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Abstract. Resource demands are a core aspect of performance models.
They describe how an operation utilizes a resource and therefore influ-
ence the systems performance metrics: response time, resource utiliza-
tion and throughput. Such demands can be determined by two extrac-
tion classes: direct measurement or demand estimation. Selecting the
best suited technique depends on available tools, acceptable measure-
ment overhead and the level of granularity necessary for the performance
model. This work compares two direct measurement techniques and an
adaptive estimation technique based on multiple statistical approaches
to evaluate strengths and weaknesses of each technique. We conduct a se-
ries of experiments using the SPECjEnterprise2010 industry benchmark
and an automatic performance model generator for architecture-level
performance models based on the Palladio Component Model. To com-
pare the techniques we conduct two experiments with different levels of
granularity on a standalone system, followed by one experiment using a
distributed SPECjEnterprise2010 deployment combining both extraction
classes for generating a full-stack performance model.

Keywords: performance model generation, resource demand measure-
ments, resource demand estimations

1 Introduction

Performance models can be used to predict the performance of application sys-
tems. Resource demands are an important parameter of such performance mod-
els. They describe how an operation utilizes the available resources. A busy re-
source increases the time an operation needs to execute, therefore increasing the

Acknowledgment: This work has been supported by the Research Group of the Standard Per-
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2

response time of the operation and ultimately the time for the user accessing the
system. When performance models are applied for capacity management, such
information is essential as the available hardware must be sized according to the
demand of the operations for a certain workload. Demands can be extracted from
different sources. Expert guesses are used, especially when no running applica-
tion artifact is available, to forecast the application’s performance behavior. If
running artifacts are available (e.g., in a test environment), measurement and es-
timation techniques can be applied. This work compares two direct measurement
techniques and an adaptive estimation technique based on multiple statistical
approaches and compares strengths and weaknesses of each technique.

Manually creating performance models often outweighs their benefits [6].
Therefore, automatic performance model generator (PMG) frameworks for run-
ning applications have been introduced in the scientific community [3,6]. Such
PMGs create performance models, which include the software architecture, con-
trol flow and the resource demand of the application. These PMGs use either
direct measurements by instrumenting the operations that are executed or re-
source demand estimations calculated from coarse-grained measurement data
like total resource utilization and response time per transaction invocation.

Applying direct measurements requires to alter the installation of the sys-
tem that is instrumented by applying an agent that intercepts invocations. This
allows for extracting the software architecture and control flow, but causes over-
head on the system running for every instrumented operation that is invoked
[5]. Furthermore, such measurements require that for each instrumented tech-
nology and resource type, a dedicated measurement approach must be available.
A number of industry solutions for direct measurements are already available
and have been integrated into such a PMG previously [17].

As an alternative to direct measurements, resource demand estimation tech-
niques can approximate the demand of a resource from coarse-grained monitoring
data like Central Processing Unit (CPU) utilization of a system and response
time of a transaction. Such data can be collected for a wide range of systems and
technologies and requires no in-depth measurement of the application’s technol-
ogy stack. This coarse-grained monitoring data causes less overhead, produces
less data to collect, and to process. However extracting the control flow of an
application is not possible with such an approach.

The Library for Resource Demand Estimation (LibReDE)6 provides differ-
ent resource demand estimation approaches [15]. In order to do the estimations,
LibReDE requires information about the resource utilization as well as about
the response times of an operation or transaction during the same time frame.
This work integrates LibReDE with the PMG introduced by Brunnert et al. [6]
in order to be able to generate models based on direct resource demand measure-
ments or estimations. This integration allows to compare the direct measurement
and estimation approaches and to determine strengths and weaknesses for ex-

6 http://se.informatik.uni-wuerzburg.de/tools/librede/
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tracting resource demands using the SPECjEnterprise20107 industry benchmark
as representative enterprise application for the evaluation.

We compare these two extraction classes for resource demands in a series
of experiments evaluating the accuracy of automatically generated performance
models in terms of CPU utilization and response times. Therefore, the main
contributions of this work are as follows:

(i) An integration of resource demand estimation in a PMG.
(ii) A comparison of the accuracy of two direct measurement techniques with

the most common resource demand estimation approaches used in practice.
(iii) An evaluation of an integrated PMG, utilizing the benefits of direct mea-

surement and estimation techniques.
This work begins with an introduction to the performance model genera-

tion workflow followed by introducing measurement technologies. We continue
with an introduction to LibReDE and the approaches used to estimate re-
source demands including the selection of the most accurate estimation approach
for meaningful resource demands. The experiment for comparing all three ap-
proaches is described and evaluated, followed by a hybrid setup where a combina-
tion of direct measurements and resource demand estimations is used. The work
closes with related work, followed by the conclusion and future work section.

