
Performance Isolation in Multi-Tenant
Applications

PhD thesis to gain the degree of

“Doktor der Ingenieurwissenschaften”/

“Doktor der Naturwissenschaften”

at the Faculty of Computer Science

of the Karlsruhe Institute of Technology (KIT)

Dissertation

by

Rouven Krebs

Speyer, Germany

Date of Defense: June 26, 2015

Referees: Prof. Dr. Samuel Kounev and

Prof. Dr. Ralf Reussner

Version: April 27, 2015

Hiermit versichere ich wahrheitsgemäß, die Dissertation selbstständig angefertigt, alle benutzten

Hilfsmittel vollständig und genau angegeben und alles kenntlich gemacht zu haben, was aus Ar-

beiten Anderer und eigener Veröffentlichungen unverändert oder mit Änderungen entnommen wurde.

Karlsruhe, den 28.04.2015

Rouven Krebs

Abstract

Multi-tenancy is an approach to share one application instance among multiple customers by provid-

ing each of them a dedicated view. This approach reduces the costs for service provisioning. Tenants

expect to be isolated in terms of the application performance they observe, and the providers’ in-

ability to offer performance guarantees is a major obstacle for potential cloud customers. A direct

relation between observed performance and customer satisfaction is well documented for interactive

web applications. Performance can even become critical to economic success.

Providing performance isolation when sharing at the application layer is a challenge. The layers

responsible for controlling resource access (e.g., operating system) are normally unaware of entities

defined at the application level. Thus, these layers cannot distinguish between different tenants.

Furthermore, it is hard to predict how tenant requests propagate through the multiple layers of

the execution environment, down to the physical resource layer. The intended decoupling of the

application from the resource controlling layers does not allow moving the resource control to the

application.

Nowadays, no methods exist to efficiently enforce performance isolation between tenants sharing

one multi-tenant application. Furthermore, the providers know neither which characteristics of the

methods are important nor which method provides the best isolation. Thus, quantifying the degree of

performance isolation a system achieves is essential. Additionally, there is no feasible documented

approach of how potential performance isolation methods can be implemented in an application.

This thesis aims at providing performance isolation mechanisms, a methodology to quantify per-

formance isolation, as well as insights and methods that support multi-tenant application providers

in realizing performance isolated multi-tenant applications.

Performance isolation is enforced by means of request based admission control. The degree of

performance isolation is quantified by using a benchmarking approach. Its metric captures the in-

fluence of an increasing workload from one tenant upon the observed performance of other tenants.

To support providers in applying the correct isolation method, the solutions are evaluated using the

proposed benchmarking approach. Beyond this, additional relevant aspects of the methods, e.g.,

their informational requirements, are identified. To implement the isolation method, a framework is

considered that allows to easily add the application-specific aspects of a concrete isolation method.

Finally, the results of the thesis are validated in environments motivated by a real world PaaS

runtime, using representative benchmarks. In an enterprise service, it was possible to reduce one

tenant’s impact upon the response time of another from 141% to 11% by applying methods pre-

sented in the thesis. The benchmarking approach was additionally validated in a case study that

quantified the Xen hypervisor’s isolation capabilities.

v

Kurzfassung

Cloud Computing gewinnt im Bereich der Geschäftsanwendungen immer mehr an Bedeutung. In

infrastrukturbezogenen Angeboten wird die gleiche Hardware zwischen mehreren Kunden geteilt.

Hierfür werden Virtualisierungstechniken verwendet, welche jedem Kunden eine virtuelle Maschine

zur Verfügung stellen. Dadurch lassen sich Ressourcen teilen und einzelnen Kunden direkt zuwei-

sen.

Mehrmandantenfähigkeit teilt eine Applikationsinstanz zwischen mehreren Kunden, wobei jeder

seine eigene und isolierte Sicht auf die Anwendung erhält. Dies erhöht den Anteil der geteilten

Ressourcen, da nicht nur die Hardware, sondern auch darüberliegende Schichten geteilt werden.

Somit können Kosten weiter gesenkt werden. Trotz dieses erhöhten Anteils geteilter Ressourcen

erwarten die Mandanten, bezüglich der Performance von anderen Mandanten isoliert zu sein.

Die Unfähigkeit der Anwendungsanbieter Performancegarantien sicherzustellen, ist ein Hemm-

nis für potentielle Kunden. Speziell im Falle interaktiver Web-Anwendungen ist der Zusammenhang

von Performance und Benutzerzufriedenheit bekannt, und schlechte Performance kann den ökono-

mischen Erfolg einer Anwendung verhindern.

Im Fall einer geteilten Infrastruktur sind sowohl die Ressourcen, als auch die Entitäten, die von-

einander getrennt werden sollen, bekannt. Performanceisolation bei einer geteilten Anwendungs-

schicht zu garantieren, ist im Gegensatz dazu eine Herausforderung mit speziellen Aspekten. Die

ressourcenkontrollierenden Ausführungsumgebungen, wie z.B. das Betriebssystem, haben in der

Regel keine Kenntnisse über Entitäten, welche auf Ebene der Applikationsinstanz definiert sind. In

der Regel ist das Mandantenkonzept jedoch nur der Anwendung oder bestenfalls der Middleware

bekannt. Somit können die ressourcenkontrollierenden Schichten nicht zwischen Mandanten un-

terscheiden. Desweiteren ist es schwer vorherzusagen, wie eine Anfrage durch die verschiedenen

Schichten des Systems bis hin zu den Ressourcen propagiert wird. Anwendungen sind absichtlich

von der Ressourcenverwaltung getrennt, um eine effiziente Entwicklung zu ermöglichen. Deswe-

gen erscheint es nicht schlüssig, die Ressourcenkontrolle in die Anwendung zu integrieren. Diese

Schichtendiskrepanz verhinderte bislang die Performanceisolation von Mandanten, welche sich eine

Applikationsinstanz teilen.

Einem Anbieter von Mehrmandantenanwendungen fehlen die Methoden, um Performanceisola-

tion sicherzustellen. Desweiteren wissen die Anbieter nicht, welche Charakteristiken der Methoden

wichtig wären, noch welche Methoden die beste Isolation bieten würden. Deshalb ist es essentiell,

im ersten Schritt Performanceisolation quantifizieren zu können. Erschwerend kommt hinzu, dass

kein umfassender Ansatz dokumentiert ist, der beschreibt, wie die Methoden zur Sicherstellung der

Performanceisolation implementiert werden können.

vii

Diese Dissertation hat zum Ziel, Methoden zur Performanceisolation zu entwickeln, Ansätze zur

Quantifizierung von Performanceisolation zu erstellen, und Wissen zu erarbeiten, das die Anbieter

von interaktiven Webanwendungen befähigt, isolierte Anwendungen zu erstellen.

Ein Einfluss zwischen zwei Mandanten tritt auf, wenn diese gleichzeitig im Wettbewerb um ei-

ne Ressource stehen. In einer interaktiven Anwendung beeinflussen sich Mandanten somit immer

dann, wenn ihre Anfragen gleichzeitig vom System bearbeitet werden. Durch Einflussnahme wann

und ob eine eingehende Anfrage bearbeitet wird, lässt sich somit kontrollieren, welcher Mandant

auf eine Ressource zugreifen kann. In der vorliegenden Arbeit wird Performanceisolation durch ei-

ne anfragebasierte Zugangskontrolle gewährleistet. Diese basiert auf zwei Bestandteilen. Zum einen

stellt ein arbeitserhaltender Scheduler sicher, dass die Anzahl der zugelassenen Anfragen pro Man-

dant einem konfigurierten Verhältnis entsprechen. Zum anderen stellt eine asynchron arbeitende

Optimierung sicher, dass die Verhältnisse so angepasst werden, dass möglichst alle Mandanten eine

faire Zuteilung der Ressourcen erhalten. Dies beinhaltet unter anderem auch eine Erhöhung des An-

teils eines Mandanten, wenn andere Mandanten ihre Performancegarantien dadurch nicht verletzen,

um nicht unnötig Ressourcen brachliegen zu lassen.

Die Zweiteilung erlaubt es, in kurzfristigen Zeitabständen Isolation sicherzustellen, sowie in lang-

fristigen Zyklen komplexere Optimierungen vorzunehmen, welche für jede Anfrage einen zu hohen

Mehraufwand bedeuten würden.

Zwei konkrete, neuartige Verfahren werden in der Arbeit vorgestellt. Das erste basiert darauf,

den Ressourcenbedarf einer Anfrage abzuschätzen. Dieses Wissen wird genutzt, um im Scheduler

sicherzustellen, dass ein Mandant nicht mehr als den ihm zugewiesenen Anteil einer Ressource nut-

zen darf. Dies erlaubt es, Mandanten effektiv zu isolieren, falls der Ressourcenbedarf pro Anfrage

sich zwischen den Mandanten stark unterscheidet. Ein zweites Verfahren beobachtet die Perfor-

mancedaten der Anwendung, und leitet darauf basierend ein Blackbox-Modell der Anwendung ab.

Dieses wird genutzt, um mit Hilfe einer analytischen Optimierung, eine Gewichtung für ein faires

Queuing zu ermitteln. Das letztere Verfahren erlaubt es, Garantien bezogen auf extern sichtbare

Performanceeigenschaften zu erhalten.

Zur Ermittlung der Isolationsqualität wird ein benchmarkorientierter Ansatz vorgestellt. Dieser

basiert auf der Separierung der Mandanten in zwei Gruppen. Die störende Gruppe, welche die ma-

ximal erlaubte Last überschreitet, und der rechtschaffenden Gruppe von Mandanten, welche die

erlaubte Last nicht überschreiten.

Mit dieser Grundlage lassen sich zwei Typen von Metriken erstellen. Zum einen wird in der

vorliegen Arbeit der Einfluss von steigender Arbeitslast eines Mandanten auf die beobachtete Per-

formance eines anderen ins Verhältnis gesetzt. Zum anderen wird ein Messansatz vorgestellt, bei

dem Lastkombinationen ermittelt werden, für welche die beobachtete Performance der rechtschaf-

fenden Mandanten unverändert bleibt. Aus dem Verhältnis der Lasten beider Gruppen lässt sich die

Performance zwischen vollständig isoliert und absolut nicht isoliert einordnen. Weitere Metriken

umfassen die Anpassungsgeschwindigkeit der Verfahren im Falle einer Laständerung.

viii

Zur Unterstützung des Entwicklers einer mehrmandantenfähigen Anwendung wurden die Isolati-

onseigenschaften verschiedener Isolationsverfahren analysiert. Die Ergebnisse werden in der Arbeit

vorgestellt. Darüber hinaus werden weitere relevante Aspekte, wie z.B. benötigte Informationen

der Isolationsmethoden, besprochen. Zusätzlich sind Designempfehlungen für die Anwendung und

Implementierung der Isolationsmethoden in der Arbeit enthalten. Mithilfe eines in der Arbeit vor-

gestellten Prozesses, basierend auf dem Analytical Hierarchy Process, kann auch ein unerfahrener

Entwickler das passende Isolationsverfahren für sein Szenario auswählen. Für die konkrete Imple-

mentierung der Methoden wird ein Framework vorgeschlagen, das es erlaubt, die anwendungsspe-

zifischen Aspekte und konkreten Methoden schnell einzubauen.

Alle Experimente der Arbeit wurden auf Systemlandschaften durchgeführt, welche durch eine

reale Mehrmandantenfähigkeit unterstützende Platform-as-a-Service motiviert ist. Dies umfasst ei-

ne Virtualisierung der Hardware, um einzelne Anwendungen voneinander zu trennen, sowie den

Einsatz realistischer Technologien, wie z.B. des SAP Hana Cloud Platform Laufzeitcontainers.

Eine repräsentative mehrmandantenfähige Benchmarkanwendung wurde hierfür entwickelt, und

wird ebenfalls in der Arbeit vorgestellt. Darüber hinaus zeigt eine Fallstudie basierend auf einer

realen Anwendung die Anwendbarkeit der vorgestellten Lösungen.

Die Anwendung der Ergebnisse aus dieser Arbeit erlaubt es, den Einfluss eines Mandanten auf

die Performance eines anderen einzuschränken. Dies erhöht die Qualität der angebotenen Dienste.

Somit besteht die Möglichkeit, höherwertigere SLAs zu garantieren und einen Wettbewerbsvorteil

zu erhalten. Weiterhin ermöglichen die vorgestellten Ansätze, die Ressourcenpuffer für Lastspitzen

zu reduzieren, und somit die Effizienz der Systeme zu erhöhen. Weiterhin bietet sich die Möglich-

keit, die Performance einzelner Mandanten zu kontrollieren und die Grundlage für Elastizität auf

Mandantenbasis einzuführen.

In einer konkreten Fallstudie, konnte der der Einfluss eines Mandanten auf einen anderen Man-

danten von 141%, im nicht isolierten Fall, auf 11% gesenkt werden. Der benchmarkorientierte An-

satz wurde zudem in einer Fallstudie verwendet, welche die Isolationsfähigkeit der Xen Virtualisie-

rung untersucht.

Zusammengefasst bietet die vorliegende Arbeit Methoden, um einzelne Mandanten, welche eine

Anwendungsinstanz teilen, bezüglich ihrer Performance zu isolieren. Hierfür wird eine anfrageba-

sierte Zugangskontrolle verwendet. Darüber hinaus werden Methoden zur Messung der Isolation

vorgestellt, und die Verfahren entsprechend analysiert. Weitere Beiträge der Arbeit ermöglichen

es auch unerfahrenen Entwicklern, ein passendes Isolationsverfahren für ein gegebenes Szenario

auszuwählen und zu realisieren.

ix

Contents

Abstract . v

Kurzfassung . vii

Table of Content . x

1. Introduction . 1

1.1. Motivation . 1

1.2. An Example . 3

1.3. Goals, Challenges and Research Questions . 5

1.3.1. Assumptions and Context . 5

1.3.2. Goals . 5

1.3.3. Challenges and Requirements . 8

1.3.4. Research Questions . 10

1.4. Contribution and Methodology . 11

1.4.1. Limitations of Existing Approaches . 11

1.4.2. Contributions and Approach . 12

1.4.3. Research Methodology . 15

1.5. Problem Solution and Validation . 16

1.5.1. Mastering the Challenges . 16

1.5.2. Achievement of the Goals . 17

1.6. Thesis Organization . 18

1.6.1. Structure . 19

1.6.2. Information for Reading the Thesis . 20

2. Foundations and State-of-the-Art . 21

2.1. Foundations . 21

2.1.1. Common Properties of a Multi-Tenant Application 21

2.1.2. Performance Engineering . 24

2.1.3. Closed Control Loop . 30

2.2. Related Fields . 32

2.2.1. Hardware Virtualization . 32

2.2.2. Scheduling of Processes, Threads and I/O 34

2.2.3. Networks . 35

xi

2.2.4. Elasticity . 37

2.3. Web Server Based Performance Control . 38

2.3.1. Performance Driven Deployment . 38

2.3.2. Closed Control Loops . 39

2.3.3. Source Depending Performance Control 39

2.3.4. Multi-tenancy . 40

2.4. Performance Measurement in Shared Environments 43

2.5. Summary of Related Work . 45

3. Measurement of Isolation . 47

3.1. Metrics and Load Profiles . 48

3.1.1. Goal of the Metrics . 49

3.1.2. General Idea of the Isolation Metrics . 50

3.1.3. QoS Impact Based Metrics . 51

3.1.4. Workload Ratios Based Metrics . 52

3.1.5. Further Quality Aspects . 56

3.1.6. Load Profiles . 58

3.1.7. Further Applications and Limitations . 60

3.2. Domain Independent Framework for Performance Isolation Measurement 60

3.2.1. Overview of the Existing Software Performance Cockpit 60

3.2.2. Multi-Tenancy Enhancements . 62

3.2.3. Exploration Strategy Extensions . 62

3.2.4. Analysis Strategy Extensions . 63

3.3. Benchmark Application . 63

3.3.1. Characteristics of a Multi-Tenant Benchmark Application 64

3.3.2. A Multi-Tenancy Benchmark . 65

3.4. First Assessment of the Metrics . 69

3.4.1. Simulation Based Case Study . 70

3.4.2. Hypervisor Based Case Study . 76

3.4.3. Discussion . 81

3.5. Conclusion . 83

3.5.1. Critical Discussion . 83

3.5.2. Summary . 84

4. Methods for Performance Isolation . 87

4.1. Request Based Admission Control . 88

4.1.1. Alternative Approaches . 88

4.1.2. Double-Staged Admission Control . 89

4.2. Model Based Isolation . 90

4.2.1. General Approach . 91

xii

4.2.2. Analysis of System Aspects . 92

4.2.3. Priority Fair Queuing for Performance Isolation 92

4.2.4. Performance Prediction Approach . 94

4.2.5. Determining Required Parameters . 100

4.2.6. Fitness Function and Optimization . 101

4.2.7. Concluding Remarks . 104

4.3. Resource Isolation . 105

4.3.1. General Approach . 105

4.3.2. Resource Isolation Scheduler . 107

4.3.3. Resource Demand Estimation . 110

4.3.4. Towards Multiple Resources and Efficient Resource Usage 113

4.3.5. Concluding Remarks . 114

4.4. Further Performance Isolation Methods . 115

4.4.1. Proportional Integral Control Loop . 115

4.4.2. Black List and Round Robin . 116

4.5. Proof of Concepts . 117

4.5.1. Shared Aspects of the System Under Test 117

4.5.2. Resource Isolation . 118

4.5.3. Model Based Isolation . 124

4.6. Conclusion . 129

5. Decision Support and Architecture . 131

5.1. Architectural Concerns for Performance Isolated Multi-Tenant Applications 132

5.1.1. Architectural Concerns . 132

5.1.2. Mutual Interferences, Dependencies and Recommendations 135

5.1.3. Summary . 137

5.2. Selection of Performance Isolation Method . 137

5.2.1. Classification Schema for Existing Methods 137

5.2.2. Informational Requirements . 140

5.2.3. Selecting an Isolation Method . 142

5.3. Reference Architecture . 147

5.3.1. Position of the Admission Control . 147

5.3.2. Performance Isolation Framework . 150

5.3.3. Relevant Design Decisions . 155

5.4. Conclusion . 157

5.4.1. Critical Discussion . 157

5.4.2. Summary . 158

xiii

6. Evaluation . 159

6.1. Isolation Methods . 160

6.1.1. Goal, Questions and Metrics . 160

6.1.2. Multi-Tenant Application Based Experiments 162

6.1.3. Core Components Overhead . 178

6.1.4. Admission Control Strategy Overhead . 179

6.1.5. Concluding the Isolation Methods Experiments 181

6.2. Measurement of Isolation . 186

6.2.1. Goal, Questions and Metrics . 187

6.2.2. Reflection on Experiments and Results . 188

6.2.3. Concluding the Isolation Measurement Validation 191

6.3. Performance Isolated Document Service . 191

6.3.1. Goal and Questions . 191

6.3.2. SAP HANA Cloud Document Service . 192

6.3.3. System Setup and Load . 194

6.3.4. Application of the Selection Process . 196

6.3.5. Experiments . 198

6.3.6. Related Insights . 199

6.3.7. Application of the Architecture . 199

6.3.8. Concluding the Document Service Case Study 200

6.4. Concluding the Overall Evaluation Results . 202

6.4.1. Critical Discussion . 202

6.4.2. Summary . 203

7. Conclusion . 205

7.1. Summary . 205

7.1.1. Recapture of the Chapters . 205

7.1.2. Answering the Research Questions . 206

7.2. Critical Discussion, Future Research and Limitations 207

7.3. Potential Further Applications . 209

7.4. Concluding Remarks . 210

Acronyms and Abbreviations . 213

Glossary . 215

List of Figures . 217

List of Tables . 221

Bibliography . 223

xiv

A. Call Characteristics of Document Service . 243

A.1. Analysis of Call Probability . 243

A.2. Timing Behavior of Calls . 244

B. AHP Weighting Matrix . 245

C. Proof of Convexity for System Function . 247

xv

1. Introduction

1.1. Motivation

Cloud computing offers ubiquitous, convenient, and on-demand access to computing resources [Mell

and Grance, 2011]. Cloud computing became adopted as mainstream in recent years. Cloud

providers leverage economies of scale to decrease costs for operation, development, and procure-

ment. Furthermore, sharing resources yields cost benefits in cloud environments. Referring to [Brey

and Lamers, 2009, Glanz, 2012], servers typically run between 5-12% utilization. They are over-

sized to have resources left for unexpected load peaks. Sharing resources on a large scale allows

computing systems to operate more efficiently. One aspect is the possibility to reduce oversizing

by utilizing workload fluctuations. By sharing these resources, hardware as well as software, cloud

users and providers have financial benefit [Momm and Krebs, 2011, Jackson, 2011].

Sharing of computing resources is possible at different abstraction levels [Lenk et al., 2009, Mell

and Grance, 2011]. Infrastructure as a Service (IaaS) provides access to resources that can be

used for any purpose by consumers. The provider adds value by hosting the technologies below.

Hardware virtualization technologies, such as hypervisors [Xen, 2012, VMWare, 2012], provide the

technical foundation for such a service provisioning.

Platform as a Service (PaaS) is a cloud service model that provides a middleware for appli-

cations created by the consumers. In such an environment, the platform provider adds value to

the pure infrastructure provisioning by administering the whole runtime environment including re-

quired services. Thus, the application provider can fully focus on orchestrating these services and

value-adding business logic, without the overhead of operating the complex runtime environment

including persistence or other required services. The technical foundations for this are application

runtime containers, deployed in distributed environments, and additionally provided services like

persistence to add value to the offering.

Software as a Service (SaaS) is a cloud service offering, comprising a ready-to-run hosted ap-

plication, like an entire business suite or web mailing application. SaaS is a fast-growing market.

It is expected that 50% of all CRM systems will be deployed as SaaS by the end of 2015 [Davies

et al., 2014]. A SaaS can be operated on a PaaS to take advantage of the aforementioned bene-

fits [Lenk et al., 2009]. To reduce the total costs of ownership, SaaS providers often allocate users

of different customers to the same application instance. Thus, they share all layers, including the

application instance. Consequently, one-time overheads on the all layers divided among the number

of customers. The technical foundation for such applications is a multi-tenant architecture [Wilder,

2012, Koziolek, 2011, Koziolek, 2010].

1

1. Introduction

A tenant is a group of users sharing the same view onto an application. This view includes the

data they access, the configuration, the user management, particular functionality and related non-

functional properties. Usually the tenants are members of different legal entities. This comes with

restrictions (e.g., data security and privacy). In this thesis, multi-tenancy is an approach to share

an application instance between multiple tenants by providing every tenant a dedicated share of the

instance, isolated from other shares with regard to performance, appearance, configuration, user

management and data privacy [Krebs et al., 2012a].

Applications designed to serve multiple tenants with a single runtime instance are known as

multi-tenant applications. In general, it is possible to provide SaaS without creating Multi-Tenant

Applications (MTAs). In these cases, a separate application instance is running for each tenant, in

a PaaS or IaaS based environment. However, MTAs are the most efficient approach with regard to

operating costs [Momm and Krebs, 2011], as in this case the general overhead is minimal and it is

possible to perform a very fine-grained workload and resource management (e.g., based on requests

or threads). Gartner recognized the economic relevance of various sharing approaches, especially

multi-tenancy [Smith, 2011, Natis, 2012]. Several sources generally emphasize the economic ben-

efit of multi-tenancy (e.g., [Aiken, 2011, Schuller, 2009]). Furthermore, in [Krebs et al., 2013] a

case study showed that significantly more tenants could be served by one computing node when

using multi-tenancy instead of a Xen based hardware virtualization.

Despite the shared resources, cloud users expect to have the feeling to control their own and

separate environment, with their own Service Level Agreements (SLAs) and regulations as known

from private data centers. In addition, they expect to be isolated from other customers with regard

to functional and non-functional aspects, including the performance they observe.

Especially for e-commerce applications, where users interactively use the system, performance

is essential for high user satisfaction. Several sources confirm a direct relation between response

times and economic success. Amazon recognized that every 100 ms delay reduces sales by one

percent, Google and Microsoft observed a reduction in revenue of 4.3% for each two-second delay

[Schurman and Brutlag, 2009]. Other companies observed up to three percent conversions increase

for every second the response times have been reduced [Hung and Danson, 2013].

Due to the sharing of resources, performance related issues are often caused by a minority of cus-

tomers sending a high number of requests, since the load generated by one customer competes for

the resources also used by others. Especially in the cloud context, where resources are shared inten-

sively among customers, it is not easy to maintain reliable performance. This is a serious obstacle

for cloud customers. The challenge was already recognized when the cloud computing paradigm

started to gain attention [Armbrust et al., 2009, bitcurrent, 2011]. In 2010, 65% of the respondents

in a survey answered that server performance process management is critical [IBM, 2010]. That

shows the importance of the topic. Not too much changed in the recent years; performance is still

a major point of interest. In [Internap, 2014], 30% of the IT infrastructure experts answered that

one of their challenges with cloud services they currently use is related to performance. It was the

highest ranked issue in the survey. These surveys focused on cloud use cases not limited to SaaS.

2

1.2. An Example

However, since multi-tenancy is a technological foundation for SaaS, they also show the importance

for MTA. The mutual performance related influences of different tenants sharing one MTA are a

well-known problem (e.g., [Wilder, 2012]). In existing multi-tenancy-related research papers, the

primary future research topic identified is related to SLA compliant services, especially with regard

to the performance of individual tenants [Kabbedijk et al., 2015].

In summary, using multi-tenancy provides the technical foundation for an economically efficient

provisioning of SaaS, while performance is one of the major obstacles for cloud customers. More-

over, reliable performance is a key differentiator between providers, as 44% of cloud customers see

this as their number one criterion when selecting a cloud provider [Internap, 2014]. As outlined, a

major problem is the mutual influence of different customers sharing one system. Thus, providing

the means to maintain the performance of one tenant isolated from the performance observed by

other tenants within an MTA lays the foundation for SaaS providers to significantly differentiate

their services.

1.2. An Example

This section outlines a motivating example, describing the problem from various viewpoints inspired

by the PaaS SAP Hana Cloud Platform (HCP). Figure 1.1 depicts a simplified view, focusing on

the relevant aspects of this thesis. Each customer accessing the HCP requires an account. One

account may have several users and it is the billing entity. An account can be used for deploying

and operating an application or for subscription to an existing application hosted in another account.

In the HCP, an MTA provider creates an application, which can be subscribed by different tenants.

Each of these tenants subscribes his account to an MTA. The MTA provider may provide several

applications. In principle, it is also possible to host a non-shared application instance for each

customer within his own account.

Although it is not depicted in the figure, each application instance could be deployed on one or

more Virtual Machines (VMs) to cope with the load. Each of these deployments is referred to as

application node. The applications run within the HCP runtime container, the Lean Java Server

(LJS). The virtual machines may share the same host. They may also use it together with other

applications, even from other accounts. The LJS runtime additionally provides libraries to access

platform services used by the application. Examples are the document service, to store unstructured

data, or a relational database system, as well as services to identify tenants and accessing tenants’

metadata. The platform services transparently provide data isolation for the various tenants and thus

they are MTAs, too.

Tenants in this scenario ask for SLA guarantees and expect their performance to be independent

of other tenants. The PaaS provider has already added value to the platform by supporting multi-

tenancy on a functional basis. Now he will also support the SaaS provider by creating performance

isolated applications, to again add value to the platform. Additionally, the PaaS provider tries

to isolate the platform services among SaaS provider accounts or even tenants to foster a proper

3

1. Introduction

Accountd1

Accountd2

Accountd1

Webshop CRM

TenantV

1

TenantV

2

TenantV3

DocumentV

Service

Accountd3 Accountdn

HostV1

RelationalV

Database

HostV2 HostVn

InfrastructureVCloud

VMV1 VMV2 VMV3 VMVn

Webshop CRMApplicationVn ApplicationVn

TenantV

Service

PaaSdApplicationdRuntimed

Deployment

PlatformdServices

LogicaldView

P
a

a
S
dS

ta
k
e

h
o

ld
e

rs

SaaSdProvider

Tenants

PaaSdProvider

LJS LJS LJS LJS

VMVnV+V1

ApplicationV

n+1

LJS

subscribe

subscribe

subscribe

deployedd

at

deployedd

at

use

MTAdProvider

Figure 1.1.: Motivating example, inspired by the SAP Hana Cloud Platform.

isolation on the MTA using it. An MTA has to do the following tasks to performance isolate the

MTA.

1. Search for existing approaches to make an MTA performance isolated.

2. Select an appropriate isolation method for the given scenario.

3. Design how this method can be integrated with the MTA.

4. Implement and deploy the solution.

5. Validate the solution.

An MTA provider’s problem is that only a few methods tackling the performance of individual

tenants are described in the literature so far. These neither cover all scenarios nor provide suffi-

cient performance isolation in relevant situations. Furthermore, the providers know neither which

characteristics of the methods are relevant nor how the methods behave according to these char-

acteristics. For a proper selection, it is essential to be able to quantify the degree of performance

4

1.3. Goals, Challenges and Research Questions

isolation a potential solution achieves. However, no metrics exist to quantify this. This hinders MTA

providers to find an appropriate method for the scenario they consider. Additionally, there is no fea-

sibly documented approach of how potential performance isolation methods can be implemented in

an application, especially not if it runs on a PaaS. For the validation, the methods to evaluate the

performance isolation are required again.

Although it is clear which tasks have to be executed to make an MTA performance isolated, the

providers struggle with many difficulties and they are likely to miss their goal.

1.3. Goals, Challenges and Research Questions

This section defines the overall goals of the thesis, the resulting challenges and research questions

related to these, and sets these aspects in relation to each other.

1.3.1. Assumptions and Context

The focus of this thesis is on MTAs. They provide the basis technology for SaaS, but they are

considered without a concrete SaaS context in the following. Since performance is very critical in

interactive web applications, the contributions of the thesis focus on this class of applications. It is

expected that no batch jobs or asynchronous tasks that influence the application performance will

be triggered. The primary focus within this thesis is on response time, throughput and arrival rate.

It is worth mentioning that, despite these limitations, the contributions made are still applicable for

other scenarios. The performance isolation guarantees are observed from the provider side and the

client side performance logic is not considered. Thus, the response time of individual requests sent

to the server are considered and not the response of the user interface. This is a valid approach,

since the different tenants and users share only the server part and not the client side parts of the

application. Moreover, the application instances are expected to be performance isolated to each

other and required services are performance isolated among applications. Malicious attacks of a

certain tenant aiming at reducing the service quality are related to the field of security and thus not

part of this work. Malicious attacks are, e.g., distributed denial of service attacks, which generate

load far beyond any usual workload fluctuation, or manipulated requests.

1.3.2. Goals

An overall goal for the thesis is formulated first, which is continually refined within this section and

the sections providing the actual contributions. Additionally, relevant definitions are introduced,

which specify the goal in more detail.

This thesis aims at providing performance isolation mechanisms, a methodology to quantify

performance isolation and insights based on these methods that support MTA providers realizing

performance isolated MTAs.

5

1. Introduction

To avoid distrust in the solutions an MTA provider will apply, it is necessary to ensure fair behavior

of the system with respect to its different tenants. In this thesis, the following definition of fairness

is used.

Definition 1

A system is considered to be fair, if all of the following conditions are met:

1. Tenants working within their assigned quota should not suffer performance degradation

from tenants increasing their workload.

