A Reference Architecture for Online Performance Model
Extraction in Virtualized Environments

Simon Spinner
University of Wirzburg
Am Hubland
97074 Wirzburg, Germany
simon.spinner@uni-
wuerzburg.de

ABSTRACT

Performance models can support decisions throughout the
life-cycle of a software system. However, the manual con-
struction of such performance models is a complex and time-
consuming task requiring deep system knowledge. There-
fore, automatic approaches for creating and updating per-
formance models of a running system are necessary. Existing
work focuses on single aspects of model extraction or pro-
poses approaches specifically designed for a certain technol-
ogy stack. In virtualized environments, we often see differ-
ent applications based on diverse technology stacks sharing
the same infrastructure. In order to enable online perfor-
mance model extraction in such environments, we describe
a new reference architecture for integrating different special-
ized model extraction solutions.

Keywords

Architecture-level Performance Model; Model Extraction;
Model Learning

1. INTRODUCTION

Performance models are an abstraction of a combined
hardware and software system describing its performance-
relevant structure and behavior. These models can be an-
alyzed using analytical or simulation techniques providing
predictions of the system performance in a given scenario.
During a system’s life-cycle, many different questions arise
where performance predictions help to find better answers.
For instance, performance models can be used during sys-
tem design to choose between design alternatives [8], dur-
ing system deployment to size a system for the expected
workload [10] and during system operation to dynamically
adapt the resource allocation to ensure a good system per-
formance [7]. While performance models can provide many
benefits, their manual creation and maintenance is time-
consuming and expensive, severely limiting their usage in

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

ICPE’16 Companion, March 12-18, 2016, Delft, Netherlands
© 2016 ACM. ISBN 978-1-4503-4147-9/16/03. .. $15.00
DOL: http://dx.doi.org/10.1145/2859889.2859893

Jirgen Walter
University of Wlrzburg
Am Hubland
97074 Wiirzburg, Germany

juergen.walter@uni-
wuerzburg.de

Samuel Kounev
University of Wirzburg
Am Hubland
97074 Wiirzburg, Germany
samuel.kounev@uni-
wuerzburg.de

real-world systems.

A major field of research is the automatic extraction of
performance models based on static and dynamic analysis
of the system implementation and configuration in order to
ease the usage of performance models. Existing work ei-
ther describes holistic approaches to extract complete per-
formance models, but assume a very specific technology stack
[2, 4], or focuses on improving certain aspects of it (e.g.,
resource demand estimation [12]). In virtualized environ-
ments, multiple applications with diverse technology stacks
typically share the same underlying infrastructure influenc-
ing each other. As a result, a performance model needs
to represent the complete virtualized system (including the
different applications) integrating information from hetero-
geneous datasources in order to enable reliable performance
predictions. Furthermore, the deployment and configura-
tion of applications may change frequently due to automatic
or manual reconfigurations (e.g., deployment of new virtual
machines (VMs), or migration of existing ones). As a result,
the overall performance model of the system needs to be dy-
namically composed and continuously updated to reflect the
current system state.

In this paper, we describe a new agent-based reference
architecture for online performance model extraction in vir-
tualized environments. The goals of this reference architec-
ture are: (a) to enable the creation of purpose built agents
focusing on specific model extraction tasks, (b) to simplify
the reuse of general tools and algorithms for model extrac-
tion, (c) to enable the dynamic composition and parameter-
ization of sub-models (called model skeletons), and (d) to
allow the encapsulation of technology-specific knowledge in
the agents. The agents may be bundled within VMs along-
side the applications (as outlined previously in our vision
described in [14]), or may run in dedicated VMs. The agents
will discover each other at run-time and collaborate to cre-
ate a complete and fully parameterized performance model
of the system.

The rest of the paper is organized as follows. Section 2
surveys the state-of-the-art in model extraction. Section 3
provides an introduction to the modeling formalism used
in this paper. Section 4 gives an overview of the proposed
reference architecture and Section 5 describes possible im-
plementations of it. Section 6 concludes the paper.

