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ABSTRACT

Auto-scaling features offered by today’s cloud infrastruc-
tures provide increased flexibility especially for customers
that experience high variations in the load intensity over
time. However, auto-scaling features introduce new system
quality attributes when considering their accuracy, timing,
and boundaries. Therefore, distinguishing between different
offerings has become a complex task, as it is not yet sup-
ported by reliable metrics and measurement approaches. In
this paper, we discuss shortcomings of existing approaches
for measuring and evaluating elastic behavior and propose
a novel benchmark methodology specifically designed for
evaluating the elasticity aspects of modern cloud platforms.
The benchmark is based on open workloads with realistic
load variation profiles that are calibrated to induce identical
resource demand variations independent of the underlying
hardware performance. Furthermore, we propose new met-
rics that capture the accuracy of resource allocations and de-
allocations, as well as the timing aspects of an auto-scaling
mechanism explicitly.
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1. INTRODUCTION

Cloud providers nowadays offer their services with a “Pay-
Per-Use” accounting model to increase flexibility and effi-
ciency with respect to traditional offers. Modern cloud plat-
forms offer auto-scaling mechanism enabling resource elas-
ticity. With an elastic cloud service, the provider dynami-
cally adapts resource allocations according to the customer’s
demand and the customer pays for the actually consumed re-
sources. This business model is referred to as “Utility Com-
puting” [1].

Cloud providers strongly advertise their elastic capabil-
ities. However, currently no benchmark methodology ex-
ists allowing to compare the elasticity of different offerings.
Cloud providers offer tools that allow customers to imple-
ment scaling rules based on monitored system metrics. How-
ever, varying the parameters of these rules leads to different
behaviors and finding the optimal parameter configuration
is not trivial. An elasticity benchmark could help to com-
pare these parameter configurations in an objective man-
ner. Additionally, researchers have proposed various elas-
ticity strategies that define adaptation processes for cloud
systems [6, 9]. For such more complex strategies, a bench-
mark would help to evaluate the actually achieved elasticity
and compare different approaches against each other.

Previous works [2, 12, 3] on benchmarking cloud offer-
ings neglect certain aspects of elasticity. For example, they
measure the scale-up behavior without considering the scale-
down behavior. Additionally, elasticity is not measured as
a distinct attribute, but it is often mixed up with efficiency.
Furthermore, the employed load profiles for benchmarking
do not reflect a realistic variability of the load intensity over
time. The approach proposed in [8] takes a business per-
spective on the evaluation of elasticity. They analyze the
financial impact of different elastic cloud solutions for a set
of load scenarios. This is a valid approach for a cloud cus-
tomer who must make a cost-based decision between alter-
native cloud offerings. However, this approach mixes up the
evaluation of the business model and the evaluation of the
technical aspects of elasticity.

It is our goal to analyze elasticity in the “Infrastructure-as-
a-Service” (IaaS) context. To stress that scaling in the IaaS
context is realized by scaling of the underlying infrastruc-
ture resource allocations, the term resource elasticity will



be used throughout the paper. We propose a benchmarking
methodology and metrics which are capable of quantifying
resource elasticity of IaaS cloud systems. In the envisioned
approach, the main idea for evaluating resource elasticity is
based on comparing a changing resource demand over time
with the actual allocation (supply) of resources. The vary-
ing resource demand is induced by resource specific loads.
To allow the usage of load profiles with realistic variation
in load intensity, our approach incorporates the modeling of
characteristic load variations using the LIMBO toolkit [16].
Different hardware performance of the compared systems
may affect their scaling behavior and can hamper an ob-
jective elasticity evaluation. This issue is tackled by apply-
ing strict assumptions about the scaling behavior, which are
calibrated step-wise to match the system behavior. The re-
sults of this system scalability analysis are then processed
to adjust the load intensity variations in a way that all eval-
uated systems are stressed in a comparable manner - even
if their underlying resources exhibit different performance.
The quantification of the achieved resource elasticity is done
using metrics that capture the core aspects of elasticity [7].
We plan to refine the proposed metrics in an iterative man-
ner. The benchmarking approach is planned to be evalu-
ated on a private cloud by using a configurable elasticity
mechanism for which the influences of different configura-
tions can be observed. In a first step, we focus on process-
ing resources (CPUs) as resource type and on scaling-out/in
(adding/removing nodes).