2. Tenants exceeding their quotas more should suffer higher performance degradation than

tenants exceeding their quota less.

3. Tenants exceeding their quota should not suffer performance degradation, if tenants that

comply with their quota are unaffected.

Within this thesis quota refers to the amount of workload a tenant is allowed to execute. The term

guarantee refers to the promised performance from the provider. The main focus of the thesis is

on the first fairness criterion, which is achieved by performance isolation. Performance isolation is

defined as follows.

Definition 2

A system is performance isolated, if for each tenant working within his quota the performance is

not negatively affected when other tenants increase their workload.

In comparison, a non-isolated system can be defined as follows.

Definition 3

A system is non-isolated, if the performance for a tenant working within his quota is negatively

affected by other tenants increasing their workload, as if all users of the MTA would belong to

the same tenant.

Thus, every abiding tenant, with a workload lower or equal to the quota, may suffer from the high

workload caused by one or more single disruptive tenants exceeding their quota.

A system is usually expected to be somewhere between these two boundaries. A system where

the influence of one tenant on another is less provides a better isolation compared to a system where

the influence is more.

SLAs are of major importance for shared services. Therefore, it can be useful to reflect this in

the previous definitions. This means, the performance of customers working within their quota is

allowed to be reduced as long as the guaranteed performance is maintained. This is essential to

allow over-commitment. Note that, in a non-isolated system, abiding tenants will inevitably exceed

their guarantee if the disruptive tenants increase the load enough. An isolated system will maintain

the guarantee, independent of the disruptive load.

Subsequently, the goal of the thesis is outlined in more detail. More details in the form of deriv-

able goals are provided in the respective chapters.

6

1.3. Goals, Challenges and Research Questions

Goal 1 — Methods for Performance Isolation

Define a general concept how performance isolation can be achieved in an interactive

multi-tenant web application and provide concrete methods to enable performance isola-

tion. These methods have to reflect the three fairness criteria.

Success Criteria: Comparable approaches for MTAs do not exist. However, approaches

from related fields can be applied with some modifications. The proposed isolation meth-

ods, discussed in detail later, should outperform them in either the isolation, adaptation

speed or efficient utilization of resources.

Goal 2 — Quantification of Performance Isolation

Define metrics that quantify the performance isolation capabilities of an isolation method.

To provide a level playing field for comparison; suitable workloads have to be recom-

mended, for which the metric is determined. Ideally, the metrics are not limited to

multi-tenant applications.

Success Criteria: It should be possible to quantify the quality of the methods result-

ing from Goal 1. Furthermore, they should provide results that reflect the expectations

in well-understood systems of different technical domains.

The first two goals pose the most important aspect of the thesis. The following two goals aim at

providing additional insights based on the methods from Goal 1 to enable the MTA provider in

developing performance isolated MTAs. This means that the results of the next goals are conse-

quences from previous decisions. Nevertheless, the interpretation of these consequences is posed

as own goals in the following, since not covering it leaves unanswered questions concerning the

realization of the isolation methods.

Goal 3 — Decision Support for Method Selection

Provide an analysis of isolation methods, to help MTA providers to select the most ap-

propriate isolation method for a given scenario. Therefore, criteria for a comparison of

the methods must be determined. The behavior of the various isolation methods with

respect to performance isolation aspects has to be studied accordingly. Finally, a suitable

approach to create a figure of merit identifying the best solution for a scenario is required.

Success Criteria: It should be possible to find an isolation method that increases the

isolation for a given scenario.

Goal 4 — Architectural Recommendations

7

1. Introduction

Prospect multi-tenancy specific architectural decisions that have an influence upon per-

formance isolation and define an architecture that allows a multi-tenant application

provider to implement application-specific performance isolation methods.

Success Criteria: The sketched architecture should be applicable in various scenarios

for all isolation methods resulting from Goal 1.

1.3.3. Challenges and Requirements

Challenges and requirements are not considered separately in the following listing. The fine-grained

discussion provides insights into the differences of the challenges and allows a clear discussion of

the solutions in Section 1.5.1.

Challenge 1 — Layer Discrepancy Hinders a Direct Resource Control

The concept of tenants is only known within the application or middleware layer.

The resources are controlled in the lower layers like the operating system or hyper-

visor. Resource control allows influencing performance. However, lower layers are

not aware of tenants, while the application is intentionally abstracted from the re-

source control. Additionally, tenants may have different data volumes they access,

or different configurations of the application, leading to different resource demands

for the same request type. This challenge is primarily relevant for Goal 1.

Challenge 2 — Over-Commitment Requires an Efficient Utilization of Existing Resources

Multi-tenant systems are usually operated in an over-committed state to increase

utilization. This leads to lower margins to counteract against increasing demands

of tenants. Furthermore, if all tenants try to utilize their SLA-defined quota, the

system cannot maintain the guarantee. Additionally, unused resources from one

tenant must be reallocated to tenants who need them to fulfill their guarantees.

Since the operating costs of a system are widely independent of its load, tenants

should generally profit from other tenants’ unused resources to maintain an efficient

usage. This challenge is primarily relevant for Goal 1.

Challenge 3 — Unpredictability of Tenants’ Workloads Reduces Reaction Times

Tenants usually belong to different legal entities, independent of the provider. This

means, information about workload changes or upcoming configuration modifica-

tions are not known in advance. Thus, little time is given to react. This can lead

to overcompensating a sudden workload change and results in situations where the

system begins to oscillate between two suboptimal states. This challenge is primar-

ily relevant for Goal 1 and for a metric that refers to Goal 2.

8

1.3. Goals, Challenges and Research Questions

Challenge 4 — Multi-Tenant Application Providers Become More Cost Aware

With the increasing number of services hosted centrally by a single provider, the rel-

evance of the operational costs has increased. Therefore, isolation methods should

have low performance related overheads to reduce operational costs. Development

costs are of similar importance, thus they should also be low. This challenge is

primarily relevant for Goal 1 and Goal 4.

Challenge 5 — Interactive Workload Model Increases Complexity

Due to the closed character of the system, the observed performance has an influ-

ence uponthe arrivals behavior. This adds additional complexity to the system. This

challenge is primarily relevant for Goal 1

Challenge 6 — Versatile Bottlenecks Lead to Various Reasons for Mutual Performance Influences

Due to the tight coupling between tenants, hardware and software, resources are

shared. Therefore, bottlenecks can occur at any of the shared layers. Whenever a

resource becomes a bottleneck, it is likely that tenants compete for it and thus per-

formance isolation is violated. Thus, performance isolation methods must be able

to deal with versatile reasons for performance isolation problems. This challenge

is primarily relevant for Goal 1 but also influences Goal 4.

Challenge 7 — Different Stakeholder Expectations Lead to Different Expectations for the Metric

While a developer of an MTA is interested in the potential space for improvement

of the isolation capabilities, an administrator rather needs to estimate the impact

of one tenant upon others for adequate capacity planning or SLA definition. Both

interests have to be reflected. This challenge is primarily relevant for Goal 2.

Challenge 8 — Black Box View at the Application Limits the Available Information

Performance isolation was defined from the end users’/tenants’ perspective. More-

over, when a provider compares various isolation methods, possibly provided by

third parties, he may not have internal knowledge of the methods. Therefore, only

the information measurable from outside the application should be accessible. This

challenge is primarily relevant for Goal 2.

Challenge 9 — Separation of Quality Aspects for the Measurement of Performance Isolation Mech-

anisms

While comparing systems’ performance isolation capabilities it must be avoided

that different aspects interfere with each other; e.g., a fast adaptation speed does

not imply that the isolation is good. These are two separate aspects that should

9

1. Introduction

not be mixed. A metric has to reflect this. This challenge is primarily relevant for

Goal 2 and has some influence on Goal 3

Challenge 10 — Unknown Future Performance Isolation Methods and a Variety of Requirements

It is expected that more performance isolation methods will arise. Thus, an anal-

ysis of the requirements and isolation qualities might not be valid in the future.

For the selection of a performance isolation method, a vast number of functional

and non-functional requirements are of potential interest. Furthermore, their im-

portance may change for different scenarios, thus identifying the most suitable

isolation methods for a certain scenario. This challenge is primarily relevant for

Goal 3 and Goal 4.

Challenge 11 — Diversity of Isolation Methods Leads to Different Requirements

The isolation methods proposed in the thesis, or derived by existing approaches

from related fields, are diverse with regard to the information they need and the

ways they enforce performance isolation. Thus, finding common design recom-

mendations for applications and the implementation of the isolation methods be-

comes more complex. This challenge is primarily relevant for Goal 4.

Challenge 12 — Lack of Control About Lower Layers when Hosted on PaaS

If an MTA is hosted on a PaaS, the layer discrepancy becomes more evident. On

one hand, the MTA provider has fewer opportunities to influence the underly-

ing hardware, middleware behavior or request flow. On the other hand, the PaaS

provider lacks in knowledge of the application scenario to automatically provide

a performance isolation method that fits the needs. This challenge is primarily

relevant for Goal 4.

1.3.4. Research Questions

The research questions to be answered to achieve the thesis goals are summarized in the following.

A summary of the answers is given in Chapter 7.

RQ 1 — What is an appropriate approach providing performance isolation in multi-tenant appli-

cations?

The question concerns methods limiting the mutual influence of tenants on several layers,

while providing a good utilization of the system and best performance with regard to given

guarantees in case of over-commitment. This question covers concrete isolation methods

as well as how they are realized in existing or new MTAs. To answer this question, solu-

tions for Challenge 1, Challenge 2, Challenge 3, Challenge 4, Challenge 5, Challenge 6

and Challenge 12 have to be provided.

10

1.4. Contribution and Methodology

RQ 2 — What are appropriate metrics to quantify the level of performance isolation a system

provides?

In other words, which metrics are able to describe the relevant aspects of performance

isolation methods for different stakeholders, and how can aspects like the timeliness of

the isolation quality be quantified? To answer this question, solutions for Challenge 7,

Challenge 8 and Challenge 9 have to be provided.

RQ 3 — What are the relevant characteristics of MTAs and the isolation methods to select and

realize a feasible isolation method for a given scenario?

Potential subquestions that have to be answered are related to an abstraction of the meth-

ods and the requirements to cover potential future approaches. Additionally, functional

and non-functional requirements not related to the isolation metrics might be of interest

and have to be identified. To answer this question, solutions for Challenge 10 and Chal-

lenge 11 must be provided.

RQ 4 — What is the best isolation method for a particular scenario?

First, it has to be evaluated how the various methods behave with regard to the identified

characteristics. Then it has to be discussed if a best method does exist. If this is not the

case, the question is how in a given scenario the best isolation method can be found. This

research question is directly associated with Goal 3 and can be answered if the previous

questions are answered.

1.4. Contribution and Methodology

A brief excerpt from existing approaches is given at first. Then the contributions of the thesis are

listed and set into relation to the four goals from Section 1.3.2. After that, it is discussed how

the different contributions interplay to enable an MTA to create performance isolated MTAs. The

research methods used and validation environments are outlined in separate subsections.

1.4.1. Limitations of Existing Approaches

State-of-the-art solutions provide each tenant with a separate application instance, deployed in dif-

ferent virtual machines with a fixed set of resources, if the performance influence between tenants

should be low. This comes along with high overheads and the inability to easily shift unused re-

sources from one tenant to another. Only few authors discuss the performance aspects of individual

tenants in MTAs. Most of the existing works focus on the SLA-aware placement of tenants onto ex-

isting application nodes. These solutions assume to have knowledge of the tenants’ demands before

the allocation or have to do time-consuming reallocations at runtime. Thus, they cannot provide

isolation on a shared node level and show a serious delay before a new configuration is settled. The

11

1. Introduction

few existing solutions that consider tenant individual performance within one application node nei-

ther reflect the impact one tenant has upon another nor relate to concrete quotas or guarantees. They

usually do not consider a concrete bottleneck resource or analysis of the application’s behavior.

Instead, the focus is on the overall performance of the application and service level differentiation

between tenants.

A few authors discuss how performance isolation between tenants could be achieved on a con-

ceptual level and provide architectural concepts. However, they do not provide a clear relation to

performance isolation methods and their requirements. Thus, they are of limited use for relevant

scenarios. Furthermore, they do not mention MTAs’ realizations on PaaS environments.

No approach that quantifies the influence between two tenants exists so far. Existing work from

the field of virtualization comprises case studies that use a white box view and do not define reusable

metrics. They also do not provide insight on appropriate and representative workload profiles for

MTAs. Related works that focus on performance aspects of individual tenants do not set the per-

formance of these tenants in relation to each other and do not analyze the observed performance by

creating further metrics providing insight for different stakeholders.

For more details concerning related work on individual publications see Section 2.1.3.

1.4.2. Contributions and Approach

The following list describes the contributions and how they approach the corresponding goals for

the thesis. A more detailed overview of each approach is given at the beginning of the respective

chapters.

Contribution 1 — Request Admission Control Based Performance Isolation Methods for Multi-

Tenant Applications

Methods that control the admission of incoming requests for an MTA aiming at

reducing the influence of one tenant on another were developed. A fast-reacting

work conserving scheduling mechanism working on a request basis is combined

with a mechanism dynamically adjusting the scheduler’s configuration. Thus the

impact of potential SLA violations can be limited on a short-term basis by the

scheduler. In the long-term, a more complex optimization can be done, which

would be computationally too expensive for each request.

One concrete implementation ensures that tenants cannot utilize more than

a defined share of a time-sharing bottleneck resource. This method applies re-

source demand estimation techniques to gain insight into the MTA’s internal

behavior. Another concrete implementation analytically models the MTA as a

black box. An optimization working on this model continuously updates the

scheduler’s configuration. Further approaches from related fields were imple-

mented in addition, as basis for comparisons.

12

1.4. Contribution and Methodology

Scientifically, the major insight is that layer discrepancy can be dissolved by

actively controlling the admission of requests to the application. Besides that,

a model describing the performance behavior and a corresponding fitness func-

tion applicable for the sake of performance isolation in MTAs is presented. Fur-

thermore, insights into the applicability of selected resource demand estimation

methods in the given context are given.

This, contribution is primarily related to Goal 1. The respective parts of this

contribution have already been published in [Krebs et al., 2014d, Krebs et al.,

2014c, Krebs and Mehta, 2013].

Contribution 2 — Metrics and Methods to Quantify Performance Isolation in Multi-Tenant Appli-

cations

This contribution defines a set of metrics to quantify performance isolation, by

measuring the impact of one tenant upon the observed performance of the others.

A second class of metrics quantifies performance isolation by setting the abiding

workload in relation to the disruptive, such that the expected QoS is maintained

for the abiding tenants. The ratio can be used as a metric. Two further metrics,

which are related to the field of control theory, quantify the adaptation speed of

the performance isolation methods and their variability in the observed perfor-

mance. Additionally, suitable load profiles for the measurement of performance

isolation are discussed and a representative work for MTAs is defined.

Technical results of this contribution are a concrete benchmark application

and a framework enhancement of the SoPeCo [Westermann et al., 2010], which

allows the measurement of performance isolation to be automated.

The scientific contributions are the definition of novel metrics, the application

of known metrics in a new domain and the insights on how to collect the values

of these metrics, such that they are representative for real MTAs.

This contribution is primarily related to Goal 2. Parts of this contribution

have already been published in [Krebs et al., 2014b, Krebs et al., 2012b, Krebs

et al., 2013].

Contribution 3 — Decision, and Design Support for the Selection of a Performance Isolation

Method and its Implementation

This contribution provides the missing links between the formulated perfor-

mance isolation methods and their application in MTA. Therefore, the require-

ments of the isolation methods are outlined. These requirements primarily focus

on the information required by the methods and outline under which condi-

tions a method will not provide sufficient isolation. These results are applied

in a problem-specific decision process, based on Analytical Hierarchical Pro-

13

1. Introduction

cess (AHP), to find the most appropriate isolation method for a particular sce-

nario. For the realization of the performance isolation method selected, a refer-

ence architecture is briefly sketched, which is primarily designed as an enhance-

ment for a PaaS supporting performance isolated MTAs. Design recommenda-

tions that help MTA providers to build the MTA such that performance isolation

can be easily realized for them are also provided.

Scientific insights are a classification schema of the methods and the classes

the respective informational requirements. This also covers a discussion con-

cerning the implementation in case of MTAs hosted on a load-balanced cluster

of several application nodes. The identification of components that are not sce-

nario specific, and thus part of the framework, is another relevant insight.

A technical result of this contribution is a concrete framework that can be ap-

plied in various scenarios to enable performance isolation for MTAs in different

contexts.

This contribution is primarily related to Goal 3 and Goal 4. Parts of this

contribution have already been published in [Krebs and Loesch, 2014, Krebs

et al., 2014a, Krebs et al., 2012a, Loesch and Krebs, 2014, Loesch and Krebs,

2013].

Contribution 4 — Evaluation of the Performance Isolation Methods for Multi-Tenant Applications

This contribution comprises the insights gathered from the evaluation of the

performance isolation methods. Moreover, the overhead and scalability of the

scheduler and the corresponding optimization was evaluated. This was done in

an environment motivated by the example from Section 1.2, for the quantifica-

tion of the isolation capabilities. The analysis of the overhead and scalability

was done by simulating a vast number of tenants, application nodes and request

types.

This contribution is primarily related to Goal 3, since it provides the foun-

dations for an adequate selection of a performance isolation method. From the

scientific point of view, this provides important insights about the pros and cons

of the various performance isolation methods from Contribution 1.

In Figure 1.2 the rectangles depict the contributions made in this thesis and how they are related

to each other. The Evaluation uses the Metrics and Measurement methods to evaluate the perfor-

mance isolation quality of the Request Admission Control based performance isolation mechanisms.

Overall, two novel methods based on this concept were developed (Model Based and Resource Iso-

lation) and existing methods were adapted for the MTA use case. All of them were evaluated. The

contributions related to Decision and Design Support rely on the knowledge about the isolation

method-specific pros and cons, gathered from the evaluation, to select an appropriate performance

isolation method. The design support-related part provides the measures to implement request ad-

14

1.4. Contribution and Methodology

mission control based performance isolation methods in various scenarios of interactive multi-tenant

web applications.

1.4.3. Research Methodology

Glass et al. [Glass et al., 2002] analyze articles from six leading software engineering journals.

They identify the established research methods applied in software engineering. Moreover, the au-

thors define three more general research approaches to classify the overall approach of scientific

contributions. The descriptive approach is based on primarily describing a system or an opinion,

but also includes development-oriented approaches generating knowledge to solve problems. The

formulative approaches formulate methods, algorithms or guidelines, taxonomies and others. The

evaluative approaches are based on comparisons, e.g., based on data gathered from surveys. Of the

same relevance are the research methodologies, where the authors identified 22 in total. The rele-

vant methodologies in this thesis are the conceptual analysis (CA), conceptual analysis mathemat-

ical (CAM), concept implementation/proof of concept (CI), case study (CS), laboratory experiment

(LE), mathematical proof (MP), data analysis (DA) and simulation (SI). Often several aspects can

be found within one publication and even the same contribution. This is the same in the present

thesis. Formulative research approaches and the research methods’ conceptual analysis and concept

implementations are identified as the most common by Glaas et al. Both also have a significant

portion in the work presented in the thesis.

Request Admission Control

Model Based

Resource Isolation

Metrics and Measurement

Methods

Decision and Design

Support
Evaluation

realizes

utilizese
v
a

lu
a
te

s

implement

Descriptive

Evaluative

Formulative

CA CICSSI LE

implement

CICS LE

CILECAM MP

Further Approaches

implement

CICS LE

CA CILECS

Figure 1.2.: Overview of the contributions and research methodologies/approaches.

Figure 1.2 also depicts the relation of the contributions in this thesis to the identified research

methods and approaches from Glass et al. The ovals depict the major research approach used for a

15

1. Introduction

particular contribution and the circles identify the research methodologies applied in this context. It

is worth mentioning that not all research methods were applied to every part of a contribution. It is

rather the case that the methodologies were selected such that they fit best to particular parts of the

contributions.

1.5. Problem Solution and Validation

In the following, it is summarized how the challenges of Section 1.3.3 are reflected by the contribu-

tions and decisions taken in the thesis. It is also emphasized how the MTA provider’s problems are

solved by the results of the thesis.

1.5.1. Mastering the Challenges

The performance isolation method conducted in this thesis uses a request based admission control.

This avoids modifications on established concepts separating the concerns of resource management

and application logic (i.e., operating systems) and avoids a tight coupling of the MTA to a dedicated

underlying technology. Admission control mechanisms are already provided by runtime containers.

Thus, the implementation overhead of the solution is reduced (Challenge 4). The proposed request

admission control allows regulating the influence of tenants on each layer, including required ser-

vices and hardware resources, since each request has to pass the admission control. Consequently,

even the tight coupling of the tenants is overcome and mutual performance influence at different

places is limited (Challenge 6). The resource isolating method estimates the resource demands of

requests. In principle, this can be done for any bottleneck resource. This information closes the dis-

crepancy between the layers (Challenge 1). The model based isolation method treats the system as a

black box, using data that is measurable from outside the application, and thus abstracts from where

performance isolation is violated (Challenge 6). Both approaches allow shifting unused resources

from one tenant to another. In case of resource isolation, the work-conserving request admission

allows the over-commitment of resources. The model based approach allows over-commitment

based on application level SLAs. It uses a work-conserving scheduler for fast and sudden changes

in the load, and a fitness function reflecting the guarantees and quotas of all tenants, to allow an

efficient and overcommitted operation (Challenge 2). Since the proposed admission control sched-

ulers immediately react to load fluctuations on a short-term basis, and the configuration of them is

continuously updated, exact predictions and forecasts of the tenants workloads are not necessary

(Challenge 3). Additionally, the admission control has a low overhead (Challenge 4), as shown in

Section 6.1.4. The model-based approach includes the users into the model. The resource isolation

method does not have to reflect users, and works for interactive (Challenge 5) and open workload

models.

As part of this work, metrics are described that set the abiding workload in relation to the disrup-

tive. By reducing the disruptive tenants’ workloads such that they maintain a constant QoS, the po-

tential for improvement can be quantified. Other metrics measure the impact of one tenant upon the

16

1.5. Problem Solution and Validation

performance observed by the others. This allows for insights into potential guarantee violations. By

providing two separate metric types, the requirements of various stakeholders are reflected (Chal-

lenge 7). Furthermore, adequate workload profiles are defined for the measurement of performance

isolation by analyzing the specific characteristics of MTAs and the situations where performance

isolation becomes most important. Therefore, no reference to existing metrics is required. The

metrics are based on the system’s behavior, visible from an external point of view (Challenge 8).

Besides the isolation metrics, which cover the system in steady state, metrics to quantify the time-

liness of the system are derived from existing metrics. Since the different aspects are gathered by

different metrics, the characteristics can be determined independently (Challenge 9).

To discuss the various isolation methods’ requirements, they are first described by a more abstract

classification schema. Furthermore, the informational requirements are also abstracted by classes of

information. Thus, the results and outcomes are more generic, and it is possible to compare various

isolation methods more easily, since a similar behavior within a class can be expected (Challenge 10

and Challenge 11). The informational requirements and actuators of the methods are identified. In

combination with the analysis of architectural concerns of MTAs, this allows a PaaS provider to

develop a system that allows providing a certain degree of isolation. The same mechanisms can

also be applied if the runtime environment is controlled by the MTA developer. Consequently, the

relevant control mechanisms and monitoring information to enable performance isolation are made

available (Challenge 12) with the proposed architecture.

1.5.2. Achievement of the Goals

The goals of the thesis were successfully achieved by the contributions. In the following, the results

are summarized, and it is discussed how these results support the MTA providers.

1.5.2.1. Validation Results

A variety of environments are conducted in the laboratory experiments and case studies.

The most relevant, used for the comparison of the isolation methods, are motivated by the archi-

tecture of a state-of-the-art PaaS that supports MTAs (cf. Section 1.2). Artificial workloads required

by the isolation metrics are applied, and real load profiles are replayed to gain results under realistic

conditions. The novel isolation methods outperform the approaches transferred from other fields in

these environments. They provide a better isolation quality, either in case of variable resource de-

mands per requests originating from different tenants, or by adapting twice as fast as a comparable

mechanism to a changing context. In other scenarios they provide a more efficient distribution of

the resources, enabling over-commitment.

Case studies showing the applicability of the measurement-related contributions either rely on

the already-mentioned environments or evaluated the performance isolation capabilities in a Xen

virtualized environment. Moreover, experiments using simulated performance isolation methods

were conducted.

17

1. Introduction

The decision and design support-related contributions and the results of the evaluation are used

to provide a solution for an apparent problem scenario in a case study on the SAP HCP Document

Service. It was possible to significantly increase the performance isolation in the case study when

reflecting a realistic problem scenario. In the non-isolated system, the response times increased

by 141%. Applying a performance isolation method, which achieved good results in most of the

evaluation cases, resulted in an increase of 97%. Applying the isolation method recommended by

Contribution 3 to the specific scenario, the increase was below 11%. For an overhead and scala-

bility analysis of the isolation methods, large-scale application environments were emulated. The

processing time consumed by the isolation methods for each request was measured in the dimension

of µs. Therefore, no significant reduction of the overall system’s performance was observable in

the conducted case studies. The isolation measurement-related contributions were also successfully

used to determine the isolation of the hypervisor Xen. The proposed architecture was used to re-

alize five different performance isolation methods in an environment motivated by a realistic PaaS

environment.

Comparing the proposed performance isolation mechanisms with a Xen-virtualized environment

providing similar features as the MTAs investigated, the proposed isolation methods were able to

provide similar isolation capabilities.

1.5.2.2. Supporting the Providers of Multi-Tenant Applications

The motivating example in Section 1.2 identifies five steps a provider of an MTA has to follow to

make the application performance isolated.

Performance isolation methods, a methodology to quantify performance isolation, and contribu-

tions to apply these in practice are provided by the thesis. With help of these contributions, MTA

providers can create performance isolated MTAs, since each of the tasks listed in Section 1.2 can be

successfully mastered. With this thesis, the MTA provider has several relevant approaches to ensure

performance isolation. The provided decision support and evaluation results, based on the defined

metrics, help to find the proper isolation method for a given scenario. The proposed architecture and

other design recommendations help to implement the methods in various environments. Finally, the

measurement-related contributions help to validate the solution, if required.

Overall, the contributions help to sustain a stable performance in face of fluctuating workloads

originating from different tenants. This enables providers of MTAs to offer high quality SLAs that

give them an economic advantage.

1.6. Thesis Organization

To address the overall goals of the thesis, outlined in the previous section, the document is separated

into seven chapters. The structural organization of the thesis is outlined in the first subsection and

some hints for the readers are given in an extra subsection.

18

1.6. Thesis Organization

1.6.1. Structure

The introduction in Section 1 already motivated the work and defined the goals of the thesis. More-

over, it identified the respective challenges and research questions to be answered within the thesis.

Chapter 2 starts with the presentation of the relevant foundations on a high level and defines

required terms. Details of the foundations are introduced when required throughout the document.

After the foundations, publications and concepts from related fields are discussed. The differences

in the thesis contexts are outlined. An extra section provides an analysis of approaches controlling

performance on a web server’s or web application’s level. The fourth section in the foundations

tackles existing work that considers performance measurements in shared environments. Finally, a

summary outlines the limitations of existing approaches and concepts.

The Chapters 3, 4 and 5 provide contributions to achieve the goals of the thesis. At the beginning

of each of these chapters, a fine-grained listing of the particular goals for the chapter’s objective is

listed. These goals can be derived from the thesis’ overall goals. Each of these chapters includes

a critical discussion about the presented solutions and a summary of the chapters. Additionally,

Chapters 3 and 4 present a first proof of concept of the contributions discussed.

Chapter 3 begins with the presentation of metrics developed to quantify performance isolation and

useful load profiles for their measurement. It further introduces an approach, based on an existing

solution, to automate the isolation measurement process, followed by the definition of a benchmark

application. The latter defines the work for a multi-tenant scenario. Finally, the chapter describes

two case studies, in which the contributions were applied, to show their usefulness and applicability.

A summary section critically discusses the approach and potential drawbacks. Chapter 4 introduces

the overall approach to enforce performance isolation, based on a request admission control. Then,

dedicated sections describe the model and resource isolating methods. Each of these sections in-

cludes a critical discussion. An additional section introduces three minor adapted approaches from

related fields. Finally, the chapter presents a proof of concept for the two novel approaches and a

conclusion. Chapter 5 identifies common architectural concerns in MTAs and how they influence

the performance isolation capabilities. After that, the approach to find performance isolation meth-

ods for a particular application scenario is introduced. Besides that, the implementation hints in the

form of an architecture are given. The conclusion summarizes the chapter and contains a critical

discussion.

Chapter 6 evaluates the developed performance isolation methods. The chapter starts with the

definition of the goals for the evaluation. The largest part considers the experiments and discusses

the results concerning the isolation methods. A separate section summarizes the results, concerning

the measurement of isolation. The summary comprises the insights from Chapter 3 and the experi-

ences made applying the contributions within the first part of the evaluation. The case study based

on the SAP HCP Document Service is the last section including measurement results. Finally, a

critical discussion and summary concludes the evaluation.

The last chapter concludes the thesis. It starts with a summary of the thesis. The chapter also

includes a critical discussion on a higher abstraction level, compared to the discussions in the previ-

19

1. Introduction

ous sections, considering the overall approach. Furthermore, it gives some ideas for future research

directions and examples of potential other applications of the contributions.

1.6.2. Information for Reading the Thesis

Particular importance was placed on the independence of the Chapters 3, 4 and 5. That means, the

basic concepts of these chapters can be understood without reading other chapters. Therefore, they

include a short repetition of the most relevant aspects from previous chapters, a brief definition of the

chapter’s fine-grained goals, the actual contribution, a proof of concept, and a summary including a

critical discussion.

It is possible to follow the evaluation chapter without reading Chapters 3, 4 and 5, since the iso-

lation methods’ specific details were validated in the respective chapter of the isolation methods.

Nevertheless, the evaluation utilizes the measurement methods (Chapter 3) and it is easier to un-

derstand the differences in the method’s behavior if their functionality is understood (Chapter 4).

Therefore, it is recommended to read these chapters in advance. The insights from Chapter 5 are

useful to understand the evaluation’s subsection 6.3. The other chapters do not necessarily have to

be read in advance.

Parts of the thesis have already been published by the author. In the remainder of the thesis,

for each section where the content or text relates to one of the author’s publications, the respective

references are listed at the beginning of exactly that section. Additionally, the relevant publications

were already listed together with the contributions in Section 1.4.2

At the end of the thesis, a list of abbreviations and a glossary are presented for terms that were

not explicitly introduced in Chapter 2 or defined later as part of the contributions. In general, new

terms introduced or terms directly referring to a figure are written in italics.

20

2. Foundations and State-of-the-Art

In the first half of this chapter, the foundations of the thesis are discussed. It will introduce relevant

concepts and definitions. In the second part, an analysis of existing work in the same or related

research fields is presented to reflect the state-of-the-art. Some topics in the state-of-the-art section

may also provide some background information. Thereby, related work from academia and industry

is conducted. Multi-tenancy still increases in attention. Thus, most of the related work focuses

on functional aspects and only few publications conduct performance isolation in MTA. This is

also emphasized by the research from [Kabbedijk et al., 2015]. The authors analyzed scientific

publications considering multi-tenancy. The existing publications emphasize the importance of

quality of service enforcement, especially with regard to performance, as future work.

