is, a honeypot that can distinguish different attack sessions to assign a
unique identifier to each session, actual zero-day attacks from other activities (e.g.,
reconnaissance) to record the exact time of start and end of the attacks, and the like.
Current honeypots do not support the automatic construction of ground truth, which
at this time is performed manually by a human expert and therefore is time consuming
and error prone (see Section 2.1.6).

The development of approaches for the generation of representative command and
control traffic is also important. With the proliferation of cloud environments, attack-
ers have started using legitimate cloud services (e.g., Google Apps) as command and
control channels to evade IDSes—communication with such services is normally part
of regular production traffic and is therefore often considered trusted and not a priority
for analysis.44 The development of activity models involving the use of popular cloud
services, which can be used as a basis for the generation of command and control traffic
to record traces (i.e., IDS evaluation workloads in trace form, see Section 2.1.6) would
enable the rigorous evaluation of IDSes designed to detect APTs.

3.2. Summary—Lessons Learned

We now provide guidelines for planning IDS evaluation studies based on what we
observed when surveying relevant work in the field. We structure our discussion by
focusing on three key and interrelated points in the planning of every evaluation
study: goals of a study, existing approaches to realize the set goals (i.e., approaches for
generating workloads and for measuring IDS performance—metrics), and requirements
that need to be met.

Goals. Under goals of an IDS evaluation study, we understand the IDS properties
that one aims to evaluate. The selection of IDS properties for evaluation is normally
done by considering the design objectives and the target deployment environment of
the IDS under test. In Table XIII, we present the most commonly considered IDS
properties in evaluation studies for various IDS types. We also provide a summarizing

42http://www.trendmicro.com/us/enterprise/security-risk-management/deep-discovery/.
43https://www.nsslabs.com/reports/breach-detection-systems-test-methodology-15.
44http://www.trendmicro.com/cloud-content/us/pdfs/security-intelligence/white-papers/wp-detecting-apt-
activity-with-network-traffic-analysis.pdf.
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Table XIII. Summarizing Overview of Common Trends, Recommendations, and Key Best Practices

IDS Property
Attack detection
accuracy
Attack coverage

These properties are evaluated for IDSes of all types. • The dated DARPA and
KDD-99 Cup datasets represent at this time standard workloads for
comparing novel anomaly-based IDSes with their past counterparts. • For
the sake of representativeness, evaluate an IDS using not the DARPA or
the KDD-99 Cup dataset but workloads that contain current attacks. •
Attack detection rates of current IDSes vary greatly—that is, between 8%
and 97%, measures that depend on the configurations of the tested IDSes
and the applied evaluation methodologies.

Attack detection and
reporting speed

This property is normally evaluated for distributed IDSes—it is best
evaluated by measuring the time needed for the IDS to converge to a state
in which all of its nodes, or the designated nodes, are notified of an ongoing
attack. • Attack detection delays up to 3 seconds are considered acceptable.

Resistance to evasion
techniques

This property is often not evaluated, as it is considered of limited practical
importance. • Consider evaluating this property since a single successful
IDS evasion attack poses the danger of a high-impact intrusion. •
Metasploit is deemed the optimal tool for executing IDS evasive attacks,
which is required for evaluating this property. • Many current IDSes are
vulnerable to temporally crafted attacks.

Resource consumption
related

These properties are typically evaluated for IDSes deployed in
resource-constrained environments. • Network consumption in particular is
often evaluated for distributed IDSes. • The resource consumption of a
distributed IDS operating in wireless ad hoc networks is typically evaluated
to measure the power consumption of its nodes—this is best performed by
using a model that estimates power consumption based on resource
consumption measurements.

Performance overhead This property is normally evaluated for host-based IDSes. • Performance
overhead is evaluated by executing tasks twice, once with the tested IDS
being inactive and once with it being active. • This property is normally
evaluated using workloads in executable form generated by workload
drivers—workload drivers enable the straightforward generation of live
customized workloads in a repeatable manner. • Overheads under 10%,
relative to the execution time of tasks measured when the tested IDS is
inactive, are generally considered acceptable.