The remainder of this paper is structured as follows: Sec. 3
gives several foundations for the context of resource elastic-
ity benchmarking. This includes the definition and discrim-
ination of important terms, information about the variety of
existing elasticity mechanisms, and explanations of require-
ments for elasticity targeted benchmarks. Sec. 2 summarizes
the state of the art in the field of elasticity evaluation by
reviewing selected related works and their limitations. In
Sec. 4, we describe our envisioned approach in greater de-
tail. After a coarse grained overview of the proposed bench-
mark, the limitations of the approach and possible future
enhancements are discussed. This discussion is followed by
sections that describe the three main aspects of a proposed
benchmarking methodology: the modeling of realistic load
intensity variations as benchmark input, the calibration of
the benchmark to take into account different hardware per-
formance, and definition of suitable metrics to quantify re-
source elasticity.

2. RELATED WORK

This section analyzes existing approaches to elasticity eval-
uation. Previous approaches to evaluate elasticity either an-
alyze elasticity only to a limited extent or take the perspec-
tive of a cloud customer who is interested in the financial
implications of different elasticity behaviors.

Specialized approaches: A simple approach to mea-
sure some aspects of elasticity was proposed by Binning et
al. [2]. In their paper, they define initial ideas for measures
that capture different aspects of cloud systems. One aspect
is the adaptability of systems to peak loads. This is one as-
pect of elasticity although the authors do not use the term
elasticity while describing the metric. Binning et al. sug-
gest to use the ratio between issued requests and requests
that are answered within a given response time as a mea-
sure. The latter is a very rough measure. It leaves open,

if the peak was big enough to enforce an adaptation at all
or if the peak was so big that even at the upper scaling
bound the system is unable to handle the requests within
the required response time. Another aspect of elasticity is
measured by Li et al. [12]. They use a metric called Scaling
Latency for which they manually request new virtual in-
stances and measure the time between each request and the
time the requested instance is made available. This reflects
one aspect that influences the elasticity of a system. Nev-
ertheless, the real scaling behavior strongly depends on the
adaptation mechanism that triggers the creation or removal
of instances. Dory et al. proposed an approach to measure
the elasticity for cloud databases [3]. They measure elastic-
ity by analyzing the distribution of response time during a
scale-out process. This approach may be valid for analyzing
the scale-out behavior, but it does not consider the quality
of de-provisioning.

Business perspective approaches: In [8], Islam et al.
present a concept that allows cloud customers to evaluate
the financial implications of choosing different elastic cloud
providers. In contrast to previous works, this paper ana-
lyzes over- and under-provisioning. It takes into account the
fact that the amount of allocated resources is not necessarily
equal to the amount of resources the customer is charged for.
The load profiles used for the evaluation are a set of simple
mathematical functions including linear functions, exponen-
tial functions, sines containing plateaus of different lengths.
These load profiles are one step towards a realistic variation
of load intensity, but still the use of a workload model that
captures the expected variability of load intensity in a more
accurate manner is missing. Another issue that is problem-
atic is that customers who want to apply this benchmark,
need to specify an appropriate penalty for the violation of
service level objectives (SLOs). The specification of this
penalty can have a high impact on the results of the evalu-
ation. In this case, the quantification of elasticity aspects is
mixed up with the business model.

3. FOUNDATIONS

This section provides some relevant background for elas-
ticity benchmarking. Firstly, we roughly describe the archi-
tecture of elastic cloud systems. This description is followed
by a section explaining terms commonly (miss-)used in the
cloud context. After this differentiation, we discuss resource
elasticity in more detail.