However, related problems to performance isolation in MTA also appear in other fields. There-

fore, related approaches and concepts are discussed as well. Additionally, an excerpt on existing

and relevant measurement approaches is given.

2.1. Foundations

This section presents the foundations on which the further contributions are built on. At first, an

overview of the technical aspects of multi-tenant systems is provided, before the field of perfor-

mance engineering is conducted in more detail, followed by a brief definition of closed control

loops. The section aims at providing a general understanding of the relevant aspects, while concrete

details are introduced, when required within the thesis.

2.1.1. Common Properties of a Multi-Tenant Application

This section starts with an overview of common multi-tenant architectures, followed by a definition

of common operational paradigms.

2.1.1.1. Technical Details

Figure 2.1 depicts the artifacts that are most common for existing MTA. These artifacts were iden-

tified by [Koziolek, 2011, Koziolek, 2010], who analyzed existing multi-tenant applications. The

architecture relies on the common three-tier web application model, which is enhanced to support

multi-tenancy.

Requests from the Client Tier are usually distributed by a Load Balancer onto several application

nodes. Each application node runs several Application Threads in parallel, to service the requests.

21

2. Foundations and State-of-the-Art

Depending on the load balancing paradigm, the responses are directly sent to the client, or via the

load balancer. The latter sustains a single entry point to the application.

Database TierApplication Tier

Data

Client Tier

Application

Threads

Meta-

data

Web Browser

Rich Client

Metadata

Manager

customizes

Data

Transfer

Data

Transfer

Load

Balancer

HTTP

HTTP

Figure 2.1.: Multi-tenant architecture based on [Koziolek, 2011].

The Metadata contains tenant specific information. The kind of information stored in the meta-

data is widely spread. Examples are customizing, database id, tenant name, credentials and tenant

specific SLAs. Another essential component is the Metadata Manager, which enables access to this

data and adjusts the application according to the information stored in the metadata.

When a request arrives at an MTA, not only the user and the client have to be identified, but also

the tenant. Various approaches exist to identify the tenant. One solution is to connect the tenant

specific information to the user. However, this approach requires an authentication of the user and

duplicate usernames in different tenants are not possible. Thus, this violates isolation. Another

widely used approach (e.g., SAP HCP [SAP SE, 2014]) is the identification by the host name. In

this scenario, various host aliases point to the same application instance. On the application, the

tenant specific host name is used to identify the tenant. A common approach to transfer the tenant’s

identifier along the program execution path uses the thread context to which the information is

bound.

Three major approaches to separate a tenant’s data from the data persisted by other tenants [Wang

et al., 2008, Chong et al., 2006] exist. The dedicated database approach provides an own, com-

pletely separated database system for each tenant. In a dedicated table/schema approach, every

tenant uses the same database management system, but separate tables or schemas. The highest de-

gree of sharing, and thus efficiency, is established by the shared table/schema approach [Wang et al.,

2008, Jacobs and Aulbach, 2007]. To provide a flexible customizing, some researchers propose to

mix the approaches to a certain degree [Aulbach et al., 2008], while a few companies provide an

additional, tenant-individual view onto a rather simple and generic data structure storing the data

[Weissman and Bobrowski, 2009].

In principle, scalable web applications should be stateless [Fehling et al., 2014]. That means,

that incoming requests do not refer to a state which is held by one application node only. If an

application is stateless, a request can be served by any node in the cluster. This reduces the risk

for hot spot nodes. However, several business applications rely on a state for each user’s activity to

handle complexity. Usually, this dependence on a state is expressed in a user session, which means

22

2.1. Foundations

that all the requests from one user have to be served by one node. The same principle holds for

MTAs as well.

Besides the isolation of non-functional properties, the isolation of data, configuration and cus-

tomizing is an essential requirement for MTAs.

MTA providers often develop their application for a specific middleware or PaaS that actively

supports the development of MTA. This decreases the development efforts. The middleware pro-

vides integrated measures for the identification of the tenant, to access metadata and their admin-

istration. Even the isolation of data is often supported (e.g., Google App Engine [Google, 2014],

SAP HCP [SAP SE, 2014]).

2.1.1.2. Operations

Service Level Agreements A SLA is a negotiated document between consumer and provider

that defines the quantitative and qualitative terms of a service. Usually it is legally binding. The

quality aspect may relate to performance, reliability, incident management or other non-functional

properties. The SLA also regulates the responsibility for the parties, e.g., how the service has

to be used. A common simplified model in literature orders SLAs into gold, silver and bronze

with descending qualities. Several approaches utilize such knowledge to decide which customer

should be provided better performance, in case of an overloaded situation. Mechanisms enforcing

the preference of customers using a high-order SLA enable Service Differentiation. Note that ser-

vice differentiation does not enforce performance isolation. However, most performance isolation

mechanisms can easily differentiate the tenants importance, since they already provide measures

to control the performance. The following paragraphs discuss the performance relevant aspects of

SLAs considered in this thesis.

The two most essential parts of SLAs are the description of the qualifying condition and the guar-

antee. A part of the qualifying condition describes the workload a service consumer is allowed to

generate, in the present thesis this refers to as quota. The guarantee refers to the promised perfor-

mance. Typical quota related metrics are, e.g., the request arrival rate or the amount of used storage.

The arrival rate describes the number of requests arriving within a period of time. Guarantee met-

rics may refer to maximum response times, throughput or availability.

In general, SLAs can be defined on various sharing levels. At the application level, they usually

refer to application entities such as number of transactions or response times. On the resource

sharing level, they rather refer to a certain amount of resources allowed to be used. The mapping of

low level, resource oriented, SLAs to application level SLAs is a research question in itself.

Quota and Guarantee as Optimization Goal In this thesis, the essential goal is the isolation

of performance. In the context of Definition 2 and Definition 3, a possible relation to a defined

quota and guarantee is explicitly mentioned. It is worthwhile to differentiate between two contexts

where the concepts quota and guarantee are used. First in the context of the SLAs, where they are

part of a legally binding contract. Second, as a goal definition for a self aware system’s optimiza-

23

2. Foundations and State-of-the-Art

tion. Such systems dynamically change their configuration, or even deployment to achieve a certain

optimization goal [Kounev et al., 2010]. An SLA based guarantee and quota may have different

values, compared to a guarantee and quota used for the system configuration, e.g., to maintain s

safety margin. Furthermore, they can be of a completely different nature. While e.g., the applica-

tion’s adaptability mechanism guarantees are related to a certain amount of hardware resources, the

legally binding guarantee may refer to response times. In this thesis, unless otherwise specified, the

terms guarantee and quote refer to the values used to define the optimization goal.

Resource Provisioning To economically provide a service in shared resource paradigms,

providers consider various ratios of provided and promised resources. Over-commitment or under-

provisioning refers to a setup where the legal binding guarantees for customers cannot be achieved

with the provisioned resources, if all tenants use their entire quota. Providers may accept this risk

under the assumption, that never all customers request their full quota at once. Over-commitment

can either refer to hardware resources, or higher/application level SLAs. Thus, the shared resource

paradigm allows a generally higher resource utilization and thus reduces costs. The providers have

to find a trade-off between low operational costs and the risk of potential SLA guarantee violations.

The opposite is under-commitment or over-provisioning. In such a setup, the provider has enough

resources, that guarantees can be overfulfilled. Consequently, the system can provide the guaran-

tees, although all tenants use their entire quota. Thus resources are likely to be low utilized, most of

the time.

2.1.2. Performance Engineering

Performance Engineering or Software Performance Engineering (SPE) is a supporting process in

software engineering, which aims at capturing and ensuring non-functional performance require-

ments within the life cycle of IT systems [Smith and Williams, 1993]. In this thesis, the term per-

formance engineering is seen as synonymous for SPE. Through the assessment of systems designs,

SPE can intervene at an early stage of the development process to assess various design decisions,

reducing the costs for fixing issues later. For existing systems, the SPE can collect performance

characteristics and point to bottlenecks or provide solutions for existing performance problems.

The term bottleneck refers to a resource that has the lowest throughput of all parts in the system.

Thus, it is the limiting factor for the performance. A bottleneck can be a hardware resource like

CPU or software related resources, such as a connection pool.

To support these goals, the methods of SPE can be classified into measurement based, simulation

and analytical methods, as well as educated guessing of experts. In the next subsections relevant

aspects for the thesis are introduced.

2.1.2.1. Measurement Based Performance Engineering

The measurement based performance engineering methods are based on observations of a system’s

behavior. They aim at gathering systematic insights, by comparing the observed performance as

24

2.1. Foundations

output of the system, while the workload, the configuration or the context in which the system runs

is changing. In principle, this information can be gained by the observation of the parameters in

a productive system while it is used by real users, or by executing a benchmark, which generates

artificial load onto a system under test. While the first, is perfectly representative for the scenarios

observed, it lacks in flexibility when conclusions for non-observed scenarios should be made. In the

following, several terms related to benchmarking are further considered.

Benchmarking a System “A benchmark is a test, or set of tests, designed to compare the per-

formance of one computer system against the performance of others.” [SPEC, 2015]. Besides that,

it can be used to gain insights of the system’s behavior for a well defined and representative usage

scenario. In this context, the System Under Test (SUT) refers to the deployed, and runnable entity,

that is investigated by a benchmark. Usually this is a single hardware resource, an application or the

whole system combining both. To stress the system, a certain workload is imposed. The definition

of the workload provided by [Jex, 1998], in the context of human performance management, divides

the word in two parts and is applicable to SPE as well. The term load refers to the quantitative value

and thus the amount of work to be done. The term work refers to qualitative values, and thus the

difficulty of the work. [Dirlewanger, 1994] differentiates three load creating models. A real load

is generated by the real usage scenario, e.g., human users accessing the SUT to stress it. Pseudo

real load replays logged call profiles from the real application scenario. The first lacks in economic

efficiency and the latter is difficult to modify, to study the system under different conditions. The

synthetic abstracted load is recommended by [ISO/IEC, 2011a], since it provides a behavior cover-

ing the major characteristics of the real scenario and thanks to the abstracted description allows to

adjust it for various scenarios. When creating the underlying models to generate synthetic load, a

good trade-off between accuracy and complexity must be found. At least two large classes for the

specification of the work can be defined. Application benchmarks and micro benchmarks. The first

class is based on either a real application, or an application which represents the relevant features

of a particular class of applications (e.g., an interactive web application). Different functions of this

application are called, to execute work on the SUT. Micro benchmarks instead, test only a very

limited set of functions on a low level of abstraction. An example is the execution of certain Central

Processing Unit (CPU) instruction.

Describing Workload Jain [Jain, 1991] provides an overview of techniques to model a syn-

thetic abstracted load. Averaging reproduces the average workload, which can be enhanced by

adding dispersion with the help of e.g., the standard deviation. More detailed methods use multi-

parameter histograms to model the workload or being based on principal component analysis. How-

ever, only Markov Models can also reflect the order in which different work is executed by the sys-

tem, e.g., in a bookshop application users are likely to follow a certain navigation path through the

application. This can have a significant impact upon the performance observed, e.g., due to caching

effects or pre-load mechanisms.

25

2. Foundations and State-of-the-Art

A Markov chain is a discrete stochastic process, for which the prediction of future states, based

on a limited knowledge about the past, is as good as if the whole history of the process is known. It

undergoes transitions from one state to another. The probability for a particular transition depends

on n states visited before. For modeling workload, the behavior is usually assumed to be memory-

less, which means that the probability for a certain transition depends only on the present state. This

is also referred to as Markov Property.

Memoryless Markov models are widely used to model user behavior in benchmarks. In TPC-

W [TPC, 2002] the current state represents the page an emulated user currently sees and the tran-

sitions describe the probability of following a certain link on that page. When the transition is

triggered, it ends up at a defined new state, corresponding to the web page received from the bench-

mark application.

When a human user behavior is modeled, it is essential to consider the user’s physiological and

psychological demand. When a user receives a response, he has to think about the response of the

system before he can trigger the next activity. This phenomenon is usually emulated by an artificial

delay between two transitions and referred to as think time. The delay is often described by a random

variable to reflect reality.

A further approach to simplify the emulation of real workload is to cluster different activities, by

their impact upon the system. An example is a bookstore application with two different requests to

search for either an author or a publisher. If both have the same demand onto the system resources

they can potentially be considered as the same request type.

Running a Benchmark Caching or garbage collection are examples where the performance of

an SUT depends on previously executed actions. Such mechanisms lead to changing performance

over time. Therefore, a benchmark defines a warm up phase [SPEC, 2015], which is a period of

time prior to the actual measurement, to get the SUT in a steady and consistent state. After this,

the measurements are taken, followed by a cool down phase in which the load is decreased to

get the SUT again in a steady and consistent state. Such a procedure is often iteratively repeated,

either to make sure the results are reliable or to evaluate the system with different workloads or

configurations. Similar to Westermann [Westermann, 2013] an Experiment Series refers to a set of

experiments stressing one SUT to achieve a certain goal. This means, that within one experiment

series, different workloads and configurations of the SUT may be used. Each concrete combination

of the parameters, which describe this configuration, are an Experiment. Each may be repetitively

executed in Experiment Runs, to ensure a statistically reliable result. For each experiment run, a

warm up and cool down phase may occur.

Technical Components Usually three to four components are used to run an application

benchmark (e.g., [SPEC, 2012]). The load driver emulates users, which trigger the application

functions. The benchmarking application is the application deployed on the SUT to create the

work, by serving the load driver triggered requests. Sometimes, emulated third party services are

added to the test landscape, to emulate the applications references to other systems. All these com-

26

2.1. Foundations

ponents are controlled by the benchmarking harness, which starts and stops the load generation,

collects relevant samples of the performance metric under investigation and computes a figure of

merit.

Typical Performance Behavior of Systems While the workload on the SUT increases, one

can usually observe one of the two patterns depicted in Figure 2.2. In the trashing case, the system

enters an overloaded state, at which the load cannot longer be adequately processed. Moreover,

due to context changes and synchronization among parallel execution paths, it comes to a visible

reduction of the system’s performance. In case of a non-trashing system this is not the case. The

introduction of admission control mechanisms can limit the amount of work processed by the SUT

in parallel, and thus avoids a trashing state. In case the workload is defined by requests, these

are either rejected without being served, or they are queued to be served at a later point in time.

Before the point, where the throughput starts to decrease, the response times usually increase slowly.

Consequently, if a system is significantly below its maximum saturation, an increase in load has only

a low influence upon the response times of the system. Therefore, performance isolation aspects are

more important for systems already running at high utilization.

Load

T
h

ro
u

g
h

p
u

t

Full Saturated

Trashing

Non-Trashing

Figure 2.2.: Typical performance pattern for increasing load based on [Kounev, 2011]

2.1.2.2. Further Performance Engineering Methods

Model based approaches provide other possibilities to gain insights into a system’s performance

behavior. Model based approaches are often assumed to use simulation techniques, to obtain in-

sights. However, an analytical approach abstracts the system’s behavior for a special purpose and

omits unnecessary information, thus it is a model as well. Therefore, a differentiation between sim-

ulateable models and analytically solvable models is necessary. These models vary in the modelling

assumptions, the effort to create them or to solve them, and the level of abstraction [Noorshams,

2014]. Examples of analytic models are regressions, interpolations or extrapolations of existing

measurements. Such models can be used to get estimates for unmeasured parameter configuration

[Courtois and Woodside, 2000]. The corresponding functions refer to the term performance curves

[Westermann and Momm, 2010]. Since these models do not use any system internal knowledge,

they belong to the group of black box models, while others allow to describe internal relationships

27

2. Foundations and State-of-the-Art

of the investigated system. Correspondingly, these approaches refer to white box models. A model-

ing paradigm which can be used for white box modeling relies on queuing theory. It is a discipline

of operations research and dates back as far as the early 20th century. One of the first applica-

tions was the analysis and optimization of phone exchange nodes. The field of applications is very

wide. Whenever waiting lines occur, it is a potential approach to optimize processes. The same

it is in computer science (e.g., [Menasce et al., 2004, Bolch et al., 1998]). Queuing networks al-

low to use simulations or analytical methods for investigating the performance. However, analytic

approaches usually rely on less detail. If the models are created manually, the complexity of the ana-

lytic approach limits its use. Besides that, analytic solvers support less functionality as simulations.

Examples are the missing support to annotate individual requests with a payload, e.g., parameter

settings, and missing reflection of parameter dependencies in the modeled system behavior [Brosig

et al., 2015]. Furthermore, their results are often limited to mean values. The advantage is the rather

fast solving.

Queueing Networks Numerous variations of queuing theory exist, and all rely on the concept

of a queue and a server. In the following, the terminology for typical computer science related

scenarios are used. This is depicted in Figure 2.3. A queue holds the arriving requests and forwards

them with a defined scheduling strategy. The most common one is the First In First Out (FIFO),

where requests are served in the same order they arrive. Others prefer requests based on a certain

priority related to a particular request type. At the server, a request is delayed a defined time frame.

Usually it is described by a random variable and refers to the term service time distribution. The

inter arrival time defines the time between the arrival of two requests. It is usually described by a

random variable, too. However, deterministic delays for service time and inter arrival time are also

supported. Advanced methods also provide service time models considering the internal behavior

of a time sharing resource (e.g., CPU). In these cases the time required to service a request increases

with the number of requests served in parallel. Moreover, a limitation of the queue length is possible.

In most cases a Poisson process is assumed for the arrival rates and service times. Poisson pro-

cesses assume the occurrence of random, discrete and independent events within a time frame where

the average amount of occurrences is known. This implies a memoryless process. Thus, the Poisson

distribution describes the probability of a certain number of events for a defined interval length.

The exponential or negative exponential distribution assumes a Poisson process and describes the

probability density of the time between the occurrence of two events. It is common use to assume

user think times and service rates fulfilling the Poisson conditions.

Queue Server

Arrivals Departures

Figure 2.3.: Queue and a server.

28

2.1. Foundations

Such a queue and server can also be used to black box model complex systems. However, some-

times it is necessary to analyze a certain detail of a more complex system and thus a detailed model

is required. Queuing Networks (QNs) are bipartite graphs connecting queues and servers as de-

picted in Figure 2.4. If requests enter the system and leave it after being served (cf. Figure 2.3)

the system is open. In Figure 2.4 requests that have been processed by the modeled application

do not leave the system. Instead, they are returned to a part of the network, which describes the

users’ behavior before the request again arrives the application server. In such a closed system the

population of requests is constant. This approach is often used when interactive applications are

modeled, since users usually send only one request at a time. To model users’ behavior, very often

an infinite server queue is chosen. Hence, the user related queue is always empty, since the requests

can be forwarded to an infinite number of servers. The servers delay the request using an exponen-

tial function. Another name for such closed systems refers to the characterization of the workload,

that is a closed workload system. Open workload is defined respectively.

A closed system as depicted in Figure 2.4 will always converge to a steady state over time, since

the population of requests is constant. Steady state means, that the systems observable parameters

do not change over time. This does not exclude that the system follows random processes and thus

produces some random noise, when being observed. Note that, steady state is actually the state at

which a system’s performance is observed in a benchmark. A related term is flow equilibrium, it

defines that the arrival rate of a system, or part of the system is the same as its throughput. Two of

the most important measures in this context s are the arrival rate and the departure rate. The latter

expresses the number of requests that depart a server in a defined time interval. In case the system

is not in flow equilibrium, usually due to the fact the arrival rate is larger than the departure rate, it

ends up in increasing queue lengths and thus it cannot be in steady state. However, even in a system

with steady state backlogged periods can occur.

..
.

..
.

Users Application Server

Figure 2.4.: Closed queuing network.

Assume that each server in the user model omits requests Poisson distributed. The merge property

states, that the superposition of these processes is again a Poisson process whereby the mean arrival

29

2. Foundations and State-of-the-Art

rate is the sum of the mean arrival rates of all sub processes. The same holds for the split property.

If a Poisson process is randomly split in sub processes, the resulting processes are again Poisson

processes [Ross, 2006].

The Poisson Arrivals See Time Averages (PASTA) property states, that requests arriving a system,

see it in a state as if they came into the system in a random instant of time. This is equivalent to the

state a random external observer would see the system [Wolff, 1982]. This is an important property.

It allows to conclude from the average state (e.g., queue length), the waiting time of an arriving

request in the queue.

A convolution of two Poisson processes is still a Poisson process. However, in the example

from Figure 2.4 it cannot directly be concluded that the arrivals at the application server follow a

Poisson process, even if the think time and the service time are. This is, because the system is

not memoryless. Assuming a system’s population of only 1 request, it becomes immediately clear.

An external observer would in average see the application server model utilized at least a small

portion in time, while the arriving request would always observe a free system. However, for a

sufficient large number of requests in steady state, the system arrival rate converges to a Poisson

arrival process.

Resource Demand Estimation When a QN is created, one of the important steps is to deter-

mine the demand, a request has onto the resources simulated by the servers. In a black box approach,

this might simply refer to the observed service time. However, if resources are explicitly modeled, it

often lacks adequate monitoring information. If the system’s workload can be controlled, resource

demands can be easily determined by sequentially sending requests to the system and monitoring

the consumed resources. This task becomes more complicated with an increasing number of simul-

taneously served request types. Resource Demand Estimation (RDE) methods use statistical tools,

often combined with particular domain knowledge to estimate the hidden resource demand a request

has. Examples are based on linear regressions [Rolia and Vetland, 1995, Pacifici et al., 2008, Casale

et al., 2008] or Kalman filters respectively [Zheng et al., 2008, Kumar et al., 2009].

2.1.3. Closed Control Loop

Adaptive computer systems dynamically and automatically change their configuration or deploy-

ment. They aim to adapt to a changing context to maintain a defined observable behavior. The

context can comprise the workload, hardware and everything that has an influence upon the sys-

tem’s performance. The fundamental mechanisms enabling such features are known for centuries

now.

In the year 1784 James Watt invented a steam engine that is able to maintain a constant drive by

applying a centrifugal governor [Karl-Dieter and Oliver, 2012, pp. 1-3]. This centrifugal governor

is driven by the steam engine. If the drive increases, it closes a valve to reduce the drive. Thus

a constant drive is maintained, independently from disturbing factors like changing heat. Such a

measure refers to closed control loops. Such systems “continuously compare the actual output to its

30

2.1. Foundations

desired reference value; then apply a change to the system inputs that counteracts any deviations of

the actual output from the reference.” [Janert, 2013, p. 15]. Consequently, these systems have the

objective that an output follows a desired reference value, although the system underlies disturbing

influences.

Figure 2.5 depicts a schematic view onto a closed control loop. A sensor measures the system’s

output. The output should maintain a value defined by the reference value. The measured output is

used to calculate an error between the desired value and the real value of the system. This error is

used by the controller to adapt the system’s behavior using the actuating variables. These variables

configure an actuator to control the system’s input.

If a perfect system knowledge would exist and no disturbances would occur, the feedback and the

computation of the error would not be required. Such systems are referred to as open control loop

or non-feedback controllers or feedforward controllers. However, the system underlies continuous

changes, like the number of users per-tenant, or a reduced processing speed caused by high temper-

atures. Especially in physical environments, a disturbance onto the sensor can occur as well, at least

the sensor adds some delay before the error can be calculated.

Controller System

Sensor

Disturbance

Actuating

Variable

System

Output

Measured

Output

ErrorReference

Figure 2.5.: Schematic view onto a closed control loop.

Closed loop controllers can be classified in two large groups. Multiple Input Multiple Output

(MIMO) controllers observe several outputs and control several actuating variables. They come

along with a high complexity and thus with several limitations in practice [Janert, 2013, pp. 65-66].

MIMO approaches often use solutions which do not require a detailed system model. One example

is fuzzy logic based controllers. Single Input Single Output (SISO) controllers observe one output

and control a singe actuating variable.

A widely used controller is the Proportional-Integral-Derivative (PID) controller. It controls the

input by a proportional factor based on the current error, by using an integral over the past errors and

the derivative of the change in the error signal. The integral part is able to reduce the steady state

error and the derivative control can increase the adaptation speed [Hellerstein et al., 2004, 293ff.].

Some controllers use only a subset of the PID provided functionality. Accordingly, these refer to,

e.g., PI controllers.

31

2. Foundations and State-of-the-Art

2.2. Related Fields

This section discusses existing approaches that are related to the goals of the thesis, but not directly

focusing on multi-tenancy. At first, virtualization is discussed. It is the most used alternative ap-

proach to multi-tenancy. Then follows a discussion how processes, threads and I/O are controlled.

Additionally, mechanisms from the network domain are conducted. A brief discussion, why elas-

ticity does not achieve performance isolation, presents the last topic discussed. It is not possible to

discuss every approach and method in the particular field. Instead, some representative examples are

selected to explain the principles in that domain. These shared principles are used to differentiate

the goals of the thesis from those of the related work.

2.2.1. Hardware Virtualization

Hardware virtualization technologies can be used to run different operating systems and applications

isolated from each other, on a shared hardware or host operating system. A hypervisor is the control

instance that supervises the execution of the guest systems and their access to resources. In general,

it is possible to differ between two fundamental approaches, to host several guest operating systems.

Virtualization and paravirtualization methods are distinguished. The first leaves the guest system

completely unaware of its virtualized execution. Emulation can be used to achieve this. This usually

comes along with rather high overheads for the system’s performance. Paravirtualization instead is

an approach where the guest operating systems are aware of their execution context. Therefore,

they can be implemented with special functions to communicate with the hypervisor. This increases

performance, since the guests may directly access the hardware. Calls from guests to the hypervisor

refer to hyper calls. Since this concept allows to deploy the same application multiple times onto

the same hardware, by deploying them into separate guest machines, this is an alternative approach

to multi-tenancy.

Exemplary the CPU isolation among guests is discussed in the following. The physical cores

are abstracted by so called VCPUs. Each guest uses one or more VCPUs. The hypervisor controls

the execution and thus the resources consumed by the guest systems. One option is to pin a guest

systems VCPUs directly to one of potentially many real CPUs. Thus, it is possible to dedicate the

CPU for the usage by one guest only. Therefore, resources can be isolated. However, this does

not allow over-commitment and reduces efficiency. Usually CPUs are shared among several guest

operating systems.

To ensure isolation in these situations, hypervisor manufactures and the academia developed

various schedulers to manage the access onto the CPUs. The Xen Credit scheduler is an example

that allows to enter a share of the resources per guest system and a cap value [Xen Project, 2015].

Even if no other guest competes for resources, the cap cannot be exceeded. The credit scheduler

is a proportional weighted fair share CPU scheduler, aiming at providing each guest resources

proportional to their share. In Xen, one queue for every physical core is created, in which the

VCPUs of the guests are queued accordingly. Each VCPU has an amount of credit it is allowed to

32

2.2. Related Fields

consume within an accounting period. An accounting period is the time for which a scheduler tries

to balance the usage of a resource according to the weights. The VCPUs are primarily selected by

their state which indicates, if it currently process I/O, has credits left or already used all of its credit.

Within these defined groups a round robin like approach selects the next VCPU. A currently running

VCPU is being pre-empted, once it exceeds the quantum or release the resource. This allows other

VCPUs to process their instructions [Xen Project, 2015]. Quantum refers to the time a process is

allowed to use a resource, without interruption.

Additionally to this approach, the academia developed schedulers for a variety for situations to

cover real time applications (e.g., [Xi et al., 2011]), or to cover I/O bound aspects (e.g., [Zeng et al.,

2013, Gulati et al., 2010]). Isolating I/O is a difficult task. Especially in case of Xen, since the I/O

related drivers are centrally provided by a privileged guest system which can become a bottleneck.

Additionally, the I/O activities require CPU in the shared privileged guest system. [Gupta et al.,

2006] tackle this problem. In their particular case, they determine the CPU overhead for I/O of

a Xen guest on the shared privileged domain, by advanced monitoring features. They use this

information in an enhanced credit scheduler to achieve lower interference of guests.

Xen was discussed as the sole example within this section. Nevertheless, the methods and ap-

proaches mentioned here are of general relevance for hypervisors.

Relevance for Performance Isolation If a guest system hosts an application instance serving

one customer with several users, it is conceptually comparable to multi-tenancy. Although virtual-

ization enables measures to provide performance isolation between different guest systems, several

differences compared to an MTA exist. The hypervisors unify the hardware control and the knowl-

edge about the entities they isolate (guest systems), by connecting the VCPUs with real CPUs in the

schedulers. VCPUs and CPUs are conceptually the same resource type. In case of MTAs the entities

are conceptually different. At least a mapping between a tenant and a resource representative entity

would have to exist. As one example, the CPU isolation is considered. The hypervisors scheduled

VCPUs are preemptive, which means that the processing can be interrupted at any point in time.

Thus, immediately leaving the resource for others. Moreover, the control is very fine-grained on a

cycle’s basis. Only one entity allocates the CPU at a time, whereas several tenants have to allocate

the application at the same time, to ensure a proper overall performance.

Generally, using virtualization to provide performance isolation adds additional resource over-

head, and the methods used by virtualization technologies cannot directly be applied for perfor-

mance isolation in MTA. However, the method from Gupta et al. [Gupta et al., 2006] is potentially

relevant, since they provide a mapping between the CPU resource required to process guest individ-

ual I/O activities, which are two different kinds of resources, where no direct mapping was available

before their work.

33

2. Foundations and State-of-the-Art

2.2.2. Scheduling of Processes, Threads and I/O

A process is executed and controlled by an operating system. Different states of a process are

specified. The most relevant are running, in which it actively uses resources. Another is waiting, in

which usually other processes allocate the resource. A similar concept are threads. Several threads

belong to one process, whereby a thread cannot exist outside a process. Threads are the smallest set

of instructions that are scheduled by common operating systems. Processes are isolated with regard

to the address space and thus data from other processes. Threads share the same process context,

meaning they share the same data. An operating system scheduler manages, when a process or

thread is allowed to run. Simplistic approaches provide a round robin, in which each process is

allowed to process for a quantum of time. However, usually a preference of interactive processes

should be given. Several queues with waiting processes exist in Linux environments. The queues

have different priorities, according to the process priority. Each queue serves its processes round

robin, whereby queues with higher priorities are preferred.

Another interesting field relates to I/O scheduling where requests, once they are forwarded to the

device driver, cannot longer be preempted. Moreover, the devices often process several requests in

parallel. A common approach is deadline based scheduling. In such a system each I/O request has

an expiration time and the scheduler selects requests based on the expiration time. Thus, it is aimed,

that requests will not exceed a certain response time. More advanced schedulers provide a round

robin like scheduling for each process, additionally to the deadline queue. Hereby, each process

is allowed to send as many I/O requests as possible within its quantum. It is worth mentioning,

that these schedulers can differentiate between request types and their potential impact to optimize

the resource usage, by not mixing request types. More details about scheduling can be found in

[Stallings, 2008].

Relevance for Performance Isolation Similar to virtualization, the schedulers control the

resources/threads and know the entities consuming them (cf. Section 2.2.1) and the processing can

be preempted. However, I/O schedulers aim at ensuring a proper response time for all processes

without a direct control of the resource, but by limiting the admission to the resource. A difference

is, that an I/O request usually only refers to one resource, whereas application requests can generate

load on several resources. A widely used and representative approach uses deadline based schedul-

ing. In this mechanism, the information about the request originating is not longer of relevance.

