
A Meta-Model for Performance Modeling of Dynamic
Virtualized Network Infrastructures

∗

[Work-in-Progress Paper]

Piotr Rygielski
Karlsruhe Institute of

Technology
Am Fasanengarten 5
Karlsruhe, Germany

piotr.rygielski@kit.edu

Steffen Zschaler
King’s College London

Department of Informatics
London, UK

szschaler@acm.org

Samuel Kounev
Karlsruhe Institute of

Technology
Am Fasanengarten 5
Karlsruhe, Germany
kounev@kit.edu

ABSTRACT

In this work-in-progress paper, we present a new meta-model
designed for the performance modeling of dynamic data cen-
ter network infrastructures. Our approach models charac-
teristic aspects of Cloud data centers which were not cru-
cial in classical data centers. We present our meta-model
and demonstrate its use for performance modeling and anal-
ysis through an example, including a transformation into
OMNeT++ for performance simulation.

Categories and Subject Descriptors

C.4 [Performance of Systems]: Modeling techniques

Keywords

performance modeling, data center networks, meta-modeling

1. INTRODUCTION
The increasing popularity of Cloud Computing is lead-

ing to the emergence of large virtualized data centers host-
ing increasingly complex and dynamic IT systems and ser-
vices. The performance of applications running in such data
centers depends on the performance of three main subsys-
tems: computing, storage, and networking. Different ap-
plications utilize these subsystems in different ways. The
amount of computational, storage and communication re-
sources assigned to applications influences significantly the
quality-of-service (QoS) delivered to end users.

Due to the common adoption of virtualization technolo-
gies, Cloud data centers are becoming increasingly dynamic.
Virtual machines, data, and services can be migrated on de-
mand between physical hosts to optimize resource utilization

∗This work is a part of RELATE project supported by the
European Commission (Grant no. 264840ITN). We thank
Jörg Henß for providing the meta-model of the OMNeT++.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICPE’13, April 21–24, 2013, Prague, Czech Republic.
Copyright 2013 ACM 978-1-4503-1636-1/13/04 ...$15.00.

while enforcing service-level agreements (SLAs) [2]. This dy-
namism of data center infrastructures turns an accurate and
timely performance analysis into a real challenge [7].

In our research, we focus on network infrastructures of
Cloud data centers. The main incentive for this is the fact
that network infrastructures in virtualized and dynamic en-
vironments are introducing several new challenges for per-
formance analysis. First, the growing density of Cloud data
centers due to resource sharing leads to drastic increase in
the number of network end points deployed on top of the
same physical infrastructure. This situation makes perfor-
mance analysis difficult due to, for example, high traffic vol-
ume from various sources traversing over a single physical
link. Second, the volume of inner-data center traffic (having
its source and destination inside the same data center) is
much higher in Cloud environments than in classical data
centers. Third, new traffic sources in the management layer
of Cloud environments emerge (e.g., traffic caused by the
migration of virtual machines). Finally, there is a lack of
standardized and well established technology for network
virtualization supporting performance isolation and QoS as-
surance. This requires performance models that are largely
technology independent.

In this paper, we propose a new performance meta-model
aiming for modeling virtualized network infrastructures ad-
dressing the above mentioned challenges. The meta-model
is designed as a part of the Descartes Meta-Model (DMM)
[10], a new meta-model for run-time QoS and resource man-
agement in virtualized service infrastructures. It covers,
among others, computing infrastructures, storage, middle-
ware, software and services. DMM is designed to serve as a
basis for autonomic resource management during operation
ensuring that system QoS requirements are continuously sat-
isfied while infrastructure resources are utilized efficiently.

Some approaches for modeling and analyzing network per-
formance in data centers already exist in the literature. We
discuss a selection below. Most of the existing approaches
(e.g., [3, 13]) are based either on black-box models or on
highly-detailed protocol-level simulation models (e.g., [11,
4, 13]). The black-box models do not consider the internal
network structure and topology while the protocol-level sim-
ulation models focus only on selected parts of the network
infrastructure and do not capture the link to the running
applications and services which are sources of the network
traffic. Furthermore, existing modeling approaches do not

consider network virtualization techniques and their perfor-
mance influences [14].