2. STATE-OF-THE-ART

Existing approaches consider the problem of model ex-
traction for analytical performance models [6, 1] and for

BasicComponent AssemblyContext

InterfaceRequiringRole InterfaceProvidingRole \ J System

¥
ProvidingDelegationConnector ‘__ 1—C
Ac =

/
—=-0O— _+C RequitingDelegationCohnector
MR- [egnateles

I Cor;ypositeComponent
/

DeplgymentContext ’?VM A | [VM B |« RuntimeEnvironment
DataCenter Host 1 +— ComputinglInfrastructure

Figure 1: DML overview.

architecture-level performance models [9, 2, 4]. Hrischuk
et al. [6] focus on generating Layered Queueing Network
(LQN) models from traces collected by monitoring tools.
However, their approach expects characterizations of certain
model variables as input (e.g., resource demands). Awad
and Menascé [1] derive analytical Queueing Network (QN)
models dynamically. They propose a framework for au-
tomatic model identification, however, it can only provide
rather coarse-grained models of the software architecture.

Krogmann [9] uses a combination of static and dynamic
analyses to generate Palladio Component Model (PCM) in-
stances from an existing application. The approach is aimed
at reverse engineering tasks and does not support continu-
ous model extraction in production systems. Brosig et al. [2]
and Brunnert et al. [4] both describe extraction approaches
for PCM tailored for Java Enterprise Edition application
servers. However, they do not consider virtualized environ-
ments with heterogeneous software stacks and frequent re-
configurations.

Other work focuses on improving specific aspects of per-
formance model extraction. Different statistical techniques
for estimation resource demands based on monitoring data
have been proposed (see the survey and experimental com-
parison by Spinner et al. [12]). Menascé et al. [11] and van
Horn et al. [15] propose techniques to determine user be-
havior models. Herbst et al. [5] give an overview of state-of-
the-art workload forecasting techniques to predict the load
intensity over time. These techniques are supplementary to
our work and can be integrated into our reference architec-
ture.

3. DESCARTES MODELING LANGUAGE

For our reference architecture, we first need to decide on
a performance modeling formalism. We use the Descartes
Modeling Language (DML) [3, 7], because it is a descrip-
tive, architecture-level performance model specifically tar-
geted at online performance and resource management in
data centers and it offers flexible solution techniques based
on model-to-model transformations (e.g., to QNs or QPNs).
Furthermore, in contrast to other architecture-level perfor-
mance models it supports empirical as well as explicit de-
scriptions of model variables and parameter dependencies.
For a complete specification of DML see [3, 7].

A DML instance (see Figure 1) contains a repository of
basic and composite components. Each component has in-
terface providing and interface requiring roles. Roles are as-
sociated with an interface that declares a set of operations.

Figure 2: Reference architecture.

Each operation of an interface providing role corresponds to
a service of a component that can be called by other compo-
nents. The interface requiring roles specify the services that
a component depends on. A basic component must specify
a service behavior for each provided service (i.e., for each in-
terface providing role and operation). The service behavior
specifies the performance relevant control flow of the compo-
nent (i.e., resources accesses, external calls to other services,
loops, forks, etc.). Composite components bundle a set of
components which are deployed together.

Components are composed to a system using assembly
contexts, assembly connectors, and delegation connectors.
Each assembly context represents a component instance within
a system or a composite component. A component may be
instantiated multiple times in a system at different positions
in the control flow (e.g., component A in Figure 1). Assembly
connectors represent the control flow between components.
Delegation connectors can be used to expose providing or re-
quiring roles to enclosing composite component or system.

The resource landscape describes the physical and logical
resources in a data center. The main entity are contain-
ers which can be a computing infrastructure (i.e., physical
server) or a runtime environment (e.g. a VM or a middle-
ware service). Each container contains a description of its
resources (CPU, hard disks, network links, etc.). Deploy-
ment contexts map an assembly context to a container.

A usage profile contains a set of usage scenarios describing
the incoming workload to a system (open/close workload).
A usage scenario defines the sequence of system user calls
to interfaces provided by the system.

4. REFERENCE ARCHITECTURE

The complexity of today’s virtualized environments re-
quires a shift from monolithic model extraction solutions
to a distributed, component-based one, in order to reduce
the effort for tailoring the model extraction for certain tech-
nologies and to increase the reuse of functionality. Figure 2
shows the core components of our reference architecture,
which are a set of agents, a central model repository, and
optionally, one or multiple time series databases.