Advanced methods cover this, but still lack in considering a certain quota for a process and differ

only priorities of processes. Since a quota is not reflected, the schedulers will fail to maintain per-

formance isolation among processes, if the device is overloaded. This becomes even more evident,

since requests close to the deadline will be preferred in processing, independent of the source. Sim-

ple and static schedulers, like a round robin, lack in efficiency and over-commitment support. Using

these approaches, one queue can be long and providing guarantee violations, while another is short

and far below its guarantee. A dynamic adaptation of scheduling weights would be able to fix this

issue. Furthermore, although I/O schedulers are aware of request types, they do not really know the

34

2.2. Related Fields

resource internal impact and the potential influence upon the performance observed by the requests

served next.

However, it seems that a request based scheduling or active control of the admission of requests

is able to provide measures to control performance. This could be a way to provide performance

isolation with reflecting quotas.

In summary, in most cases the requests can be preempted and a direct control of the hardware

layer exists. There is still a significant difference in the granularity between user level requests and

single I/O requests. The latter is much finer and allocates only one resource.

2.2.3. Networks

In networks the achieved QoS is of interest, since the establishment of the first phone lines. It is

differentiated between connection and packet oriented networks. In connection oriented networks, a

dedicated path between two communication endpoints is established. Thus the resources are shared

by a strict allocation of them. These approaches are not considered to be relevant, because of their

drawbacks in over-committed scenarios.

In packet oriented networks, the quality observed for a certain packet depends on the quality pro-

vided on each of the transportation layers of the OSI model [Zimmermann, 1980]. If an application

relies on a certain quality of the network, it also has to communicate this through the stack to the

point, where finally a medium is accessed. In IP packets, the differentiated services code (DSC)

or type of service field (TOS) [Nichols et al., 1998, Moy, 1994] is used to prioritize different IP

packets. Network elements like routers may use this information to prioritize selected packets. Vir-

tual LANs (VLAN) enable a separation into virtually decoupled LANs based on a frame id field, at

the second layer. Additionally, they allow to prioritize Ethernet frames by a three bit field [IEEE,

2006] which can be used by the network elements to adjust their scheduling. Thus, both concepts

are quite similar. If an application requires a certain quality from the network, this information is

downwarded the stack into each of the underlying layers. These approaches enable the differenti-

ation of service qualities, but cannot ensure isolation. If isolation should be achieved, approaches

where resources become explicitly reserved on all network elements, on the communication path,

are required (e.g., RFC 2205 [Braden et al., 1997]).

A certain QoS and isolation can be guaranteed between data streams, multiplexed onto a medium

between two directly connected points, [Zimmermann, 1980] by using scheduling mechanisms,

which organize the frames or packets according to their priority. Common work-conserving

Weighted Fair Queuing (WFQ) schedulers are used for this task. Work-conserving means, that

empty queues are skipped, to serve queues with pending requests, although this might result in an

imbalanced service rate for different queues. The advantage is a higher utilization of the shared

medium. Besides the work-conserving WFQ schedulers, quota enforcing approaches like a leaky

bucket [Tanenbaum and Wetherall, 2011, pp. 407ff.] scheduling may also be applied. To relieve the

disadvantages of a static behavior of the scheduler approaches, academia provides approaches that

dynamically adapt the weights based on various optimization techniques (e.g., [Grzech et al., 2009]

35

2. Foundations and State-of-the-Art

A recent development are Software Defined Networkss (SDNs). SDN is a concept, that manages

the routing of packages or Ethernet frames by flexible software logic, accessing several OSI layers,

instead of hard wired circuits on the forwarding plane, accessing only one layer. The concept

additionally allows to enable a fast forwarding of packages, by utilizing low level information.

Whereby potentially complex software defined rules on the control plane fill the switching tables.

An example is the OpenFlow standard [ONF, 2013]. OpenFlow assumes an architecture, where the

switching of packages is still implemented by a fast forwarding plane with specialized technologies.

However, the concrete information how a frame or a package is routed, is dynamically defined at

runtime by some higher level control logic. If for example a new package arrives and no rule exists

on the switching/data plane, the upper level software defined logic is triggered for a decision. This

investigates more details, like package details, and defines a rule for the lower level switching tables,

in case a package with the same characteristics arrives again. The benefit of the differentiation

into these two abstraction levels allows high throughput, combined with complex processing and

decision making.

Relevance for Performance Isolation There are several significant differences between the

work done in the field of networks and the applicability on MTA. First, in networks the information

about the applications is not available in lower layers ensuring a certain QoS. Indeed, only differ-

ent classes of priority can be encoded. Even more interesting, this information is pushed from the

application downwards to the lowest levels, really accessing a concrete medium. Additionally, this

usually does not provide isolation, but a differentiation of the service qualities only. Furthermore,

once the packet is on its way in the network, the quality depends on a volunteer support of the stan-

dards by each network node. For an MTA this would mean that information about a tenant is pushed

down the stack to the operating system or hypervisor. This is imaginable, e.g., by adding some meta

information to the thread context, which is used by the operating system for an additional account-

ing in the scheduler. However, it becomes infeasible once other services in other processes on other

nodes are used to process a request. Even within one process and operating system one would

have to enhance all resource schedulers, including I/O, CPU and memory allocation mechanisms to

support this concept. That seems not to be feasible without enormous efforts.

When the medium is accessed, one has to rely on the voluntary support of other nodes accessing

the medium. Assuming a shared medium, such as in a WIFI network, one node can easily flood the

medium. If a node solely sends multiplexed packages on one physical medium connected to one

receiving node, they again apply common scheduling techniques. A MTA which strongly benefits

from the parallel processing of requests, would not be operated efficiently if only one request would

be allowed to be processed at once. Furthermore, the users of tenants do not follow a defined

protocol, and one cannot assume that they will decrease their load following certain algorithmic

patterns like adjusted receive window sizes in TCP.

However, scheduling mechanisms were proved to provide a certain handle on controlling perfor-

mance. Furthermore, the separation of complex processing for package individual decisions and the

fast rule based processing of requests in context of SDNs brings several benefits.

36

2.2. Related Fields

2.2.4. Elasticity

Essential features for the cloud users are the illusion of infinite computing resources, the elimination

of an up-front commitment by cloud users, and the ability to pay for the resources used in a short-

term basis [Armbrust et al., 2009]. The combination of these features is referred to as elasticity and

enables users to rapidly adapt the resources provided by the cloud. They use these features to adapt

to variable workload in an automated way, maintaining stable service qualities. The lowest granu-

larity of resources allocated, is often measured in terms of instances, nodes or the number of CPUs.

In the most literal sense of the word elasticity, it would mean, that absolutely no over-provisioning

occurs, to ensure the pay for what you need expectation of a cloud consumer. Advanced methods

use controllers, including a prediction of the future workloads and queuing models to estimate the

impact upon the system for proactive adaptation of the used resources [Ali-Eldin et al., 2012]. How-

ever, state-of-the-art industry solutions, neither provide an automatic adaptation of the application at

all, or use event triggered predefined rules to adjust the application [Galante and Bona, 2012]. Such

an event could be an SLA guarantee violation. Researchers already started to add these rule based

adaptations into models (e.g., [Suleiman and Venugopal, 2013]). Others focus on the technological

enablement. Das et el. and Sousa [Das et al., 2011, Sousa and Machado, 2012] provide measures

to support the replication and migration of a shared/multi-tenant databases at runtime, to adapt to

increasing or decreasing load.

To clearly separate elasticity from performance isolation, the following example helps. Assuming

a system in an overloaded situation, because of one disruptive tenant, it could be a solution to provi-

sion and allocate additional resources by leveraging underlying layers, to maintain SLA guarantees.

This is elasticity and it is acceptable, if the disruptive tenant pays for the increased capacity. If the

disruptive tenant does not pay for the extra resources, the system is no longer fair. Moreover, new

resources are not instantaneously available and at least within this duration the performance has to

be isolated.

Relevance for Performance Isolation Although related work mostly focuses on elastic pro-

visioning of hardware related resources, it is also used for applications running on a PaaS. In this

case, usually application nodes are added. However, elasticity for a particular tenant was not yet

investigated. Existing elasticity mechanisms focus on an entity and granularity they can control.

Usually this is much more coarse-grained as required when tenants should be controlled. The pos-

sibility to control a tenant’s performance individually, would lay the foundation to provide elasticity

on a tenant basis.

However, there are also some similarities. Elasticity and performance isolation face a dynamic

environment in a similar context, in which they have to adapt an existing system. The results from

the field of elasticity show that controllers can be applied to this task. Since in the isolation methods

presented later, the actuators can be operated very fast, the benefit of predictive methods becomes

less. Nevertheless, using a queuing model, calibrated by real time information to find a suitable

system setup, may be used in the context of performance isolation. Compared to [Ali-Eldin et al.,

37

2. Foundations and State-of-the-Art

2012], the model would not be used to predict the impact of workload changes, but for the system

optimization only.

2.3. Web Server Based Performance Control

This section considers related work, where performance is actively controlled at the application

level, which is at a level playing field with MTAs. First, related aspects from a wider context are

discussed before multi-tenancy is investigated in detail.

2.3.1. Performance Driven Deployment

The proposed solutions in this group aim at achieving certain performance objectives by a goal

oriented deployment of the relevant entities. These entities can be tenants, components or others.

However, these approaches fail in case of unpredictable workload behavior and guaranteeing isola-

tion within a shared node. In the following an excerpt of such approaches is given.

Fehling et al. [Fehling et al., 2010] analyzed challenges arising from multi-tenant scenarios. Fur-

thermore, they provided a method to place tenants onto application nodes with different QoS, in

a way resources are used optimally, without SLA violations. Thereby, tenants with lower require-

ments are sometimes located onto application nodes providing better qualities, if the provisioning of

additional resources can be avoided. The method selects the locations by a simulation of the tenants

impact and a hill climbing algorithm. Also, this approach targets at maintaining tenants SLAs, it

cannot ensure isolation between tenants sharing the same resource. Additionally, it requires a perfect

forecast of the tenants behavior and demands, which seems hardly possible considering fluctuating

request rates of an application. Furthermore, a combination of simulation and hill climbing is slow

and fails if demands change fast. Additionally, a dynamic relocation at runtime might have to many

overheads to react to sudden changes. The work of [Zhang et al., 2010] aims at maximizing the

overall resource utilization of a set of computing nodes, with respect to guaranteed SLAs for dif-

ferent tenants. The aim is to place a set of sequentially on-boarding tenants to a set of available

resources, without violating the SLAs. The consumption of a particular resource is assumed to

be linear on the number of the tenant’s active users, while a certain response time is guaranteed.

However, tenants allocating the same node still influence each other, and variable demands are not

covered at all. Lang et al. [Lang et al., 2012] applies comparable approaches to databases. The

approaches from [Schroeter et al., 2012, Schroeter, 2013, Ruehl, 2013] assume a multi-tenant ap-

plication allowing a distributed deployment of its components. They provide models to describe the

application components, the tenants’ requirements and the offerings of various deployment loca-

tions. In principle, these approaches could be used to deploy performance critical components of an

application isolated for separate tenants. However, in this case resources are no longer shared and

the drawbacks of multiple static overheads appears again. Furthermore, approaches which belong

to locating tenants onto computing nodes are usually NP-hard bin-packing problems, using known

heuristics.

38

2.3. Web Server Based Performance Control

2.3.2. Closed Control Loops

The papers presented in the following use closed control loops to regulate the performance ob-

served by the users. The main difference to the thesis objective is, that they focus on the overall

performance only, but not on the influence of one tenant onto another. In the following insights into

representative approaches are given.

One paradigm is to control and enforce a certain performance of the overall application, by using

a request based admission control. [Iyer et al., 2001] recognize an overloaded situation and simply

block the establishment of additional connections. To dynamically adapt the admission control, in

case of variable workload, several approaches apply closed control loops. [Qin and Wang, 2005]

use a closed control loop to adjust the ratio of requests, that have to be rejected to ensure a proper

performance of those accepted for processing by the application. To do so, they apply a contin-

uously adapting controller, to tackle non-linear behavior of the response time. Other approaches

are based on fuzzy controllers. In [Diao et al., 2002b] the maximum number of connections an

Apache web server process keeps open is controlled by the human expert knowledge transferred

into a fuzzy controller. Requests that arrive, after the maximum number of connections exceeded,

are rejected. This ensures a proper performance. [Chandra et al., 2006] apply a PI controller for

a similar goal. Several derivatives of such approaches exist. They all do not consider different

sources of incoming requests and consequently these approaches cannot provide tenant-individual

performance measures.

MIMO based controllers seem more appropriate for the sake of performance isolation, since sev-

eral inputs and outputs have to be controlled. [Diao et al., 2002a] present a controller where the

MaxClients and KeepAlive settings of an Apache web server are adjusted to maintain a certain uti-

lization of the hardware resource. Both settings relate to the admission of requests. The authors

overcome the layer discrepancy and enforce a certain utilization of resources, although no direct

resource control is given. However, in this and similar approaches from other domains the actuat-

ing variables are independent. Transferring this to the multi-tenancy domain would mean that the

admission of requests from one tenant could be adjusted independently from the admission of the

others. This is not the case in reality. An increase in admitted requests requires a reduction of the

others, since the overall load onto the system should not become too high. Moreover, the system’s

output is not a single metric, but the impact one tenant has onto another. Furthermore, a binary

quota like concept is not supported by these approaches. Another example is [Liu et al., 2007]. The

authors use a MIMO based controller to adjust resource shares for each tier in a 3-tier application.

This controller ensures that each customer, using one separate instance of the application, observes

different performance, when it comes to overloaded situations.

2.3.3. Source Depending Performance Control

In contrast to the previously presented approaches, the measures depicted in this subsection are

aware of the source of incoming requests. They control these requests in order to achieve a certain

39

2. Foundations and State-of-the-Art

performance goal. However, usually the focus is on the overall system performance and/or service

differentiation. Exemplary, three publications are discussed in the following.

[Welsh and Culler, 2003] actively promote the use of request based admission control to ensure

a proper performance of web applications in case of extensive load peaks. They apply on each

computing node, which is part of the service, different controllers to ensure a proper performance.

Since they do not apply this at one single entry point, only requests that use a bottleneck service are

rejected or delayed. In general, they have one closed control loop, dynamically adjusting the arrival

rate of requests admitted for processing, with the help of a token bucket algorithm. Additionally,

they adjust the number of threads processing the incoming traffic to avoid overloaded situations.

Furthermore, the authors discuss an approach, providing service differentiation, where the requests

are ordered into classes. The quality difference is enforced by dedicated bucket sizes. However, the

class specific bucket sizes are determined by fixed factors and thus lack in efficiency with regard

to over-commitment. Even worse, as long as tokens exist in both buckets, there is a significant

influence between the request classes. This is why the authors aggressively reduce the tokens of low

priority classes in case response time problems occur. Similar to the previous approaches, a defined

quota is not considered.

Lu et al. [Lu et al., 2006] present an example of work where different requests/connections are

given different priorities, depending on their origination. In particular their work focus on TCP

connections and differentiating QoS, but does not provide isolation as previously defined.

So far, these kind of approaches focus on service differentiation and avoidance of overloaded

situations. However, they do not consider multi-tenancy at the application level or performance

isolation.

[Karlsson et al., 2005] applies a closed control loop on storage devices to adjust the maximum

number of requests an entity is allowed to be sent. They define various working points of the system.

Each has different ratios of requests allowed to send by the different entities. Once a working point

is defined, the overall throughput, and the derived throughput for each source is reduced such that

the delay of the response maintains a certain value. Nevertheless, it is not discussed what should

happen with requests exceeding the adjusted throughput. Queueing would immediately violate

isolation, since the queues are not reflected in the mechanism. Further, the approach does not

consider a quota and individual tenants exceeding it.

2.3.4. Multi-tenancy

This section discusses existing work considering the isolation in MTAs. At first, an overview of

work to achieve isolation of non-performance related aspects is discussed. Secondly, an overview

of existing performance isolation mechanisms for MTAs is given.

2.3.4.1. General Isolation Aspects

Several publications focus on how to consolidate different tenants onto the same resources. Some

of these publications focus on the database level and how the data is isolated between tenants.

40

2.3. Web Server Based Performance Control

[Weissman and Bobrowski, 2009] discusses an approach using simplistic and rather generic tables,

adding a metadata based defined view onto it. This allows to provide tenants individual views onto

the data and even individual schemas. Aulbach et at. [Aulbach et al., 2008] present an approach

where parts of the data from different tenants is shared in the same table and other parts are stored

in separate tables, to enable customization by providing isolated data and isolated customizing.

[Jacobs and Aulbach, 2007] discusses various approaches, how the database runtime can support

various tenants and [Yaish and Goyal, 2013] presents an access control to ensure that tenants can

only access their data.

At the application level, various authors discuss how isolation of non-performance aspects can

be achieved. Bezemer and others [Bezemer and Zaidman, 2010, Guo et al., 2007, Koziolek, 2010,

Koziolek, 2011, Strauch et al., 2013] present more or less coarse-grained architectures and design

ideas. Examples are file path separation and tenant-individual credential storages to access data.

They aim at ensuring a proper isolation of the application data and customizing, which comes along

with increased code complexity. Other approaches allow to have some components being shared

among tenants, while others are separately deployed to keep tenants isolated. These separated com-

ponent instances may even rely on tenant specific implementations [Mietzner et al., 2008, Mietzner

et al., 2009, Schroeter et al., 2012, Schroeter, 2013, Ruehl, 2013].

Relevance Bezemer [Bezemer and Zaidman, 2010] recognized that several aspects, such as se-

curity, are cross cutting concerns and thus linked with different layers of the application provision-

ing. This is similar to performance. However, especially in case of data isolation or customization,

the subject to be isolated for different tenants is intentionally controlled by the application layer.

This allows to rather easily ensure their isolation. Other non-functional properties like security or

availability related issues are also relevant for the whole stack. Approaches as those from [Schroeter

et al., 2012, Ruehl, 2013] might take this into account and deploy crucial components on locations

with higher qualities. Thus, the authors fill the gap of the layer discrepancy by an automated de-

ployment of the application components. Whereby the solver, finding a suitable deployment, has

information about requirements and provided qualities of different locations. However, the research

in this thesis focus on shared application instances and their nodes. Thus, it is complementary to the

approaches from [Schroeter et al., 2012, Ruehl, 2013]. Isolation methods presented in this thesis

might be used to achieve performance isolation within one of these shared components. Overall,

the related work tries to separate multi-tenancy specific concerns, like tenant authentication, from

the application logic. Ideally, this would also be possible for performance isolation.

2.3.4.2. Performance Isolation

In the following, the existing publications which aim at MTAs and performance isolation are dis-

cussed on an individual basis.

[Guo et al., 2007] outline their position on how performance isolation between tenants could

be achieved. The authors recommend to locate tenants on application nodes, by considering their

41

2. Foundations and State-of-the-Art

resource requirements and load profiles. This should reduce the influence upon each other. Since

this cannot ensure performance isolation sufficiently, they additionally recommend static or dynamic

admission control mechanisms. However, no details about concrete methods are given.

Shue et al. [Shue et al., 2012] aim at reducing interference between tenants and unpredictable

performance. Thereby, they aim at key-value databases shared among several tenants. The approach

is composed of four parts. On a long timescale, the partitions of the database are reallocated,

thus it avoids unfair distribution of load. On a medium timescale, global weights for the tenants,

representing their relative share, are adjusted. These weights are used to determine local weights per

node. The mechanism increases the weight of one tenant on one node, if his demand on this node

is higher compared to other nodes. This information is shared with other nodes for compensation.

To enforce the weights, a WFQ is applied. Moreover, a decision mechanism decides which replica,

if existing, should be used to answer a tenant’s request. Although, scheduling weights are adjusted

dynamically, they do not reflect the fairness criteria defined for this thesis. The authors do not

consider application level guarantees and quotas like response time, but simply try to enforce a

defined share of the resources, which reduces the capabilities for over-commitment on application

level SLAs. The approach fails if tenants have different demands per request.

In [Lin et al., 2009], the authors propose a closed control loop based performance regulation

for MTAs. The focus is to guarantee different QoS to different tenants. Therefore, they propose

two closed control loops. The first loop ensures that the overall performance of the system is not

exceeding a certain limit. This is enforced by applying an admission control mechanism. The

second loop, dynamically adjusts the thread priorities of tenants to diversify quality. However, in

situations with high load, the method will fail to guarantee isolation, because the mechanism does

not provide isolated queues. Even with high differences in the thread priorities, an isolation is not

possible, if the disruptive tenants allocate a large number of threads. Therefore, requests are rejected

instead being backlogged, although the response times would still be sufficient. If the bottleneck is

in another process, not controlled with the thread priority, the approach will not be sufficient.

In [Wang et al., 2012], a Kalman filter is used to estimate the CPU consumption of tenants sending

different request types. The isolation strategy checks, if the current CPU utilization exceeds a

predefined threshold. If this is the case, it identifies the tenant and request type that causes the largest

CPU utilization. As a consequence, the allowed request rate for the request type of the disruptive

tenant is decreased by rejecting requests. Their approach assumes, that the same request type sent

by different tenants has the same demand. Furthermore, the demand estimation is only used to

identify malicious workload, but not to define individual shares. Incoming malicious request types

are rejected. A better approach would enable real resource shares, and handle requests with some

delay, instead of rejecting them. This would rather reflect the behavior of stand alone, completely

isolated systems. If a resource demand estimation has to be applied on a tenant-individual basis,

further problems arise. Previous evaluations of resource demand estimation methods are limited to a

low number of request types. There are case studies with linear regression [Zhang et al., 2007, Rolia

et al., 2010] using 14 different request types. Kraft et al. [Kraft et al., 2009] evaluate the influence

42

2.4. Performance Measurement in Shared Environments

of the number of request types (between one and five) on different linear regression and maximum-

likelihood resource demand estimation methods. In [Rolia and Vetland, 1995] experiments using

linear regression and varying the number of request types between three and ten are described.

In [Spinner, 2011], several methods for resource demand estimation are evaluated for up to 16

workload types.

The SPIN framework [Li et al., 2008] realizes three major features. First, it recognizes per-

formance anomalies, which will lead to significant performance problems. Second, it provides

fine-grained monitoring information to account resource consumptions to tenants, which is used

to identify the responsible tenant for the performance anomalies. The used metric is the ratio of

the resources used. At last point an adoption decision is taken to reduce the impact of the tenant.

However, the authors miss to discuss how such an adoption might look like. Neither the mechanism

how the adoption process might be controlled, nor potential actuators are defined. This makes the

definition of a framework less helpful, since it does not consider how potential algorithms to enable

performance isolation may look like, e.g., for a closed loop controller the accounting of resources

may not be required. Furthermore, no measures to reflect SLAs are mentioned.

Similar to the paper just discussed, Walraven [Walraven et al., 2012] presents a framework to

provide performance isolation in MTAs. Compared to Li [Li et al., 2008], the authors provide more

insights on how the actuator works. They first assume a tenant profiler, which gathers various mon-

itoring information. Based on a comparison with tenant specific SLAs each tenant is put into a

category. Tenant’s requests are put into different queues, according to their category. A scheduler

selects requests from different queues, following an undefined strategy, to ensure proper isolation

between categories. Although the approach provides more information about how performance

isolation should be engaged, it misses a detailed discussion how the tenant profiler is structured

internally. Furthermore, the limitation of the scheduler to a limited set of categories hinders a

fine-grained, tenant-individual optimization. A centrally controlled modification of the scheduler’s

behavior at runtime would be beneficial, but was not discussed. The reasons leading to the vari-

ous design decisions are not discussed and a detailed analysis of potential performance isolation

mechanisms and their requirements was not done.

Both frameworks neither describe, how they collect and combine information distributed among

several processes and application nodes, nor how they support performance isolation methods.

2.4. Performance Measurement in Shared Environments

Most existing publications, in the wider context of this thesis, focus on the benchmarking of single

aspects of cloud services, like databases (e.g., [Cooper et al., 2010]). Several publications discuss

metrics for cloud features, like elasticity (e.g., [Kupperberg et al., 2011, Herbst et al., 2013, Islam

et al., 2012, Dory et al., 2011]).

The most relevant related work comes from the field of virtualization. Most of the benchmarks

focus on general performance aspects (e.g., [SPEC, 2013]). Another example is VMmark [Herndon

et al., 2006], a benchmark developed by VMWare. It defines a tile as a set of VMs serving different

43

2. Foundations and State-of-the-Art

applications (e.g., mail server and SPECweb2005). Several tiles are deployed on a virtualized hard-

ware. The benchmark score is based on a normalized, overall throughput of the applications. The

total throughput increases with the number of tiles deployed, as long as the system is not saturated.

VMWare publishes the number of tiles in addition to the throughput. However, VMmark focuses on

the overall performance of a hosting platform, and misses to quantify the mutual influence, of the

different workloads or tiles. Others investigate in detail, which parameters influence performance in

virtual environments (e.g., storage [Noorshams et al., 2013]) but do not consider isolations aspects.

Georges et al. [Georges and Eeckhout, 2010] developed two metrics to express the efficiency of

a virtualized environment. One is similar to VMmark. The other, Average Normalized Reduced

Throughput (ANRT), reflects the loss of throughput on a per VM basis, when additional VMs are

deployed. Nevertheless, they do not set the amount of changed workload in relation to ANRT, and

use static amount of workload for the VMs. Thus, these metrics are not feasible to be used for

quantifying performance isolation between tenants already deployed.

Koh et al. [Koh et al., 2007] collected data within an experimental environment to characterize

the performance inference of workloads in different VMs. In addition, the mechanism predicts the

inference of these workloads. Huber et al. [Huber et al., 2011] created a feature tree that captures

the mutual influences of different VMs, with different resource requirements. This is done in an

automated way. Nevertheless, Huber and Koh do not extract a single figure of merit describing the

system’s isolation behavior. Furthermore, their approaches focus on hardware related resources,

only available in white box scenarios. Consequently, the approaches are hard to be used in SaaS or

PaaS scenarios and do not cover the black box view used for the definition of performance isolation.

One of the most interesting work in this field is from Matthews et al. [Matthews et al., 2007]. The

authors propose a performance isolation benchmark. They deploy a web application benchmark

in a VM, hosted together with a VM creating disruptive load. At first a reference measurement

without disruptive load is done. Then, various micro benchmarks (e.g., fork bombs or arithmetical

computation) are started in the malicious VM, and the reduction of performance at the application

was observed. However, the authors do not control the amount of malicious load and do not set

the impact upon the observe performance in relation to it. Furthermore, the execution of micro

benchmarks on a tenant basis, sharing one application instance is not possible.

Iosup et al. [Iosup et al., 2011b] observe the performance of systems running on amazon web

services and google app engine on the long-term. They observe a certain variability and were able

to identify recurring patterns. However, Iosup does not define a metric which expresses the influence

of foreign workload onto the own.

Guo et al. [Guo et al., 2007] defines performance isolation based on their understanding of a fair

system behavior. From their point of view, a system should prevent high performance for one tenant

at the cost of another. However, in this thesis, the definition of fairness was explicitly divided into

three different aspects. Finally, Guo does not define a metric nor a benchmark.

[Wang et al., 2008] describes and evaluates the performance of known database patterns for MTAs

introduced in Section 2.1.1.1. Others also consider how the overall performance in case of multi-

44

2.5. Summary of Related Work

tenant databases can be increased [Gao et al., 2011]. Nevertheless, the influence of one tenant onto

another tenant is not investigated.

Work that evaluates existing performance isolation methods uses standard benchmarks (e.g., [Lin

et al., 2009, Wang et al., 2012]. The authors directly compare observed performance metrics in

various situations. Neither metrics nor specific benchmarks for the isolation quality were published

so far.

2.5. Summary of Related Work

Measurement Existing work considers only general performance objectives of the shared sys-

tems. Only few authors discuss the variability of the performance in cloud environments and nobody

quantifies the impact of tenants onto each other, from an applications perspective.

Deployment and Elasticity Approaches which locate entities, SLA aware, onto a set of com-

puting nodes, cannot ensure a proper isolation within the shared node. However, it might support

additionally applied methods. As it was outlined, elasticity might add resources at runtime, to com-

pensate increasing demands. However, this is conceptually different and solves not the problems

envisioned in the thesis.

Scheduling Scheduling approaches, mostly based on WFQ, are used in many disciplines to

ensure a fair usage of resources. Usually it is applied where direct access to the resource is given.

Therefore, the information about the entity, which belongs to the particular fine-grained resource

request has to be known. In the field of networks, this information is pushed downwards through

the stack. In case of process scheduling, the isolated entity is already known by the operating

system. Both is not possible in case of MTAs. Furthermore, network related technologies usually

provide service differentiation and rely on the cooperation of other nodes in the network. Most static

scheduling solutions fail, if the demand of the entity they schedule varies a lot, and the processes

are non-preemptive. A preemption is not possible, if such a mechanism is used to schedule tenant

requests. To bind such schedulers to certain application level performance objectives, the scheduling

has to be adapted at runtime.

Dynamic Adaptation Some solutions apply an admission control and adjust its configuration

dynamically, to adapt to changes in the system’s usage. Usually closed control loops are used for

that. However, these approaches do not reflect the different demands per scheduled entity, or lead

to unstable behavior as, e.g., shown in the work from Hellerstein [Hellerstein et al., 2002]. They are

hard to construct, since various controllers are required for different working points of the system.

Related work does not consider a dependency between the actuating variables and does not reflect

over-commitment and quota definitions.

Besides the already mentioned disadvantages, no work in the field of multi-tenancy conducts a

systematic and coherent solution, including the isolation methods, their evaluation with problem

45

2. Foundations and State-of-the-Art

specific metrics, the identification of the method’s/application’s requirements and characteristics,

and the methods realization in real world scenarios.

46

3. Measurement of Isolation

This section discusses methods to quantify the degree of performance isolation a system achieves.

To address this goal, metrics expressing the degree of performance isolation are required. In an

ideal case, these metrics can optionally be derived externally, running benchmarks from the outside

and treating the system as a black box. This enables them for a broad application, because internal

knowledge of the system is not necessarily required.

To provide a level playing field for comparisons, it is important to explicitly consider the work-

load profiles used, when applying the metrics. This is the same for other metrics, e.g., a given

response time for a system is meaningless without considering the system’s workload, at which the

response time was measured. Consequently, for a comparison of response times, the request arrival

rate/throughput must be considered and the service called on the SUT have to be standardized. The

goals of this chapter can be summarized as follows.

Measurement Goal 1 — Metrics to Quantify the Degree of Performance Isolation

Develop metrics that are able to quantify the isolation capabilities of a

system. These metrics should reflect Definition 2, including their relation

to SLAs from Section 1.3.2, as well as the timeliness of methods which

enforce performance isolation. Since the performance isolation definition

was made from an user’s perspective, the metrics are expected to trade

the SUT as black box. As a foundation, the questions the metrics should

answer have to be identified.

Measurement Goal 2 — Load Profile Recommendations

Recommend suitable load profiles to provide a level playing field for com-

parison. A concrete load profile strongly depends on the questions and

evaluation goal of a particular scenario, where the metrics are applied.

Consequently, only some argumentative rules of thumbs can be expected.

Measurement Goal 3 — Work Definition and Measurement Harness

Definition of a representative application and call behavior for interactive,

data centric multi-tenant applications. In addition, to make the metrics

easily usable beyond the scope of multi-tenant systems, they should be

embedded into an existing measurement framework.