In [5], the authors proposed a modeling approach named
Syntony. They use Syntony to model the Ad-hoc On-Demand
Distance Vector protocol and compare the model-based anal-
ysis to the native OMNeT++ implementation. In [4], the
authors use proSPEX (an approach based on the ITU-T
Z.109 [1] profile) to evaluate the performance of the ESRO
(Efficient Short Remote Operations) transport protocol. Both
Syntony and proSPEX focus only on modeling specific net-
work protocols. Approaches based on ITU-T SDL/MSC[1]
(Specification and Description Language/Message Sequence
Charts) have general focus and mainly model communica-
tion protocols [11]. The Palladio Component Model (PCM)
[3] treats network infrastructures as a black-box and does
not support any detailed network abstractions. GANA [12]
(Generic Autonomic Network Architecture) models only au-
tonomic components of networks on the protocol level. Ad-
ditionally, in [13], the classical black-box and low-level sim-
ulation based performance modeling approaches in the area
of computer networks are described.

We stress that none of these works explicitly take into con-
sideration the influences of network virtualization techniques
on the system performance and the mentioned specific as-
pects of Cloud data center networks.

2. ENVISIONED APPROACH
We propose a model-based approach to performance anal-

ysis. The networking domain of data centers is described by
a new meta-model presented in this paper. The DNI Meta-
Model (Descartes Network Infrastructure) is the base for
DNI models instantiation. A DNI model can utilize exter-
nal information about the deployed software and the traffic
it produces. The general approach is depicted in Figure 1.

Software
Deployment

Model

Traffic
Model

DNI
Meta-model

DNI Model

Model
Transformations SimulationSimulationSimulation

Analytical
Solution
Analytical
Solution
Analytical
Solution Performance

Analysis Result

input input

Figure 1: The approach diagram with model inputs.

The obtained DNI model is transformed into known per-
formance models (e.g., queueing networks, Petri nets) and
analyzed using existing performance analysis methods. As
the research develops, DNI models can be transformed into
multiple performance models and deliver multiple perfor-
mance analysis results, e.g., with different accuracy.

As our work on the meta-model is still in progress, the
current version of the DNI Meta-Model does not cover all
important, performance-influencing aspects of data center
network infrastructures. Our development roadmap includes
expansion of the meta-model by adding entities covering,
e.g., QoS assurance, routing, network virtualization by tun-
neling and overlaying. In the next section, we present the
DNI Meta-Model in its current state of development.

3. META-MODEL
The DNI Meta-model1 covers four parts of data center

1Available online: http://bit.ly/DNI-model-ICPE2013

network infrastructures: network protocols, structure of the
physical and virtual network infrastructure (nodes, inter-
faces, links), deployed virtual machines and applications (traf-
fic sources), and a part that describes the network traffic in
the data center. The meta-model is implemented in Ecore
using the Eclipse Modeling Framework (EMF).

Network protocols control the process of any data ex-
change between communicating nodes. They define means
of identification of communicating parties; that is, addresses
of the source and destination. Additionally, the implementa-
tion details of a given protocol have strong influence on the
performance of data transmission. In the DNI Meta-Model,
the NetworkProtocols are organized in NetworkProtocol-

Stacks that allows the application of a complete stack to a
given part of the network. Each protocol can provide a Pro-

tocolAddress—for example, to a NetworkInterface. This
part of the DNI Meta-Model is presented on the class dia-
gram depicted in Figure 2.

NetworkInfrastructure

NetworkProtocolStack

NetworkProtocol

ProtocolAddress

NetworkInterface

consistsOf 1..*

consistsOf 1..*

has 0..*

isGivenBy1

Figure 2: Network protocols and protocol stacks.

The protocols are described in the meta-model with the
information about introduced overheads. Due to the wide
variety of protocols used nowadays, we have captured only
common, generic features describing a protocol, e.g., data
unit header size, and whether communication is connection-
oriented.