Agent: We consider three classes of agents: model skele-
ton, monitoring and model parameterization. A model skele-

ton consists of a partial DML model and a specification of
the types of monitoring data that can be observed at the sys-
tem. Model variables in the model skeleton (e.g., resource
demands, branching probabilities) are marked as either ez-
plicit or empirical. Explicit model variables are assumed to
have a fixed value (or a stochastic expression as supported
by DML) that does not change continuously over time. In
contrast, the values of empirical model variables are derived
from monitoring data. Monitoring agents provide access to
data sources containing the required monitoring data. Model
parameterization agents determine the values of empirical
model variables for a given time instant using the monitor-
ing data. This time instant may also lie in the past (depend-
ing on the availability of historic monitoring data) or in the
future (e.g., leveraging forecasting techniques).

Model repository: The model skeletons provided by the
different agents are merged into a combined DML instance
representing the complete system, which is stored in the
model repository. This model is still unparameterized, i.e.,
all empirical model variables do not have values.

Time series databases: The time series databases are
used to collect and store historic observations of different
metrics (e.g., utilization, throughput and response times).
The time series databases are optional, because the same in-
formation can be retrieved directly from monitoring agents.
However, the availability of historic data may be limited di-
rectly at the monitoring agents. Time series database may
be used to store historic data for a longer period or to im-
prove the data access performance.

4.1 Assumptions

The architecture is based on the following assumptions:

e Model skeletons need to be composable. We assume
that a model skeleton is always a valid, but not neces-
sarily a complete model according to the DML meta-
model. This ensures that the model skeletons can be
merged automatically (see Section 4.4) at run-time.

e The model repository may be accessed by different
agents concurrently. Therefore, the model repository
provides transactional access to ensure atomicity for
multi-step model updates. Furthermore, it requires
locking capabilities to detect and prevent concurrent
modifications of model elements.

e In order to be able to resolve connections between
model skeletons, certain elements require unique iden-
tifiers (see Section 4.4).

4.2 Design Decisions

The design of agents for a specific system or technology
requires a number of design decisions that need to be taken
into account.

Functionality: In the simplest case, an agent just deliv-
ers a prepackaged model skeleton when the agent is started
(e.g., capturing a-priori knowledge about an application).
However, in many cases the model skeleton depends on the
configuration of the operating system, middleware system
(e.g., which components are deployed in a runtime con-
tainer) or application (e.g., customizations in the application
settings). An agent may use static and dynamic analyses to
construct such a model skeleton at runtime.

Granularity: In theory, an agent may have different
levels of granularity. For instance, an agent may be model
skeleton and monitoring agent at the same time. While

this increases the implementation complexity of the agent,
it may be beneficial when integrating existing model extrac-
tion tools, such as [2] or [4], into the reference architecture.
The existing tool may be reused as a whole only requiring
a transformation from its output format to a model skele-
ton (based on DML). Furthermore, there are different agent
roles (see Section 4.5) which may be split between agents.

Genericity: It is the agent designer’s decision how generic
an agent is designed (i.e., how much technology-specific knowl-
edge is included in it). Model skeleton and monitoring agents
may often be specifically designed for a certain technology
(e.g., certain JEE application server product) in order to be
able to fully exploit proprietary instrumentation and intro-
spection capabilities. Furthermore, a deeper understanding
of the underlying technology also may be required for map-
ping to concepts of DML (e.g., what is a component, or what
is a container?). On the other hand, model parameteriza-
tion agents will typically be generic as they directly work on
the DML model and time series monitoring data.

Distribution: The distribution of the agents in Fig-
ure 2 is just exemplary, and not prescribed by the reference
architecture. For instance, model skeleton and monitoring
agents may not be required for each VM of an application,
if an existing system or application monitoring solution is
used (such as Dynatrace' or Kieker [16]) that provides all
required information for creating the model skeleton in a
central place.

Deployment: The agents may be deployed in the same
VM as the application itself or in dedicated VMs. For mon-
itoring and model skeleton agents, a deployment directly
alongside the monitoring tool or the application itself may
be beneficial (e.g., easier access to introspection interfaces
or monitoring files). Model parameterization agents may
depend on computationally expensive calculations (e.g., for
resource demand estimation) and a deployment in a dedi-
cated VM avoids negative impacts on the application per-
formance.