3.1 Elastic Cloud System Architecture

System Under Test (SUT)
Cloud Management

Monitoring
System

Load Balancer

Elastic Infrastructure

Active VMs

Active VMs

Figure 1: Blueprint architecture of elastic systems

Figure 1 shows a blueprint architecture of a simple elastic
cloud system. Elastic cloud systems typically consist of two



parts: A scalable infrastructure and a management system.
As a basic service, cloud providers offer infrastructure to
their customers in the form of virtual machines with network
access and storage. The hypervisor acts as virtualization
layer that allows a shared usage of the underlying physical
hardware. When customers need more resources they have
- depending on the provider - at least one of two options.
They can either ask the provider to assign more resources
to their virtual machine (scale-up) or request additional vir-
tual machine (VM) instances (scale-out). Sometimes even a
combination of both methods is possible. The first option is
limited by the amount of resources the underlying hardware
can provide. As soon as multiple instances are available, the
incoming load must be distributed. This task is performed
by a load balancer. The load-balancer forwards incoming re-
quests according to a configured scheme, e.g., round robin,
to the VM instances. The scalable infrastructure is managed
by a cloud management server. It offers different services via
modules. The reconfiguration management module supports
the creation of new virtual machines and allows starting and
stopping them. A monitoring module allows the collection of
monitoring data about the virtual machines and about the
underlying physical infrastructure. Often, the cloud man-
agement server also offers an elasticity mechanism. This
mechanism uses monitoring data to evaluate if it is necessary
to scale the resources and triggers reconfigurations of the
elastic infrastructure accordingly. It also reconfigures the
load-balancer if this is required due to a reconfiguration of
the elastic system. Thus, the system adapts itself according
to the demand and the customer does not need to reconfig-
ure the system himself every time his demand changes. The
realized elasticity depends on internals such as provisioning
time but also on the used elasticity mechanism. Therefore,
the system under test (SUT) for the proposed benchmark
includes the scalable infrastructure, the load-balancer, and
the cloud management system.

3.2 Terms and Differentiation

In the context of cloud computing, the terms efficiency,
scalability and elasticity are commonly used without a clear
distinction by referring to a precise definition. Although
these terms are related to each other, they describe different
properties. This section explains the meaning of each prop-
erty in the context of cloud computing and the relations
between them.

3.2.1 Efficiency

The Oxford Dictionary defines efficiency for the context of
systems and machines as “achieving maximum productivity
with minimum wasted effort or expense”. The way produc-
tivity and wasted effort are measured, strongly depends on
the context. For computing systems, the term efficiency is
tightly coupled with performance and can be split into cost,
energy and resource efficiency:

Cost efficiency describes to what degree a system is able
to achieve maximum productivity with minimum costs.

Energy efficiency describes to what degree a system is
able to achieve maximum productivity with minimum en-
ergy consumption.

Resource efficiency either describes to what degree a
system is able to achieve maximum productivity with mini-
mal use of resources (system property), or describes the ef-
ficiency of an underlying resource unit (resource property).

For efficiency measurements, black box approaches are
commonly applied.

3.2.2  Scalability

Scalability describes the degree to which a subject is able
to maintain application specific quality criteria when it is
applied to large situations. Although the term is frequently
used, statements about scalability often lead to only a vague
impression about the analyzed subject [4]. Many authors
have tried to overcome this issue by proposing their own
definitions or systematic ways to analyze scalability. The
most important insights that are shared by several authors
are summarized in the following paragraphs.

Scalability is fulfilled within a range according to
a specific quality. Therefore, statements like “The sys-
tem is scalable” do not provide much insight. Every system
is scalable to some extent. Discriminating is based on the
range within and the quality to which a system is scalable.
Whereas the range is typically specified by an upper scaling
bound, the quality usually describes the growth of a mea-
sured quality criteria. Possible qualities include linear or
exponential growth, for example.

Scalability refers to input variables that are scaled.
Scalability describes how the subject reacts when one or
more input variables, sometimes referred to as attributes [15]
or independent variables [4], are varied. Examples for such
input variables are problem size, number of concurrent users
or number of requests per second.

Scalability is measured by evaluating at least one
quality criteria. To measure how the subject reacts, one
or more quality criteria have to be observed while input
variables are varied. These quality criteria are sometimes
referred to as performance measures [15] or dependent vari-
ables [4]. Examples for quality criteria are memory con-
sumption, I/O device usage, or response time.

With the help of the terms input variable and quality
criteria, scalability in the cloud context can be described
more precisely than commonly practiced. Typically the in-
put variable for scalability analysis of cloud systems is the
load intensity. It describes how much work a system has to
handle in a given time span. Load intensity can be varied
either by different work unit sizes or by varying the arrival
rate of work units. There are two kinds of quality criteria
for cloud systems:

Service levels: A service level can be described by mea-
sures like response time or abort rate. Cloud customers usu-
ally specify service level objectives (SLOs) which define the
minimal acceptable service level for their application. Ser-
vice levels are normally specified with the help of probability
distributions over the measures.