NetworkInfrastructure

Network

Link

VirtualLinkPhysicalLink

Node

NodeVirtuality

PhysicalNode VirtualNode

EndNode

IntermediateNode

NetworkInterface

PhysicalNetworkInterfaceVirtualNetworkInterface

consistsOf1..*

consistsOf1..*

consistsOf

0..*

1

connects2

connects
2

contains
1..*

hostedOn1

hostedOn

1

contains 1..*

hostedOn

1

Figure 3: Network’s physical and virtual structure.

The part of the meta-model representing the physical and
virtual structure of a network is depicted in Figure 3. The
NetworkInfrastructure, apart from the NetworkProtocol-
Stack, consists of Networks. Each Network is built from
Links and Nodes which are connected by NetworkInter-

faces. As their impact on network performance differs,
Nodes are categorized as EndNode (e.g., server, VM, gateway
to an external network) or IntermediateNode (e.g., switch,
router, firewall). Each of the Network components can be
further characterized as physical or virtual where each vir-
tual entity must be hosted on a physical one.

The information about physical to virtual resource alloca-
tions of EndNodes is included in the meta-model in a simpli-

fied way—a virtual entity gets a percentage of the physical
resources (removed from Fig. 3 for clarity)—although the
data is assumed to be imported from other parts of DMM.

EndNode TrafficSource

Flow

FlowDescription

ONOFF_IAT

interarrivalTime: RandomVariable
ON Duration: RandomVariable
dataVolume: RandomVariable

generates

1..*

isDescribed1

contains

0..*
1

source

1

destination

Figure 4: Network traffic and software deployment.

In a data center, most of the network traffic is generated
by deployed applications. As depicted in Figure 4, network
traffic is generated by TrafficSources that are deployed on
EndNodes. Each TrafficSource generates Flows which have
exactly one source and destination located in the EndNodes

and can be uniquely identified by the set of protocol-level ad-
dresses. For now, we assume that there is exactly one route
from the source to destination. Finally, each Flow can be de-
scribed using various models. In this paper, we provide the
classical description of an ON-OFF source with inter-arrival
times specified by a probability distribution. However, a va-
riety of other traffic models can be found in the literature
(e.g., [8]) which can be integrated into our meta-model.

4. EXAMPLE
In this section, we first present a selected fragment of an

exemplary data center network infrastructure which is mod-
eled with DNI. Next, to obtain performance analysis results,
we apply a model-to-model transformation of the DNI in-
stance into an instance of OMNeT++ simulation [6, 15].
In this example, selected parts of the transformation have
manually hard-coded performance impacts, however there
exist systematic relations between the source and destina-
tion model and the hard-coded values will be removed in a
future version of the transformation.

In the considered scenario (cf. Fig. 5a), the network con-
sists of three servers and one switch. On two servers two
virtual machines (VMs) are deployed. Each of the VMs is
connected internally to a software hypervisor switch. The
servers are connected to the physical switch using an IP net-
work. Fig. 5b shows part of the model of this scenario (fo-
cusing on only one server). The complete model, the meta-
model, the transformation and its result can be found online
(see the URL in Section 3). The network infrastructure de-
picted in Figure 5 lacks the information about any software
deployed in the machines as this information can be pro-
vided manually (e.g., from measurements) or imported from
other state-of-the-art models (e.g., PCM [3] or DMM [10])
using model transformations.

The entities from the DNI model are transformed into
entities recognized by OMNeT++ using the transformation
rules described in Table 1. In the destination model, we
use the SimpleHypervisor2 module that is a modification

2Available online; See the URL in Section 3.

of the StandardHost in order to enable sharing of a physical
network interface among all hosted VMs. The transforma-
tion has been implemented using the Epsilon Transforma-
tion Language [9]. Below we discuss two excerpts from the
transformation code in more detail.

In Listing 1, we show a fragment of the transformation
code describing how the generic features of network proto-
cols are translated into overheads in data transmission. We
assume that overheads of protocols of lower layers (i.e., these
addressing a NetworkInterface) are decreasing the capac-
ity of a link transmitting data. The overhead of higher layer
protocols (e.g., TCP that addresses an application) increase
the amount of data produced by a TrafficSource. In the
future, we plan to abstract from the classical ISO/OSI layers
and support layering in a generic fashion.