Notification: Reconfigurations in the environment or
changes in the workload may require updates to the perfor-
mance model. The agents may either work in push or pull
mode. In push mode, the agent exploit special notification
mechanisms of the infrastructure or application software in
order to be informed of changes. In pull mode, the agents
check for changes in regular intervals.

4.3 Communication

The agents and the monitoring repository need to commu-
nicate with each other in order to build a complete model
of the systems. Figure 2 gives an overview of the communi-
cation paths described in the following;:

1. When a new agent is started, it automatically regis-
ters itself at the model repository. The address of
the model repository needs to be configured in the
agent. The model repository manages a list of agents
in the environment. The same applies to time series
databases.

2. The model skeleton agents write their current model
skeleton to the model repository. The model repos-
itory automatically merges the skeleton into a single
DML model. Monitoring agents also send information
about the sensors in the environment. This step may

"http://www.dynatrace.com

be repeated if any changes in the environment are de-
tected.

3. The agents may optionally register for notifications
when the contents of the model repository changes.
In this step, the agents are informed of the updated
model.

4. The model repository may instruct the time series data-
base to regularly collect and store metrics from the
monitoring agents.

5. The time series database collects performance metrics
in regular intervals from monitoring agents.

6. A user or another program may request a fully param-
eterized model for a defined instant in time from the
model repository.

7. The model parameterization agents are triggered to
provide updated values for the model variables (e.g.,
resource demands).

8. The model parameterization agent asks the time series
database or a monitoring agent for the current moni-
toring data that is required to deteremine the values
of a model variable.

4.4 Model Skeletons

A model skeleton represents the local view of an agent
on the virtualized system. Different model skeleton agents
may be responsible for different parts of the system. For
instance, an agent at the virtualization layer can determine
the physical hosts and the VMs running on each host, but
cannot see what is running inside a VM. This information
needs to be provided by other agents that have access to the
applications inside the VM.

Meta-model: A model skeleton is described by a Meta
Object Facility (MOF) compliant meta-model. Figure 3
gives an overview of this meta-model. A ModelSkeleton

‘ SensorRepository ‘ AdaptationPointDescriptions

i
-]o.1 1
UsageProfile ModelSkeleton = Deployment

mﬁﬁ L‘ o]

ContainerRep ‘ DistributedDataCenter

‘ Repository

Figure 3: Model skeleton meta-model.

references six sub-models of the DML meta-model (see [3,
7]): Repository, UsageProfile, System, ContainerRepos-
itory, DistributedDataCenter, Deployment, and Adapta-
tionPointDescriptions. These sub-models however con-
tain only elements which are part of the local view of the
agent, i.e., they are not a complete representation of the
system. Therefore, all elements of a model skeleton are op-
tional. The Container elements describes the resource lay-
ers within one or several VMs (e.g., middleware resources).
The SensorRepository contains information about the sen-
sors in the system. Figure 4 shows the corresponding meta-
model (not part of DML).

The SensorRepository contains a list of Sensor defin-
tions. Each Sensor represents one instrumentation point
in the real system, where monitoring data is collected. A
Sensor is defined by an Agent, an Entity (i.e., an arbi-

MetricRepository . Metric<D> ‘ ‘ SensorRepository ‘
1 T

Dimension Unit<D> Sensor<D>
baseUmtJ
1
UnitRepository ‘ Aggregation Entity ‘

‘ AgentRepository H Agent

Figure 4: Sensor meta-model.

trary DML element in the other sub-models of the model
skeleton), a Metric (e.g., response time, throughput, or uti-
lization), a Unit (e.g., seconds), and an Aggregation (e.g.,
mean, minimum, or sum). Sensor, Metric and Unit are
generic classes parameterized with a sub-class of Dimension
(e.g., Time). The sub-classes are not depicted for reasons
of conciseness. MetricRepository and UnitRepository are
not part of the model skeleton. These are global registries
for standard metrics and units.

Merging: In order to create a DML instance for the com-
plete system, the model skeletons of different agents need
to be merged. This is done automatically by copying the
model skeletons one after the other to a target DML in-
stance. Given that the model skeletons are created inde-
pendently by different agents, we need to consider strategies
for matching the same elements in different model skeletons
and solving conflicts between model skeletons.