2 Extracting Resource Demands

In order to support resource demand measurement and estimation approaches,
we extend the previously introduced Performance Management Work (PMW)-
Tools’ automatic PMG with LibReDE [6,15]. Generating a performance model
is divided into three separate steps depicted in Figure 1. First monitoring data
is gathered. This monitoring data is, in a second step, aggregated per operation
and stored in a monitoring database (DB). The last step is the actual model
generation, which uses the aggregated data and generates an architecture-level
performance model based on the Palladio component Model (PCM) [1].

The PMG supports data from different data sources:
(i) PMW-Tools monitoring, a monitoring solution for Java Enterprise Edition

(EE) applications to measure CPU, memory, and network demands and
response times of Java EE components and its operations [4,6].

(ii) Dynatrace8 Application Monitoring (AM), an industry monitoring solution
for Java, .NET, PHP and other technologies [17].

(iii) System Activity Reporter (SAR), an Unix/Linux based tool to display
various system loads like CPU utilization.

7 SPECjEnterprise is a trademark of the SStandard Performance Evaluation Corp.
(SPEC). The SPECjEnterprise2010 results or findings in this publication have not
been reviewed or accepted by SPEC, therefore no comparison nor performance in-
ference can be made against any published SPEC result. The official web site for
SPECjEnterprise2010 is located at http://www.spec.org/osg/Enterprise2010.

8 http://www.dynatrace.com
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Fig. 1. Performance model generator framework (adapted from [5,17])

(iv) Java Management Extensions (JMX) Logger, a command line tool that
reads CPU utilization values from Java Virtual Machines (JVMs) using
the JMX interface.

The first two data sources are able to collect direct measurement data, but
also response times for estimation techniques. The demand estimation is real-
ized using LibReDE [15]. This library uses response times of an operation or
transaction and utilization of a resource, collected by one of the last two data
sources, to estimate the resource demands of an operation [15].

2.1 Performance Management Work - Tools Monitoring

PMW-Tools monitoring provides a Servlet Filter, an Enterprise JavaBean (EJB)
Interceptor, a SOAP-Handler and a Java Database Connectivity (JDBC)-Wrap-
per for Java EE applications [4,6]. The aforementioned technologies allow to
collect CPU time, heap allocation and network demand on the level of single
operation invocations [4,5,6]. Furthermore, the PMW-Tools monitoring allows
to collect information about the transaction control flow and about an appli-
cation architecture on the level of components and their operations. All public
operations within the instrumented system are extracted and combined to one
transaction. The PMW-Tools monitoring agent is able to measure the response
time of an operation. The start and end time of each operation invocation is
measured. Subinvocations are removed from this time interval, so the actual
response time of one operation invocation is calculated.

2.2 Dynatrace Application Monitoring

The Dynatrace AM solution allows for measurements on different levels of gran-
ularity. This ranges from measuring the response time on the system entry point
level, through fine-grained measurements per operation invocation. Dynatrace
AM uses, depending on the host system, various timers that measure the CPU
utilization in different time intervals [7]. It furthermore traces a transaction
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throughout the instrumented system and can therefore determine the control
flow as the PMW-Tools monitoring does [17]. The Representational State Trans-
fer (REST) interface of this solution provides, among other metrics, the ability
to access CPU time and response times of the instrumented operations. Thus,
this approach, as well as the PMW-Tools monitoring approach can be used for
direct measurements and estimation techniques.

2.3 Library for Resource Demand Estimation

Demand estimation approaches While the monitoring tools described in
subsection 2.1 and subsection 2.2 are able to directly measure the CPU time per
operation invocation, their usage is infeasible in certain situations, e.g., when
using third-party or legacy applications that cannot provide the required in-
strumentation. For other scenarios, the costs for fine-grained instrumentation
can be considered too high. Therefore, different statistical approaches have been
proposed in the literature to estimate resource demands for individual opera-
tions based on aggregated measurements such as average response time or CPU
utilization. These aggregated measurements are often collected by default in ap-
plications (e.g., in access log files) and in the operating system (OS). Therefore,
resource demand estimation techniques can be applied in many situations where
the usage of direct measurements is prohibitive.

