
www.kit.edu

0
4
.0

8

KIT- The cooperation of Forschungszentrum Karlsruhe GmbH and Universität Karlsruhe (TH)

Towards Self-Aware Dependability Management in

Virtualized Service Infrastructures

Samuel Kounev

www.descartes-research.net

© Samuel Kounev1

Agenda

Descartes Research Group @ KIT

Challenges Posed by Cloud Computing

Resource Management in the Cloud

Vision and Research Roadmap

Initial Steps and Preliminary Proof-of-Concept

S. Kounev, F. Brosig, N. Huber, and R. Reussner. Towards self-aware performance and

resource management in modern service-oriented systems. In Proc. of the 7th IEEE

Intl. Conference on Services Computing (SCC 2010), July 5-10, Miami, Florida, USA.

The Descartes Research Group @ KIT

Named after the french philosopher René Descartes

Funding: DFG, KIT, EU, Industry

Focus: Engineering of Self-Aware Software Systems

www.descartes-research.net

© Samuel Kounev2

Traditional Data Center Infrastructures

Applications running on dedicated hardware

Over-provisioned system resources

Poor resource utilization and energy efficiency

Increasing number of servers  rising operating costs

© Samuel Kounev3

Cloud Computing Infrastructures

Applications running in a virtualized environment

Shared physical infrastructure

Flexible mapping of logical to physical resources

Higher resource utilization & energy efficiency

Lower operating costs

© Samuel Kounev4

Cloud Computing Infrastructures (2)

Load Spike

© Samuel Kounev5

Cloud Computing Infrastructures (3)

Network Attack /

Intrusion

© Samuel Kounev6

Cloud Computing Infrastructures (4)

Hardware

Failure

© Samuel Kounev7

Cloud Computing Infrastructures (5)

Infrastructure

Provider (IP)

Service

Provider (SP)

© Samuel Kounev8

Challenges Posed by Cloud Computing

Increased system complexity and dynamics

Lack of direct control over underlying hardware

New threats and vulnerabilities due to resource sharing

Separation of service providers and infrastructure providers

© Samuel Kounev9

Inability to provide QoS and dependability guarantees

Lack of trust

Service A

Service B

Service C Service D Service E

Service F

1 2 3 4

Server Utilization

85% 55% 60% 70%

Service A B C D E F

current 2 3 1 2 4 5

max 3 3 5 5 6 6

SLAs for response times (sec)

Service A B C D E F

current 2 3 1 2 2 3

max 3 3 5 5 6 6

1

2

15%

ShutdownService A

Service B

Service C

Service E

Service D

Service F

1 2 3 4

Server Utilization

85% ? ? 0%

Service A

Service B

Shutdown Service D

1 2 3 4

Service E

Service F

Service C

Server Utilization

85% 0% ? ?

Run-time Performance Management

© Samuel Kounev10

SOA Environment

Samuel Kounev - Performance Engineering
15/10

/2010
11

Samuel Kounev - Performance Engineering 15/10/2010 11Samuel Kounev - Performance Engineering 15/10/2010 11Samuel Kounev - Performance Engineering 15/10/2010 11Samuel Kounev - Performance Engineering 15/10/2010 11

Samuel Kounev - Performance Engineering 15/10/2010 11Samuel Kounev - Performance Engineering 15/10/2010 11Samuel Kounev - Performance Engineering 15/10/2010 11Samuel Kounev - Performance Engineering 15/10/2010 11Samuel Kounev - Performance Engineering 15/10/2010 11

Modern Service-Oriented System

Modern Service-Oriented System

System workload and usage profile

 Number and type of clients

 Input parameters and input data

 Data formats used

 Service workflow

Software architecture

 Connections between components

 Flow of control and data

 Component resource demands

 Component usage profiles

Execution environment

 Number of component instances

 Server execution threads

 Amount of Java heap memory

 Size of database connection pools

Virtualization layer

 Physical resources allocated to VMs

 number of physical CPUs

 amount of physical memory

 secondary storage devices
Network bandwidth between system nodes

© Samuel Kounev12

State-of-the-Art

1. Performance prediction at design & deployment time

Descriptive architecture-level performance meta-models
E.g., PCM, SPE-MM, CSM, CBML, KLAPER, UML SPT, UML MARTE

Automated transformation to predictive models
E.g., layered queueing networks, stochastic Petri nets

[M. Woodside et al], [D. Petriu et al], [R. Reussner et al], [C. Smith et al],

[R. Mirandola et al], [K. Trivedi et al], [V. Cortellessa et al], [I. Gorton et al],

[J. Merseguer et al], [D. Menasce et al], [E. Eskenazi et al], [J. Murphy et al],…