In order to prevent conflicts, we introduce an ownership
model for the model skeletons. For certain meta-model ele-
ments, the internals of the element (i.e., attributes and con-
tainment references) can only be defined by a single agent
(who is in the role of the owner). Other agents may also ref-
erence these model elements in their model skeletons (e.g.,
as the target of an assembly connector), however, they may
not change the internals of these model elements. Thus, we
can avoid non-resolvable conflicts between model skeletons.
If two agents change the internals of the same model ele-
ments, it is detected by the model repository and reported
to the agent as an error. Such errors should only occur if
an agent’s implementation is misbehaving, or the agents are
configured incorrectly (e.g., two agents are monitoring the
same entity in a system).

The only exception to this rule are component definitions
in the repository. The component definitions are on a type
level, i.e., they describe all possible service behaviors of a
component. Given that we may observe different service be-
haviors for different instances of the same component, these
behaviors need to merge into one behavior description. Con-
flicts may happen with fine-granular service behavior de-
scriptions, which describe the intra-component control flow.
In this case, conflicting paths can be resolved automatically
by introducing additional branching actions describing the
alternative behaviors.

The matching of elements in different model skeletons is
based on their names. Agents need to derive names from
readily available technical information (e.g., class names,

URLs, IPs). This names need to be unique within a cer-
tain namespace. For instance, components and interfaces
need to be only unique within the same application, con-
tainers within the same data-center and system providing
roles globally. It is the responsibility of the designer of an
agent to decide how to derive such unique names from ex-
isting technical identifiers.

4.5 Agent Roles

An agent may have one or multiple roles in the model ex-
traction. A role determines for what parts of a DML model
an agent can take over ownership. In the following, we de-
scribe the possible agent roles.

Resource landscape: The agent is responsible to ex-
tract the containers (e.g., physical hosts, VM, EJB con-
tainer) of a resource environment. This also includes the ac-
tive and passive resources of the container. Multiple agents
may be involved in the creation of a complete container
hierarchy. Furthermore, the agent is also responsible for
the adaptation points of the owned containers. The result
is stored in the DistributedDataCenter, ContainerRepos-—
itory, Container and AdaptationPointDescriptions ele-
ments of the model skeleton.

Components: An agent with this role extracts compo-
nent types and their interfaces including signatures. For
each component, the agent determines the interface provid-
ing and interface requiring roles. For each component service
it derives service behavior descriptions. It is important to
note, that the agent does not take ownership of the compo-
nents created by it. The result is stored in the Repository
element of the model skeleton.

Component assembly: An agent with this role can take
over ownership of a (sub)system or a composite component.
It is responsible to determine the assembly contexts con-
tained in the system or composite component as well as
the assembly connectors, providing and requiring delegation
connectors. Furthermore, it can define stochastic parame-
ter dependencies on the input parameters. An agent owning
a (sub)system also needs to determine the deployment of
assembly contexts. The result is stored either in the Repos-
itory or in the System/Deployment elements of the model
skeleton.

Usage scenario: An agent in this role takes over the
ownership of a usage scenario. This includes the workload
type as well as the usage scenario behavior (system call ac-
tions, branches, loops, etc.). The result is stored in the
UsageProfile and System elements of the model skeleton.

Model variable: An agent in this role can take owner-
ship of individual model variables in the model. A model
variable may be the response-time behavior of a component
(i.e., a description of the black-box response time distribu-
tion), a branching probability in a usage scenario behavior,
the load intensity in a usage scenario, the branching proba-
bilities and resource demands in a service behavior descrip-
tion or the influencing parameters in a parameter depen-
dency.

5. IMPLEMENTATION

In this section, we describe a reference implementation of
the model repository and agents for different technologies.

5.1 Model Repository
The implementation is based on MOF-based technologies.

All meta-models are described using the Eclipse Modeling
Framework (EMF)?. The model repository is implemented
using the Eclipse Connected Data Objects (CDO) technol-
ogy>. CDO is a distributed, shared data model based on
EMF. It provides persistent storage and transactional access
for EMF-based model instances. When applying a model
skeleton to the model repository, the agent uses a single
atomic transaction to execute all changes on the central
DML instance. Thus, it is ensured that other agents do not
see any invalid model states when applying a model skeleton.
CDO also provides locking mechanisms to avoid inconsisten-
cies due to concurrent modifications in the model repository.
We use an optimistic locking scheme to avoid the overhead
of explicit locking. If applying a model skeleton fails due
to concurrent modifications, the transaction is repeated a
configurable number of times.