Resource amounts: Resources are required means to
conduct certain types of work. The amount of consumed
resources can be measured for different resources and at dif-
ferent abstraction levels. Possible resource types are CPU
cores or memory as physical resources, as well as virtual
server instances, threads or locks, as software resources. Dif-
ferent abstraction levels cater for different granularity. For
processing resources for example the resource amount can
be measured by the number of used CPU cycles, physical
CPUs, or virtual machines. The latter one is a special case
as a virtual machine is a container resource, that contains
several other resources.

Cloud customers typically want to offer their end users a



constant service level that is independent of the input vari-
able load intensity. Thus, quality criteria that are defined
in SLOs should always be satisfied. This means the used re-
source amount characterizes the scaling behavior, as it has
to increase when the load intensity increases. To emphasize
that the scaling behavior of a cloud system is based on scal-
ing of underlying resources, the term resource scaling will be
used throughout this paper when referring to such systems.

response time

resource amount / response time

R G b

load intensity
tolerable response time
— response time — resource amount

load intensity
tolerable response time
— response time

(a) No resource scaling (b) Resource scaling

Figure 2: Resource scaling allows cloud systems to
comply with predefined service levels as the load
intensity increases

Figure 2 illustrates the difference between a system that
uses resource scaling and one that does not. Here, a maximal
tolerable response time is defined as service level. However
other measures that define a service level are possible, too.
In case the amount of resources for a system is fixed, the sys-
tem response time will increase when the load intensity in-
creases. As soon as the response time exceeds the predefined
threshold, the system is not usable anymore. The scalability
of this system with respect to response time is therefore very
limited. In contrast, a system whose underlying resources
can be scaled is able to comply with the maximum tolerable
response time even for a higher load intensity. The scala-
bility with respect to response time of this system is higher
compared to the system without resource scaling. Still, the
scalability is limited - as the maximum amount of underly-
ing resources is limited. Note that the exponential increase
of the response time is just exemplary. Other growth char-
acteristics are also possible. Moreover other measures that
measure a service level could be used in place of response
time, too.

It’s important to understand, that scalability does not
contain any temporal aspect. In the context of cloud com-
puting, scalability does not make any assumption about
when the resources are scaled. Scalability just describes how
much additional resources a system needs when the load in-
creases to be able to offer a constant service level. Thus,
scalability does not provide any information about the sys-
tem’s ability to scale resources on demand in a fast and
accurate manner, it even does not make any assumptions
about the existence of an automated scaling mechanism.

Resource scaling can be achieved in two different ways,
that are often referred to as scaling dimensions:

Vertical scaling or scaling up/down refers to varying
the amount of resources by adding/ removing resources to
an existing resource node.

Horizontal scaling or scaling out/in refers to varying the
amount of resources by adding/removing nodes to a cluster.

Migration is mentioned in [6] as a third scaling method.
Migration describes the transference of a virtual machine
from one physical location to another for global infrastruc-
ture or locality optimisation. Since the number of assigned

resources typically changes, whereas the number of virtual
instances does not change, migration can be treated as a
special case of vertical scaling.

3.2.3 Resource Elasticity

Elasticity is known in physics and likewise in economics.
In physics, elasticity is a material property that describes
to which degree a material returns to its original state af-
ter being deformed. In economics, elasticity describes the
responsiveness of a dependent variable to one or more other
variables. On a high level of abstraction one could argue
elasticity captures how a subject reacts to changes that oc-
cur in its environment.

For the context of cloud computing elasticity was previ-
ously discussed in [7]. Here, we build upon this work and
further refine it. While scalability - in the cloud context -
describes the degree to which a system is able to adapt to
a varying load intensity by using a scaled resource amount,
elasticity reflects the quality of the adaptation process in re-
lation to load intensity variations over time. Thus, elastic-
ity adds a temporal component to scalability. As elasticity
describes properties of an adaptation process, elasticity re-
quires the existence of a mechanism that controls the adap-
tation.

The impacts of different resource elasticity mechanism in
cloud systems is illustrated by a simple example.
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(a) System A (b) System B

Figure 3: System A and B are equal except for their
elasticity mechanisms. The elasticity mechanism of
system B is superior compared to system A since it
is able to match the demand closer.