© Samuel Kounev13

Main issues:
Overhead in building and analyzing models

Models assume static system architecture

Maintaining models during operation is prohibitively expensive

State-of-the-Art (2)

2. Performance and resource management at run-time

Simple models used that abstract the system at very high level

Services modeled as black boxes

Restrictive assumptions often imposed, e.g.:
Single workload class

Homogeneous servers

Single-threaded components

Exponential request interarrival times and service times

Layers of the execution environment not modeled explicitly

[G. Pacifici et al], [A. D‘Ambrogio et al], [G. Tesauro et al], [D. Menasce et al],

[C. Adam et al], [Rashid A. Ali et al], [I. Foster er al], [S. Bleul et al],

[A. Othman et al], [P. Shivam et al], [R. Berbner et al], [H. Song et al],…

© Samuel Kounev14

SOA EnvironmentSamuel Kounev - Performance Engineering 15/10/2010 15Samuel Kounev - Performance Engineering 15/10/2010 15Samuel Kounev - Performance Engineering 15/10/2010 15Samuel Kounev - Performance Engineering 15/10/2010 15Samuel Kounev - Performance Engineering 15/10/2010 15
The Past

Models

B2

C

B1

A
1

A
2

AN-1

A
N

L

D

p1

p
2

p
5

p6

1/2

1/2

p7

p8

1/N

1/N

1/N

1/N

Database Server

Application Server Cluster

Client

Production Line Stations

System

© Samuel Kounev15

SOA EnvironmentSamuel Kounev - Performance Engineering 15/10/2010 16Samuel Kounev - Performance Engineering 15/10/2010 16Samuel Kounev - Performance Engineering 15/10/2010 16Samuel Kounev - Performance Engineering 15/10/2010 16Samuel Kounev - Performance Engineering 15/10/2010 16

The Problem
The Future

Models

B2

C

B1

A
1

A
2

AN-1

A
N

L

D

p1

p
2

p
5

p6

1/2

1/2

p7

p8

1/N

1/N

1/N

1/N

Database Server

Application Server Cluster

Client

Production Line Stations

System

© Samuel Kounev16

SOA EnvironmentSamuel Kounev - Performance Engineering 15/10/2010 17Samuel Kounev - Performance Engineering 15/10/2010 17Samuel Kounev - Performance Engineering 15/10/2010 17Samuel Kounev - Performance Engineering 15/10/2010 17Samuel Kounev - Performance Engineering 15/10/2010 17

The Problem
The Future

“I think, therefore I am …”

-- René Descartes

© Samuel Kounev17

Next generation self-aware software systems:

1. Aware of their architecture and the environment they are running in

2. Aware of internal and external changes and able to predict their effect

a) External changes, e.g., evolving service workloads

b) Internal changes, e.g., dynamically undertaken reconfiguration actions

“thought (cogitatio) is what happens in me such that I am immediately

conscious of it…“ -- Rene Descartes

3. Proactively adapting to enforce QoS and resource efficiency

“For it is not enough to have a good mind: one must use it well”

-- Rene Descartes

4. Based on integrated dynamic QoS prediction models

Dualism: “the mind controls the body,

but that the body can also influence the mind” -- Rene Descartes

© Samuel Kounev18

Dynamic Model Composition

© Samuel Kounev19

M
id

d
le

w
a

re
V

ir
tu

a
liz

a
ti
o

n
In

fr
a

s
tr

u
c
tu

re
S

o
ft

w
a

re

A
rc

h
it
e

c
tu

re

M
id

d
le

w
a

re
V

ir
tu

a
liz

a
ti
o
n

In
fr

a
s
tr

u
c
tu

re
S

o
ft

w
a

re

A
rc

h
it
e

c
tu

re

Run-time Performance Management

© Samuel Kounev20

Service A

Service B

Service C Service D Service E

Service F

1 2 3 4

Server Utilization

85% 55% 60% 70%

Service A B C D E F

current 2 3 1 2 4 5

max 3 3 5 5 6 6

SLAs for response times (sec)

Service A B C D E F

current 2 3 1 2 2 3

max 3 3 5 5 6 6

1

2

15%

ShutdownService A

Service B

Service C

Service E

Service D

Service F

1 2 3 4

Server Utilization

85% ? ? 0%

Service A

Service B

Shutdown Service D

1 2 3 4

Service E

Service F

Service C

Server Utilization

85% 0% ? ?

