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Traditional Data Center Infrastructures

Applications running on dedicated hardware

Over-provisioned system resources

Poor resource utilization and energy efficiency

Increasing number of servers  rising operating costs
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Cloud Computing Infrastructures

Applications running in a virtualized environment

Shared physical infrastructure

Flexible mapping of logical to physical resources

Higher resource utilization & energy efficiency

Lower operating costs
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Cloud Computing Infrastructures (2)

Load Spike
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Cloud Computing Infrastructures (3)

Network Attack /

Intrusion
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Cloud Computing Infrastructures (4)

Hardware 

Failure
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Cloud Computing Infrastructures (5)
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Service 

Provider (SP)
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Challenges Posed by Cloud Computing

Increased system complexity and dynamics

Lack of direct control over underlying hardware

New threats and vulnerabilities due to resource sharing

Separation of service providers and infrastructure providers
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Inability to provide QoS and dependability guarantees

Lack of trust
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Run-time Performance Management
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Modern Service-Oriented System



Modern Service-Oriented System

System workload and usage profile

 Number and type of clients

 Input parameters and input data

 Data formats used

 Service workflow

Software architecture

 Connections between components

 Flow of control and data

 Component resource demands

 Component usage profiles

Execution environment

 Number of component instances

 Server execution threads

 Amount of Java heap memory

 Size of database connection pools

Virtualization layer

 Physical resources allocated to VMs

 number of physical CPUs

 amount of physical memory

 secondary storage devices
Network bandwidth between system nodes
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State-of-the-Art

1. Performance prediction at design & deployment time

Descriptive architecture-level performance meta-models
E.g., PCM, SPE-MM, CSM, CBML, KLAPER, UML SPT, UML MARTE

Automated transformation to predictive models
E.g., layered queueing networks, stochastic Petri nets

[M. Woodside et al], [D. Petriu et al], [R. Reussner et al], [C. Smith et al], 

[R. Mirandola et al], [K. Trivedi et al], [V. Cortellessa et al], [I. Gorton et al], 

[J. Merseguer et al], [D. Menasce et al], [E. Eskenazi et al], [J. Murphy  et al],…
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Main issues:
Overhead in building and analyzing models

Models assume static system architecture

Maintaining models during operation is prohibitively expensive



State-of-the-Art (2)

2. Performance and resource management at run-time

Simple models used that abstract the system at very high level

Services modeled as black boxes

Restrictive assumptions often imposed, e.g.:
Single workload class

Homogeneous servers

Single-threaded components

Exponential request interarrival times and service times

Layers of the execution environment not modeled explicitly

[G. Pacifici et al], [A. D‘Ambrogio et al], [G. Tesauro et al], [D. Menasce et al],

[C. Adam et al], [Rashid A. Ali et al], [I. Foster er al], [S. Bleul et al],

[A. Othman et al], [P.  Shivam et al], [R. Berbner et al],  [H. Song et al],…
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The Problem
The Future
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The Problem
The Future

“I think, therefore I am …”

-- René Descartes
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Next generation self-aware software systems:

1. Aware of their architecture and the environment they are running in

2. Aware of internal and external changes and able to predict their effect

a) External changes, e.g., evolving service workloads

b) Internal changes, e.g., dynamically undertaken reconfiguration actions

“thought (cogitatio) is what happens in me such that I am immediately 

conscious of it…“ -- Rene Descartes

3. Proactively adapting to enforce QoS and resource efficiency

“For it is not enough to have a good mind: one must use it well”                                

-- Rene Descartes

4. Based on integrated dynamic QoS prediction models

Dualism: “the mind controls the body,                                                                                        

but that the body can also influence the mind” -- Rene Descartes
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Dynamic Model Composition
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Run-time Performance Management
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SLAs for Resp. Times (sec)
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Generalized Online Prediction Process
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System Control Loop
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Input from Multiple Communities
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Initial Steps: Meta-Model for Dynamic Systems
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Initial Steps: Application Level
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S. Becker, H. Koziolek, and R. Reussner. „The Palladio component model for model-

driven performance prediction“. Journal of Systems and Software, 82:3-22, 2009.



Initial Steps: Platform Level
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Nikolaus Huber, Marcel von Quast, Fabian Brosig, and Samuel Kounev. ”Analysis 

of the Performance-Influencing Factors of Virtualization Platforms”. In OTM 

2010 Conferences - Distributed Objects, Middleware, and Applications (DOA'10). 

Springer Verlag, 2010. 



Scaling Number of Co-Located VMs
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Case Study: Automated Model Extraction
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F. Brosig, S. Kounev, and K. Krogmann. „Automated Extraction of Palladio 

Component Models from Running Enterprise Java Applications”. In Proc. 

of ROSSA 2009. ACM Press.

Extracting architecture-level performance models from online monitoring data



Case Study: Automated Model Extraction (2)
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Model A: Resource demands 

approximated with measured response times

Model B: Resource demands

estimated based on utilization and throughput data

Model A: UWLS_CPU = 0.12, Model B: UWLS_CPU = 0.81, Steady State Time: 1020 sec



Case Study: Online QoS Control
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R. Nou, S. Kounev, F. Julia, and J. Torres. „Autonomic QoS control in 

enterprise Grid environments using online simulation”. Journal of Systems 

and Software, 82(3):486-502, March 2009.



Case Study: Online QoS Control
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R. Nou, S. Kounev, F. Julia, and J. Torres. „Autonomic QoS control in 

enterprise Grid environments using online simulation”. Journal of Systems 

and Software, 82(3):486-502, March 2009.



Case Study: Online QoS Control (cont.)
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Case Study: Online QoS Control (cont.)
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Case Study: Online QoS Control (cont.)
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 99 session requests executed over period of 2 hours

 Run until all sessions complete

 Average session duration 18 minutes (92 requests)

 Will compare two configurations

 Without QoS Control

 Incoming requests simply load-balanced 

 Reject session requests when servers saturated

 With QoS Control

 QoS-aware admission control enforced



Case Study: Online QoS Control (cont.)
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Case Study: Online QoS Control (cont.)
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 Config 1: Without QoS Control

 96% of sessions admitted, SLAs observed by only 22% of them

 Config 2: QoS Control / workload model available

 54% of sessions accepted

 Config 3: QoS Control / workload characterization on-the-fly

 Rejects only 14 sessions (16%) more compared to Config 2

Config SLA fulfilled SLA violated Sessions rejected

1 19 63 3

2 46 2 37

3 34 0 51



Case Study: Online QoS Control (cont.)
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 Config 1: All servers online / without QoS control.

 Config 2: All servers online / with QoS control.

 Config 3: Servers added on demand / without QoS control.

 Config 4: Servers added on demand / with QoS control.



Case Study: Online QoS Control (cont.)
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 Up to five server failures emulated during the run

 Points of server failures chosen randomly during the 2 hours

 Sessions reconfigured after each server failure



Summary

CC promises to revolutionize the way software is built and run

QoS issues and lack of trust  major show stoppers

Self-Aware Software Systems

Systems with integrated dynamic prediction models

Models composed dynamically at run-time

Used for autonomic QoS management

Major challenges

Platform-independent meta-model for dynamic software systems

Trade-off accuracy vs. management overhead

Bridging the gap between service provider and infrastructure provider
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Thank You!
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