In this chapter, two different methodologies and several alternative metrics, along with appropriate

measurement techniques, for quantifying the isolation capabilities of IT systems are proposed. The

47

3. Measurement of Isolation

metrics presented are applicable to performance benchmarks and allow measurements without inter-

nal knowledge. They are preferable in situations where different request sources use the functions of

a shared system, with a similar call probability and demand per request, but different load intensity.

These characteristics are typical for MTAs. Other load generating entities could be suitable for the

metrics too, as long as the limitations are considered. Examples of such entities are a single human

user or another technical system that sends requests.

This chapter also shares approaches to determine a good load profile and introduces a multi-

tenancy specific benchmark application, as well as a generic framework, based on the existing Soft-

ware Performance Cockpit [Westermann et al., 2010], to measure the isolation in various domains.

The chapter concludes with a first assessment of the metrics, providing additional insights into some

basic performance isolation methods for MTAs and Xen.

3.1. Metrics and Load Profiles

According to the IEEE Standard 1061 a software quality metric is: “A function whose inputs are

software data and whose output is a single numerical value that can be interpreted as the degree to

which software possesses a given attribute that affects its quality.” [IEEE, 1998].

An analogous definition can be derived for performance metrics: A function whose input is a

computing system and whose output is a numeric value that can be interpreted as the degree to

which useful work can be accomplished by the system compared to the time and resources used.

Hereby, the computing system includes the software, hardware and deployment information.

The proposed metrics are not necessarily coupled to performance, and they do not express the

systems capability to accomplish useful work. They rather express the influence of one tenant onto

the capabilities of another one to accomplish useful work. Consequently, the metrics are not covered

by these definitions and provide an independent quality aspect.

Existing benchmarks and metrics in the field of shared resources and cloud computing focus

on single aspects like databases (e.g., [Cooper et al., 2010]). Others discuss metrics for cloud

features like elasticity (e.g., [Kupperberg et al., 2011, Herbst et al., 2013, Islam et al., 2012]) or the

performance variability [Schad et al., 2010, Iosup et al., 2011a]. The latter observes the changes

in performance over time while the workload is constant. However, the authors do not set this in

relation to the workload induced by others and thus a new approach is required.

The subsequent sections identify the goals and requirements for these novel metrics, followed by

their definition. To achieve this, the Goal Question Metric (GQM) [van Solingen et al., 2002, van

Solingen and Berghout, 2001] approach is used to derive suitable and generic goals, and question

for the metric. Related work is considered to find general requirements for metrics in the field of

software and performance engineering. After the identification of the requirements, the general

idea of the isolation metrics is introduced, followed by the definition of the metrics. Section 3.1.5

explains some metrics that are already known from other fields, to address the time behavior of

isolation methods. Furthermore, relevant load profiles are discussed for the measurement.

This section has already been published to large extent [Krebs et al., 2014b, Krebs et al., 2012b].

48

3.1. Metrics and Load Profiles

3.1.1. Goal of the Metrics

To improve an existing performance isolation mechanism, MTA developers need an isolation metric

to compare different variants of the solution, including an estimate on how much the method can be

improved. For stakeholders involved in operations, the impact of an increasing load onto the other

tenants can be of interest, to define SLAs, or to manage the capacity.

A system is performance isolated, if for each tenant working within his quota the performance

is not negatively affected, when other tenants increase their workload. A decreasing performance

for the tenants exceeding their quotas is fair with regard to the second fairness property (cf. Sec-

tion 1.3.2). Moreover, it was outlined that it is possible to link the definition to the performance

guarantees with SLAs. This allows, that a decreased performance for the tenants working within

their quota is acceptable, as long as it is within their SLA defined guarantee. These aspects have to

be reflected by the metric. The Definition 2 and Definition 3 provide upper and lower bounds for

the metrics.

To support stakeholders in building performance isolated applications, or estimating the impact

tenants have onto each other, the subsequent questions have to be answered.

Q1 How much potential to improve a system’s isolation exists?

Q2 What is the impact of one tenant onto the others?

Q3 Which isolation method is better?

Beside these metric specific requirements, several generic criteria for metrics can be defined. Most

publications (e.g., [von Kistowski et al., 2015, Marco et al., 2012]) focus on benchmarks and list

aspects like independence from a manufacturer. Although these aspects are of high interest when

a concrete benchmark is created, they are not necessarily of relevance in the context of a single

metric.

Obviously a metric should allow conclusions about the characteristic under investigation and

reflect the real facts. This refers to the validity of the metric. In the literature (e.g., [Hoecker et al.,

1984]) additional relevant requirements for metrics are listed:

Objectivity No subjective influence possible.

Reliability Provide the same result when measured multiply times.

Comparative Should be able to be set in relation to other metrics.

Economy Low cost of measurement.

Useful Fulfill practical needs.

The authors identified these requirements for software metrics, but they are of a general nature and

most of them are applicable for the purpose of performance isolation. However, a metric describing

an aspect that was not described by other metrics before, can hardly be set in relation to other

metrics.

49

3. Measurement of Isolation

3.1.2. General Idea of the Isolation Metrics

In the following Section, a set of metrics in order to to quantify the isolation capabilities of a system

is introduced.

When conducting performance measurements and benchmarking, most approaches vary an input

parameter of the system, while observing the impact upon a performance objective under inves-

tigation. Hereby, the independent input parameter is usually related to the entity for which the

performance objective is relevant. An example is the observation of the response time for a group

of users, while the number of users of this group increases.

For the measurement of performance isolation, one has to distinguish between groups of disrup-

tive and abiding tenants (cf., Section 1.3.2). The metrics can be computed by a function whose input

is a computing system, including load generating entities and whose output is a numeric value that

can be interpreted as the degree to which these entities influence each other’s observed quality.

Consequently, the metrics are based upon the influence of the disruptive tenants on the abiding

tenants. Thus the two groups exist, and the influence of one group as a function of the workload of

the other group is observed. This, is a major difference to traditional performance measurements.

For the definition of the metrics, a set of symbols is defined in Table 3.1.

Symbol Meaning

t A tenant in the system. ti ∈ D⊕ ti ∈ A

D Set of disruptive tenant exceeding their quotas (e.g., contains tenants inducing more
than the allowed requests per second). |D|> 0

A Set of abiding tenants not exceeding their quotas (e.g., contains tenants inducing less
than the allowed requests per second).|A|> 0

qti Quota for tenant ti. A numeric value describing the QoS required by the SLA.

wt Reflects the workload caused by tenant t represented as numeric value ∈ R
+
0 . The

value is considered to increase with higher loads on the system (e.g., request rate and
job size). wt ∈W

W The total system workload as a set of the workloads induced by all individual tenants.
Thus, the load of the disruptive and abiding ones.

zt(W) A numeric value describing the QoS provided to tenant t. The individual QoS a tenant
observes depends on the composed workload of all tenant W . QoS metrics with lower
values of zt(W) correspond to better qualities (e.g., response time). zt : W → R

+
0

I The degree of isolation provided by the system. An index is added to distinguish
different types of isolation metrics. The various indices are introduced later. Further-
more, a numeric suffix to the index is used at some places to express the load of the
isolation measurement.

Table 3.1.: Overview of variables and symbols for performance isolation metrics.

50

3.1. Metrics and Load Profiles

3.1.3. QoS Impact Based Metrics

QoS-oriented metrics depend on at least two measurements. First, the observed QoS results for

every abiding tenant t ∈ A at an application wide reference workload Wre f . Second, the results for

every abiding tenant t ∈ A at a global workload Wdisr, when a subset of the tenants have increased

their load to challenge the system’s isolation mechanisms. As previously defined, Wre f and Wdisr

are composed of the workload of the same set of tenants, which is the union of A and D. At Wdisr

the workload of the disruptive tenants is increased.

The relative difference of the QoS (∆zA) for abiding tenants at the reference workload compared

to the disruptive workload is considered.

∆zA =

∑
t∈A

[zt(Wdisr)− zt(Wre f)]

∑
t∈A

zt(Wre f)
(3.1)

Additionally, the relative difference of the load induced by the two workloads is relevant.

∆w =

∑
wt∈Wdisr

wt− ∑
wt∈Wre f

wt

∑
wt∈Wre f

wt

(3.2)

Based on these two differences, the influence of the increased workload on the QoS of the abiding

tenants is expressed as follows.

IQoS :=
∆zA

∆w
(3.3)

A low value of this metric represents a good isolation, as the difference of the QoS in relation to

the increased workload is low. If the value is 0, the isolation is perfect. Accordingly, a high value

of the metric expresses a bad isolation of the system. In principle, the upper bound of the metric is

unlimited. A value of 1 means that the performance decreases exactly by the factor the workload

increases. A negative value may occur if a mechanism reduces the performance of the disruptive

tenant more than required. Thus providing the abiding tenants even a better performance.

The metric provides a result for two specified workloads (Wre f and Wdisr) and thus the selection of

the workloads plays an important role. On the one hand, this provides a good evidence for exactly

this setup and thus provides detailed information. On the other hand, only one measurement for a

given workload tuple (Wre f ,Wdisr) is not sufficient, if the exact workloads of interest are unknown

or variable. Thus, they can be enhanced by considering the arithmetic mean of IQoS for m disruptive

workloads. Hereby, the disruptive tenants increase their workload equidistantly within a lower and

upper bound.

Iavg :=

m

∑
i=1

IQoSm

m
(3.4)

This metric provides an average isolation value for the entire space of measurements and provides

one representative numeric value. The curve’s shape is not reflected and thus the value might lead

51

3. Measurement of Isolation

to misleading results within some ranges of disruptive load. The metric’s interpretation is the same

as for IQoS

It is conceivable that a provider is interested in the relative difference of disruptive workload

∆w, at which abiding tenants receive a predefined proportion of the promised QoS ∆zA. This is

conceptually similar to the already described metrics and could be used as one additional approach.

3.1.4. Workload Ratios Based Metrics

Assume a non-isolated system and the situation in Figure 3.1. The disruptive tenant increases its

load over time. Since the system is not isolated, the response time for the abiding increases, the

same as if its users would be part of the disruptive tenant. This influence was used for the previous

metrics.

Time Time

L
o

a
d

R
e

sp
.
T

im
e

Abiding

Disruptive

Abiding

Figure 3.1.: Influence of the disruptive tenant onto the response time.

The following metrics are not directly associated with the QoS impact resulting from an increased

workload of disruptive tenants. The idea is to compensate the increased workload of disruptive

tenants, by decreasing the workload of the abiding ones such that they keep the QoS for the abiding

ones constant. Figure 3.2 depicts an example. Since in a non-isolated system, the performance and

load is equally shared among the tenants, the response time would maintain a constant value if the

abiding tenant decreases its workload by the same amount as the disruptive tenant increases it. This

is depicted in Figure 3.2. In case of better isolation, the abiding tenants have to reduce their load

less.

Time Time

L
o

a
d

R
e

sp
.
T

im
e

Abiding

Disruptive

Abiding

Figure 3.2.: Influence of the disruptive tenant onto the response time with a load adapting abiding tenant.

Naturally, this is only possible with the support of the abiding tenants and such a behavior does

not reflect productive systems. Thus, these metrics are planned to be applied in benchmarks with

artificial workloads, where a load driver simulates the tenants and can be enhanced to follow the

described behavior.

In the following this idea is introduced in more detail. One starts measuring the isolation behavior

of a non-isolated system, by continuously increasing the disruptive workload Wd . In such a situation,

52

3.1. Metrics and Load Profiles

zt(W) remains unaffected, if the workload of the abiding tenants Wa is adapted accordingly, to

compensate for the increase in the disruptive workload. Plotting Wa as a result of Wd , describes a

pareto optimum of the system’s total workload, with regard to constant QoS for the abiding tenants.

Wdbase
Wdend

Wdre f

Wabase

Ware f
Isolated

Possible Measurement

Non-Isolated

Figure 3.3.: Fictitious isolation curve, including upper and lower bounds.

The x-axis in Figure 3.3 shows the amount of workload Wd caused by the disruptive tenants,

whereas the y-axis shows the amount of the workload Wa caused by the abiding tenants. The non-

isolated line depicts how Wa has to decrease to maintain the same QoS as in the beginning. In

a Non-Isolated system this function decreases linearly. For every additional amount added to the

disruptive load, one has to remove the same amount at the abiding load, since in a non-isolated

system the various workload groups would behave as they were one. In a perfectly isolated system,

the increased Wd has no influence on zt(W) for all t ∈ A. Thus, Wa would be constant in this case,

as shown by the Isolated in the figure. The isolated and non-isolated lines provide exact upper and

lower bounds, corresponding to a perfectly isolated and a non-isolated system, respectively. Figure

3.3 shows some important points referenced later and defined in Table 3.2.

Based on this approach, several metrics are defined in the following. As discussed before, the

workload scenarios play an important role, and thus it may be necessary to consider multiple differ-

ent workload scenarios and average over them as previously.

3.1.4.1. Significant Points

The significant points marked in Figure 3.3 provide several ways to define an isolation metric by

themselves. Iend is a metric derived from the point at which the workloads of abiding tenants have to

be decreased to 0, to compensate the disruptive workload. The metric sets Wdend
and Ware f

in relation.

Due to the discussed relationship of the workloads in a non-isolated system and the definition of

the various points, the condition Ware f
= Wdbase

−Wdre f
holds. This relation helps to simplify the

formulas. With Figure 3.3 in mind, Iend is defined as follows:

53

3. Measurement of Isolation

Symbol Meaning

Wd The total workload induced by the disruptive tenants: Wd := ∑
t∈D

wt

Wdbase
The level of the disruptive workload at which the abiding workload in a non-isolated
system is decreased to 0 due to SLA violations.

Wdend
The level of the disruptive workload at which the abiding workload is decreased to 0
in the system under test.

Wdre f
The value of the disruptive workload at the reference point in the system under test.
This is the point to which the degree of isolation is quantified. It is defined as the
disruptive workload, at which in a non-isolated system the abiding workload begins
to decrease.

Wa The total workload induced by the abiding tenants: Wa := ∑
t∈A

wt

Ware f
The value of the abiding workload at the reference point Wdre f

in the system under test.
Ware f

:=Wdbase
−Wdre f

Wabase
The value of the abiding workload corresponding to Wdbase

in the system under test.

Table 3.2.: Overiew and definition of relevant points for performance isolation.

Iend :=
Wdend

−Wdbase

Ware f

(3.5)

A value of 0 for Iend reflects a non-isolated system. Higher values reflect better isolated systems.

A value of 1 is interpreted as being twice times better as a non-isolated system. In case of a perfect

isolated system the value tends to ∞. This makes the metric rather difficult to be used in case of good

isolation. A negative value may occur, if for some reason the performance of the abiding tenants is

reduced more than the disruptive load increased.

Another approach uses Wabase
as a reference. Setting this value and Ware f

in relation, results in an

isolation metric having a value between [0,1]. The formula for metric Ibase is below:

Ibase :=
Wabase

Ware f

(3.6)

A value of 0 for Ibase reflects a non-isolated system, while a value of 1 expresses a perfect isola-

tion. Both metrics have some drawbacks resulting from the fact, that they do not take the curve’s

progression into account. This means, that in a system which behaves linear until a short distance

from Wdbase
and then suddenly drops to Wa = 0, both metrics would have the same value as in the

case of a completely non-isolated system, which is obviously unfair in this case. Moreover, a well

isolated system, requires a very high disruptive workload before Wa drops to 0, making it hard to

measure the metric in an experimental environment. Ibase has some further disadvantages, given that

it is only representative for the behavior of the system, within the range of Wdre f
and Wdbase

. Given

that the metric does not reflect what happens after Wdbase
, it may lead to misleading results for well

isolated systems, of which respective Wdend
points differ significantly.

54

3.1. Metrics and Load Profiles

For systems that exhibit a linear degradation of abiding workload, and isolation metrics based

on the angle between the observed abiding workloads line segment and the line segment which

represents a non-isolated system can be used.

3.1.4.2. Integral Metrics

In the following two metrics addressing the discussed disadvantages of the above metrics are de-

fined. They are based on the area under the curve derived for the measured system Ameasured , and

set in relation to the area under the curve corresponding to a non-isolated system AnonIsolated . The

area covered by the curve for a non-isolated system is calculated as W 2
are f

/2.

Integral Limited to Wdbase
The first metric IintBase represents the isolation as the ratio of

Ameasured and AnonIsolated within the interval [Wdre f
,Wdbase

]. fm : Wd →Wa is defined as a function

which returns the residual workload for the abiding tenants based on the workload of the disruptive

tenants. Thus, it is possible to define the metric IintBase as follows:

IintBase :=





Wdbase∫

Wdre f

fm(Wd)dWd



−W 2
are f

/2

W 2
are f

/2
(3.7)

IintBase has a value of 0 in cases the system is not isolated and a value of 1 if the system is

perfectly isolated within the interval [Wdre f
,Wdbase

]. The metrics major advantage is that they allow

to set the system directly in relation to an isolated and non-isolated system. This metric again has

the drawback, that it only captures the system behavior within [Wdre f
,Wdbase

]. Again, a negative

value may occur, if for some reason the performance of the abiding tenants is reduced more than

the disruptive load increased.

Integral Without Predefined Intervalls In a well isolated system, it is not be feasible to

measure the system behavior only up to Wdbase. Thus, the following metric IintFree allows to use any

predefined artificial upper bound pend > Wdbase
, which represents the highest value of Wd that was

measured in the system under test. The metric is defined as follows:

IintFree :=




pend∫

Wdre f

fm(Wd)dWd



−W 2
are f

/2

Ware f
· (pend−Wdre f

)−W 2
are f

/2
(3.8)

This metric quantifies the degree of isolation provided by the system for a specified maximum

level of injected disruptive workload pend . A value of 1 represents a perfect isolation and a value of

0 a non-isolated system. Negative values for IintFree have the same interpretation as negative values

for IintBase.

55

3. Measurement of Isolation

3.1.5. Further Quality Aspects

Although the metrics described in Section 3.1.3 and Section 3.1.3 allow to quantify isolation, they

do not adequately describe the time behavior of a system. Several methods ensuring performance

isolation are based on an adaptive approach, which dynamically adapts the system configuration to

ensure a proper isolation, often based on closed control loop. Consequently, one can assume the

existence of situations where the system requires a certain amount of time to adapt to changes in the

workload. Therefore, two additional metrics that are relevant to quantify the dynamic aspects of the

performance isolation mechanisms are discussed.

Commonly discussed issues of controlled system in the literature are stability/oscillation, set-

tling time/performance and accuracy/steady state error [Janert, 2013, pp. 19-21]. In context of the

present work, the steady state error/accuracy is already covered by the metrics in Section 3.1.3 and

Section 3.1.3. The other two aspects are covered in the following.

3.1.5.1. Settling Time

The settling time is a relevant aspect in the given context. The settling time, describes the time a

system needs, after an instantaneous step at the input, to again achieve an output value within a

defined error range. The faster this happens, the better is the system.

Ideally, a Dirac impulse would be used for the input. In the given context, the input value is the

workload of the tenants, while the output is the observed performance of the quality metric under

investigation (i.e., response time). Naturally, it is not possible to generate a Dirac impulse for such a

system. Neither in physical systems, nor in a discrete system comparable to MTAs. Therefore, a step

function can be used for this kind of analysis. However, even a significant increase of workload,

to a constant value in very short time is not feasible. Therefore, the start event to measure the

settling time is defined as the point in time at which the workload becomes stable again. The event

to stop the measurement of the settling time is, when the observed quality metric is back at a stable

value. Thereby, a certain error is acceptable. It is possible to relate this start and stop event to the

guarantees relevant for a tenant. In this case, the start event is triggered, if the observed QoS is

worse than the guarantee. The end event is triggered when it reaches the guarantee again.

However, if the value should not be related to the guarantee, another definition of stable is re-

quired. Therefore, the proposed metric considers the average response time of the next m to n

samples in the future and compares it with the current one. If the load increases, one can expect a

higher response time, which will decrease as the method tries to compensate this problem. At some

point in time, this value will be close to the computed average or even cross this line, which marks

the end event.

Figure 3.4a/b shows an example of one of the abiding tenants based on the evaluation results from

Section 6.1.2.8. The two horizontal lines mark the beginning and the end of the time span, where

the workload was modified.

Settling time similar metrics for adaptive IT-systems in the context of QoS metrics were already

used before. One example is the CloudScale consortium [Brataas, 2014], which uses a metric re-

56

3.1. Metrics and Load Profiles

40

60

80

100

120

140

160

180

0 100 200 300 400 500 600 700

T
ro

u
g
h
p
u
t
[r

e
q
u
e
s
ts

/s
]

Experiment Time [s]

Throughput

Future Average

S
ta

rt
In

c
re

a
s
e

E
n
d

In
c
re

a
s
e

(a) Load increased.

60

65

70

75

80

85

90

95

100

105

110

0 100 200 300 400 500 600 700 800

T
ro

u
g
h
p
u
t
[r

e
q
u
e
s
ts

/s
]

Experiment Time [s]

Throughput

Future Average

S
ta

rt
D

e
c
re

a
s
e

E
n
d

D
e
c
re

a
s
e

(b) Load decreased.

Figure 3.4.: Example of measuring settling times.

ferred to as Mean Time To Quality Repair (MTTQR), to describe the time an elastic system needs to

be SLA compliant, after an SLA violation occurred. Although MTTQR focuses on different scenar-

ios, it is comparable to the here presented interpretation of settling time. However, one difference is

the precise definition of a metric, even for situations where no guarantee is provided, or the system

will never come back to a guarantee compliant state.

3.1.5.2. Oscillation

Oscillation can happen, if feedback from the system is used to adapt it to changing scenarios. Fig-

ure 3.5 shows an example of the abiding tenants, from the evaluation results in Section 6.1.2.6.

40

45

50

55

60

65

70

500 1000 1500 2000 2500 3000

T
ro

u
g
h
p
u
t
[r

e
q
u
e
s
ts

/s
]

Experiment Time [s]

Figure 3.5.: Example of oscillation.

Oscillation describes an oscillating output of the system, while the input is constant. It is a known

phenomenon [Janert, 2013, pp. 19-21]. The controllers are usually designed to damp the oscillation

and the amplitude converges to zero. If this is the case, the settling time is a useful metric. If this is

not the case, the controller maintains an unstable state.

Discrete systems with random inputs like an interactive web application, can be in a steady state

concerning the average characteristics, while the input is still subject to random processes. Further-

more, if a closed system is investigated, the output influences the input. This increases the risk, that

57

3. Measurement of Isolation

the isolation method never converges to a steady state. The amplitude and the frequency of resulting

oscillations are indicators to compare various solutions. For the purpose of performance isolation

mechanisms, the amplitude would be based on the average, relative change of the quality metric

under investigation. An average value for all tenants is valuable. Although this seems intuitively

correct, the metric lacks in objectivity. In real systems, the oscillation is mixed with noise in the

measurement and a clear oscillation might not be visible at all. Furthermore, if the system reacts

very fast to minor and possible random changes, no repeatable pattern may occur. Thus, it is likely

that a precise identification of the highest and lowest point of the oscillation is not possible. Con-

sequently, it is difficult to clearly identify patterns coming from the active control mechanisms and

usual random processes. Thus, a human has to define which signals are relevant and which are not.

This is a violation of the objectivity and reliability. Moreover, it results in high efforts limiting its

usefulness. Furthermore, the distribution of the measured data is unknown and potentially different

for various isolation mechanisms.

Therefore, the size of the 25%-75% percentile in relation to the observed arithmetic mean or

median value is conducted. In case of a high oscillation or high variability of the performance,

the size is higher in comparison to one with low oscillation. This approach does not rely on the

assessment of a human. The drawback is, that very strong noise is considered as oscillation. This

metric is closely related to an existing approach referred to as performance variability (e.g., [Iosup

et al., 2011b]).

3.1.6. Load Profiles

To provide a level playing field for comparisons, a description of a relevant workload profile is

required together with the metrics. Although, the concrete definition of the relevant workload is a

case to case decision and usually defined to answer a dedicated question, this subsection will share

some general thoughts concerning this issue.

3.1.6.1. Reference Load

MTAs are operated at rather high utilization for economic reasons. Another important reason to

run the test system under high utilization is the goal to evaluate performance isolation aspects. In a

system with low utilization of the resources, the increased workload of one tenant has a low impact

upon the performance of the others, as no bottleneck exists. Another aspect is related to existing

guarantees. If the provider wants to maintain a certain QoS, it is possible to configure the overall

reference workload in a way the average systems QoS is close to this value. In this case, a small

increase of workload at the disruptive tenant, immediately results in violations for the abiding ones,

in case of a weak isolation. In case no SLA based guarantee exists, and the bottleneck resource is

unknown, a measurement to identify the system’s maximum throughput, by increasing all tenants

workloads in parallel is feasible. To increase the speed finding this point, a binary like search can

be used (cf. [Shivam et al., 2008]). Usually this workload is accompanied with the highest possible

utilization of the bottleneck resource. This means, that increasing the workload in a non-isolated

58

3.1. Metrics and Load Profiles

system, will immediately result in less performance for all other tenants. Consequently, it would

immediately cause guarantee violations. Another argument is, that an isolation mechanisms should

intervene latest at this point. The key findings for the reference workload are summarized as follows:

1. High load/utilisation preferable.

2. QoS observed should be close to the guarantee.

3. The systems maximum throughput is an additional indicator.

3.1.6.2. Divergent Work

The metrics definitions are based on a unit of workload. Assuming a situation where an application

benchmark controls the number of users in a closed workload, the load is defined by the number

of users. This works well for the defined metrics, as long as the call probability for the application

functions and the related resource demand is the same for each tenant. If an MTA does not provide

the means for intense customizing, the work induced by the tenants is rather homogeneous (except

the load). This means, the requests from different tenants have a comparable impact upon the appli-

cation’s behavior and resources, which is usually the case, since they are using the same application.

Therefore, the comparability between tenants is given and therefore the amount of load correlates

with the amount of workload.

If this is not the case, the metrics are still valid, as they compare the amount of workload. In

practice, additional measurements in a non-isolated system have to be taken, to compute the impact

per amount of load of different tenants onto the system. This can be expressed as the tenants’ impact

ratio. To determine this ratio, additional measurements comparing various proportions of load, with

steady QoS, are required. Additionally, if internal knowledge about the system’s behavior and

dependencies are given, it is possible to compute the metrics without adjusting the load at all.

3.1.6.3. Resulting Measurement Process

A coarse-grained description of four major steps is summarized in the following as starting point.

However, a detailed description of a measurement process is not considered to be part of this thesis

since it follows common patterns (e.g., [Herbst et al., 2015]). At first, the system has to be ana-

lyzed to gather a better understanding of the performance characteristics. At second, the reference

workload has to be identified. Either, by referring to existing SLA definitions or by the insights

from the first step. In both cases, the results from the first step are utilized to calibrate the reference

workload for each tenant. At third, the load of the disruptive tenants is stepwise increased during an

experiment series execution . Depending on the metric, the abiding load is adjusted accordingly. As

outlined in Section 2.1.2.1, a warm up period after each load change has to be maintained. It must

be at least as long as the settling time. In case the system has a high oscillation, the measurement

duration has to be increased accordingly, to ensure a representative mean value is gathered. Based

on the results from the previous step the performance isolation is derived.

59

3. Measurement of Isolation

3.1.7. Further Applications and Limitations

The proposed isolation metrics are not limited to MTAs. They may also be applicable in other

scenarios where a system is shared, e.g., a web service triggered by other components, virtual

machines hosted on the same hypervisor instance, or network devices serving packages from various

sources. However, practical limitations might appear, because of missing a uniform behavior of the

workload originating from different sources. As long as the requests have the same impact upon the

system (e.g., network packages onto a switch) the application of the metrics should be possible.

Furthermore, the metrics are not specifically defined for one distinct QoS metric. The primary

focus in this thesis is on response times. Nevertheless, it can be applied to other quality metrics as

well. The proposed method to find an adequate reference workload might be adapted, if the QoS

metric under investigation is not related to the workload.

3.2. Domain Independent Framework for Performance Isolation Measurement

The proposed metrics are derived from fundamental QoS metrics, and a dynamically adjusted mea-

surement process. Consequently, they come along with a higher complexity compared to basic

metrics such as response time. The metrics are independent of the domain they are applied to.

To reduce the barrier to entry using these metrics, an environment for measuring the isolation in

different domains was developed. It encapsulates the logic and algorithms for the metrics and mea-

surement process in a technical/domain independent way. The result is a framework environment

which provides predefined measurement approaches, but has to be enhanced with a concrete connec-

tor for each environment. As a basis, the Software Performance Cockpit (SoPeCo) was enhanced,

which will be shortly introduced at the beginning of this subsection. After that, the isolation relevant

aspects are presented.

This section has already been published in [Andrikopoulos et al., 2013a, Andrikopoulos et al.,

2013b, Andrikopoulos et al., 2013c].

3.2.1. Overview of the Existing Software Performance Cockpit

The Software Performance Cockpit (SoPeCo): ". . . encapsulates knowledge about performance en-

gineering, the system under test, and analyzes in a single application by providing a flexible, plug-in

based architecture." [Westermann et al., 2010]. The goal of the domain independent framework for

performance isolation measurement is to encapsulated the complexity of the measurement process

and the analysis. Therefore, it is assumed that the SoPeCo can be used, because of the overlap in

the goals.

The SoPeCo defines a metamodel for the definition of performance related experiments and inter-

prets these models to run measurements on systems. The SoPeCo metamodel is defined generically,

for arbitrary scenarios. However, for the usage in dedicated scenarios, a limitation of the func-

tionality, by hiding irrelevant aspects, increases the usability. Another drawback of the SoPeCo

is its usage to derive Performance Curves [Westermann and Momm, 2010, Wert et al., 2012] of

60

3.2. Domain Independent Framework for Performance Isolation Measurement

the observed performance parameter describing the analyzed system. In this situation the observed

parameter is not the value of interest, it is just the foundation for the computed isolation metric.

Therefore, the SoPeCo was enhanced.

Figure 3.6 describes the most important components of the SoPeCo and the enhancements for

the purpose of performance isolation. The explanation of the original SoPeCo components in the

following is based on [Westermann et al., 2010].

Analyzer

Exploration Strategy

Measurement Environment Controller

Measurement

Environment

Experiment

Controller

Experiment

Series

Controller

«interface»

Exploration

Strategy

«interface»

Analysis

Strategy

«interface»

Measurement Environment

Controller

Plugin Registry

«abstract class»

MT Exploration Strategy

IQoS Integral

«abstract class»

MT Analysis Strategy

IQoS Integral

«abstract class»

Multi Tenant Measurement

Environment Controller

Concrete

Measurement

Environment

Controller

SUT /

Load

driver

SoPeCo Engine

Measurement Data Repository

Figure 3.6.: Enhancements and Components of the Software Performance Cockpit.

The SoPeCo Engines core artifacts read required configuration files, initially instantiate the re-

quired components and load the experiment series configuration, according to its definition de-

scribed by an external file.

The Experiment Series Controller controls the execution of a concrete experiment. It loads the

required plugins and artifacts and ensures that the experiment series is started.

A Exploration Strategy is an algorithm or heuristic defining which experiments should run within

an experiment series. Usually it defines how the space spanned by the possible configuration pa-

rameters should be traversed. Examples are randomly selected parameter configurations for the

experiment, or an equidistant selection of configurations. It is worth mentioning, that the selection

of the next configuration can be dynamically adapted, based on the results of previous experiments.