Workload processing
capacity

This property is normally evaluated for network-based IDSes that monitor
high-rate workloads. • This property is best evaluated using traces or
workload drivers, as they allow for the generation of workloads at
user-defined speeds. • Evaluate the capacity of an IDS together with its
resource consumption—this enables one to observe how resource
consumption scales as workload intensity increases.

overview of common trends, recommendations, and key best practices in evaluating
IDS properties for different types of IDSes. Finally, we present observed quantitative
values (e.g., generally acceptable performance overheads) and relevant observations
that may serve as reference points for designing and evaluating future IDSes. For more
details, we refer the reader to Section 2.3. For demonstrations on executing IDS tests
to evaluate the commonly considered IDS properties, we refer the reader to Sections
2.3.1 through 2.3.4.

Requirements. Before discussing approaches for evaluating IDSes, we identify and
systematize the requirements that have to be met for the different approaches:

—Availability of required resources: (1) Financial resources (e.g., the costs of building
a testbed may be significant, see Section 2.1.6); (2) time resources (e.g., the manual
assembly of an exploit database may be time consuming, see Section 2.1.3); (3) man-
power (e.g., the amount of available human resources is important for labeling traces
in a time-efficient manner, see Section 2.1.5).
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Table XIV. Guidelines for Planning IDS Evaluation Studies: Workloads and Metrics

Workloads
Pure benign/mixed/pure malicious →Executable form
Key information:
� Generated workloads closely resemble real workloads
◦ Multiple evaluation runs are required to ensure statistical significance of IDS behavior
◦ Generated malicious workloads require specific victim environments
– Replicating experiments when using malicious workloads is challenging due to, for example, crashes of
victim environments
(Pure benign)→Workload drivers (Section 2.1.1)
Key information:
� Generated workloads can be customized in terms of their temporal and intensity characteristics
– Generated workloads do not resemble real-life workloads as closely as those manually generated
Tools: SPEC CPU2000, iozone, Postmark, httpbench, dkftpbench, ApacheBench, UnixBench (see Table II)
References: Allalouf et al. [2010], Patil et al. [2004], Dunlap et al. [2002], Garfinkel and Rosenblum [2003],
and Jin et al. [2011]
(Pure benign) →Manual generation (Section 2.1.2)
Key information:
� Generated workloads are similar to those observed by an IDS during regular system operation
◦ Suitable for generation of workload traces capturing realistic workloads executed in a recording testbed
– Does not support workload customization
Key requirements: time resources,a manpowera

Practices: File encoding and tracing, file conversion, copying of large files, kernel compilation (see Table II)
References: Dunlap et al. [2002], Srivastava et al. [2008], Lombardi and Di Pietro [2011], Allalouf et al.
[2010]
(Pure malicious) →Exploit database →Manual assembly (Section 2.1.3)
Key information:
� Generated workloads are realistic and representative
◦ Attack scripts need to be collected and adapted, and a victim environment needs to be set up
– Generated workloads are normally of a limited size due to lack of manpower and/or time resources
– Publicly available attack scripts normally do not have IDS evasive characteristics
Key requirements: Time resources, manpower, knowledge about the architecture and inner working
mechanisms of the IDS under testb

Datasets: Inj3ct0r, Exploit database, Packetstorm, SecuriTeam, Securityfocus (see Table III)
References: Puketza et al. [1997], Lombardi and Di Pietro [2011], Debar et al. [1998], and Reeves et al.
[2012]
(Pure malicious) →Exploit database →Readily available exploit database (Section 2.1.3)
Key information:
� No time spent on collection and adaptation of attack scripts
– Some databases have critical limitations (e.g., contain only exploits that can be executed from remote
sources)
Key requirements: Knowledge about the architecture and inner working mechanisms of the IDS under testb

