
Model-based Performance Prediction for
Event-driven Systems∗

Christoph Rathfelder
FZI Forschungszentrum Informatik

76131 Karlsruhe
Germany

rathfelder@fzi.de

Samuel Kounev
FZI Forschungszentrum Informatik

76131 Karlsruhe
Germany

kounev@fzi.de

ABSTRACT
The event-driven communication paradigm provides a num-
ber of advantages for building loosely coupled distributed
systems. However, the loose coupling of components in such
systems makes it hard for developers to estimate their be-
havior and performance under load. Most existing perfor-
mance prediction techniques for systems using event-driven
communication require specialized knowledge to build the
necessary prediction models. In this paper, we propose an
extension of the Palladio Component Model (PCM) that
provides natural support for modeling event-based commu-
nication and supports different performance prediction tech-
niques.

1. INTRODUCTION
In Event-Driven Architectures (EDA), system components

communicate by sending and receiving events. Compared to
synchronous communication using for example remote pro-
cedure calls, this decoupled communication between com-
ponents promises several benefits including more loosely-
coupled services and better scalability. However, the event-
driven programming model is more complex, as application
logic is distributed among multiple independent event han-
dlers and the flow of control during execution is harder to
track. This increases the complexity of modeling event-
driven architectures for performance prediction in the early
phases of system development.

Performance modeling and prediction techniques, surveyed
in [2], support the architect in evaluating different design
decisions. However, most existing performance prediction
techniques for systems using event-driven communication
require specialized knowledge to build the necessary predic-
tion models (e.g., [1]). Furthermore, general purpose design
oriented performance models for component-based systems
provide limited support for modeling event-driven commu-
nication.

∗This work was supported by the European Commission
(grant No. FP7-216556)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DEBS’09, July 6–9, Nashville, TN, USA.
Copyright 2009 ACM 978-1-60558-665-6/09/07....$10.00.

In this paper, we present an extension of the Palladio
Component Model (PCM) [3] that eases the design-oriented
modeling of event-driven component-based systems. We
then describe how the newly introduced modeling constructs
can be mapped to existing PCM constructs. Using an auto-
mated model-to-model transformation, this allows to reuse
existing prediction techniques supported by PCM while sig-
nificantly reducing the modeling effort and complexity.

2. PALLADIO COMPONENT MODEL
The Palladio Component Model (PCM) [3] is a domain-

specific modeling language for modeling component-based
software architectures. It supports automatic transforma-
tion of design-oriented architectural models to analysis-ori-
ented performance models including layered queuing net-
works [5], stochastic process algebras and simulation mod-
els. In PCM, architectural models are parameterized over
the system usage profile and execution environment.

Software components are the core entities of PCM. They
contain an abstract behavioral specification called Resource
Demanding-Service Effect Specification (RD-SEFF) for each
provided service. Similar to UML activities, RD-SEFFs con-
sist of three types of actions: internal actions, external ser-
vice calls, and control flow nodes including branches, loops
and forks. Internal actions model resource demands ab-
stracting from computations performed inside components.
External service calls represent component invocations of
services provided by other components. Branches represent
“exclusive or” splits of the control flow. Loops model the
repetitive execution of a set of actions. Forks split the con-
trol flow into multiple concurrently executing threads.

PCM currently supports only synchronous communication
between components following the call-return communica-
tion style. We now present an extension of PCM that pro-
vides natural support for modeling event-driven systems.

3. MODEL EXTENSIONS
In PCM, it is possible to use a combination of non-synchro-

nized fork actions and external service calls to model asyn-
chronous communication. As shown in [4], this workaround
allows to model components communicating asynchronously
over message queues. However, given that with this ap-
proach asynchronous events are modeled using synchronous
service calls, a semantic gap between the system implemen-
tation and the architecture model is introduced. Moreover,
the modeling effort of this approach dramatically increases if
event-driven communication following the publish-subscribe
paradigm is considered. To reduce this overhead and to

1

Contact

Sensor

Prov. Interface

SensorCallibration

Logger Collision

Detection

Req. Interface

InfraredSensor

Source

SensorUpdate

Sink

SensorUpdate Sink

SensorUpdate

Prov. Interface

HardwareSensor

Figure 1: Example Scenario

eliminate the semantic gap, it is necessary to extend PCM
with the following elements allowing to model event-driven
communication explicitly:

• Events are the central element of event-driven com-
munication. In contrast to interfaces which include
method signatures, events only specify the underlying
data type. For example, a SensorUpdateEvent can be
defined as complex data type that includes the sen-
sor ID, a timestamp and the new and old value of the
sensor reading. This allows to consider the event data
when modeling a component’s behavior by means of
an RD-SEFF.