The Experiment Controller runs one single experiment, which is defined by one dedicated se-

lection of parameters. It triggers the measurement environment and stores the observed data in the

repository.

The Measurement Data Repository stores all the relevant data for an experiment. This comprises

the concrete observed performance metrics, as well as the configuration and metadata.

The Analyzer analyzes the measured data and supports various statistical analysis methods. This

can be easily extended by providing additional methods as a plugin. The methods analyze the

samples to create a performance curve of the system behavior. It can be used to predict parameter

configurations not measured by using interpolation techniques.

61

3. Measurement of Isolation

The Plugin Registry is a management component to load and instantiate the plugins required at

different locations.

The Measurement Environment Controller enables the communication with the SUT. It provides

functionality to initialize the environment, generate load and to gather the relevant data. For each

SUT a concrete implementation of the required interfaces is necessary.

The interplay of all these components allows to automate the measurement process to a large

extent.

3.2.2. Multi-Tenancy Enhancements

This Section describes the elements that enhance the SoPeCo, to enable it for an easier measurement

of performance isolation specific aspects. The SoPeCo was enhanced in two ways. At first, a wrap-

per was created which hides irrelevant aspects, groups relevant information and adds a performance

isolation specific naming to make the usage more feasible. As second, functionality dedicated to

the measurement of performance isolation was added to be reused in various contexts.

In detail, the following components were modified to enable the measurement of performance

isolation: Measurement Environment Controller, Exploration Strategy, and Analysis Strategy, (cf.

Figure 3.6). To keep it decoupled, the original components were only enhanced by functionality.

Thus, adapters were implemented for the three relevant components. The MT Exploration Strategy,

MT Analysis Strategy, and MT Measurement Environment Controller. The SoPeCo uses a generic

mechanism to make it independent of any type of application or measurement goal. The developed

adapters convert the generic input parameters (e.g., workload) into tenant-specific/isolation-specific

parameter values covered in explicit objects, which are easier to understand, for a developer enhanc-

ing the framework.

The Multi-Tenant Measurement Environment Controller is the abstract super class for the system

specific adapter class (Concrete Measurement Environment Controller) which communicates with

the SUT.

3.2.3. Exploration Strategy Extensions

For each isolation metric, one Exploration Strategy and one Analysis Strategy is required. The first

experiments conducted, define the reference measurement. The number of experiments is defined by

an incrementally increasing workload for the disruptive tenant. Each time the load is increased, the

MT Experiment Controller is conducted to run an experiment. The stop criteria for the experiments

are either a maximum experiment time, or a maximum disruptive load, or in case of the Integral

Exploration Strategy, the point at which the sum of abiding workload is zero.

The IQoSMeasurementExplorationStrategy continuously increases the load of the disruptive ten-

ant for each experiment.

The IntegralMeasurementExplorationStrategy tries to find, for increasing disruptive loads, cor-

responding abiding workloads. Corresponding means: the observed quality metric of the abiding

62

3.3. Benchmark Application

tenants is the closest to reference load measured by an experiment. Therefore, the strategy continu-

ously reduces the workload of abiding tenants by a configured step width, until it is below or equal

the observed quality at the reference measurement.

3.2.4. Analysis Strategy Extensions

The IQoS Strategy and Integral Analysis Strategy classes realize the computation of the actual met-

ric’s value, once all experiments finished. In a first step they compute the isolation value for the

parameter configurations measured. In a second step they return a function interpolating the iso-

lation result between the measured configurations. Thus, it is possible to derive the isolation of

the system over the whole range of disruptive load. This is required by the SoPeCo for further

processing of the results. In case of the integral analysis strategy the necessary steps are:

1. Find the reference points in the data.

2. Extract measurements defining suitable workload configuration. They are identified by those

measurements, where the abiding tenants QoS is closest to those at the reference workload,

or the defined guarantee. This step is required, since all measurement results are stored.

3. Calculate the isolation for different disruptive workloads.

4. Linear interpolation splines are applied to derive a function of the whole range.

3.3. Benchmark Application

Besides a metric and a defined load profile, the work must be defined to compare a system’s per-

formance and consequently its performance isolation capabilities. It is important to define a repre-

sentative work for the question which should be answered by a benchmark. Thus, the artificially

generated load should represent the latter usage of the SUT. The focus of the thesis is in interac-

tive multi-tenant web applications. Thus, an ideal work is a performance benchmark reflecting the

performance behavior of an MTA. It is worth mentioning that such a benchmark application also

provides the means for additional experiments. One potential use case is the comparison of differ-

ent application runtime containers, or even lower level infrastructure elements, with regard to their

performance for multi-tenant applications. Another option is the evaluation of a runtime container,

which already provides means for MTAs, with regard to performance.

No benchmark was described before that concerns multi-tenancy support. Consequently, an ex-

tended version of an existing benchmark to support multi-tenancy was specified and implemented.

This application can be used to evaluate the performance of an on premise middleware or PaaS,

supporting MTAs, or for other experiments requiring a representative multi-tenant load.

In this section, an extended version of an existing benchmark to support multi-tenancy is pre-

sented. It is applied in a case study to show its feasibility.

This section has already been published in [Krebs et al., 2013].

63

3. Measurement of Isolation

3.3.1. Characteristics of a Multi-Tenant Benchmark Application

It is essential to represent the main characteristics of MTAs in a benchmark. In the foundations (cf.

Section 2.1.1.1) some aspects were already discussed. Especially with regard to isolation aspects,

MTA providers have to make several architectural decisions that have a major influence upon the

performance. Furthermore, in case the application should be deployed on a PaaS scenario, it comes

up with some additional, technical requirements concerning the actual implementation. In the fol-

lowing, a short overview of the most interesting architectural aspects for building a representative

benchmark are outlined and discussed in the relevant depths.

3.3.1.1. Identification

One solution to identify a tenant is to connect the used information to the user. However, this ap-

proach requires an authentication of the user and duplicate users in different tenants are not possible.

Therefore, applications usually identify the tenant by the host name. Whereby various host names

point to the same IP. On the application, the tenant specific host name is used to identify the ten-

ant. Usually the tenant’s identifier information is transferred along the program execution path by

binding it to the thread context.

3.3.1.2. Database

Three major approaches to separate a tenant’s data from the data persisted by other tenants (Wang

et al. [Wang et al., 2008] and Chong et al. [Chong et al., 2006]) exist. The highest degree of

sharing, and thus efficiency, is established by the shared table/schema approach, which shares the

same tables and schemas. This comes along with the largest consequences upon the application or

platform, since the application or the platform provided persistence APIs have to take care of the

tenant ID in each database statement. If the platform provides an abstraction of the database, it often

handles the additional tenant ID in a transparent way (e.g., EclipseLink [Eclipse, 2013]). Koziolek

[Koziolek, 2011][Koziolek, 2010] identified the shared table as the most common approach.

3.3.1.3. Tenant Metadata

In Section 2.1.1.1, it was outlined that an MTA usually reflects a 3-tier Web Application Architecture

with an additional metadata storage for the tenant specific metadata (e.g., customizing, database id,

tenant name, specific SLAs). Another essential element is the metadata manager, which enables

access to this data and adjusts the application, according to the information stored in the metadata.

The variability of information stored in the metadata is widely spread. However, at least an ID for

the tenant, a display name of the tenant and a database identifier should be available. Dependent on

the type of database multi-tenancy, the database identifier refers to an ID or a database connection.

Platforms with multi-tenancy support usually provide these tenant metadata via defined interfaces

(e.g., Google App Engine [Google, 2014], SAP HCP [SAP SE, 2014]).

64

3.3. Benchmark Application

3.3.1.4. Metrics for a Multi-Tenant Benchmark

In traditional application benchmarks, usually one or several QoS metrics are observed in relation

to the number of simulated users or a request rate. A cost factor is sometimes included in the

overall benchmark metric (e.g., [TPC, 2002, Islam et al., 2012]). Based on this information, a figure

of merit describing the system is derived. In general, all these metrics can also be applied for a

multi-tenant benchmark.

In a multi-tenant system, one can additionally consider the number of tenants. One potential

metric is the throughput and response time, based on the number of tenants. Whereby, one tenant

has a fixed workload. This metric might be of interest, when the per-tenant overhead and the total

number of tenants a system can serve is important. Furthermore, it may answer the question about

the optimal number of tenants for one application. Another metric defines a fixed number of tenants,

by observing the QoS, based on the number of users for each. The proposed metrics for performance

isolation are the most relevant for this thesis.

3.3.2. A Multi-Tenancy Benchmark

Subsequently, the TPC Web benchmark is introduced. It defines the basis for the multi-tenancy

benchmark. The specification of the multi-tenant benchmark follows and some hints on its imple-

mentation are given.

3.3.2.1. TPC Web Benchmark

The Transaction Processing Performance Council (TPC) developed a transactional web e-Commerce

benchmark (TPC-W) [TPC, 2002]. Its focus is on business oriented transactional web servers. The

workload follows a controlled Internet commerce environment and simulates a bookshop. The

benchmark simulates multiple on-line browser sessions by calling dynamically generated pages.

The benchmark simulates three profiles, that differ by the browse to buy request ratio, resulting in

various proportions of database reads or inserts/updates: primarily shopping, browsing and web-

based ordering. The load can be varied by the number of Emulated Browsers (EBs). One EB

simulates one user calling various application transactions, in a closed workload. Every EB realizes

a user think time with an exponential distribution and a mean of 7s. In the following, the term emu-

lated user, user and EB are used synonymously in the context of applying a benchmark. It is worth

mentioning, that the TPC-W only specifies the benchmarking application, including implementation

details like indices etc. to ensure the portability.

TPC-W is widely used in the industry and academia for similar goals as in this thesis. In Heller-

steins book [Hellerstein et al., 2004] about control theory, and other control theory related publica-

tion (e.g., [Zhu et al., 2009]), TPC-W is used for the evaluation of the approaches. In Section 5.2.1

various classes for performance isolation will be introduced, which partially rely on feedback infor-

mation from the system. Thus, TPC-W is an adequate reference. Padala et al. [Padala et al., 2009]

used it to evaluate the service differentiation capabilities of their approach in shared environments.

65

3. Measurement of Isolation

As mentioned in Section 2.1.1.2, performance isolation methods can be used as a foundation to

achieve service differentiation. Islam et al. apply TPC-W to quantify elasticity in Clouds [Islam

et al., 2012] and Suleiman [Suleiman and Venugopal, 2013] validate their rule based elasticity mod-

els with its help on a widely used public cloud offering. The industry and academia driven project

CloudScale [Brataas, 2014] uses it as basis for building scalable cloud applications as a part of their

validation. Finally, Wang et al. [Wang et al., 2012] use TPC-W to validate their approach to achieve

performance isolation in MTAs. In [Musabbir et al., 2013] multi-core and multi-threaded web

servers’ performance is optimized at runtime for web applications. As outlined in Section 2.1.1.1,

this is the same basis application type as in MTAs. Summarized, several publications already used

TPC-W in a similar context.

However, Binnig [Binnig et al., 2009] identified requirements for a cloud benchmark and an-

alyzed TPC-W accordingly. Although, the authors identified some achievements, they see some

problems if TPC-W should run against a cloud environment. The TPC-W requires a database with

ACID [Elmasri and Navathe, 1999] properties, which they see as not present in cloud platforms.

Further, they criticize the TPC-W metric, since in a cloud scaling environment the throughput will

always increase with the load, and a relation to costs does not make sense for the given context.

Other arguments tackle the missing support of modern technologies and the resulting call frequency

patterns onto the server. Finally, the benchmark lacks in metrics for relevant cloud features (e.g.,

fault tolerance).

It is worth mentioning again, that the focus of the thesis is on MTAs and not on cloud environ-

ments in general. Moreover, ACID databases are widely provided as cloud services (e.g., SAP HCP

and Amazon [Amazon, 2014]. The metrics of interest are redefined in the context of this thesis, or

other appropriate metrics. Furthermore, infinite scalability and elasticity, which were described as a

problem, play a negligible part in the thesis context (cf. Section 2.2.4). The benchmark interaction

with the clients is based on HTTP, and similar to asynchronous technologies the workload strongly

relies on the selection of the requested business data and transferring it to the client. In the present

context, the benchmark is not used for general purpose cloud evaluations. Therefore, the missing

metrics for relevant cloud features are not a problem.

TPC-W is a benchmark widely used for situations comparable to the thesis work and later pro-

posed approaches. Thus, it is a representative application. Although Binnig et al. criticizes its

application of cloud environments, it was clearly shown that the mentioned drawbacks are negligi-

ble compared to the advantages in the thesis context. Consequently, TPC-W is an appropriate basis

for the validation of performance isolation aspects.

3.3.2.2. Specification of the MTTPC Web

The existing specification of the TPC-W is extended in several points to cover the relevant concep-

tual aspects described in Section 3.3.1.

The Tenant Metadata Manager (cf. Section 3.3.1.3) provided by the platform, is used to render

the tenants display name as part of various web pages (Home Page, Customer Registration Page,

66

3.3. Benchmark Application

Buy Confirm Page). On one page (Buy Confirm) the tenant identifier is also rendered. This ensures

the usage of a data element, which should be available in the metadata for any platform.

For environments with a native connection to one schema, in one Relational Database Manage-

ment System (RDBMS) a tenant ID (integer) column is added to all tables. The primary key is a

combination of the tenant ID and the entity specific ID field. In addition to the standard, an index

is added to the tenant ID. Before each SQL request from the application, the metadata manager is

called to get the tenants database ID. This ID is added to the conditional clause of every database

request, to ensure data isolation.

Some database management systems do not support the auto generation of combined primary

keys, whereby one element of the key is predefined. To ensure portability, the usage of a key-value

table, with segment support, to reduce overhead is indicated. This solution uses a database table,

which contains a key counter for each table and each tenant. To avoid overhead, this counter is

not increased for every single insert. The key-value table is only accessed via an application local

cache. This cache increases the counter by a count of 1000. Thus, it can return 1000 IDs before

the next update on the key table. It has to be ensured, that increasing the database key counter by

several application instances does not result in unsolved conflicts. This key counter mechanism is

used to generate the primary keys. It is worth mentioning, that the tenant ID part of the key must not

be generated, as this is a value given by the origin of the request that invoked the database update.

For environments with a native connection to various SQL servers or schemas for each tenant,

the auto generation of the keys can be reused and the additional column for the tenant ID becomes

obsolete. In these situations the database connection/schema is either provided in a transparent way

by the platform or is stored in an application specific configuration, where it is mapped to the tenant.

In the latter case, for every SQL request the appropriate connection must be selected on the basis of

the tenants ID returned by the tenant metadata manager.

For environments with an API based access to the persistence layer, where the data isolation

aspect is transparent to the application, the aforementioned methods lose their relevance. If the data

isolation aspect is not transparent, the aforementioned solutions have to be considered.

The load driver has to support the platform specific identification mechanism of a tenant (cf. Sec-

tion3.3.1.1). Possible variations of workload definitions follow the standard TPC-W benchmark,

whereby every tenant uses the same workload definition. Since every tenant uses the same applica-

tion, similar workload profiles can be expected.

Potential metrics were already discussed in Section 3.3.1.4. The relevant metric and the exact

setup concerning the number of users for each tenant depends on the goal of the measurement.

For situations where the runtime environment does not provide a tenant identification, nor a meta-

data storage for the tenants, additional actions have to be taken. The tenant should be identified by

the hostname as previously described. Due to the tight coupling to runtime server specific technolo-

gies no specification is provided here. However, the identification of the hostname and mapping

to the tenant relevant data should follow a common approach. If available, it is recommended to

use a thread context variable to identify the tenants while processing a request. The variable value

67

3. Measurement of Isolation

should be set by an application server specific technology, e.g., valve [Craig McClanahan, 2015] or

request filter [Shing Wai Chan, 2013], since this reflects common implementations. Furthermore,

an additional table has to be defined. This table consists of tenant ID (String), tenant database ID

(Integer), tenant name (String) and an identifier (String) that is the host name. A metadata manager

has to be implemented in addition. This manager accesses the table and the thread contexts variable

to provide the information.

3.3.2.3. Realization of the MTTPC Web Benchmark

This section provides a detailed overview of the implementation for the sake of reproducibility and

reimplementation. The basis of the version was implemented by Cain et al. [Cain et al., 2001]. It

provides a java servlet based application that relies on a JDBC. These servlets access the database

with the help of one central class. Figure 3.7 shows a simplified overview of the elements used

in the enhanced version of the TPC-W benchmark. In the following, the function of the various

elements, and how they are related to each other is explained.

PlatformTenantAdapter

+getTenantId():String

+getTenantName():String

+getTenantDbId():int

<<Interface>>

ITPCW_Tenant

TPCW_home_interaction

+getCurrentTenant():ITPCW_Tenant

TenantMetaDataAccess

TPCW_Database

+createSharedTable(connection:String)

+createTenantConnection(connection: String, tenantId:String)

CreateDatabase

+addData(table:String, content:String,
tenantId:String)

FillDatabase

tenant context for database

set connection
d

a
ta

b
a

s
e
 a

c
c
e

s
s

meta data access

implements

p
ro

v
id

e
s
 a

c
c
e

s
 t
o

 a
n

d
 c

re
a

te
s

tenant context

tenant context

database access

Figure 3.7.: Overview of the multi-tenant TPC-W benchmark.

TPCW_home_interaction is one example of 14 servlets available in the implementation. The

servlets are responsible for rendering the html pages and the control flow. Every servlet has a

reference to the TenantMetaDataAccess and uses an implementation of the interface ITPCW_Tenant

implementations to access the concrete meta information for the tenant who owns the current thread.

TPCW_Database implements the communication with the database using JDBC. Its implemen-

tation follows Section 3.3.1.2. It also encapsulates the key generator aforementioned.

68

3.4. First Assessment of the Metrics

The TenantMetaDataAccess class enables the access to the platforms tenant metadata. It hides

the platform specific implementation, to access the tenant specific information. Thus, it is possible

to port the implementation onto another platform, by changing the implementation of this class. The

TenantMetaDataAccess creates platform bound implementations of the interface ITPCW_Tenant.

The PlatformTenantAdapter uses the runtime container’s mechanism to gather the tenant specific

data. It has to be implemented specifically for each environment. In case one runs this implemen-

tation in a runtime environment which does not support multi-tenancy, this would be the place to

access the tables providing the necessary information.

ITPCW_Tenant defines the interface which represents a concrete tenant. The class encapsulates

the communication with the metadata manager to provide tenant specific information.

CreateDatabase also extends HttpServlet and is a proxy to create the required schema in the

platform environment, if no direct access is available. The method createSharedTable creates a

schema where the tables are shared among the tenants. Method createTenantConnection stores

the tenant specific connection, and creates a schema without tenant ID at each connection. The

corresponding connection and type of database multi-tenancy is then set at the TPCW_Database.

Thus, using createTenantConnection enables separate schema and separate databases to be used.

If the platform provides the tenant specific connections in a transparent way, one has to modify

TPCW_Database.

In some PaaS environments, the access to the storage is only possible from the application runtime

container. This becomes of importance, when a benchmark for PaaS environments is implemented,

as usually the database must be set into a defined state. If a benchmark should be able to run on a

PaaS, it has to provide technical measures to handle this. FillDatabase also extends HttpServlet and

is a proxy to initialize the database data for the actual benchmark run. It uses the TPCW_Database

to access the database by executing insert commands.

The Load Driver is based on the implementation of Cain [Cain et al., 2001]. The target platform

under investigation differentiates tenants by the host name. Therefore, one instance of the load

driver is created for each tenant, with a tenant specific hostname as the target.

3.4. First Assessment of the Metrics

The goal of this section is to assess the isolation metrics. The primary question of this evaluation is:

Do the metrics answer the questions they were defined for?

To answer this, two case studies applying the metrics are provided, followed by a critical dis-

cussion and an analysis of the design goals on a conceptual level. In the following, the focus is in

the QoS and Integral based metrics. As outlined in Section 3.1.5, the metrics covering the dynamic

aspects of the systems do not necessarily imply the measurement of performance isolation and sim-

ilar metric had already been applied in other contexts. In both case studies, setups are selected for

which the order of their isolation capabilities is known, to validate the metrics. Beside the assess-

ment provided here, all metrics, including the time dependent, are applied on the assessment of the

developed performance isolation methods in Section 6.

69

3. Measurement of Isolation

This section has already been published in [Krebs et al., 2014b, Krebs et al., 2012b, Andrikopou-

los et al., 2013a].

3.4.1. Simulation Based Case Study

This section presents the results of a simulation-based evaluation. This allows evaluating different

concepts for isolation, and the metrics efficiently, without disturbing influences. It is an example,

how a developer or architect may use the metrics to decide for one implementation.

3.4.1.1. Simulation

The ssj discrete event simulation framework, including the provided stochastic features [L’Ecuyer

and Buist, 2005] is employed. The major artifacts developed to simulate the shared system are the

RequestManager, RequestProcessor, Tenant and Scheduler. The RequestManager is responsible to

realize the different approaches for performance isolation and checks if the RequestProcessor has

free resources to forward the next request. If no resources are available, the request is queued until

the RequestProcessor signals that resources became free again. The RequestProcessor is responsi-

ble to simulate the request processing behavior, according to the predefined scheduling strategy. The

Scheduler used within in the evaluation, simulates a resource, which is partially shared and assumes

that the capacity of requests it can handle is limited. Further, the processing time for a request is

not increasing linearly with the number of requests, to simulate trashing. Thus, the calculation of

the residual service time for each request is based on the number of requests in the RequestPocessor

and a user defined factor for the proportion of shared resources as well as a reference service time

for the request in an unused system. The value becomes actualized every time a request arrives or

departs the RequestProcessor. Once the request is processed, it is sent back to the corresponding

Tenant. The Tenant instance, then simulates the think time and initializes the request for the next

iteration.

To run the experiment, and analysis of the data an adapted version of the Performance Isolation

Framework (PIF) is used (cf. Section 5.3.2).

3.4.1.2. Isolation Methods and Expected Results

In this section, four isolation methods are presented and their expected qualities are discussed.

Later, this is used to compare the metrics’ values with the expectations. All implementations try

to enforce the isolation of response time. The concepts are based on request admission control and

thread pool management mechanisms. In the following, figures explain the structure of the different

approaches. Additionally, a short description will be found. Every approach implements two top

level components: An Admission Control handling the incoming request and an Application Server

providing the Request Processor. In the default case, the application server’s request processor has

one thread pool, with restricted size processing the requests.

70

3.4. First Assessment of the Metrics

Admission Control

Application Server

New Requests

Tenants

Quota Checker

Request Delayer

Request Processor

R

R

(a) Artificial Delay

Admission Control

Application Server

New Requests

t1

Queue

Request Adder

Next Request Provider

Request Processor

R

tn
Queue

(b) Round Robin

Admission Control

Application Server

New Requests

Normal

Queue

Request Adder

Next Request Provider

Request Processor

R

Blacklist

Queue

Quota Checker

TenantsR

(c) Black list

Request Manager

Application Server

New Requests

t1
Queue

Request Adder

Next Request Provider

Request Processor

R

tn
Queue

Worker Controller

Pool t1 Pool tn

(d) Thread pool

Figure 3.8.: Simulated methods to achieve performance isolation.

Artificial Delay This approach (Figure 3.8a) artificially delays incoming requests depending on

the request rate of the corresponding tenant. In closed workload scenarios this result in artificially

increased response times for tenants exceeding their quotas and generates some backpressure. Thus,

the overall workload induced by a tenant is controlled. A new request arrives the admission con-

troller’s Quota Checker which evaluates the tenants currently used quotas, and stores the results

together with the allowed quotas in the tenants metadata. After that, the quota checker triggers

the request delayer, which possibly delays the processing of a request before it is forwarded to the

Request Processor for processing. The duration of the artificial delay is constant.

Optionally the current demand of the system and the difference between the allowed and actual

usage of the system might be used to calculate a dynamic delay. Within the application server, the

request may be queued again, because of the restricted size of the thread pool. However, these

aspects are realized in this simulation.

Round Robin Round Robin (Figure 3.8b) introduces separate queues for different tenants. There

is no more need for a queue at the application server in this scenario, as requests are directly buffered

at the Request Manager. When a new request approaches the system, it is queued in the correspond-

ing tenant’s queue. If the Request Processor has free threads, it triggers the Next Request Provider to

deliver a new request. The Next Request Provider then uses round robin to retrieve the next request.

An empty queue for one tenant is skipped and does not block the processing of the others.

Blacklist The blacklist method (Figure 3.8c) triggers the quota checker for every request. It

checks if the quota for this particular tenant is exceeded. The quotas available to tenants and the

quotas actually used by them are maintained in the tenants metadata. If a tenant exceeds its quota, it

is blacklisted. Requests from blacklisted tenants are enqueued in a separate Backlist Queue. When

71

3. Measurement of Isolation

the Request Processer requests for the next request, the Next Request Provider takes the next request

from the white queue on a FIFO basis. Usually, requests from the blacklist queue are only handled

if the normal queue is empty. This leads to a problem in the simulation, when a tenant is removed

from the blacklist, but he has requests still pending in the blacklist queue. If requests are always

pending in the white queue, blacklisted requests will never be handled. Therefore, a mechanism

that slowly processes requests from the blacklist (e.g., every 30th request) was implemented.

Thread Pools The separate thread pool method (Figure 3.8d) provides a separate thread pool

for each tenant. The limited size of these pools isolates the tenants from each other. The conceptual

model includes a separate FIFO queue for each tenant. Every time, one of the tenant specific thread

pools has an idle thread, the Worker Controller requests a new request from the Next Request

Provider. The Next Request Provider selects a pending request according from the tenants thread

pool.

Expected Isolation Quality One can assume that round robin provides a very good isolation,

since it is a widely used scheduling approach, providing a fair distribution of a resource shared by

several entities. The same is expected by using separate thread pools for each tenant.

The blacklist approach can be expected to provide a good isolation over a wide range of disruptive

workloads. However, due to the blocking of the processing of one tenant and the closed workload,

the arrival rate will decrease and the tenant will again be white listed. This should result in an

oscillation with less effective isolation.

The delay approach can be expected to be ineffective, because of its constant delay it will only

be able to maintain the isolation to a certain value of disruptive workload.

3.4.1.3. Evaluation Scenarios

In this section, the workload profiles, the performance related metrics of interest and the configura-

tion chosen for the evaluation are discussed.

QoS-Metrics and Considered Workload The performance metric in focus was the response

time. The time was measured from the moment a simulated request left a tenant to the point in time

a tenant received the response. Thus, zt(W) returned the average response time for t. As a measure

for the workload caused by the tenants, the number of users associated with each tenant was used.

The workload profiles were described by the users’ behavior, the type of requests sent, the number

of tenants in each group D and A, and the number of users associated with each tenant.

In the simulation, all users sent requests of the same type with a mean think time of 1000ms,

and a standard deviation of 100ms, in a closed workload scenario. It is expected, that systems run

with a high utilization (cf. Section 3.1.6). Therefore, the system was designed to serve in total 80

users. The mean service time for a request in the system without contention and was 1000ms, with

a standard deviation of 150ms.

72

3.4. First Assessment of the Metrics

A normal scenario, and one with over-commitment have been considered. In the first scenario,

the quota was set to 8 users and in the over-committed 1 to 24. In both situations, only one disruptive

tenant (t0) was expected. The number of users in the first scenario was 8 for each tenant and in the

over-committed one t0 = 24, t1..t3 = 8, t4 = 4, t5..t8 = 1, t9 = 24.

Thus, the total workload was set to a value at which the system is already at its limit of 80 users,

and the disruptive tenant allocates its full quota. This is considered to be the best reference point.

For the QoS-oriented metrics, disruptive workloads also have to be defined. For t0, 24, 40 and 251

users were chosen in the normal mode. In the over-committed scenario, the number of users were

set to 40, 56 and 251. For the averaged isolation metric Iavg the measurements started with 8 and

stopped with 248 users in the normal scenario, and 24 to 264 users in the over-committed scenario.

The values were increased by a step width of 40 users. In the following, the number of users is

indicated by indices added to the various isolation symbols, in order to distinguish the results.

Configuration In the chosen configuration with a standard, non-tenant aware FIFO queue as

RequestManager, the maximum throughput was achieved at 18 requests/s with a response time of

2110ms (cf. Figure 3.9) and 38 requests are processed in parallel. Thus, the size of the thread pool

was restricted to 38 threads for an optimal throughput. Without a restricted thread pool, most of the

presented performance isolation methods fail, as the RequestManager would always forward the

requests to the processor. When 80 users are simulated, a standard FIFO queue result in an average

response time of 3500ms and 62 requests in the system, whereby 24 are queued.

0

500

1000

1500

2000

2500

3000

0

100

200

300

400

500

600

700

800

900

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

R
e
s
p
o
n
s
e

T
im

e
[m

s
]

T
h
ro

u
g
h
p
u
t
[R

e
q
u
e
s
ts

/m
in

]

Workload [Requests/s]

Requests/min

Respone time

Figure 3.9.: Measurement of throughput and response time in simulation.

3.4.1.4. Evaluation Results

This section presents the results from the simulation described above and briefly comments on the

observations made in the various considered scenarios. The overall assessment follows in a separate

section.

Exemplary the Iqos24 for the normal, non-isolated case is calculated and IintFree251 for the delay

method in the over-committed scenario. In the non-isolated case, the simulation returned a response

time of 3446ms at the reference workload of 8 users for t0, and 4334ms at the disruptive workload

73

3. Measurement of Isolation

with 24 users for t0. Due to the absence of isolation, the average response time for the abiding

tenants is the same as for the disruptive tenants. This results in ∆z24 = 4334−3446
3446 ≈ 0.258. The

relative increase of workload is ∆w= 96−80
80 ≈ 0.2. Consequently the isolation metric Iqos24 =

0.258
0.2 ≈

1.29.

In the delayed scenario with IintFree251 , the point pend = 251 and Wdre f
= 24. The integral de-

scribing the area under the curve of remaining abiding users
∫

f (Wd)dWd within the limits [24,251]

was directly deduced from the measurements (cf. Figure 3.10) and has a value of 4687. Ware f
was

set to 56 users in the workload definition. Thus, W 2
are f

/2 = 1568 and consequently IintFree251 =
4687−1568

56·(251−24)−1568 ≈ 0.28.

Concerning the overview of all results, the presentation begins with the QoS related metrics in

Table 3.3. The value for the isolation in the non-isolated situation is almost the same in every case,

since the impact on the performance is linear, because it stems from the extended length of the

queue.

Approach Normal Over-Committed

IQoS24 IQoS40 IQoS251 Iavg248 IQoS40 IQoS56 IQoS251 Iavg264

Non-Isolated 1.29 1.29 1.29 1.29 1.29 1.29 1.29 1.29

Round Robin 0.00 0.00 0.00 0.00 0.02 0.02 0.06 0.03

Thread Pools 0.00 0.00 0.00 0.00 0.01 0.00 -0.01 0.00

Delay 0.32 0.59 1.22 0.9 -0.49 0.19 1.22 0.67

Black List 0.09 0.10 0.01 0.03 -0.73 -0.26 0.02 -0.03

Table 3.3.: Results of QoS based metrics.

Table 3.4 present the integral related metrics for the different approaches and workloads. The

N/A entries stem from a very high value of Wdend
, which was not in the range of the evaluation. The

rest of the section discusses different behaviors of the isolation methods and their impact upon the

metrics, aligned with selected conspicuous measurements.