Samuel Kounev - Performance Engineering

21
Samuel Kounev - Performance Engineering 15/10/2010 21Samuel Kounev - Performance Engineering 15/10/2010 21Samuel Kounev - Performance Engineering 15/10/2010 21Samuel Kounev - Performance Engineering 15/10/2010 21Samuel Kounev - Performance Engineering 15/10/2010 21Samuel Kounev - Performance Engineering 15/10/2010 21

ShutdownService A

Service B

Service C Service D Service E
Service F

1 2 3 4

Service A

Service B

Service C

Service E

Service D

Service F

1 2 3 4

Performance

Predictions

Model
Analysis

Performance Prediction On-The-Fly

Dynamic
Service
Models

Model-to-Model

Transformation

Predictive

Performance Model

Model
Composition

Architecture-level

Performance Model

SLAs for Resp. Times (sec)

Service A B C D E F

current 2 3 1 2 2 3

max 3 3 5 5 6 6

1

2

Server Utilization

85% 55% 60% 30%

SLAs for Resp. Times (sec)

Service A B C D E F

current 2 3 3 4 4 5

max 3 3 5 5 6 6

Server Utilization

85% 70% 80% 0%

SLAs for Resp. Times (sec)

Service A B C D E F

current 2 3 4 2 6 7

max 3 3 5 5 6 6

Server Utilization

85% 0% 60% 90%

7

Performance Prediction On-The-Fly (2)

© Samuel Kounev22

Generalized Online Prediction Process

© Samuel Kounev23

System Control Loop

© Samuel Kounev24

Input from Multiple Communities

© Samuel Kounev25

• Autonomic
resource
management
techniques

• Dynamic
virtualized
service
infrastructures

• Predictive
performance
models

• Software
architecture
meta-models

Software
Engineering

Performance
Modeling

Autonomic
Computing

Cluster /
Grid / Cloud
Computing

Initial Steps: Meta-Model for Dynamic Systems

© Samuel Kounev26

Initial Steps: Application Level

© Samuel Kounev27

S. Becker, H. Koziolek, and R. Reussner. „The Palladio component model for model-

driven performance prediction“. Journal of Systems and Software, 82:3-22, 2009.

Initial Steps: Platform Level

© Samuel Kounev28

Nikolaus Huber, Marcel von Quast, Fabian Brosig, and Samuel Kounev. ”Analysis

of the Performance-Influencing Factors of Virtualization Platforms”. In OTM

2010 Conferences - Distributed Objects, Middleware, and Applications (DOA'10).

Springer Verlag, 2010.

Scaling Number of Co-Located VMs

© Samuel Kounev29

Case Study: Automated Model Extraction

© Samuel Kounev30

 Java EE Application

Stateless

EJB

WebLogic Server

JRockit

Java Virtual Machine

Operating System

Hardware

Monitoring

Data

Runtime

Analyzer

Data

Harvester Model

Extraction

Tool

Palladio

Component

Model

Stateful EJB

Stateless

EJBMsgDriven

EJB

Instrumentation

Component

F. Brosig, S. Kounev, and K. Krogmann. „Automated Extraction of Palladio

Component Models from Running Enterprise Java Applications”. In Proc.

of ROSSA 2009. ACM Press.

Extracting architecture-level performance models from online monitoring data

Case Study: Automated Model Extraction (2)

© Samuel Kounev31

 Java EE Application

Stateless

EJB

WebLogic Server

JRockit

Java Virtual Machine

Operating System

Hardware

Monitoring

Data

Runtime

Analyzer

Data

Harvester Model

Extraction

Tool

Palladio

Component

Model

Stateful EJB

Stateless

EJBMsgDriven

EJB

Instrumentation

Component

Model A: Resource demands

approximated with measured response times

Model B: Resource demands

estimated based on utilization and throughput data

Model A: UWLS_CPU = 0.12, Model B: UWLS_CPU = 0.81, Steady State Time: 1020 sec

Case Study: Online QoS Control

© Samuel Kounev32

 Java EE Application

Stateless

EJB

WebLogic Server

JRockit

Java Virtual Machine

Operating System

Hardware

Monitoring

Data

Runtime

Analyzer

Data

Harvester Model

Extraction

Tool

Palladio

Component

Model

Stateful EJB

Stateless

EJBMsgDriven

EJB

Instrumentation

Component

R. Nou, S. Kounev, F. Julia, and J. Torres. „Autonomic QoS control in

enterprise Grid environments using online simulation”. Journal of Systems

and Software, 82(3):486-502, March 2009.

Case Study: Online QoS Control

© Samuel Kounev33

 Java EE Application

Stateless

EJB

WebLogic Server

JRockit

Java Virtual Machine

Operating System

Hardware

Monitoring

Data

Runtime

Analyzer

Data

Harvester Model

Extraction

Tool

Palladio

Component

Model

Stateful EJB

Stateless

EJBMsgDriven

EJB

Instrumentation

Component

R. Nou, S. Kounev, F. Julia, and J. Torres. „Autonomic QoS control in

enterprise Grid environments using online simulation”. Journal of Systems

and Software, 82(3):486-502, March 2009.