Tools: Metasploit, Nikto, w3af, Nessus
References: Gad El Rab [2008]
(Pure malicious) →Vulnerability and attack injection (Section 2.1.4)
Key information:
� Useful when collection of attack scripts is unfeasible
� Remotely and locally exploitable codes can be injected
– Not an extensively investigated approach
Key requirements: Knowledge about the architecture and inner working mechanisms of the IDS under test
Tools: Vulnerability and Attack Injector Tool (VAIT) [Fonseca et al. 2014]
References: Fonseca et al. [2014]

(Continued)
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Table XIV. Continued

Pure benign/mixed/pure malicious → Trace form
Key information:
� A single evaluation run is required to ensure statistical significance of IDS behavior
� Replicating evaluation experiments is a straightforward task
– Generated workloads closely resemble real workloads only for a short period of time
◦ Generated malicious workloads do not require specific victim environments
→ Trace acquisition → Real-world production traces (Section 2.1.5)
Key information:
� Highly realistic and possibly large-scale workloads
– Normally very difficult to obtain due to privacy concerns and legal issues
– Normally anonymized with the risk that intrusion detection relevant data is removed
– Normally not labeled, which makes the construction of ground truth challenging
Key requirements: Time resources, manpower, access to confidential data
→ Trace acquisition → Publicly available traces (Section 2.1.5)
Key information:
�Can be obtained without any legal constraints
�Normally labeled
– Many contain errors (e.g., unrealistic distributions of attacks)
– May be outdated due to limited shelf life of attacks
◦ Claims on generalizability of results from IDS tests based on publicly available traces can often be
questioned
Key requirements: Knowledge about the characteristics of the employed workloads
Datasets: CAIDA, DEFCON, DARPA/KDD-99, ITA, LBNL/ICSI, MAWILab (see Table V)
References: Alserhani et al. [2010], Yu and Dasgupta [2011], Raja et al. [2012], and Durst et al. [1999]
→Trace generation → Testbed environment (Section 2.1.6)
Key information:
� Issues related to trace acquisition not present
– The costs of building a testbed that scales to realistic production environments may be high
◦ Methods used for trace generation are critical, as they may produce faulty or simplistic workloads
Key requirements: Financial resources, time resources,c manpowerc

References: Cunningham et al. [1999], and Shiravi et al. [2012]
→ Trace generation → Honeypots (Section 2.1.6)
Key information:
� Enable the generation of traces that contain representative and possibly zero-day attacks
– The outcome of a trace generation campaign is uncertain, as it cannot be planned in advance and
controlled
◦ The attack labeling feasibility depends on the level of interaction of used honeypot(s)
Key requirements: Time resources,d manpowerd

Tools: honeyd, nepenthes, mwcollectd, honeytrap, HoneyC, Monkey-Spider, honeybrid, HoneySpider, Sebek,
Argos, CaptureHPC, HoneyClient, HoneyMonkey (see Figure 3)
References: Dumitras and Shou [2011]

Metrics
Security related → Basic (Section 2.2.1)
Key information:
◦ Quantify individual attack properties
◦ Need to be analyzed together to accurately quantify the attack detection accuracy of an IDS
◦ Ground truth information is a requirement for calculating the basic security-related metrics
Key requirements: Knowledge about the characteristics of the employed workloads
Metrics: True-positive rate (1-β), false-positive rate (α), false-negative rate (β), true-negative rate (1-α),
positive predictive value (PPV), negative predictive value (NPV) (see Table VI)
References: Mell et al. [2003], Raja et al. [2012], Srivastava et al. [2008], Reeves et al. [2012], and Jou et al.
[2000]

(Continued)
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Table XIV. Continued