Approach Normal Over-Committed

Iend Ibase IintBase IintFree251 Iend Ibase IintBase IintFree251

Non-Isolated 0 0 0 0 0 0 0 0

Round Robin N/A 1 1 1 N/A 1 1 0.99

Thread Pools N/A 1 1 1 N/A 1 1 1

Delay 1.11 0.58 0.68 0.23 1.5 0.75 0.86 0.28

Black List N/A 0.94 0.96 0.97 N/A 0.96 0.94 0.96

Table 3.4.: Results of workload ratio based metrics.

Round Robin This method provides a good isolation in every scenario. In the chosen system,

the waiting queue for the disruptive tenant was never empty at the reference workload. Therefore,

74

3.4. First Assessment of the Metrics

the disruptive tenant was not able to disrupt the other tenants by increasing its workload. In cases

where at the reference workload the queue of the disruptive tenant runs empty, the increased load is

expected to influence the other tenants.

Separate Thread Pools In the normal mode, the size of the thread pools was set to 4 which

closely corresponds with the 38 allowed threads in the system. To keep the response time for

the tenants with 24 users lower than 3500ms, it was required to increase the thread pool to 17

threads. This resulted in an overloaded situation, but thanks to the reduced waiting time in the

queue, a response time of 3.5s at the reference workload was still achievable. Overall, the thread

pool approach showed a very good isolation.

Artificial Delay The threshold for the artificial delay was based on the number of users logged

in for one tenant. Figure 3.10 presents the plot of the measurement, based on the reduction of

workload for the abiding tenants. The negative values of IQoS40 and IQoS56 stem from the constant

penalty, added to every request from the disruptive tenants. Therefore, a part of the disruptive

tenant’s resources became available for the other tenants and consequently the QoS for the abiding

tenants improved. This results in negative isolation values. The isolation works within a limited

range, due to the constant character of the delay. This point can be seen in Figure 3.10 when the

abiding workload begins to decrease.

0

10

20

30

40

50

60

24 34 44 54 64 74 84 94 104 114 124 134 144 154 164

A
b
id

in
g

W
o
rk

lo
a
d

Desruptive Workload

Non-Isolated

Delayed

Figure 3.10.: Reduction of abiding workload while artificial delay is activated in the over-committed scenario.

Blacklist The blacklist exhibited a similar behavior as the artificial delay in the beginning. There-

fore, a negative isolation was measured. The relevant metric for blacklisting the tenant is its through-

put. The raw data shows, that sometimes a white tenant was blacklisted for a short while. This

occurs in situations where the actual disruptive tenant becomes blacklisted and its portion of the

resources become available for the other tenants. In this situation the response time and conse-

quently the request rate of the abiding tenants improve and exceeds the quota. However, the effect

is negligible with regard to the average response times.

75

3. Measurement of Isolation

3.4.2. Hypervisor Based Case Study

This section presents the results of a case study that investigates in virtualized hardware. By this,

the applicability of the metrics in real environments was evaluated and gives some insights on the

isolation capabilities of the widely used hypervisor Xen. Furthermore, it is an example how the

metrics can be used by system owners, to decide for a deployment scenario.

As outlined in Section 1.1, the sharing of hardware resources by serving several operating systems

on the same host, is a widely adopted technology, and the foundation for IaaS Clouds. Hence, it is

one of the most common sharing scenarios. Xen [Xen, 2012] is a widely used Linux hypervisor.

Thus, Xen was stressed with regard to performance isolation, by leveraging the previously described

approach. More precisely, the degree of isolation was quantified for various Xen configurations and

deployments, based on a black box approach, using the previously defined metrics. Therefore,

several instances of the original TPC Benchmark W (TPC-W) [TPC, 2002] were deployed onto

different VMs hosted by one Xen hypervisor. The case study shows the wide range of scenarios

supported by the metrics and the results also allow reasoning for the isolation capabilities of IaaS

Clouds running on Xen.

In the following, some details of Xen are described, followed by the scenario specific configura-

tion and finally the results with a short discussion. More details about TPC-W were presented in

Section 3.3.2.1.

3.4.2.1. Xen

Xen is one of the most common hypervisors for Linux environments. In order to configure the

system, the hypervisor, and to execute administrative tasks, the first VM started in Xen (domain-0

or dom0) has special privileges. Furthermore, dom0 provides a driver abstraction for the different

guest systems. The drivers in Xen are divided in two parts. The driver really accessing the hardware

is installed in dom0, the guest systems (domU) drivers communicate with the dom0 to access the

hardware [Gupta et al., 2006]. Consequently, dom0 can become a bottleneck for various activities.

Especially I/O intensive tasks are known to produce high overhead in dom0 and thus the indepen-

dent guest domains are likely to influence each other on these tasks. Such a behavior was already

observed by several authors (e.g., [Huber et al., 2011, Gupta et al., 2006]. By default, the various

VMs have access to all existing resources. To increase performance and isolation, it is possible to

exclusively pin a core to a domain. However, this does not reduce the influence the domains have

within dom0. It is worth mentioning, that dom0 usually does not host any services for the actual

end user, due to its administrative role.

3.4.2.2. System Landscape

The physical landscape comprised two servers with 4x2133 Mhz and 16 GiB main memory. On

both servers Xen 4.1 was installed and Suse Linux Enterprise (SLES) 11 SP2 was running on dom0

and on the guest systems. The servers were connected with a 1 Gbit Ethernet link. One server hosted

76

3.4. First Assessment of the Metrics

the load driver for the TPC-W benchmark in dom0. The various domains of the second server are

described by the scenario specific configuration in Section 3.4.2.3.

In a first measurement it was observed, that increasing the load by more than a configuration spe-

cific maximum results in timeout exceptions or socket/file handle issues. Thus, a further increase of

the load is no longer representative, because the induced demand is no longer equivalent to the load

induced before this maximum was reached. Consequently, it does not represent the corresponding

demand for the abiding domains anymore. Therefore, the system was tweaked in several ways. The

application servers’ HTTP timeouts were set to be infinite; the operating system’s socket timeouts

to be around six minutes and the maximum number of open TCP connections was increased to the

operating systems maximum value. Besides this, one has to avoid domain internal (software) bottle-

necks, because this hinders the system to increase the load for the shared hardware resources under

investigation. Therefore, several measurements to find the optimum thread pool size and connection

pool limits were done before the actual isolation measurements of each scenario.

3.4.2.3. Evaluation Scenarios and Expected Results

Overall, three different scenarios were investigated in this case study. In the pinned scenario the

server hosted four guest systems (domU) and dom0. Every domU had a fixed memory allocation

of 3096MiB and hosted a MySQL version 5.0 database and an LJS. The various domains were

exclusively pinned to the existing cores. Thus, no competition for the same CPU resources was

possible. Based on this runtime environment, four separate instances of the TPC-W bookshop

application were deployed.

In the unpinned scenario, all domU and the dom0 were not pinned to a dedicated CPU and free

to use any existing hardware resource. Xen’s credit scheduler was chosen to allocate the domains

to the various resources.

In addition to this, an unpinned two-tier scenario, which also had no fixed CPU pinning and

likewise uses the Xen credit scheduler [Cherkasova et al., 2007] was investigated. However, the

database and the application server in this case were deployed onto separate domains. Every domU,

with an application server had a fixed memory allocation of 2024 MiB and the database domain

allocated 1024 MiB. This memory setup was chosen, because of a small database volume.

Table 3.5 shows the values used to define the reference and maximum disruptive workloads for

the various scenarios. The number of users at the maximum accumulated throughput of all domains

is presented in the second column. The corresponding accumulated throughput, the per domain

throughput and average response times are listed next. The last column shows the disruptive do-

mains number of users, from which on the services functionality was no longer guaranteed. In the

unpinned two-tier scenario, different values for the QoS based and workload ratio based metrics

exist. Since in the workload ratio case, the load from the abiding tenants is reduced, and thus the

overall load, the server becomes as much overloaded as in the other cases.

The highest difference in throughput for one domain, compared to the mean of all domains was

around 4.5% and the highest difference of the response times around 6.5% in the pinned scenario.

77

3. Measurement of Isolation

Scenario User per In-

stallation

Throughput

(Sum)

Throughput

per domU

Response

Time

Max. Load

Disruptive

Pinned 3000 1195 req./s 299 req./s 1104 ms 15000

Unpinned 1500 721 req./s 180 req./s 842 ms 13500

Unpinned two-tier QoS 1300 617 req./s 154 req./s 833 ms 8000

Unpinned two-tier ratio 1300 617 req./s 154 req./s 833 ms 11050

Table 3.5.: Results for the scenario setup and configuration.

In the unpinned case 2.2% (one tier) and 2.7% (two-tier) difference in throughput were observed.

The difference of the response times was at 8.2%(one tier) and 9.4% (two-tier).

As a consequence of the observations from Table 3.5, the maximum disruptive load was set to

15000 users for the pinned scenario, and to 13500 for the unpinned. In the unpinned two-tier

scenario 11050 users were configured and the measurements had to stop for the IQoS metrics at

8000 users. It is worth mentioning, that in both unpinned scenarios the maximum disruptive load

was close to nine times the load of the maximum throughput for one domain.

A fixed resource allocation and a low I/O load is given in the pinned one tier deployment, and

thus it is expected to be the best isolated. In the unpinned one tier scenario the I/O load is still low

and thus the influence on dom0 should be low. However, the processing resources are shared and

thus the unpinned one tier deployment should be the second best isolated. The unpinned two-tier

deployment is expected to have the lowest isolation capabilities, since it has neither a fixed allocated

processing resource nor a low I/O, which is known for weak isolation [Gupta et al., 2006, Huber

et al., 2010].

3.4.2.4. Evaluation Results

This section provides an overview of the measurement results and the observed isolation metrics.

Figure 3.11 combines the results for both unpinned scenarios, based on the normalized values for

the abiding and disruptive load. Table 3.6 presents the QoS based metrics based on the same values

of ∆w. Thus, the results provide a comparable view onto both deployments.

0

0.2

0.4

0.6

0.8

1.0

1.2

1 2 3 4 5 6 7 8 9

A
b
id

in
g

W
o
rk

lo
a
d

Disruptive Workload

Non-Isolated

Isolated

Unpinned

Unpinned Two-Tier

Figure 3.11.: Normalized reduction of abiding workload in the unpinned and unpinned two-tier scenario.

78

3.4. First Assessment of the Metrics

Table 3.6 contains the values of IQoS for all scenarios investigated. The first column of Table 3.6

identifies the scenario, the second the number of users for the disruptive domain, the third column

the average response time of all abiding domains followed by the results for ∆w, ∆z, IQoS and Iavg.

For the pinned scenario, only one measurement was done due to the very good isolation. To ensure

a level playing field of comparison, ∆w is equal for the relevant scenarios. The Iavg values were

calculated based on an interpolation of the measurements of ∆w at 0.33, 0.60, 1.05 in the unpinned

two-tier scenario and additionally 1.47 in the unpinned scenario.

Scenario Disruptive

load

Response

time

∆w ∆z IQoS Iavg

Pinned 15000 1317 4.00 0.19 0.05 0.03

Unpinned

3200 927ms 0.33 0.10 0.30

0.184800 942ms 0.60 0.12 0.20

7500 914ms 1.05 0.09 0.08

10000 1173ms 1.47 0.39 0.27

Unpinned two-tier
3000 1011ms 0.33 0.21 0.64

4.204400 3784ms 0.60 3.54 5.90

6750 4354ms 1.05 4.22 4.02

Table 3.6.: Results of IQoS in the various scenarios.

Pinned Overall, this scenario presented a nearly perfect isolation throughout the whole range.

The IQoS presented in Table 3.6 at a disruptive load of 15000 users was below 0.05 and the Iavg

resulted in 0.04.

The workload ratio based metric decreased for the abiding workload only once at the last experi-

ment done in the series. The ratio related metrics IintFree15000 and IintBase result in a value short below

1. The isolation is the same as for an isolated system, except the last measurement. Therefore, it

was omitted in Figure 3.11 for the sake of readability.

Unpinned For the metrics based on the QoS impact the isolation was observed at various dis-

ruptive workloads shown in Table 3.6. The response increased significantly at the first increase of

disruptive load to 3200 users and at 10000 users. Accordingly, the isolation became better between

3200 users and 10000 users. This is, because of the widely constant response times by increasing

load, which changed the ratio of ∆z/∆w. In average the isolation (Iavg) was 0.18.

Figure 3.11 presents the total abiding workload Wa based on the disruptive tenants load increase.

Similar to the IQoS based results, two significant points were observed at the same position. In both

cases, Wa decreased, because of an increasing response time at the abiding tenants. At a disruptive

load of 13500 users (corresponds to 9 in the figure) the disruptive domain failed to successfully

79

3. Measurement of Isolation

handle incoming requests. Therefore, the results were no longer valid for higher disruptive loads.

The overall isolation values are IintFree13500 = 0.89 and IintBase = 0.86.

Two-tier Table 3.6 shows the various disruptive loads used to evaluate IQoS. The disruptive loads

were configured in a way, they result in the same ∆w as in the unpinned single-tier scenarios. Due to

the increasing number of timeouts and exceptions at the disruptive domain, the measurements were

stopped at 6750 users. In this workload range, a continuous increasing response time was observed.

Nevertheless, from 4400 users to 6750 users the isolation became better, because ∆w increased more

than ∆z. Over the whole range of the measurements, the average isolation Iavg is 4.20.

Figure 3.11 presents the total abiding workload Wa, based on the disruptive users for the work-

load ratio based metrics. Analogously to the response times in Table 3.6, the abiding workload

continuously decreases in Figure 3.11. At 1.5 in the figure, the observed isolation curve crosses

the characteristic of a non-isolated system. This is, due to the selected step width for reducing the

number of users in the abiding domains. At a disruptive load of 11050 users (corresponds to 8.5

in the figure), the disruptive domain failed to successfully handle incoming requests. These results

were no longer valid for higher disruptive loads and are therefore illustrated using a dashed line.

The overall isolation values are IintFree1105 = 0.42 and IintBase = 0.36.

3.4.2.5. Insights on the Effectiveness of the Deployment Options

Overall, the pinned scenario shows the best results and the unpinned two-tier the worst. The selected

size of the database was small enough to be mostly cached. The memory was not over-committed

in the setup and the network I/O did not reach a critical point, at which the CPUs for dom0 became

a bottleneck in the one tier scenarios. Therefore, the isolation was nearly perfect with pinned CPUs.

In the unpinned scenario, the resources of the domU became shared with those for dom0, therefore

the slightly increasing I/O overhead for dom0 was competing for resources and had some minor

effect. The credit scheduler was not able to completely compensate this. By splitting the dom0

into an application server and database server the network I/O increased. In this setup a significant

impact of the disruptive domain onto the others was observable, whereby the handling of the I/O in

dom0 led to a bottleneck or requested additional processing resources from the guest domains.

When an administrator has to decide for one of the mentioned deployments, various considera-

tions may be of importance. In a pinned setup, the overall performance and isolation is the best.

However, unused resources of one domain cannot be used by other domains, thus this setup lacks

in efficiency. The unpinned scenario overcomes this drawback, but at the expenses of performance

and isolation. From a separation of concerns point of view, it is beneficial to separate database

and application. However, a distributed deployment is less performant as table 3.5 shows and the

isolation is the worst.

The case study showed, how the isolation metrics provide the opportunity to quantify an addi-

tional dimension in the framework of several trade-off questions a system provider has to answer.

80

3.4. First Assessment of the Metrics

Moreover, the results follow the assumptions that an administrator can increase isolation by hard

resource allocation and deployments which reduce I/O.

3.4.3. Discussion

The discussions primary subject is the metrics. The domain independent framework was applied in

both case studies. The required plugins to adapt to the system were developed without any changes

to the framework itself.

For the evaluation of the metrics, the explanation concentrates on the following aspects. At first,

how feasible is the metric for the target group of a system owner/provider or a developer/researcher.

At second, the expressiveness of the metric in terms of the type of evidence it provides. At the third,

the number of measurements required to obtain a valid value. Fourth, situations in which the metric

is not meaningful.

3.4.3.1. QoS Impact

These metrics show the influence of disruptive workloads on the QoS of abiding tenants. This helps

system owners to manage their systems, since it indicates the influence of disruptive workloads onto

the QoS they provide, which is important for capacity planning. QoS-based metrics can prove that

a system is perfectly isolated. However, they fail at ranking a system’s isolation capability into the

range between isolated and non-isolated. Thus, it is hard to estimate the potential of the method. In

the simulation shown, it was possible to measure the system’s behavior in a non-isolated case. In

reality this is rarely possible, as a system owner or user might not be able to change, or even set off,

the system’s isolation method. A single IQoS metric can be derived with only two measurements,

to obtain evidence for one point of increased workload. However, to obtain some more detailed

information concerning the system’s isolation, more measurements are required. Therefore, Iavg

describes the average isolation value within the upper and lower bound of interest. Nevertheless,

the metric is not suitable to describe a system’s behavior for different disruptive workloads onto the

abiding tenants, because it cannot be set into a relation for a concrete scenario. Thus the advantage

of this metric is rather in comparing different systems.

3.4.3.2. Significant Points

The metric Iend is unfeasible to quantify isolation in systems with good isolation. Furthermore, it

is not possible to directly deduce relevant system behaviors such as response times. If the metric is

given, it can help to compare two systems, regarding the maximum disruptive load they can handle.

To determine Iend , more measurements as for QoS-based metrics are required.

Ibase orders a system within the range of isolated and non-isolated systems for one specific point

in the diagram. Nevertheless, it does not provide information about the behavior of the system

before that point. It is limited to comparing the isolation behavior of the systems at one selected

load level and it is inadequate to derive direct QoS-related values. The usefulness of this metric

81

3. Measurement of Isolation

appears to be of limited value, in contrast to the integral methods. One advantage is the evidence at

a well-defined and reliable point, with measurements for only two disruptive load configurations.

3.4.3.3. Integral Metrics

IintBase and IintFree are widely comparable metrics. IintBase has the advantage to be measured at a

predefined point. For IintFree, the endpoint of the interval investigated must be considered to have an

expressive metric. Both metrics provide good evidence of the isolation within the considered inter-

val, ordered between the magnitudes of isolated and non-isolated systems. They lack in providing

information concerning the degree of a guarantee violation. Thus the violation can be very low and

acceptable or critically high in each iteration when Wa is reduced. However, in both cases, the results

of the metrics are the same. This limits the value of IintBase and IintFree for system owners/providers.

However, for comparison of systems and analyzing their behavior, the metrics are very useful and

can be exploited by developers or researchers. Finally, on the negative side, a disadvantage of these

metrics is that their measurement can be a time consuming task, compared to usual performance

measurements.

3.4.3.4. Summary of Requirements and Achievements

In the previous two case studies, the metrics were applied in different environments, using the

domain independent framework for the measurement of performance isolation. In this subsection,

the validity/correctness of the metrics is discussed, followed by a recap of the requirements and

question from Section 3.1.1 and how they were tackled by the proposed solutions.

Validity The metrics proposed are based on the impact of one tenant’s workload onto, either the

performance of the abiding tenants or on the amount of corresponding workload of the abiding

tenants. Thus, both groups intuitively follow the Definition 2. Furthermore, in both studies, it was

clear, how the various isolation and deployment approaches should be ranked with regard to their

performance isolation capabilities. The results of the measurements and the derived metrics follow

this ranking, and thus it is shown that the metrics worked correct.

Questions the Metrics Should Answer Three questions were identified as relevant for the

metrics. To answer Q1 and Q2, two separate metrics were developed. Metrics based on the integral

of the workload ratios were developed together with Ibase, to express how much potential a system’s

isolation method has to improve (Q1). The QoS impact based metrics were developed to quantify

the impact of one tenant onto the others (Q2). All metrics can be used to compare alternative

isolation methods (Q3).

General Requirements Objectivity is provided by the metrics, as they do not rely on a personal

perception. However, the concrete result of a measurement highly depends on assumptions about

the reference workload and experiment configuration (e.g., step width of increasing disruptive load),

82

3.5. Conclusion

which is influenced by a human. Therefore, it is important to report these things in detail, to make

the result reliable. In general, the metrics themselves are reliable as long as the context in which they

are measured is the same. This is the same, as for other commonly used metrics, e.g., response time,

where the workload is needed to quantify the quality. However, especially for disruptive loads close

to ∆W → 0.0 the workload ratio based metrics are not very robust. A minor modification of abiding

load, due to noise, can lead to a low isolation values, since the difference between the isolated an

non-isolated systems is very small (cf. Figure 3.3). QoS metrics may amplify minor changes in the

observed quality since ∆W is is very small at the beginning. However, with increasing disruptive

load this becomes negligible. The economy of the proposed metrics is a major obstacle. They

require preliminary measurements to find an appropriate reference workload. Realistically, they

cannot be gathered in an operative system, which requires a benchmark environment. Finally, the

workload ratio based metrics require a high number of measurements. With regard to the usefulness

they are limited to benchmarked systems. However, the questions the metrics are able to answer

were motivated by examples of the daily business and the case study showed their applicability

on various scenarios. Especially with their capability to entirely encapsulate the complexity in a

framework, they are easily applied in different contexts, even by non-experts. Consequently, the

results are important for various stakeholders, the metrics are applicable in relevant scenarios, and

thus they are useful.

3.5. Conclusion

In this section, a brief summary of the results and contributions from this chapter are provided,

including a tabular overview of the metrics presented. The section starts with a critical discussion.

3.5.1. Critical Discussion

Benchmark Specification Although metrics, a definition of the work, and recommendations

for potential workload profiles were presented a real benchmark specification is not yet defined. A

benchmark specification provides concrete run rules in addition. This is required to ensure a proper

comparability between different independent measurements of systems. Examples for the sake of

performance isolation are the measurement duration of each experiment, the maximum allowed

standard deviation in a measurement or the creation of one single figure of merit.

However, creating a successful benchmark requires the support of a strong community. Therefore,

almost all important benchmarks were initiated by a consortium of well-known stakeholders in the

field investigated by the benchmark. They define, what they see as representative for their real

world applications. However, researchers do not require such strict run rules, since they usually do

not compare systems for economic reasons, but with a concrete research question in mind. This

usually leads to goal specific metrics and setups, independent of the official benchmark. Therefore,

the focus of this chapter was on the relevant research question which enables an interested party to

add the technical definitions for a complete benchmark specification.

83

3. Measurement of Isolation

Therefore, only the generic and relevant points of the measurement process were sketched. An-

other point not discussed in detail, is how to treat potential negative values at the beginning of a

workload ratio based measurement, caused by noise. Or isolation values within an experiment se-

ries, that reflect a system better as a perfect isolated one. This happens, if the disruptive tenant is

disproportionately penalized. It can also happen that a system isolates worse than a non-isolated,

e.g., when it runs in an overloaded and trashing state. How the load for the abiding tenants is re-

duced, in case not all have (the same degree of) guarantee violations was also not discussed. In

principle, one can adjust the load individual for each tenant, or all by the same factor until all vio-

lations are solved. One of the most important aspects of a benchmark is to derive one single figure

of merit, based on all the gathered metrics. However, several techniques about this topic were al-

ready discussed in the past (e.g., [Smith, 1988]) and not longer a relevant research question for the

development of benchmarks.

All these issues are a question on how a benchmark will be defined and used. The proposed

metrics and concepts already support these variants.

Adaptive Isolation Mechanisms Adaptive isolation mechanisms change their behavior to dy-

namically adapt to workload changes. This is a problem for the workload ratio based metrics, since

they may change the system’s behavior, when adapting the load within an experiment series. It is

worth mentioning, that the metrics, benchmark and suggested load profiles are still valid and can

be applied as presented. However, sometimes this does not provide an answer to the question in-

vestigated. Assume an isolation method that always adapts the behavior such, that abiding tenants

exceed their guarantee by a small value. This would result in a non-isolated system. In this case, it

is more appropriate to use internal knowledge about the isolation mechanism. Either it is possible

to stop the dynamic adaption while doing the measurement, or one needs to derive a model of the

isolation mechanism, to determine the workload ratios for a given disruptive load analytically, as if

the system would not adapt.

Disruptive Load Definition The disruptive load was defined in relation to the overall load.

Another possible solution might set it in relation to the load of the disruptive tenant only. However,

the first has the advantage that the overall system performance is usually an already known value and

often used for capacity planning. Thus, it is the potentially more common reference. Furthermore,

it is independent of the reference workload. Thus, both solutions have their legitimation. The

introduced concepts of the metrics, proposed load profiles and technical contributions can easily

support both.

3.5.2. Summary

To evaluate a performance characteristic of a system, it is necessary to define a suitable and ap-

plicable metric, a load profile and the work. This chapter covers all these aspects for MTAs and

performance isolation.

84

3.5. Conclusion

Metrics were defined to answer, how much potential an isolated system has to improve, what the

impact of one tenant onto the others is, and how to compare alternative isolation methods (cf. Sec-

tion 3.1). Thus, the various metrics show their advantages in different fields of application and have

various semantics. The IQoS and Iavg metrics represent the reduced QoS, based on disruptive load.

They cannot provide a ranking within the range of isolated and non-isolated systems. However, for

a system operator, they are helpful to estimate the impact of disruptive load onto the system. The

Iend metric shows how many times a system is better than a non-isolated one. This information is

helpful to compare different systems, if one has to decide for one. The Integral based metrics rank a

system within the range of isolated/non-isolated. This knowledge is beneficial for the developer of

a system, to estimate the potential for improvements. It is worth to outline again, that these metrics

are not limited to the use in MTAs and can be used in shared systems fulfilling the requirements

from Section 3.1.7. Table 3.7 provides a summary of the metrics and their value ranges. Addition-

ally, suitable load profiles for the measurement were specified in Section 3.2. They depend on the

maximum throughput a system can achieve.

Metric Non-Isolated Isolated Max. Value Min. Value

IQoS > 0 0 ∞ −∞

Iavg > 0 0 ∞ −∞

Iend 0 ∞ ∞ −1

Ibase 0 1 1a 0

IintBase 0 1 1a −1

IintFree 0 1 1a −1b

aIf abiding load is allowed to increase, the maximum value is > 1 and dependent on Wdre f
.

bIf pendW = dbase, otherwise dependent on pend . For pendW > dbase within (−1,0).

Table 3.7.: Overview of the isolation metrics.

To increase the efficiency in applying the metrics to different domains and scenarios, a framework

is described (cf. Section 3.2) that easily allows the adoption for various scenarios. It encapsulates

the logic and algorithms for the metrics and measurement process in a technically/domain indepen-

dent way. Thus it is shown, that the metrics can be technically applied to various scenarios if the

framework can be used in various scenarios. That was shown by Westermann et al. [Westermann,

2013].

Both, the measurement framework and the metrics were applied in a case study using Xen, and

a simulated MTA implementing simple isolation methods. In both studies, the metrics and the

framework worked correct and followed the expectations (cf. 3.4.3). The case studies’ results can

be seen as contribution in itself. Section 3.4.1.4 already showed, that simple isolation method can

achieve a certain degree of isolation, but is inefficient concerning the usage of resources or SLA

awareness.

The important requirements and typical characteristics of MTAs are outlined in Section 3.3, as

precondition to develop a benchmark application. The developed benchmark defined the work for

85

3. Measurement of Isolation

the Xen based experiments. The benchmark application itself is described independently from

the isolation measurement, since it can be used for a wider range of experiments. An example is

a case study, which compared the performance of an MTA with a deployment based on several

application instances, using the hypervisor Xen [Krebs et al., 2013]. This shows the applicability of

the developed benchmark beyond performance isolation.

The provided contributions are used in Section 6 to validate the performance isolation methods

and the architecture. Thus, the applicability is further validated.

In summary, this chapter presents the contributions made to evaluate the performance isolation

capabilities of MTAs. Thereby, the single contributions are not necessarily coupled to the multi-

tenancy scenario, and can be used in other contexts. The chosen case studies to validate the contri-

butions presented further insights into performance isolation methods.

86

4. Methods for Performance Isolation

This chapter presents solutions to ensure performance isolation in multi-tenant applications. As

outlined in Section 1.3.3, several challenges have to be solved to achieve this. The most relevant

is the layer discrepancy. It describes the lack of control of the application layer, while the lower

layers, e.g., operating system, are not aware of the tenant concept. The workload is assumed to be

interactive. The over-committed system should allow to shift resources between tenants, if they are

not required by others, to maintain the guarantees whenever possible.

Consequently, the proposed isolation methods should be able to achieve the following design

goals, which can be derived from the goals and challenges in Section 1.3.2.

Design Goal 1 — Maintain Performance Isolated

The methods have to performance isolate tenants sharing one application node.

The definition of isolation follows Definition 2, including its relation to SLAs,

and approaches to measure isolation presented in the Chapter 3. Furthermore,

they have to reflect the fairness criteria from Definition 1. It is worth mentioning

again, that high load scenarios with high response times, are of most interest (cf.

Section 2.1.2.1).

Design Goal 2 — Efficient Distribution of Resources

Ensure, that the methods are able to efficiently use the resources provided. A

strict isolation of resources would not allow leveraging workload fluctuations of

tenants and thus would not allow over-commitment. Thus, the methods should

provide a tenant the guaranteed service, even if he exceeds the quota, as long

as it does not have a negative influence upon other tenants guarantee. This also

reflects the third fairness criteria from Definition 1.

Design Goal 3 — Low Overhead onto the Overall Performance

Ensure that the influence upon the system’s overall performance is low. A system

with a bad overall performance, due to the used isolation method, can still fulfill

all other requirements, but is insufficient for practical needs. Overhead includes

the amount of additional resources required and the influence upon a request’s

processing.

Design Goal 4 — Low Oscillation

87

4. Methods for Performance Isolation

Avoid oscillation of the performance. Besides the actual isolation of perfor-

mance, the variability of performance plays an important role for the user sat-

isfaction. Although the performance could be isolated with regard to the average

performance, it may happen that the performance changes between individual

calls.

Design Goal 5 — Short Settling Times

Provide fast settling times, since an MTA’s workload is likely to change often.

Providing an isolated system and efficient sharing a long time after an unpre-

dicted change in the workload, will lead to insufficient quality most of the time.

Design Goal 6 — Applicability

The solutions should have a low dependency on the surrounding environment or

technologies. A method which achieves all previously outlined goals perfectly,

but has many dependencies onto the infrastructure, has low chances to be widely

accepted.

The first section introduces the general concept to achieve performance isolation. After that, two

novel methods are introduced. One takes advantage of resource demand information to isolate

resources and hence performance. The other uses a model to predict the performance of the system,

combined with a fitness function for the optimization. These two methods are discussed in detail.

Additionally, three methods, which are already conceptually known from similar scientific fields,

are utilized and will be briefly discussed in this chapter.

To which degree the various goals are fulfilled, and the challenges were overcome, is part of the

evaluation conducted in Chapter 6 and the Conclusion chapter.

4.1. Request Based Admission Control

Subsequently, a short excerpt of two potential approaches to provide performance isolation is pre-

sented, followed by a more detailed discussion of the approaches suggested in this thesis.

4.1.1. Alternative Approaches

Several solutions (cf. Section 2.3.1) try to place tenants or other entities onto a defined set of nodes,

in a way their workload profiles do not interfere with others. This approach is only possible if the

workload profiles for the tenants can be perfectly predicted. Thus, these solutions will not provide

isolation between tenants on the same node.