LibReDE is a Java library providing different ready-to-use implementations
of statistical approaches for resource demand estimation [15]. The library cur-
rently comes with implementations of six commonly used approaches: response
time approximation [3], service demand law [3], linear regression [13], two vari-
ants of a Kalman filter [16,18] and an optimization-based approach [12]. Previous
work [14] showed that the accuracy of the individual techniques strongly depends
on the characteristics of the observations and the modeled system resulting in
significant differences in the estimates. In order to evaluate the accuracy of the
estimated resource demands, LibReDE supports the evaluation of the results us-
ing k-fold cross-validation: the input data is randomly partitioned into k equally
large subsets and the estimation is repeated k times, each time using a different
one of the k subsets as validation set and the others as training set. As the actual
values of the resource demands are unknown, the estimation error is evaluated
using the observed utilization Uact and the observed response times Ract,r of
operation r. The observed values are compared to the calculated ones, Ucalc and
Rcalc,r, which are obtained using equations from operational analysis of queuing
networks. Using the estimated resource demands, Ucalc is determined based on
the Utilization Law [8, Chap. 6]:

Ucalc(λ) =
1

p

n∑
r=1

λrDr (1) Rr
calc(λ) = Dr(1 +

PQ

1− Ucalc(λ)
). (2)

Assuming a M/M/k/PS queue for Equation 2 [8, Chap. 14]: n is the number of
operations, Dr is the estimated resource demand of operation r, λ = (λ1, . . . , λn)
is a vector of arrival rates, p is the number of processor cores and PQ is the
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probability that an arrival finds all servers busy (calculated using the Erlang-C
formula [8, Chap. 14]).

The mean relative errors Eutil for the utilization and Ert,r are then de-

termined on the validation set V={(λ(i)1 , . . . , λ
(i)
n , R

(i)
act,1, . . . , R

(i)
act,n, U

(i)
act) : i =

1 . . .m}:

eutil =
1

m

m∑
i=1

|U (i)
act − Ucalc(λ

(i))|
U

(i)
act

(3) errt =
1

m

m∑
i=1

|R(r,i)
act −Rr

calc(λ
(i))|

R
(r,i)
act

(4)

The relative errors are calculated for each of the k validation sets and the
result of the cross-validation is the mean relative error over all validation sets.
Based on the relative errors, the PMG dynamically chooses an approach as
described in the next section.

Estimation approach selection Selecting the right estimation approach for
LibReDE makes a huge difference (in our experiments we observed differences
in the range of 6% to 6000% relative response time error). Each approach has
strengths and weaknesses depending on the application in place [14,15].
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We are looking for the approach that calculates the most accurate resource
demands, therefore we use both validators and select the one with the lowest
relative error when combining both validation results provided by LibReDE. The
utilization law validator provides a vector Eutil, as we only use one resource, with
the length of m, where m is the number of estimation approaches used. Each
row in this vector contains the relative utilization error of one approach. The
response time validator provides a m× n matrix Ert, where m is the number of
estimation approaches used and n the number of operations to estimate resource
demands for. Each row i contains all relative response time errors of one approach
and each column j contains the relative response time error of one operation.
Therefore, the value at index i,j is the relative response time error of operation
j using approach i.

Some operations might get a small amount of calls, misleading the approach
selection when just selecting the approach with the smallest relative error. We
weight the relative error of each operation according to the arrival rates of the
input data as the number of values used for the estimation varies due to different
workload on each operation. We therefore multiply the arrival rates matrix λ with
the relative response time error matrix Ert. The result is a weighted matrix that
considers the operation call probability. To select the best suited approach we



7

need to reduce this matrix to a vector, where each value contains a meaningful
relative error for one approach considering all operations. We calculate the sum
over each row of the matrix resulting in a relative response time error vector.
Both vectors, containing either the response times or the CPU utilization error,
are added up as shown in Equation 5.

We finally select the approach with the minimum total error in the resulting
vector. The resource demands Dr of this approach are stored in the monitoring
DB of the PMG. The model generation then uses these resource demands for
building an architecture-level performance model.