Listing 1: Utilizing network protocols information in the
model transformation (language: ETL).

operationoperationoperation CreateChannels
varvarvar p=stack.getProtocols ();
varvarvar headLen=p.select(pr|pr.layer =2).headerLenght;
headLen=headLen+p.select(pr|pr.layer =3).headerLenght;
varvarvar l2UnitSize=p.select(pr|pr.layer =2).dataUnitSize;
varvarvar overhead = (100* headLen)/l2UnitSize;
varvarvar channel = newnewnew OMNET!Channel;
varvarvar par = newnewnew OMNET!DoubleParameter;
par.name = "datarate ";
varvarvar realThr=link.maxThroughput *(1.0 -(overhead /100.0));
par.value = realThr.equivalent ();
par.unit = link.unit.equivalent ();
channel.parameters.add(par);

In Listing 2, we demonstrate how the physical resources
are shared among virtual EndNodes bound by hostedOn re-
lation. Using the simplified resource allocation information,
the total bandwidth available to a physical node is divided
among virtual nodes using the percentage value and a new
transmission delay is calculated.

Listing 2: Sharing physical resources among virtual entities.

operationoperationoperation networkAddConnections
forforfor(link ininin DNI!VirtLink.allInstances){
varvarvar physRes=link.hostedOn.getTotalBandwidth ();
varvarvar conn=newnewnew OMNET!ChannelConnectionItem;
varvarvar ch=OMNET!Channel.allInstances.selectOne(

c|c.name==link.name);
varvarvar delay=ch.parameters.selectOne(p|p.name ==" delay ");
varvarvar rate=ch.parameters.selectOne(p|p.name ==" datarate ");
varvarvar l2=DNI!NetworkProtocol.allInstances.selectOne(

p|p.layer =2);
varvarvar resAlloc=link.hostedOn.hasResAlloc;
varvarvar ra=resAlloc.selectOne(r|r.virtNode ==conn.leftNode);
varvarvar nDelay=l2.dataUnitSize /(rate.value*ra.resShare);
ch.setDelay(delay.value + nDelay);
ch.setDatarate (0.0);
conn.channel=ch; }

5. CONCLUSIONS
In this work-in-progress paper, we have presented a new

meta-model aiming for performance modeling of virtualized
data center network infrastructures. Our meta-model ad-
dresses the challenges of performance analysis in Cloud envi-
ronments by abstracting too detailed and technology-specific
information, while covering important performance-relevant
aspects of network infrastructures. We have presented an
example of model transformation to a popular simulation
framework where performance analysis can be run. Our fu-
ture research steps concern primarily further development
of the meta-model to support resource allocation, QoS as-
pects, and network virtualization techniques. Furthermore,

SW
1

VM
2
VM
1

SR
V1

(a)

SW1:IntermediateNode

:PhysNode

p0:PhysNetInterface

SRV1:EndNode

:PhysNode

eth0:PhysNetInterface

BR0:IntermediateNode

:VirtNode

p0:VirtNetInterface

p1:VirtNetInterface

p2:VirtNetInterface

VM1:EndNode

:VirtNode

eth0:VirtNetInterface

VM2:EndNode

:VirtNode

eth0:VirtNetInterface

:PhysLink :VirtLink :VirtLink :VirtLink

net1:Network DC1:NetworkInfrastructure standard:NetworkProtocolStack

Ethernet:NetworkProtocol

IP:NetworkProtocol

TCP:NetworkProtocol

connects connects

hostedOn
hostedOn

hostedOn

(b)

Figure 5: Selected fragment of an exemplary data center network (a) presented on the object diagram (b).

Table 1: Selected transformation rules from DNI to OMNeT++
Source Entity Destination Entity Comments
NetworkProtocolStack a parameter of a

DatarateChannel
Protocols used in the stack introduce transmission overheads. An
excerpt of the transformation code is presented in Listing 1.

NetworkInfrastructure network A network in OMNeT++ represents the whole network infrastruc-
ture. DNI Networks are distinguished by protocol-level addresses.