CDO contains a distributed notification service. An agent
can register itself to receive notifications if a certain model
element is changed in the repository. The logic for applying
and merging a model skeleton into the model repository is
contained in a shared Java library and integrated into the
agents. This library automatically checks that no elements
owned by another agent are overwritten.

The current implementation assumes that all VMs in a
data-center are connected to the same network, so that the
IPs of a VM can be considered as being unique within the
data-center. It is possible to use a dedicated network for
the model extraction that is separated from the network(s)
used for accessing the applications. Containers in the DML
resource landscape model are then identified by their IP, so
that different agents in the system can find the matching
containers. An effective security isolation between applica-
tions of different tenants (e.g., in a public cloud system) is
currently not implemented, although CDO provides mecha-
nisms to implement access control schemes. This is left for
future work.

CDO automatically tracks the revision history of a model.
Thus, it is possible view the change-log of a model. On the
one hand, this can be used for auditing purposes showing
which agent changed what. On the other hand, it is possi-
ble to answer historic queries to the model repository (e.g.,
give me the performance model representing the system 3
days ago). In such cases, one would need to look up the
historic performance model and trigger the model param-
eterization agents to determine the historic values for the
model variables. Currently, our implementation only sup-
ports the retrieval of the latest performance model version.

5.2 Agents

In order to show that the described reference architecture
can be realized in real systems, we have implemented several
exemplary agents for different purposes. In the following, we
shortly describe how these agents work.

VMware vSphere: The VMware vSphere server hyper-
visor provides a VCenter server virtual appliance to manage
all VMs in a data center consisting of several physical hosts.
The VCenter server manages an infrastructure repository
that contains detailed information about the configuration
of all hosts and VMs. The agent can access this information
through a web services interface [17] provided by VCenter
server. As a resource landscape agent, it extracts all con-

https://eclipse.org/modeling/emf/
3https://eclipse.org/cdo/

tainers up to the level of VMs. Additionally, it also has
the role of a monitoring agent providing resource utilization
data for hosts and VMs. The agent registers itself at the
VCenter server to be notified of any changes in the con-
figuration using the PropertyCollector managed object [17].
Any changes to the hypervisor configuration (e.g., starting
or stopping VMs; live migrations) are detected and the re-
source landscape model is updated accordingly.

WildFly* (former JBoss) is a JEE 7 application server.
It is based on an OSGi framework and thus provides deep ex-
tension mechanisms. Our agent is implemented as a Wildfly
extension and runs directly in the application server. Thus,
it has direct access to all services of the application server
supporting deep introspection. The agent registers itself as
a custom deployment unit processor by implementing the
org.jboss.as.server.deployment.DeploymentUnitProces
sor interface. It is called whenever a new application archive
is deployed on the application server. The current imple-
mentation, automatically registers a set of interceptors at
incoming and outgoing calls of components (Enterprise Java
Beans, web services, servlets) to monitor the control flow at
run-time. The WildFly agent is a model skeleton agent with
the components and component assembly roles as well as a
monitoring agent providing throughput data for component
services.

LibReDE is a library for resource demand estimation [13].

Based on this library we have implemented a model param-
eterization agent that determines values for the resource de-
mands based on monitoring data. The agent expects the
unparameterized DML instance and searches for resource
demands in the model marked as empirically. With the in-
formation in the sensor repository, it then automatically de-
cides which approaches to resource demand estimation are
applicable. After resource demand estimation, the results
are stored in the model repository.

Generic template: This is a generic implementation of a
model skeleton agent that just delivers a prepackaged model
skeleton from the file system of a VM. The model skeleton
needs to be created manually. For example, we currently
use this agent to deliver the usage profile and a black-box
description of the database as long as we do not have spe-
cialized agents for these parts of the system.

6. CONCLUSIONS

In this paper, we have presented a reference architec-
ture for online model extraction in virtualized environments.
The reference architecture enables the design of technology-
specific agents while increasing the reuse of generic model
extraction functionality. Furthermore, it enables the consol-
idation of a complete architecture-level performance model
from heterogeneous data sources in data center.