Security related → Composite
Key information:
◦ Used for analyzing relationships between the basic security-related metrics
◦ Useful for identifying (an) optimal IDS operating point(s) for evaluating a single or comparing multiple
IDSes
→ ROC curve (Section 2.2.2)
Key information:
◦ The first metric of choice for identifying optimal IDS operating points
◦ An open issue is how to determine a proper unit and measurement granularity
– ROC curve analysis may be misleading when used for comparing multiple IDSes
Key requirements: Knowledge about the architecture and inner working mechanisms of the IDS under
test,e knowledge about the characteristics of the employed workloads
References: Raja et al. [2012] and Durst et al. [1999]
→ Cost based/Information theoretic (Section 2.2.2)
Key information:
� Enable the accurate and straightforward comparison of multiple IDSes
� Express the impact of the rate of occurrence of intrusion events (i.e., base rate)
◦ (Depend/Do not depend) on subjective measures (e.g., cost) and are (unsuitable/suitable) for objective
comparisons of IDSes
Key requirements: Knowledge about the characteristics of the employed workloads, knowledge about the
implications of different behavior exhibited by the IDS under test (applies for cost-based metrics only)
Metrics: Cost-based—expected cost (see Table VI), relative expected cost [Meng 2012]; information
theoretic—intrusion detection capability (see Table VI), false alarm reduction capability [Meng and Kwok
2013]
References: Cost-based metrics: Gaffney and Ulvila [2001], Meng [2012]; information-theoretic metrics: Gu
et al. [2006] and Meng and Kwok [2013]
aWhen large-scale workloads are generated (e.g., for recording in a testbed).
bIn case the IDS property “resistance to evasion techniques” is evaluated.
cIn particular, when recorded workloads are generated manually.
dDepends on the attack labeling feasibility of generated traces.
eIn particular, knowledge about employed workload processing mechanisms (e.g., units of analysis) to avoid
misleading results when comparing IDSes.
�, advantage; −, disadvantage; ◦, neutral.

—Access to confidential data: Organizations are often unwilling to share operational
traces because of privacy concerns and legal issues (see Section 2.1.5).

—Availability of knowledge: (1) The architecture and inner working mechanisms of
the IDS under test (e.g., see the discussions on evaluating resistance to evasion
techniques in Section 2.3.1); (2) the characteristics of the employed workloads (e.g.,
information about the attacks used as workloads must be known to calculate any
security-related metric, see Section 2.2); (3) the implications of different behavior
exhibited by the tested IDS (e.g., the cost of missing an attack must be known in
order to calculate the expected cost metric, see Section 2.2.2).

We observed that the requirements mentioned earlier often cannot be fully satisfied
given the big investment of resources that typically needs to be made. We observed
that sacrifices are often made in (1) the scale of the employed workloads, an example of
which is the typical low number of attack scripts used as workloads (see Section 2.1.3),
and (2) the number of considered IDS properties (i.e., researchers tend to evaluate only
a few IDS properties, see Table IX). We suggest trade-offs made between the quality of
evaluations and the invested resources to be clearly stated when reporting results from
IDS evaluation studies so that the results can be interpreted in a fair and accurate
manner.

Approaches. In Table XIV, we systematize relevant information that facilitates the
process of selecting approaches for generating workloads for evaluating IDSes and for
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measuring IDS performance (i.e., metrics). In-depth information on what is presented
in Table XIV can be found in Sections 2.1 and 2.2, whose subsections correspond to the
approaches listed in the table. For each approach, where applicable, we provide key
information (i.e., advantages, disadvantages, and/or relevant facts); key requirements
that need to be satisfied, systematized as earlier; example common practices or com-
monly used tools, datasets, or metrics; and selected references to relevant publications
where studies that use the approach can be found.

ELECTRONIC APPENDIX

The electronic appendix for this article can be accessed in the ACM Digital Library.
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Josè Fonseca, Marco Vieira, and Henrique Madeira. 2014. Evaluation of Web security mechanisms using
vulnerability and attack injection. IEEE Transactions on Dependable and Secure Computing 11, 5,
440–453.

Romain Fontugne, Pierre Borgnat, Patrice Abry, and Kensuke Fukuda. 2010. MAWILab: Combining diverse
anomaly detectors for automated anomaly labeling and performance benchmarking. In Proceedings of
the 6th International Conference on Emerging Networking Experiments and Technologies (CoNEXT’10).
Article No. 8.

James C. Foster. 2007. Metasploit Toolkit for Penetration Testing, Exploit Development, and Vulnerability
Research. Syngress Publishing.
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