EndNode SimpleHypervisor Applies to both PhysicalNode and VirtualNode.
IntermediateNode e.g., Switch or Router Depends on the value of IntermadiateNode.type enumeration.
Link DatarateChannel Applies to both PhysicalLink and VirtualLink.
NetworkInterface inout gate in e.g.,

Router.
Applies to the gates section of a Node the gate is attached to. Applies
to both Physical- and VirtualNetworkInterface.

TrafficSource e.g., TcpApp, UdpApp Choice of application type depends on the NetworkProtocol in the
L4 (e.g., for TCP we use TcpApp).

FlowDescription ,
ONOFF_IAT

configuration of e.g.,
TcpApp

The choice of concrete FlowDescription depends on traffic genera-
tion implementation and configuration of TrafficSources.

mapping of Virtual-
on Physical- entities

a parameter of a
DatarateChannel

Sharing of physical resources causes modification of virtual links
throughput. See transformation code in Listing 2.

we plan to provide more ways of traffic modeling and inte-
grate the approach with DMM.

6. REFERENCES
[1] SDL combined with UML. ITU-T Z.109, 2000.

[2] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph,
R. Katz, A. Konwinski, G. Lee, D. Patterson,
A. Rabkin, I. Stoica, and M. Zaharia. Above the
Clouds: A Berkeley View of Cloud Computing.
Technical report, University of California, 2009.

[3] S. Becker, H. Koziolek, and R. Reussner. The Palladio
component model for model-driven performance
prediction. Journal of Systems and Software,
82(1):3–22, 2009.

[4] N. de Wet and P. Kritzinger. Using UML models for
the performance analysis of network systems. Comput.
Netw., 49(5):627–642, 2005.

[5] I. Dietrich, F. Dressler, V. Schmitt, and R. German.
SYNTONY: network protocol simulation based on
standard-conform UML2 models. In Proc. of the
ValueTools ’07, pages 21:1–21:11, 2007.

[6] J. Henss. OMPCM – An OMNeT++ simulator for
Palladio. In Palladio Days 2012, Paderborn, Germany,
2012. Special Focus Talk.

[7] N. Huber, M. von Quast, M. Hauck, and S. Kounev.
Evaluating and Modeling Virtualization Performance
Overhead for Cloud Environments. In Proc. of the 1st
Int. Conf. on Cloud Computing and Services Science,
pages 563–573, 2011.

[8] T. Karagiannis, M. Molle, and M. Faloutsos.

Long-range dependence: Ten years of internet traffic
modeling. IEEE Internet Computing, 8(5):57–64, 2004.

[9] D. Kolovos, R. Paige, and F. A. Polack. The Epsilon
Transformation Language. In Theory and Practice of
Model Transformations, vol. 5063 of LNCS, pages
46–60. Springer, 2008.

[10] S. Kounev, F. Brosig, and N. Huber. Descartes
Meta-Model (DMM). Technical report, Karlsruhe
Institute of Technology, 2013.

[11] A. Mitschele-Thiel and B. Müller-Clostermann.
Performance engineering of SDL/MSC systems.
Comput. Netw., 31(17):1801–1815, 1999.

[12] A. Prakash, Z. Theisz, and R. Chaparadza. Formal
methods for modeling, refining and verifying
autonomic components of computer networks. In
Transactions on Computational Science XV, pages
1–48. Springer, 2012.

[13] R. Puigjaner. Performance modelling of computer
networks. In Proc. of the 2003 IFIP/ACM Latin
America conf. on Towards a Latin American agenda
for network research, LANC ’03, pages 106–123, New
York, NY, USA, 2003. ACM.

[14] P. Rygielski and S. Kounev. Network Virtualization
for QoS-Aware Resource Management in Cloud Data
Centers: A Survey. PIK — Praxis der
Informationsverarbeitung und Kommunikation, 36(1),
2013. In print.

[15] A. Varga. The OMNeT++ discrete event simulation
system. In Proc. of the European Simulation
Multi-conference (ESM), pages 319–324, 2001.