Figure 3 shows the behaviour of two systems that are equal
except for their elasticity mechanisms. In particular, their
underlying resources have the same efficiency and the scala-
bility of both systems is equal as well. Thus, for an arbitrary
load intensity profile, both systems require the same amount
of resources to comply with predefined SLOs. In this exam-
ple, the second system exhibits a better elasticity. The red
curve - resource supply - matches the blue curve - resource
demand - closer when comparing System A to System B.
System A’s adaptation process reacts faster and more pre-
cisely to changes in load intensity than the one of System
B. To compare the elasticity of both systems in a quantita-
tive manner metrics are needed. A set of initial metrics is
discussed in Section 4.3.

Comparing elasticity becomes more complex, when the
system’s underlying resources have different efficiency or per-
formance characteristics and the degree to which the consid-
ered systems scale may differ.

Definition.
In [7], the following definition for resource elasticity has
been proposed: “Elasticity is the degree to which a system



is able to adapt to load changes by provisioning and depro-
visioning resources in an autonomic manner, such that at
each point in time the available resources match the current
demand as closely as possible.”

Prerequisites.

Before evaluating elasticity, several prerequisites should
be checked beforehand cf. [7].

Autonomic Scaling: Elasticity is the result of an adap-
tation process that scales resources according to the load in-
tensity. Evaluation of elasticity therefore requires that this
process is specified. The adaptation process is usually real-
ized by an automated mechanism. However, the adaptation
process may also contain manual steps. A notable aspect in
the latter case is that the repeatability of measurements in
that case may be limited.

Resource Type: Elastic systems scale system resources.
The type of resources can be quite different. There are base
resources like CPU, memory or disk storage, and there are
container resources, which comprise multiple base resources
and are very common in cloud systems. To avoid comparing
apples to oranges when evaluating elasticity, systems should
be compared that use the same resource types.

Resource Scaling Unit: The amount used resources can
be measured in different units, e.g., CPU time slice shares,
processors or virtual machines. If elasticity is analyzed by
comparing resource demands to actual resource consump-
tion, it is crucial to use the same units when comparing
different systems.

Scaling Method: The different types of scaling meth-
ods are explained later in this section. Comparing elastic
systems that are based on different scaling dimensions is de-
sirable. Nevertheless, this should be done with care as the
choice about the scaling method may have side effects such
as different resource scaling units.

Scalability Bounds: The scalability of every system is
limited. The scalability bounds depend on the maximum
amount of available physical resources and on the service
level constraints that are specified in SLOs. Elasticity com-
parisons should be performed within a scaling range that is
supported by all compared systems.

Core Aspects.

Accuracy: Fig. 4(a) shows a system that over-provisions
at all times. This could be due to a very conservative adap-
tation process, aiming to never violate SLOs. Although
System C reacts very fast, it does not match the demand
as close as possible and should therefore be considered less
elastic than an ideal elastic System (not illustrated, identical
curves).

resources
resources

time time
— resource demand — resource supply — resource demand — resource supply

(a) System C (b) System D

Figure 4: Systems with imperfect adaptation accu-
racy.

Fig. 4(b) shows another System D that also always adapts

at the exact points where the demand changes. But, in con-
trast to System C it over-provisions and under-provisions.
Systems C and D have in common that they seem to re-
act immediately when the demand changes. But although
they react fast, both systems do not match the demand very
precisely. Thus, accuracy can be seen as one core aspect of
elasticity.

resources
resources

time time
— resource demand — resource supply — resource demand — resource supply

(a) System E (b) System F
Figure 5: Systems with imperfect adaptation tim-
ing.

Timing: To illustrate the timing aspect of elasticity, a
possible supply curve could look like shown in Figure 5.
Fig. 5(a) shows the behavior of a hypothetical System E
that is able to match the resource demand, but with some
delay. System E could be a system that needs some time to
perform its adjustments after the resource demand changes.
Similar, one can imagine a system that performs allocation
activities in advance before the demand actually changes.
Such a system proactively foresees changes. A further way
how the supply curve can be modified is shown in Fig. 5(b).
Whereas, the curve for available resources generally matches
the curve for the resource demand, the available resources
seem to be updated with - an unnecessary - high frequency.
It can be argued that Systems E and F have a timing behav-
ior that is not ideal. Therefore, the timing of the adaptation
process can be seen as a second core aspect. It is valid to
argue that System F not only has a bad timing, but also its
accuracy is not optimal. Although accuracy and timing are
not orthogonal dimensions, these core aspects help to de-
scribe and compare elasticity in a structured way. Metrics
that capture the core aspects of elasticity are proposed in
Section 4.3.