Case Study: Online QoS Control (cont.)

© Samuel Kounev34

 Java EE Application

Stateless

EJB

WebLogic Server

JRockit

Java Virtual Machine

Operating System

Hardware

Monitoring

Data

Runtime

Analyzer

Data

Harvester Model

Extraction

Tool

Palladio

Component

Model

Stateful EJB

Stateless

EJBMsgDriven

EJB

Instrumentation

Component

Case Study: Online QoS Control (cont.)

© Samuel Kounev35

 Java EE Application

Stateless

EJB

WebLogic Server

JRockit

Java Virtual Machine

Operating System

Hardware

Monitoring

Data

Runtime

Analyzer

Data

Harvester Model

Extraction

Tool

Palladio

Component

Model

Stateful EJB

Stateless

EJBMsgDriven

EJB

Instrumentation

Component

8-way Pentium Xeon

2.60 GHz, 9 GB, 64 bit,

Xen hypervisor

4-way Pentium Xeon

3.16 GHz, 10 GB, 64 bit,

Xen hypervisor

Case Study: Online QoS Control (cont.)

© Samuel Kounev36

 Java EE Application

Stateless

EJB

WebLogic Server

JRockit

Java Virtual Machine

Operating System

Hardware

Monitoring

Data

Runtime

Analyzer

Data

Harvester Model

Extraction

Tool

Palladio

Component

Model

Stateful EJB

Stateless

EJBMsgDriven

EJB

Instrumentation

Component

 99 session requests executed over period of 2 hours

 Run until all sessions complete

 Average session duration 18 minutes (92 requests)

 Will compare two configurations

 Without QoS Control

 Incoming requests simply load-balanced

 Reject session requests when servers saturated

 With QoS Control

 QoS-aware admission control enforced

Case Study: Online QoS Control (cont.)

© Samuel Kounev37

 Java EE Application

Stateless

EJB

WebLogic Server

JRockit

Java Virtual Machine

Operating System

Hardware

Monitoring

Data

Runtime

Analyzer

Data

Harvester Model

Extraction

Tool

Palladio

Component

Model

Stateful EJB

Stateless

EJBMsgDriven

EJB

Instrumentation

Component

Case Study: Online QoS Control (cont.)

© Samuel Kounev38

 Java EE Application

Stateless

EJB

WebLogic Server

JRockit

Java Virtual Machine

Operating System

Hardware

Monitoring

Data

Runtime

Analyzer

Data

Harvester Model

Extraction

Tool

Palladio

Component

Model

Stateful EJB

Stateless

EJBMsgDriven

EJB

Instrumentation

Component

 Config 1: Without QoS Control

 96% of sessions admitted, SLAs observed by only 22% of them

 Config 2: QoS Control / workload model available

 54% of sessions accepted

 Config 3: QoS Control / workload characterization on-the-fly

 Rejects only 14 sessions (16%) more compared to Config 2

Config SLA fulfilled SLA violated Sessions rejected

1 19 63 3

2 46 2 37

3 34 0 51

Case Study: Online QoS Control (cont.)

© Samuel Kounev39

 Java EE Application

Stateless

EJB

WebLogic Server

JRockit

Java Virtual Machine

Operating System

Hardware

Monitoring

Data

Runtime

Analyzer

Data

Harvester Model

Extraction

Tool

Palladio

Component

Model

Stateful EJB

Stateless

EJBMsgDriven

EJB

Instrumentation

Component

 Config 1: All servers online / without QoS control.

 Config 2: All servers online / with QoS control.

 Config 3: Servers added on demand / without QoS control.

 Config 4: Servers added on demand / with QoS control.

Case Study: Online QoS Control (cont.)

© Samuel Kounev40

 Java EE Application

Stateless

EJB

WebLogic Server

JRockit

Java Virtual Machine

Operating System

Hardware

Monitoring

Data

Runtime

Analyzer

Data

Harvester Model

Extraction

Tool

Palladio

Component

Model

Stateful EJB

Stateless

EJBMsgDriven

EJB

Instrumentation

Component

 Up to five server failures emulated during the run

 Points of server failures chosen randomly during the 2 hours

 Sessions reconfigured after each server failure

Summary

CC promises to revolutionize the way software is built and run

QoS issues and lack of trust  major show stoppers

Self-Aware Software Systems

Systems with integrated dynamic prediction models

Models composed dynamically at run-time

Used for autonomic QoS management

Major challenges

Platform-independent meta-model for dynamic software systems

Trade-off accuracy vs. management overhead

Bridging the gap between service provider and infrastructure provider

© Samuel Kounev41

Thank You!

© Samuel Kounev42

www.descartes-research.net