3 Evaluation

In order to evaluate the accuracy of resource demand measurement and esti-
mation approaches, we used two environments. The first evaluation compares
the three presented approaches (PMW-Tools monitoring, Dynatrace AM and
LibReDE) with each other on two levels of granularity in a virtualized environ-
ment. In the second evaluation, we use a distributed bare-metal installation and
combine direct measurement and estimation approaches.

For both evaluations, we use the orders domain application of the SPECjEn-
terprise2010 (Version 1.03) industry standard benchmark as exemplary enter-
prise application. Since the benchmark defines a workload and a dataset for the
test execution, the results are reproducible for others. The orders domain applica-
tion is a Java EE web application comprised of servlet, JavaServer Pages (JSPs)
and EJB components. The application represents a platform for automobile deal-
ers to sell and order cars; the dealers (henceforth called users) interact with the
platform using the Hypertext Transfer Protocol (HTTP). There are three basic
business transactions which describe how users interact with the system: Browse,
Manage and Purchase.

3.1 Standalone evaluation

For the standalone evaluation, we installed the SPECjEnterprise2010 bench-
mark and its corresponding load test driver on two Virtual Machines (VMs),
each deployed on separate hosts (IBM System X3755M3) to avoid interferences
between the two systems. The system under test (SUT) VM contains the ap-
plication server, hosting the orders domain application. The other VM executes
load tests on the SUT using the Faban9 harness driver of the benchmark. Both
virtual machines run openSUSE 12.3 64-bit as OS and have access to 40 giga-
bytes of Random Access Memory (RAM). The application server VM uses six
CPU cores while the driver VM has access to four CPU cores.

The benchmark is deployed on a JBoss Application Server (AS) 7.1 in the
Java EE 7.0 full profile. The DB on the test system VM is an Apache Derby DB
in version 10.9.1.0. The JBoss AS and the Apache Derby DB are both executed
in the same 64-bit Java OpenJDK VM (JVM version 1.7.0 17).

9 https://java.net/projects/faban/
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The first step of the evaluation is to obtain the relevant performance metrics
(response time, utilization and throughput) of the SUT under different workloads
by performing measurement runs. As the network overhead between the Faban
harness and the SUT is not considered in the first step, the response time mea-
surements are conducted by measuring the system entry point response times
with the PMW-Tools monitoring. For this purpose, a workload of 600, 800, 1000
and 1200 concurrent users is put on the SUT, resulting in a mean CPU utiliza-
tion of 39%, 56%, 69% and 79% on the server. Each measurement run lasts for
sixteen minutes while data is only collected between a five minute ramp-up and
a one minute ramp-down phase.

The standalone evaluation is conducted on two levels of granularity. We com-
pare system entry point level, where only the boundaries of the system are moni-
tored, with a component operation level monitoring, where each public operation
of each used component is instrumented. This results in different performance
models as resource demands are only measured or estimated for either servlet
invocations (system entry point) or servlet calls and EJB operation invocations.
For both cases we execute a load test with 600 concurrent users and collect mon-
itoring data. Depending on the approach selected, this monitoring data contains
either fine-grained measurements of CPU demanded time per operation invoca-
tion or only response times and total CPU utilization of the VM.

The performance models generated with this monitoring data are used for
simulating the same and higher amounts of concurrent users (800 - 1200). We
compare the simulated CPU utilization and the response times with actual mea-
surements on the system. For the utilization we compare the measured mean
CPU utilization (MMCPU) with the simulated mean CPU utilization (SMCPU)
and calculate the relative CPU utilization prediction error (CPUPE).

When examining the CPU utilization prediction results shown in Table 1,
it is visible that LibReDEs prediction is very accurate, especially in the replay
case with 600 concurrent users and the upscaled case with 1200 concurrent users.
The two monitoring solutions only measure the CPU time of the actual request
thread while LibReDE also takes the overhead of the application server and
CPU time for other processing like garbage collection (GC) into account. Dy-
natrace AM can use different CPU timers optimized for specific environments
(i.e., VM, Windows OS, etc.) and the here used POSIX Hi-Res timer produces
more accurate results than the PMW-Tools monitoring [7].