Mechanisms.

This section gives a short overview of existing elasticity
mechanisms and shows how they can be classified accord-
ing to a taxonomy. The broad variety of different elasticity
mechanisms warrants the need for a benchmark to evaluate
the quality of different mechanisms.

A cloud system with resource elasticity is a self-adaptive
system. Resources are allocated according to a changing de-
mand. In [13], Salehie and Tahvildari present a taxanomy
of self-adaptive systems. Although they target self-adaptive
systems on a high abstraction level, most variation points are
applicable to systems with elastic resource scaling. Galante
and de Bona present in their survey [6] a comparable tax-
onomy targeted at resource elasticity. Without going into
too much detail or explicitly picking advantages of an indi-
vidual mechanism, some relevant aspects that appear in at
least one of the taxonomies are highlighted in the following.
Hereby, aspects limiting the comparability as well as aspects
that motivate the need for a benchmark are emphasized.
The target abstraction layer (e.g. IaaS, PaaS) for elasticity
mechanisms may be different. This is one reason why the



unit of the scaled resources or even the type of considered
resources can be different. Elasticity mechanisms can make
use of different scaling methods [6] to adjust the amount of
available resources. As outlined earlier in this section, re-
source type, unit and method can limit the comparability of
elasticity. Elasticity mechanisms can be reactive or proac-
tive/predictive. Reactive mechanisms start the adaptation
process as soon as they detect a changed demand. Due to
the time needed for the adaptation itself, the available re-
sources match the demand only after some delay. Predictive
systems extend reactive ones. They try to foresee demand
changes in order to provision the correct amount of resources
in time. By intuition, mechanisms that contain predictive
elements should perform better than mechanisms that are
purely reactive. Apart from these temporal characteristic
of elasticity mechanisms many alternative exist for different
methodical realization issues cf. [13, p.13ff]. All of them
have their own advantages and disadvantages. A benchmark
can reveal their impact on elasticity.

3.3 Elasticity vs. Efficiency and Scalability

Efficiency is a term that can be applied to both, a part
of a system, e.g., a single resource, or to an entire system.
In any case it reflects the ability of the subject to process a
certain amount of work with smallest possible effort.

Scalability describes the degree to which a system is able
to adapt to a varying load intensity by scaling resource al-
locations to maintain a predefined service level. Improving
scalability normally means reducing scaling overhead and
therefore leads to improved efficiency. Still, high efficiency
is not necessarily due to good scalability. There is also no
direct implication for the opposite direction.

Elasticity reflects the sensitivity of a system’s scaling pro-
cess in relation to load intensity variations over time. Thus,
scalability is a prerequisite for elasticity. Normally, better
elasticity results in higher efficiency, as high elasticity im-
plies appropriate resource allocation and usage. The other
way around this implication is not given. No direct implica-
tions exist between scalability and elasticity or vice versa.

4. BENCHMARKING APPROACH

In [5], the author mentions relevance, repeatability, fair-
ness, verifiability and economic efficiency as main character-
istics of a benchmark in general, and highlights further chal-
lenges for cloud system benchmarks like locality. The main
requirements for a cloud benchmark are grouped into gen-
eral requirements, implementation requirements, and work-
load requirements. To fulfill these requirements, before we
execute a load profile, the benchmark performs a scalability
analysis in a calibration step. The scalability analysis and
load profile calibration are explained in Section 4.2. The
calibrated load profile is then executed with the help of the
workload generator. Finally, metrics that evaluate the elas-
ticity are calculated. Section 4.3 explains ideas for metrics in
greater detail. The proposed approach is not a black box ap-
proach and therefore access to the cloud management server
is required for the benchmark execution.