• Event Sources specify that a component emits a
certain type of events. For each emitted event type,
the component must provide a respective event source.
Furthermore, it is necessary to extend the RD-SEFF
with a new action called Event Action allowing to
instantiate and send events.

• Event Sinks specify that the component receives and
processes certain types of events. In analogy to the
event sources, each consumed event type induces a sep-
arate event sink. Only compatible event sources and
sinks are allowed to be connected. Each event sink re-
quires the specification of an Event Handler. Event
handlers are modeled similar to ordinary component
services using RD-SEFF.

Figure 1 shows a simplified part of an event-driven com-
ponent-based system. The ContactSensor component pro-
vides an interface to calibrate the sensor and another one
(used by the hardware controller) to set the actual sensor
value. Additionally, the component provides an event source
for SensorUpdate events. The Logger component consumes
SensorUpdate events from different types of sensors includ-
ing contact sensors and persists them in a database. The
CollisionDetection component consumes SensorUpdate

events from the ContactSensor and is used to detect colli-
sions with the help of an additional infrared sensor.

In the following, we present a mapping of the introduced
model extensions to existing model elements in the current
version of PCM to enable the reuse of supported perfor-
mance prediction methods. For the sake of brevity, we focus
on the most important elements and provide the complete
transformed model as a download1. Event sinks are trans-
formed into interfaces provided by the respective compo-
nent. Each interface includes the service OnEvent with the
respective event type as input parameter. Additionally, it is
possible to integrate for example the marshalling of events as

1http://palladio-approach.net

<<EventAction>>

SendSensorUpdate

<<ForkAction>>

SendSensorUpdate

<<ExternalCall>>

Logger.OnEvent

<<ExternalCall>>

Colission

Detection.OnEvent

Figure 2: Transformation of an EventAction

presented in [4] for point-to-point connections. The transfor-
mation of event sources and the associated event actions is
more complex and requires much more modeling effort if it is
done manually. Figure 2 illustrates the mapping of an event
action into a fork action which includes an external service
call for each connected event sink. Furthermore, it is nec-
essary to explicitly require an interface for each connected
source, because PCM supports only 1-to-1 connections be-
tween required and provided interfaces.

4. ONGOING AND FUTURE WORK
The proposed extensions of PCM allow a semantically cor-

rect modeling of event-driven systems. In combination with
a model transformation following the proposed mapping,
they significantly reduce the effort to build and analyze mod-
els by means of the analytical and simulative performance
prediction techniques supported in PCM. The automation
of this transformation is part of our current work. Further-
more, we plan to introduce some further constructs in PCM
to support modeling of an event bus. In our future work,
we will study the performance-relevant influence factors as-
sociated with event-driven communication. As a first step,
we intend to focus on the influence of persistent vs. non-
persistent delivery, the number of event consumers, and the
event filtering mechanisms. Based on these results, we plan
to extend the models and respective transformations to con-
sider these factors with the aim to increase the prediction
accuracy.

5. REFERENCES
[1] R. Baldoni, M. Contenti, S. Piergiovanni, and

A. Virgillito. Modeling publish/subscribe
communication systems: towards a formal approach.
pages 304–311, Jan. 2003.

[2] S. Balsamo, A. Di Marco, P. Inverardi, and M. Simeoni.
Model-Based Performance Prediction in Software
Development: A Survey. IEEE Transactions on
Software Engineering, 30(5):295–310, May 2004.

[3] S. Becker, H. Koziolek, and R. Reussner. The Palladio
component model for model-driven performance
prediction. Jour. of Syst. and Softw., 82:3–22, 2009.

[4] J. Happe, S. Becker, C. Rathfelder, H. Friedrich, and
R. H. Reussner. Parametric Performance Completions
for Model-Driven Performance Prediction. Performance
Evaluation, 2009. Accepted for publication in 2009.

[5] H. Koziolek and R. Reussner. A Model Transformation
from the Palladio Component Model to Layered
Queueing Networks. In SIPEW 2008, 2008.

2