Table 1. Measured and simulated CPU utilization for system entry point level

System PMW-Tools monitoring Dynatrace AM LibReDE - estimation

Users MMCPU SMCPU CPUPE SMCPU CPUPE SMCPU CPUPE

600 39,33% 36.66% 6.80% 38.73% 1.53% 39.73% 1.01%

800 55,69% 48.68% 12.58% 51.41% 7.68% 52.69% 5.37%

1000 69,28% 60.92% 12.06% 64.02% 7.58% 65.56% 5.36%

1200 79,31% 73.21% 7.69% 77.33% 2.50% 78.66% 0.82%
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Fig. 2. Measured and simulated response times on system entry point level

Figure 2 shows the response times for system entry point level granularity us-
ing box plots. Each box depicts one measurement/simulation series. The figure is
divided into four sections, distinguishing between different user amounts. In each
section, three measured response time (MRT) box plots are shown, one for each
business transaction: Browse (B), Manage (M), Purchase (P). The sections are
completed by nine simulation box plots, one for each of the three business trans-
actions times the three techniques: PMW-Tools monitoring (PMW), Dynatrace
AM (DT) and LibReDE (LRD).

We see that LibReDE tends to overestimate the resource demands, leading
to a higher median and broader Interquartile range (IQR) for the Browse and
Manage transaction, but delivers good results in general. The differences be-
tween PMW-Tools monitoring and Dynatrace AM are minimal in most cases.
All approaches have in common that they cannot predict the lower quartiles.
However, this is most likely caused by the fact, that only mean values for CPU
demands are represented in the resource demands of the generated performance
models.

The CPU utilization results and errors are similar for component operation
level compared to system entry point level. Table 2 shows that LibReDE again
produces the most accurate resource demands when simulating and comparing

Table 2. Measured and simulated CPU utilization for component operation level

System PMW-Tools monitoring Dynatrace AM LibReDE - estimation

Users MMCPU SMCPU CPUPE SMCPU CPUPE SMCPU CPUPE

600 39,33% 36.39% 7.49% 37.21% 5.39% 39.61% 0.69%

800 55,69% 48.42% 13.04% 49.83% 10.51% 52.77% 5.24%

1000 69,28% 60.26% 13.01% 61.89% 10.67% 65.71% 5.15%

1200 79,31% 71.78% 9.49% 74.07% 6.60% 79.32% 0.01%
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Fig. 3. Measured and simulated response times on component operation level

the CPU utilization with actual measurements. Dynatrace again is more accurate
than PMW-Tools monitoring but the differences are smaller compared to the
system entry point level.

The response time errors presented in Figure 3 are best predicted with di-
rect measurements. The differences between the two monitoring approaches are
rather small. LibReDE overestimates in most of the cases. The upper quartiles
are better predicted using estimation than direct measurements, but the median
and IQR are worse with estimation approaches. Again all approaches have in
common that they cannot predict the lower quartile.

3.2 Distributed Setup

The previous evaluation showed that resource estimation techniques provide suf-
ficiently accurate results for most of the evaluated scenarios. However, in order
to use these estimations, it is important to be able to measure control flows and
response time on the level of granularity that needs to be represented in a model.
Furthermore, estimations work only as long as response time and throughput val-
ues for all requests are available for a measurement interval. Therefore, there are
a lot of cases in which it is desirable to mix direct measurements with resource
estimation techniques.

This evaluation validates a distributed deployment scenario for SPECjEnter-
prise2010 in which direct measurements and estimations are used in combination.
This is necessary to be able to properly account for the resource demands and
times spent on different layers of the architecture (e.g., what portion is spent
in the DB tier). It is important to note that the following models also account
for network resource demands which was not done for the previous evaluations
as the standalone setup was deployed on a single server. The models for this
evaluation are automatically generated using the PMG by providing input from
multiple sources (PMW-Tools monitoring, Dynatrace AM, SAR and LibReDE).
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The SPECjEnterprise2010 benchmark is deployed in a multi-tier architecture
consisting of a presentation, application and a data tier. As we do not have an
in-depth monitoring for the data tier, we use estimation here while the presenta-
tion and application tier are instrumented using the PMW-Tools monitoring as
well as the Dynatrace AM. The resulting resource demands are used to build a
performance model based on PCM. In order to model the data tier, the data col-
lection solution (i.e., PMW-Tools monitoring, Dynatrace AM) gathers the tier’s
response times, CPU utilization on the DB is gathered using SAR. These values
are used as input for a resource demand estimation using LibReDE [15]. The
generated performance model is then enriched with the data tier’s estimated
resource demands. Finally, the model is used to perform simulations with in-
creasing workloads; the results are then compared to measurements of the real
system to gauge the prediction performance of the approach.