The activity diagram shown in Figure 6 depicts the bench-
mark workflow. Since the scalability analysis requires a
manual allocation of resources, the elasticity mechanism has
to be switched off before conducting the scalability analysis.
After the latter is completed, the elasticity mechanism is
turned on again. The results of the scalability analysis are

¢
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Measurement
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Figure 6: Diagram of benchmark workflow.

used to calibrate the load profile. After the calibration, the
SUT is penetrated with the adjusted load profile. At the
same time, the resource allocation (supply) is monitored.
Afterwards, the elasticity is evaluated by applying metrics.

4.1 Load Intensity Variation

A good benchmark uses realistic load profiles to stress the
SUT in a representative manner. Workloads are commonly
modeled either as closed workloads or as open workloads.
Whereas in closed workloads new job arrivals are triggered
by job completions, arrivals in open workloads are indepen-
dent of job completions. The elastic behavior of a system is
usually triggered by a change in load intensity. Hence, for
elasticity benchmarking it is important that the variability
of the load intensity is modeled realistically. As this can
be achieved with an open workload model, the developed
benchmark will use an open workload model. Load profiles
typically consist of a mixture of several patterns. These pat-
terns can model linear trends, bursts that are characterized
by an exponential increase, or patterns which model the gen-
eral variability over a day, a week or a year. V. Kistowski
et al. present in [17] a meta-model that allows the modeling
of variable load intensity behaviors. They offer the LIMBO
toolkit described in [16] to facilitate the creation of new load
profiles that are either similar to existing load traces or con-
tain different desired properties like a seasonal pattern and
additional bursts. The usage of this toolkit and the under-
lying meta-model allows the creation of realistic load varia-
tions that are still configurable. Thus, the load profiles used
for benchmarking can be adapted with low effort to suit the
targeted domain.

4.2 Benchmark Calibration

The resource demand of a system for a fixed load in-
tensity depends on two factors: The efficiency of a sin-
gle underlying resource unit and the overhead caused by
combining multiple resources units. Both aspects can vary
from system to system and are related to distinct proper-
ties namely efficiency and scalability. Elasticity is a dif-
ferent property and should be measured separately. One
way to do so relies on analyzing the scaling capabilities of
a system before evaluating elasticity. After such an anal-
ysis, it is known how many resources are needed to sat-
isfy a given static resource demand. The resource demand
can then be expressed as a function of the load intensity:
resourceDemand = f(intensity). With the help of this
function, which is specific for every system, the amount of
resources actually used.

Figure 7 shows how two Systems G and H react when they
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Figure 7: Two systems that are exposed to equal
load profiles. The induced resource demand on Sys-
tem H is lower than on System G due to a higher
efficiency of the underlying resources.

are exposed to the same load profile. Since the resources of
System H are more efficient than those of System G, system
H can handle the load with less resources than System G.
For both systems there exist some points in time where the
systems over-provision and other points in time where they
under-provision. Comparing their elasticity is difficult as
the resource demand of both systems is different. The idea
of our approach is to adjust a given load profile in a way
that the induced resource demand changes occur equal in
amount and experiment time on all systems. By doing so,
the possibly different efficiency of the underlying resources
units as well as different scaling behaviors are compensated.
With an equal resource demand it is now easier to compare
the quality of the adaptation process and thus the evaluation
of elasticity can be done in a fair way. While the process
of adjusting load profiles in a way that the same resource
demand is induced on every compared system is currently
under development and will be specified more precisely in
our future work, the next paragraph presents a description
of a preliminary version of the preceding scalability analysis.

Scalability Analysis: The scalability capabilities of a
system are analyzed using an iterative process. The process
assumes a predefined SLO that is needed for the evaluation
if the system is capable to serve requests at a static load
intensity by using just a fixed limited amount of resources.
The SLO has to be chosen according to the targeted domain.
Within an optional evaluation step, the impact of different
SLOs will be analyzed. Since the scalability analysis should
not evaluate any elastic behavior, the elasticity mechanism
of the system may not be turned on during the analysis.
The scaling is controlled manually. The analysis is started
with one resource instance. Of course the load balancer has
to be configured in a way that all requests are forwarded to
this instance. This instance is now exposed to a constant
small load. The load intensity should be that small that
the system can process the load without violating the SLO.
Now, the load intensity is increased in small steps. After
each adjustment the SLO compliance is checked. As soon
as the system cannot process the load anymore without vi-
olating the SLO, the system is reconfigured. One additional
resource unit is added and the load balancer is configured
accordingly. After the reconfiguration the system should be
able to comply with the SLO again. The load intensity is
now increased again stepwise. This process is repeated un-
til either there are no additional resources which could be
added to the system, or even after adding a new resource
the SLOs are still violated, e.g., due to an increased scaling
overhead. In both cases the upper scaling bound is reached
and the scalability analysis is finished.