As future work, we plan to work on the following top-
ics: (a) Integration of existing model extraction approaches
(such as [2, 4]) into our reference architecture. (b) Integra-
tion of more model parameterization tools (such as [5]) into
the reference architecture. (c¢) Support for security isolation
between applications of different tenants in a data center.

7. ACKNOWLEDGMENTS

This work was funded by the German Research Founda-
tion (DFG) under grant No. KO 3445/11-1.

“http://wildfly.org/

8. REFERENCES

[1] M. Awad and D. A. Menascé. Dynamic derivation of
analytical performance models in autonomic computing
environments. In Proceedings of the 2014 Computer
Measurement Group Conference, 2014.

[2] F. Brosig, N. Huber, and S. Kounev. Automated extraction
of architecture-level performance models of distributed
component-based systems. In 26th IEEE/ACM Intl. Conf.
on Automated Software Engineering (ASE 2011), pages
183-192, 2011.

[3] F. Brosig, N. Huber, and S. Kounev. Architecture-level
software performance abstractions for online performance
prediction. Sci. Comput. Program., 90:71-92, 2014.

[4] A. Brunnert, C. Végele, and H. Krecmar. Automatic
performance model generation for java enterprise edition
(EE) applications. In Computer Performance Engineering -
10th European Workshop, EPEW 2013, pages 74-88, 2013.

[5] N. R. Herbst, N. Huber, S. Kounev, and E. Amrehn.
Self-adaptive workload classification and forecasting for
proactive resource provisioning. Concurrency and
Computation: Practice and Ezperience, 26(12):2053—-2078,
2014.

[6] C. E. Hrischuk, C. M. Woodside, J. A. Rolia, and
R. Iversen. Trace-based load characterization for gernerating
performance software models. IEEE Trans. Software Eng.,
25(1):122-135, 1999.

[7] N. Huber, A. van Hoorn, A. Koziolek, F. Brosig, and
S. Kounev. Modeling run-time adaptation at the system
architecture level in dynamic service-oriented environments.
Service Oriented Computing and Applications, 8(1):73-89,
2014.

[8] A. Koziolek, D. Ardagna, and R. Mirandola. Hybrid
multi-attribute QoS optimization in component based
software systems. Journal of Systems and Software,
86(10):2542 — 2558, 2013.

[9] K. Krogmann. Reconstruction of software component
architectures and behaviour models using static and
dynamic analysis. PhD thesis, Karlsruhe Institute of
Technology, 2010.

[10] D. Menascé, V. Almeida, and L. Dowdy. Capacity Planning
and Performance Modeling: from mainframes to
client-server systems. Prentice Hall, 1994.

[11] D. A. Menascé, V. Almeida, R. C. Fonseca, and M. A.
Mendes. A methodology for workload characterization of
e-commerce sites. In EC, pages 119-128, 1999.

[12] S. Spinner, G. Casale, F. Brosig, and S. Kounev.
Evaluating Approaches to Resource Demand Estimation.
Performance Evaluation, 92:51 — 71, October 2015.

[13] S. Spinner, G. Casale, X. Zhu, and S. Kounev. LibReDE: A
Library for Resource Demand Estimation. In 5th
ACM/SPEC International Conference on Performance
Engineering (ICPE 201/), pages 227-228, March 2014.

[14] S. Spinner, S. Kounev, X. Zhu, and M. Uysal. Towards
Online Performance Model Extraction in Virtualized
Environments. In 8th Workshop on Models @ Run.time
(MRT 2018), pages 89-95, Sept 2013.

[15] A. van Hoorn, C. Végele, E. Schulz, W. Hasselbring, and
H. Krcmar. Automatic extraction of probabilistic workload
specifications for load testing session-based application
systems. In 8th Intl. Conf. on Performance Evaluation
Methodologies and Tools, 2014.

[16] A. van Hoorn, J. Waller, and W. Hasselbring. Kieker: A
framework for application performance monitoring and
dynamic software analysis. In 8rd joint ACM/SPEC
International Conference on Performance Engineering
(ICPE 2012), pages 247-248, April 2012.

[17] VMware, Inc. Vmware vsphere web services sdk
documentation.
https://www.vmware.com/support/developer/vc-sdk/.
Accessed 20.11.2015.