To obtain a multi-tier architecture, the standard orders domain application is
modified by converting the EJB components to web services. This allows for the
application’s deployment on two different machines. In addition, the application
tier is connected to a PostgreSQL DB located on a third machine.

The different tiers of the application are deployed on three different machines
which in the following will be called User Interface (UI) server, Web Service (WS)
server and DB server. Additionally, a benchmark driver is deployed on one VM
to generate load on the whole system by accessing the UI server using the three
business transactions. To achieve a moderate load on each system, the CPU
core count of each system has been modified by disabling some cores. All of the
systems’ technical specifications are listed in Table 3.

The distributed evaluation also begins with performing similar measurement
runs using minimal instrumentation. Executing the same workload (600 - 1200
users), as in the previous evaluation results in a maximum CPU utilization of
77%, 59% and 68% on the UI, WS and DB server, respectively. The benchmark
driver has been modified to collect the response time of the three business trans-
actions for each invocation, instead of measuring them directly on the SUT as
in the previous evaluation.

Table 3. Software and hardware configuration of the SUT

Server UI Server WS Server DB Server

Application SPECjEnterprise2010 (version 1.03) orders domain

AS/DB GlassFish 4.0 (build 89) JBoss AS 7.1.1 PostgreSQL 9.2.7

JVM
64-bit Java HotSpot 64-bit Java OpenJDK
JVM version 1.7.0 71 JVM version 1.7.0 40 -

OS openSUSE 12.2 openSUSE 12.3

CPU Cores 2 x 2.1 GHz 6 x 2.1 GHz 4 x 2.4 GHz

CPU Sockets 4 x AMD Opteron 6172 2 x Intel Xeon E5645

RAM 256 GB 96 GB

Hardware System IBM System X3755M3 IBM System X3550M3

Network 1 gigabit-per-second (GBit/s)
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Table 4. Measured and simulated CPU utilization using PMW-Tools monitoring

UI server WS server DB server

Users MMCPU SMCPU CPUPE MMCPU SMCPU CPUPE MMCPU SMCPU CPUPE

600 39.97% 40.36% 0.96% 30.96% 26.93% 14.96% 34.51% 40.77% 15.35%

800 53.11% 54.05% 1.74% 41.86% 36.11% 15.94% 45.89% 54.54% 15.86%

1000 65.27% 67.37% 3.11% 48.39% 44.99% 7.57% 56.51% 68.02% 16.93%

1200 77.01% 80.52% 4.36% 59.71% 53.81% 10.96% 68.38% 81.42% 16.01%

Table 5. Measured and simulated CPU utilization using Dynatrace AM

UI server WS server DB server

Users MMCPU SMCPU CPUPE MMCPU SMCPU CPUPE MMCPU SMCPU CPUPE

600 39.97% 33.29% 20.06% 30.96% 30.54% 1.36% 34.51% 34.25% 0.77%

800 53.11% 44.47% 19.43% 41.86% 40.82% 2.55% 45.89% 45.80% 0.20%

1000 65.27% 55.55% 17.49% 48.39% 51.03% 5.17% 56.51% 57.20% 1.21%

1200 77.01% 66.82% 15.25% 59.71% 61.34% 2.66% 68.38% 68.92% 0.79%

Afterwards, the UI and WS server are instrumented and another benchmark
run with a workload of 600 concurrent users is performed. The collected data
is used to generate a performance model using the PMG. Simultaneously, the
response times per invocation and aggregated utilization of the DB server are
collected. These are automatically used by the PMG as input for the LibReDE
resource demand estimation. The model is further enhanced by adding latency
and throughput values of the network connecting the individual servers as shown
in [4]. These values are gathered using the lmbench10 benchmark suite. Finally,
the finished model is used to simulate the SUT with a workload of 600, 800,
1000 and 1200 concurrent users; the duration and steady state times correspond
to the ones used for the measurements.