As an alternative approach for finding the maximal load
intensity that a system can withstand using a given amount
of resources, we plan to implement binary search instead of
a stepwise increase of intensity. Possible binary search based
load picking algorithms have been presented by Shivam et
al. [14].

4.3 Metrics

This section discusses elasticity metrics, that we plan to
evaluate and further refine in our future work. The following
metrics that capture different aspects of elasticity have been
proposed by Herbst et al [7].

_I— resource demand
772 underprovisioning
__I resource supply

resource units

overprovisioning

A J
Y
T

Figure 8: Basic elasticity measures. Source: [7]

Figure 8 illustrates how several metrics can be derived by
using functions of resource demand and resource supply over
time. Basic measures are defined by Herbst et al. as follows:

e Ais the average time to switch from an under-provisioned
state to an optimal or over-provisioned state and cor-
responds to the average speed of scaling up.

e 3 Aisthe accumulated time in under-provisioned state.

e U is the average amount of under-provisioned resources
during an under-provisioned period.

e > U is the accumulated amount in under-provisioned
state.

e B,>" B,0,Y O are defined similarly for over-provisioned
states.

e T total duration of evaluation period

These base measures are used to define the following metrics:

e speed (for scaling up/out): > A

e precision (for over-provisioning periods): Py = %
e clasticity (for scaling up/out): E, = ﬁ

Metrics for scaling down/in are defined accordingly. The
precision metric captures the elasticity aspect called accu-
racy in Sec. 3.2.3. The metric speed can be one way to
reflect the timing behavior which is the second core aspect
of elasticity. This metric cannot be derived when a mecha-
nism either constantly over-provisions or constantly under-
provisions. Additionally, a small value for the speed metric
is not necessarily an indicator for good elasticity. A system
that provisions and de-provisions resources with an unneces-
sary high frequency, e.g. System F as shown in Figure 5(b),
may have a small value for the speed metric although its
elasticity is suboptimal.

One alternative way of measuring the timing behavior is
based on comparing the number of scale up (scale down)
events D, (Dg) of the demand with the number of scale
up (scale down) events A, (Aq) for the allocated resources.



The absolute difference of both should be as small as pos-
sible. Too many scale events for the resource supply (see
Figure 5(b)) as well as too few few scale events are both in-
dicators for a bad timing behavior. Thus, the following two
metrics can be used to characterize the timing behavior:

D, — A,
I L 0

1D Ad] )

Dy

The metrics explained above capture certain aspects of elas-
ticity separately. An alternative approach is to use metrics
that characterize elasticity in a more global manner. One
way to do so bases on comparing the curves for resource
demand and supply by using the dynamic time warping
(DTW) [10] distance. This approach was demonstrated as
a way to measure the elasticity of thread pools [11]. The
use of this metric or other metrics that capture the similar-
ity between two curves present an alternative approach for
quantifying elasticity.

scale_up_timing =

scale_down_timing =

5. CONCLUSIONS

We motivate the need for a benchmark capable of eval-
uating the resource elasticity of cloud systems. Although
different approaches for evaluating elasticity already exist,
they are either immature or have a different non-technical
perspective. As a basis for our new benchmark under de-
velopment, we firstly differentiate the terms efficiency, scal-
ability and elasticity before we analyze elasticity in detail.
The most important existing approaches are presented and
analyzed with respect to the perspective they take on elas-
ticity and the issues that do not satisfy the requirements
for benchmarking. We outline the envisioned benchmarking
methodology and discuss its limitations. The approach is
based on inducing the same resource demand on all com-
pared systems by adjusting a realistic load profile according
to the scaling characteristics of the analyzed systems. With
the help of several proposed metrics, the induced demand is
compared to the actual resource supply and thus the elas-
ticity of the analyzed systems is evaluated.
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