When examining the CPU utilization values in Table 4 and Table 5, we see
that the SMCPU of the DB server is predicted with very high accuracy using
Dynatrace AM, with the highest error being 1.21% at 1000 concurrent users.
The PMW monitoring does not intercept all JDBC calls, leading to an overes-
timation of CPU demands on the calls that are intercepted. Furthermore, the
accounting of this calls is also missing in the WS server, leading to an under-
estimation of the CPU demands in the business tier. The CPU utilization of
the WS server is predicted very well using Dynatrace AM, while the UI server’s
utilization is predicted too low. Dynatrace distributes the processing time to all
active operations. We have more running operations on the WS server, leading
to better results for this tier compared to the UI server. The PMW monitoring
instruments the CPU demands of the UI server better, because its servlet inter-
ceptor measures each operation individually. Overall, the results show that the
approach is well suited for predicting the performance of a multi-tier application.

The response time values are illustrated in the box plots in Figure 4. The
figure is divided into four sections, one section for each user amount. Each section
again contains three MRT series (Browse, Manage, Purchase) and six simulation

10 http://lmbench.sourceforge.net/
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Fig. 4. Measured and simulated response times

box plots. Three plots for the combination PMW-Tools monitoring and LibReDE
(PMW) and three plots for the combination Dynatrace AM and LibReDE (DT).
Note that the last section uses another scale as the first three sections, as the
response times are significantly higher with 1200 concurrent users.

The comparison shows that the combination of resource demand measure-
ment and estimation techniques leads to a good representation of the real system.
The median of the simulated response time is close to the actual measurements.
The prediction error for the median response time values is at most 25.02%
for the browse transaction at 1200 concurrent users. The IQR prediction using
PMW is usually a bit closer to the real system measurements than DT.

4 Related Work

This section presents related work that is concerned with measurement accuracy
in different environments or the overhead caused by such measurements.

CPU accounting on VMs can be error prone due to sharing the same phys-
ical resource over multiple machines. Hofer et al. [9] discovered that malicious
accounting, so called steal time, can be detected and calculated in a VM. If
not corrected, CPU utilization measurements produce wrong resource demands.
Wrong CPU utilization accounting decreases the quality of performance models
created either using direct measurement or estimation methods. We avoid this
by isolating the SUT VM on a single host. However, virtualized environments
need to correct this steal time in order to calculate accurate resource demands.

Estimating the overhead of virtualized environments has been described by
Brosig et al. [2] and Huber et al. [10]. These approaches estimate, among others,
virtualization overhead based on monitoring data using a queuing network. Such
calculations can increase the accuracy of resource demands of such environments.
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Kuperberg compared different timers and measurement approaches for a
number of systems [11]. While the Dynatrace AM already offers different timers
to select the most suitable one, the other two approaches rely on either the
ThreadMXBean, JMX monitoring or SAR. The accuracy of these approaches
can vary depending on the underlying system monitored and therefore the cal-
culated resource demands accuracy may vary.

Measurement approaches cause overhead on the SUT. Brunnert et al. [5]
measured and discussed this effect for the PMW-Tools monitoring solution in
previous work. This overhead effect turns out to be at around 0.003 ms for
each measurement when only CPU no other resource demands are collected.
This overhead can effect the system at its capacity limits, while an estimation
approach can use coarse-grained monitoring data with less overhead.

5 Conclusion and Future Work

This work compared three different techniques for deriving resource demands
for performance models. We compared a monitoring approach from academia,
an industry monitoring solution and a library combining six different estima-
tion approaches. These techniques have been integrated into a single automatic
PMG. The evaluation compared all techniques in a standalone and a distributed
setup, as well as in a virtualized and a bare-metal environment for two levels of
granularity: system entry point level and component operation level.

All techniques deliver good results for both granularity levels and in all en-
vironments. Estimation techniques deliver better results for the system entry
point level, but fall short behind direct measurements for the component oper-
ation level. Furthermore, direct measurements can extract resource demands on
any level of detail, while estimation techniques must calculate demands for the
complete system to distribute the measured utilization among the components.
Estimation techniques can be applied to a broad variety of technologies as the
requirements for data collection are lower. We demonstrated accurate results us-
ing a hybrid setup, where measurement approaches are used to extract resource
demands for the UI and WS combined with estimations for the DB.

The evaluation uses a Java EE application. Industry monitoring like Dyna-
trace AM are capable of observing other technologies. Demonstrating the appli-
cability of the framework for other technology stacks as well as extending the
monitored resources are interesting challenges for further research.
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