To overcome the layer discrepancy, it might be possible to enhance the resource controlling layers

by the tenancy concept. This means, that besides processes and threads, which are controlled by

the operating system, a tenant entity would have to exist, which could be charged for the resources

and thus enabling resource isolation. This would require all the other layers between the operating

88

4.1. Request Based Admission Control

system and the application to be aware of this concept, as the information must flow from the

identification of the tenant to the operating system. Furthermore, this would tightly couple the

application or middleware to an operating system. Consequently, the applicability would be limited

and technological enhancements on various layers would be necessary.

In summary, solving the problems by the location of tenants does not provide proper isolation,

while the way of enhancing the resource controlling layers has many technical dependencies.

4.1.2. Double-Staged Admission Control

Subsequently, a detailed discussion of the approach to achieve performance isolation is presented.

Parts of this have already been published [Krebs and Mehta, 2013].

A negative performance influence from one tenant onto another, can only appear if requests from

different tenants are handled in parallel by the system. Only in these situations, tenants compete

for resources. If one tenant does not send any requests, it cannot have a negative impact upon the

performance. Conclusively, if a request which would have a negative impact upon the performance

of others is rejected, or delayed before it accesses the application, its impact is reduced. Thus, it can

be hypothesized that controlling the requests admission to the application can isolate performance.

In Section 3.4.1.2, various scheduling mechanisms, e.g., round robin and black list were presented

to decide, which request is going to be admitted next, to the application. It was shown, that these

approaches can provide a certain degree of isolation. However, they lack in efficiency. Especially

when the system becomes over-committed they cannot shift resources, due to constant priorities

for each tenant. Methods like these, require a limitation of requests that are handled in parallel by

the application. However, the maximum number of requests is usually limited anyway, to avoid

the system from a trashing and overloaded state. Therefore, this is not a disadvantage. Automated

approaches to determine the thread pool size at runtime exist (e.g., [Hellerstein et al., 2008]).

If a system is over-committed and a tenant generates the maximum allowed workload, he has

to get more of the share to utilize resources not used by other tenants. Closed control loops are

widely applied in different contexts to adapt a system, in case of a dynamic environment (cf. Sec-

tion 2.3.2). However, in situations where one tenant suddenly changes its workload, a closed control

loop needs some time to react to these changes. Furthermore, they may result in high variability of

the performance due to overshooting and oscillating, in case of continuously changing conditions.

On the one hand, scheduling approaches have the benefit to react very fast to changes in the

workload profile, as they do not have to wait until a control cycle is completed. On the other,

they cannot dynamically adjust the priorities of the tenants to find an optimal setup. Therefore,

a fast reacting scheduling mechanism is combined with a mechanism dynamically adjusting its

configuration. This allows converging to optimal configurations, and additionally the impact of

potential SLA violations can be limited on a short-term basis by the scheduler. Furthermore, if a

tenant does not send as many requests as expected between two updates of the admission control,

a work-conserving scheduler immediately prefers the other tenants and thus continues using all

89

4. Methods for Performance Isolation

resources. Thus, the system can be efficiently operated. It is worth mentioning, that such a system

could be realized by a closed control loop or comparable approaches.

Multi-Tenant System

MTA

Controller for Admission Control

Admission

Control

Incoming Requests Admitted Requests Response

Monitoring InformationConfiguration

Figure 4.1.: General approach for performance isolation.

Figure 4.1 presents an overview of the idea. Incoming requests have to pass the Admission Con-

trol. This entity delays, rejects or directly admits a request. If a request is admitted, it is forwarded

to the actual MTA which then generates the response. This is depicted by the leaving arrow to the

right. The Controller for Admission Control collects any kind of operational data and updates the

admission control. The concrete implementation of the admission control, the controller for the

admission control and the data gathered depends on the concrete isolation method.

Dividing the approach in two parts allows to realize a low impact upon the application. Conse-

quently, the admission control must be implemented so light weighted, that the influence upon the

overall service time of a request is negligible. Furthermore, it allows to react very fast to sudden load

changes by the admission control, while its configuration is optimized on the long-term. This opti-

mization potentially comes along with high complexity. Although, the approach is not limited with

regard to the type of admission control, the use of work-conserving schedulers is recommended.

This ensures a sufficient utilization, even though a tenant immediately reduces load. In case a tenant

suddenly increases the load, the impact is limited by the scheduler. A possible adjustment of the

tenants weight is done by the controller for admission control, once enough data is gathered to react

to the new situation.

4.2. Model Based Isolation

Performance models can be used to analyze the performance of systems. Some approaches use

models at runtime [Kounev et al., 2010] to adapt a system to a dynamic environment at runtime.

The models allow to find a suitable new configuration of the system. If this is found, the real system

is reconfigured accordingly. The advantage is, that a solution can be found faster by changing and

analyzing the model, instead of reconfiguring the real system and observing the results. Further-

more, once a proper configuration is found and applied, it will not change without a change in the

context or the optimization goal. Therefore, the risk of unnecessary reconfigurations and oscillation

is reduced. However, if the model calibration is based on information that is directly or indirectly

influenced by the reconfiguration, oscillations may occur. This has to be reflected by the design of

90

4.2. Model Based Isolation

the approach. Creating a representative model with a sufficient accuracy and an acceptable overhead

is challenging. Furthermore, defining a suitable and fast optimization method matching the model

is an additional challenge.

This section presents three complementary contributions. A method to estimate the performance

of the MTA, a fitness function applied on the performance model to assess the potential reconfigura-

tions and the admission controls scheduler for tenants. First of all, the general approach is presented

together with a short discussion about the benefits of an analytical prediction. Then, the scheduler

used for the admission control is depicted and the relevant properties are investigated. The perfor-

mance prediction function is discussed afterwards, followed by a fitness function, optimizing the

configuration of the scheduler.

4.2.1. General Approach

To analyze a performance model, one can either use analytic approaches or simulation based ap-

proaches. The latter ones require more time to gather the results, while they have the advantage

to be able to analyze more complex/detailed scenarios and concept where no analytical approach

exists yet [Brosig et al., 2015]. It is necessary to find a proper reconfiguration method applied onto

the model for optimization. Actually, any mechanism that can be directly applied to the real system

is applicable to the model to determine a good configuration. However, this necessarily results in

several iterative steps to find a good configuration, resulting in a higher demand and longer settling

times. Therefore, an analytically solvable description is more appropriate. To ensure that the com-

plexity is manageable, a black box view onto the application is considered. The black box view

encapsulates all internal aspects of the application, but not the scheduler itself, since this is the part

controlled.

Figure 4.2 presents the overall approach of the solution.

The monitoring provides information about the number of active users per-tenant, the service

times per tenant and arrival rates. Based on this information, the Performance Prediction Model

can be derived. This model is completed by the Weight Vector, describing the share a tenant is

allowed to use. A Fitness Function is then applied on the model to find the best possible weight

vector, by using an Optimization. When it is found, the weights are applied on the Priority Fair

Queuing (PFQ). The PFQ is always triggered when a thread becomes free at the application server

and selects the next request for processing.

This general approach is not limited to the later identified fitness function, nor the specific model

or scheduling mechanism. Although it was decided to use an analytical approach for the sake of this

thesis, other approaches could be feasible, too. In these cases the data monitored might be different.

For a better understanding, Figure 4.2 depicts the information for the method introduced later.

The subsequently presented method to predict the performance focuses on an interactive system.

However, the general approach and the fitness function presented are not limited to such systems.

91

4. Methods for Performance Isolation

System

MTA

Controller:for:Admission:Control

Priority:Fair:

Queueing

Incoming:Requests Admitted:Requests Response

W:Users:per:Tenant::m1...mn

Weight:Vector:w

Performance:

Prediction:

Model

Fitness:

Function

Optimization

Error

Weight:Vector:w

Model

Service:Time:per:Tenant::S1...Sn

Arrival:Rate:per:Tenant::λ1...:λn

Guarantee:O:

Quota

Figure 4.2.: Approach for the model based isolation.

4.2.2. Analysis of System Aspects

Important aspects of the system, for the latter introduced model, scheduler and fitness function

are introduced. Thereby, the assumptions and thus the limitations of the concrete method become

visible. This does not limit the general approach which can use other models, schedulers or fitness

functions.

Each tenant ti from t1, . . . , tn has a sufficiently high number of independent users. All users have

the same workload characteristic, but behave statistically independently from each other. Conse-

quently, the arrival process can be assumed to a Poisson process (cf. Section 2.1.2.2).

Common queuing network multi-servers queues assume that the throughput increases linearly

with the number of servers. A server running n threads does not necessarily speed up the processing

and throughput by factor n. A server’s capacity is limited by hardware or software bottlenecks. With

increasing load, one of these bottlenecks becomes saturated and limits the throughput. However,

the system’s maximum throughput can increase with the number of threads, since the requests do

not all utilize the same resource at once. Ideally, the server’s thread pool size is configured such,

that no additional requests can be served at this point to avoid trashing (cf. Section 2.1.2.1). If the

demands among requests are the same, they depart one after the other, in the order they arrive at the

system.

4.2.3. Priority Fair Queuing for Performance Isolation

This section introduces the admission control’s scheduling mechanism for the proposed solution.

Additionally, it discusses the relevant aspects of the scheduler used later to describe the system’s

performance behavior.

92

4.2. Model Based Isolation

4.2.3.1. Scheduling Algorithm

Algorithm 1 implements the PFQ mechanism. If every tenant sends enough requests, to be able to

allocate its guaranteed quota, PFQ realizes a WFQ. The globally accessible variables ai counts the

overall number of already admitted requests for ti in the accounting period T . Variable pi keeps the

priorities for each tenant. Its priority is computed dynamically, each time the algorithm is triggered.

On its basis, the tenant served next is selected in a WFQ manner. The variable ai is reset to 0 every T

seconds. This avoids long imbalanced durations. T is a configurable parameter. Additional symbols

are defined in Table 4.1.

Algorithm 1: Algorithm for the PFQ.
Input: J = { j1, . . . , jk}: Tenants indices to be considered.

w = (w1, . . . ,wn): Weight vector compliant to ∑
n
j=1 w j = 1 and w j ≥ 0.

Output: Tenants index to be serviced next or null if no requests enqueued at all.
Data: ai: Amount of requests admitted. The initial value is 0.

1 if J = /0 then

2 return null

3 for j ∈ J do

4 p j← a j

w j

5 i← argmin
j∈M

p j if queue of ti is not empty then

6 ai ++return i

7 else

8 return s❡❧❡❝t◆❡①t❚❡♥❛♥t(J \{i},w)

Line 1 checks if there are tenants to be served. If this is not the case null is returned. This stops the

recursion (cf. line 9). If tenants exist, the priority is calculated in line 4 for every tenant. Within the

period T , the PFQ scheduler aligns the actual admission ratios w∗i with their corresponding weight

wi. The ratio of ti admitted requests is given by w∗i := ai

a
, where a := ∑

n
i=1 ai. This happens in line 4,

where the admission counter ai is normalized by the weight. This is based on the assumption, that

always enough requests were sent by all ti. In line 5 the tenant with the lowest priority is selected.

The priority is the number of admitted requests, normalized by the tenants weight. If its queue is not

empty (line 6) a is incremented and the corresponding identifier is returned. If the queue is empty,

the method is called recursively without the tenant recently selected.

Algorithm 1 terminates in worst case O(n2), where n is the number of tenants. Using a sorted

priority list maintained among several calls, a reduction in O(n · log(n)) is possible.

4.2.3.2. Properties of the Scheduler

The weighted fairness described by w∗i ≥wi is guaranteed if λi/λ ≥wi. If the request arrivals are not

homogeneous, PFQ does not necessarily balance priorities within consecutive calls. If for example

a tenant sends all its requests shortly before the period T ends, it can happen that not enough time

is left to serve all requests within T . Furthermore, a tenant has to send enough requests to be able

93

4. Methods for Performance Isolation

to allocate its entire share given by wi. As long as λi/λ ≈ wi in T , this is not a problem. In case of

a closed system in steady state this is the case, since the weight indirectly controls the arrival rate.

PFQ is work conserving, since it always serves the tenant with the highest priority and pending

requests.

The proposed scheduler does not reflect varying demands for requests. This may lead to a re-

source distribution different to the weights and thus would not longer be fair.

The scheduler presented may remind a bit on a deficit scheduler. However, in a usual deficit

scheduler the queues are served in a round robin manner, whereby each queue is processed as long

as the credit is not used. This means, that the order in which tenants are served cannot change. The

primary advantage of the PFQ is, that the tenant who used less of his guarantee also has the shortest

delay before served the next time.

4.2.4. Performance Prediction Approach

This section introduces the model used to predict the performance of the MTA using the PFQ. It

starts with a brief disambiguation in Table 4.1. After that, the used model is introduced. Table 4.1

introduces and recaps the relevant symbols, and relations required in the subsequent section.

In the following, some insights required later. λi > µi is possible if at least one tenant does not

fully utilize its guaranteed service rates.

Assuming a multi-threaded server could use all its capacity κ to process one single request, Oi

would be the time spent in average to finish the processing of it. However, this is only a theoretical

value since κ can only be utilized by parallelism and a request’s processing is not speed up by the

number of threads running. Thus Si will always be higher than Oi. Except in a single tasking system

where both values are the same.

The utilization U has intuitively values in [0,1] since λ ≤ µ . On the long-term, it is not possible

that more requests arrive the system as the system leave, since users have to wait for the response

in an interactive system. Therefore λ ≤ µ always holds for interactive systems. However, this is

not necessarily true for an individual tenant. Ui is the portion a tenant uses from µi. Since λi can be

greater than µi, Ui > 1 is possible.

4.2.4.1. Upper Bounds for System Performance

A method to determine the upper bounds for Ri and Ni is presented in this section. In this context,

Little’s Law [Little, 1961] has to cover the definition of λ based on T .

Ni =
λi

T
Ri. (Little’s Law)

A single tasking server is described first and then the description is adapted for the multi-threaded

approach. A cycle from a tenant’s (ti) perspective is the time spent between the scheduling of two

requests from the same tenant. A cycle starts exactly with the selection of a request, and ends with

94

4.2. Model Based Isolation

Symbol Description

t1, . . . , tn The set of tenants currently using the system.

T Time period after which the PFQ is reset.

λ1, . . . ,λn Request arrivals within T for tenants t1, . . . , tn.

λ The overall arrival rate. λ := ∑
n
i=1 λi

w1, . . . ,wn Weights for tenants t1, . . . , tn to determine the share of the server.

w Weight vector describing all weights w = (w1, . . . ,wn). ∑
n
j=1 w j = 1 and w j ≥ 0

Ri Average response time for all users who are member of ti.

Si The average service time of requests of ti. The time a service spends at the server
while being processed. This time does not include the queuing time.

qi Queue of ti.

Ni Average number of requests of ti in the system, including currently queued and pro-
cessed requests.

N Amount of overall requests in the system. N := ∑
n
i=1 Ni

κ Maximum capacity. It defines the work the server can handle within the time period
T . It is the maximum amount of work levering the speed up of all threads.

κi Guaranteed capacity for ti within the period defined by T . κi := wi κ

νi The average demand of a request of ti. It is the average, absolute amount of κ the
request demands.

ν Average demand over all tenants. ν := ∑
n
j=1 λ jν j/λ

Oi Average occupation time of requests of ti. The time a server needs to process a
request if it spent all κ onto that single request. Oi := νiT/κ

µ Service rate, defining the maximum number of requests the server can handle in T .
µ := κ

ν

µi Guaranteed service rate for ti. µi := κi

νi

U Utilization of the MTA defined for λ ≤ µ . U := λ
µ

Ui Utilization of the tenant ti. Ui := λi

µi

mi Number of users per-tenant ti.

Zi Average think time of users from ti.

Table 4.1.: Overview of definitions and symbols relevant for the performance model.

95

4. Methods for Performance Isolation

the selection of the next request from the tenant. Each cycle length is tenant specific. It depends on

wi and the system performance. The average cycle length, in a backlogged scenario, is Li := T/µi.

Consequently, Ni cycles have to pass from the tenant’s perspective before the processing of a

new incoming request in qi can start. A new arriving request from ti has to wait until all preceding

requests in qi are processed. That is Ni ·Li (cf. Section 2.1.2.2).

After that, the service requires Si for its own service. Combining these two aspects, the average

upper bound of the response time for a new request arriving to the system is

Ri ≤ Ni ·Li +Si

Ri ≤
Ni T

µi
+Si

(Little’s Law)⇐⇒ Ri ≤
λi Ri

µi
+Si

⇐⇒ Ri(1−
λi

µi
) ≤ Si

⇐⇒ Ri ≤
Si

1− λi

µi

=
Si

1−Ui
.

The upper bound for Ni can be calculated with Little’s Law

Ni ≤
(λi/T)Si

1−Ui
.

In a multi-threading scenario, requests are processed in parallel by a preemptive scheduling.

Thus, the processing of a single request is not linked to a fixed period in time, but is rather blurred

over time. Subsequently, the validity of the previous approach is discussed for multi-threading. The

parallelism leads to an overlap of cycles. Figure 4.3 illustrates this situation.

Time

Cycle Cycle Cycle
Induced

Cycle

Induced

Cycle

Last Request in

Queue (Rm)

Rm at

Server

R m

Serviced

OiNi Li

Rm

Starts

Figure 4.3.: Cycles in a multi-threaded system.

The system is expected to be in flow equilibrium in the following (cf. Section 2.1.2.2). Since

several requests are serviced in parallel, additional cycles pass, while Rm is processed by the server,

before the request is completely served. These cycles refer to Induced Cycles and they are as long as

96

4.2. Model Based Isolation

those used to determine when a next request is removed from the queue. Thus, if the server would

queue Rm internally, until all requests from ti admitted before are finished, and would than spent κi

for the processing, the time spent on the server would be the same.

Thus, the same approach as for the single task case can be applied.

In summary, assuming that all νi are equal, the requests will depart the server in the order they

arrived. A model assumption is, that the processing of requests served in parallel advances in cycles,

similar to those waiting in the queue to become admitted. These are the induced cycles and they are

as long as in qi.

Ni still refers to the overall number of requests at the server’s queue, or processing pool from the

perspective of ti. Based on this, Ni describes the sum of induced and normal cycles that must pass,

before an arriving request of ti is processed. The occupation time of the work admitted in each cycle

Li to the server, has to pass before the next request is processed. Thus, Ni ·Li has to pass before the

new request’s processing can start. When the processing of the request starts, it takes Oi until it is

finished. This results in the following formula:

Ri ≤ Ni ·Li +Oi

Ri ≤
Ni T

µi
+Oi

(Little’s Law)⇐⇒ Ri ≤
Oi

1−Ui
.

An upper bound for Ni can be achieved by using Little’s Law:

Ni ≤
(λi/T)Oi

1−Ui
.

The upper bounds are defined by

R∗i :=
Oi

1−Ui
, N∗i :=

(λi/T)Oi

1−Ui
. (4.1)

The upper bounds become sharp if all tenants have the same utilization. This is used later and

therefore shown in the following.

Lemma 1

If U j = Uk for all j,k ∈ {1, . . . ,n}, then the upper bounds are sharp. This means Ri = R∗i and

Ni = N∗i for each tenant ti.

Proof of Lemma 1 : First it is shown that U =U j for all j ∈ {1, . . . ,n}. Since the premise is that

U j =Uk, for all j ∈ {1, . . . ,n} k ∈ {1, . . . ,n}. There exists a factor αk such that

λk = αk λ j and µk = αk µ j.

97

4. Methods for Performance Isolation

Thus for all j ∈ {1, . . . ,n}

U j =
λ j

µ j
=

(∑n
k=1 αk)λ j

(∑n
k=1 αk)µ j

=
∑

n
k=1 λk

∑
n
k=1 µk

=
λ

µ
=U.

To prove the Lemma, the following equations are applied.

1. Ni ≤ N∗i = (λi/T)Oi

1−Ui
, ∀i ∈ {1, . . . ,n},

2. N = U
1−U

,

3. U j =Uk =U, ∀ j,k ∈ {1, . . . ,n},

4. µ = κ/ν ,

5. λν = ∑
n
j=1 λ jν j,

6. Oi = νiT/κ .

The boundaries are sharp if Ni ≥ N∗i , since Ni ≤ N∗i was already shown before. The equation

N = ∑
n
j=1 N j is the starting point.

Ni = N−∑
j 6=i

N j

1
≥ N−∑

j 6=i

N∗j

1,2
=

U

1−U
−∑

j 6=i

(λ j/T)O j

1−U j

3
=

λ/µ

1−Ui
−∑

j 6=i

(λ j/T)O j

1−Ui

4
=

λ ν/κ

1−Ui
−∑

j 6=i

(λ j/T)O j

1−Ui

5
=

∑
n
j=1 λ j ν j/κ

1−Ui
−∑

j 6=i

(λ j/T)O j

1−Ui

6
=

n

∑
j=1

(λ j/T)O j

1−Ui
−∑

j 6=i

(λ j/T)O j

1−Ui

=
(λi/T)Oi

1−Ui
= N∗i .

This section discussed how the maximum number of requests per-tenant and the corresponding

response times can be calculated. However, these foundations have to be set into the context of an

interactive web application. This step is discussed subsequently.

4.2.4.2. Interactive System Performance

In interactive systems, the response time Ri of ti has and influence upon the arrival rate λi. This has

to be reflected, to derive an estimation of the response time as a function of the weights.

98

4.2. Model Based Isolation

The number of users of ti is depicted by mi. Zi is the average think time. For each user, the

processing token is either in the queue, or processed by the server, or at the user. Either it is delayed

by the users think time Zi or by the MTA’s response time Ri [Menascé et al., 1994, pp. 134-136].

If the system is in steady state, the average number of requests Ni on the server side (including the

queues), is described by the ratio between Ri and Ri+Z. This results in equation

Ni = mi ·
Ri

Ri +Zi
. (4.2)

Accordingly, λi can be calculated by Equation 4.3, since the amount visits a requests makes in T ,

depends on the sum of the processing/waiting times spent.

λi =
mi ·T

Ri +Zi
. (4.3)

With increasing Ri, more requests Ni are on the server since Zi maintains a constant value. As

a result, the probability that no request is pending for ti on the application is low, if Ri is high.

Furthermore, users in an interactive system cannot send request before they received a response.

Thus λ cannot be greater than µ on the long-term. Consequently, λi converges to µi, if all Ri are

high. Thus, for high tenant response times Ri, Ui tends to 1. If this is the case, there are always

requests queued and thus λi/λ = wi (cf. Section 4.2.3).

The major concern for the isolation methods are high loaded systems (cf. Section 2.1.2.1). Due

to the high load, the utilization U j are expected to converge to 1. It is worth mentioning, that in

case the utilization is imbalanced, because of low load from one tenant, an efficient mechanism

shifts resources such, that the tenants with low utilization get lower weights. Consequently, their

utilization converges to again fulfill Lemma 1.

Assuming that U j =Uk, ∀ j,k ∈ {1, . . . ,n} the Lemma 1 is used as starting point

Ri = R∗i =
Oi

1−Ui
.

99

4. Methods for Performance Isolation

This is combined with Equation (4.3), and eliminating λi the following equation is obtained:

Ri =
Oi

1−Ui
=

Oi

1−λi/µi

(4.3)
=

Oi

1− miT
µi(Ri+Z)

⇐⇒ Ri =
Oi(Ri +Z)µi

(Ri +Z)µi−miT

⇐⇒ µi ·R2
i +(Zµi−Oiµi−miT) ·Ri−OiZµi = 0

⇐⇒ R2
i +(Z−Oi−

miT

µi
) ·Ri−OiZ = 0

⇐⇒ R2
i +(Z−Oi−

miνiT

wiκ
) ·Ri−OiZ = 0

⇐⇒ R2
i +(Z−Oi(1+

mi

wi
)) ·Ri−OiZ = 0

⇐⇒ Ri =
Oi

2

(

1+
mi

wi

)

− Z

2
±

√
(

Oi

2

(

1+
mi

wi

)

− Z

2

)2

+OiZ.

The value of the square root is always larger as the term before and negative response times are not

possible. Therefore Ri is given by Equation 4.4.

Ri =
Oi

2

(

1+
mi

wi

)

− Zi

2
+

√
(

Oi

2

(

1+
mi

wi

)

− Zi

2

)2

+OiZi. (4.4)

The Equatation 4.4 is based Oi, Zi, mi and wi to describe Ri. With the assumption of equal Ui for

all tenants, this means that Ri depends on wi, independently from of the others weight. In situations

where this is not the case, tenants with higher load utilize unused capacity from tenants with low

load. This would falsify Equation (4.4). Since in these situations the response times are better as

predicted, this is not a problem.

Section 4.2.6 will emphasize that a strictly convex function describing the system’s response time

allows a fast numerical optimization. Lemma 2 shows this for Equation (4.4). The corresponding

proof can be found in the Appendix C.

Lemma 2

Consider the response time of ti, given in Equation (4.4) as a function that maps ti’s weight

wi ∈ [0,1] to its response time Ri(wi). Then Ri(wi) is strictly monotonically decreasing and

strictly convex for wi ∈ [0,1]. Moreover, lim
wi→0

R j(wi) = ∞ holds.

4.2.5. Determining Required Parameters

This section shows, how the parameters required for Equatation (4.4) can be gathered.

In case of sequential request processing, Si correlates with νi and thus κ directly corresponds with

T . In case of parallel request processing κ is defined as 1. Using a constant κ , νi has to be adapted.

100

4.2. Model Based Isolation

κ and νi are defined from an external perspective, since the whole application is seen as black box.

A linear correlation between νi and Si is assumed. Thus, νi is obtained by

νi =
Si

∑
n
j=1 λ j ·S j

=
Si

λ ·S .

Using this approach, νi is only valid for steady state arrival rates. If the arrival rate changes, νi may

change the value. Therefore νi has to be continuously updated. However, due to the closed system

character, the arrival rate is limited by the throughput of the MTA. Therefore, the arrival rate is

expected to behave rather steady for high load scenarios.

The parameters µi, Oi and Ui, and the according overall parameters, can be obtained by their

definitions once νi is known. This means, that MTAs can be characterized using νi, or Oi.

To characterize the whole interactive system, the think time has to be determined. If the number

of users is known, Ri and λi are used to determine the think time Zi. It can be calculated via:

Zi =
miT −λiRi

λi
.

If the number of users is unknown, a predetermined value for Zi can be applied to calculate mi. This

is achieved by:

mi =
λi(Ri +Zi)

T
.

4.2.6. Fitness Function and Optimization

A fitness function describes how close a solution is to a given goal, by using a single figure of merit.

Such functions are commonly used for automated optimizations like evolutionary algorithms (e.g.,

[Nelson et al., 2009]) or in the context of autonomic systems (e.g., [Walsh et al., 2004]). This section

introduces a fitness function covering the Design Goal 1 and Design Goal 2. This subsection has

already been published [Krebs et al., 2014c].

4.2.6.1. Overview of Requirements and Goals

The proposed fitness function f : w→ R expresses the degree of performance isolation, based on

the weight vector w, and the system function Ri. Ri uses wi as modifiable input for the optimization.

Furthermore, f includes a measure to increase the efficiency in sharing, if a tenant does not require

all of its resources.

Section 4.2.4.2 describes parameters required to compute Ri. These parameters can be seen as

constant within one optimization cycle. If these parameters change, a new optimization has to be

triggered anyhow, since it reflects a change in the context.

The goal is to find a weight vector w, for which the sum of the achieved fitness for all tenants is

minimal. To ensure a fast and globally optimal result, Ri has to be strictly convex for wi in [0,1] and

unbounded for w→ 0. Whereby the sum of all wi = 1.

101

4. Methods for Performance Isolation

The fitness function is independent of the system function. Even a simulation could be used as a

basis. Moreover, convexity is optional, but not using it would result in higher resource demands for

the optimization.

4.2.6.2. Fitness Function

The proposed fitness function must contain at least two terms multiplied with each other as depicted

in Equatation (4.5). vi : [0,1]→R+ describes the response time violation based on a tenants weight.

This term should increase, if the response time for a tenant exceeds a guarantee. Since this term

has to reflect the system function, it requires the parameter wi. However, if a tenant exceeds its

quota, the weight should decrease, because a violation of its response times should not be taken into

account as much as if it is within the quota. Therefore, the penalty with regard to the weights should

increase rather abruptly, when the quota is exceeded. This is covered by the term pi : R+→ R+. In

the following, the details onto the two terms are considered.

fi(li,wi) := pi(li) · vi(wi) (4.5)

gi is the guaranteed response time for a tenant ti and qi the quota for the same tenant. The number

of users defines the quota in the given situation. Due to the closed system, this also refers to the

arrival rate and throughput. The penalty term does change while the weights are adapted. Thus, it

is seen as constant for one optimization cycle.

First, the violation function v is defined. It expresses the degree to which a tenant’s guarantee gi

is violated. Thus, it is high if Ri(wi) > gi and close to zero if R(wi) ≤ gi. Equatation 4.6 presents

the chosen function.

vi(wi) := exp

(

cv
Ri(wi)−gi

gi

)

(4.6)

The violation is measured relative to the guarantee. It is relatively small and below 1 if the guarantee

is not violated. Due to the exponentially increasing value, the improvement of the performance,

compared to tenants without violation, is very strong.

The parameter cv is a pre-configured parameter to adjust the impact. Higher values of cv result

in a higher relevance of the response times. If cv is tenant specific (ci
v), one can prefer one tenant

compared to those with lower values.

The penalty term pi is investigated in the next paragraphs. The usage of the quota for a tenant ti

is given by li. Although the quota is defined by the number of users, it is worth to emphasize again,

that it is not necessarily coupled to those. It should reduce the impact of the disruptive tenants onto

the optimization, although their response times are too high. This is called penalty, which should

converge to 1 if the tenant is within its quota qi. This ensures that the guarantee term counts fully for

the optimization. Vice versa, it should converge to 0 if the tenant exceeds qi to reduce the violation

terms influence. This criteria lead to the following penalty function.

pi(li) := (1+ exp

(

cp
li−qi

qi

)

)−1 (4.7)

102

4.2. Model Based Isolation

The flipped sigmoid function from Equatation 4.7 weakens vi(wi), if ti’s quota is exceeded. The

value range is within (0,1). It converges to 0 for li→ ∞ and to 1 for li→−∞. The value is exactly

1/2 if li = qi.

A rather abrupt transition from high to low is the result of high values for cp. Accordingly,

lower values stretch it. Thus cp defines the slope from 1 to 0 and thus adjusts the strictness of the

quota. Lower values support over-commitment, while ensuring the guarantees, as a violation from a

non-disruptive tenant has a higher weight. Similar to ci
v the parameter can be made tenant specific.

For the given approach, it is observable, that the optimization prefers tenants with few users

compared to tenants with a huge number of users. This becomes visible if every parameter, except

the workload/number of users is equal. This is due to the higher influence, of the same amount

of changed weight, upon tenants with less users. The additional factor shown below includes this

heaviness hi of a tenant.

hi :=
li ·n

∑
n
j=1 l j

It sets the load of one tenant in relation to the average load of the others ((∑n
j=1 l j)/n).

The penalty and heaviness term can be seen as constant within one optimization. The terms are

referred to as pi and hi without any arguments. Based on these insights, Equation 4.5 is redefined

by Equation 4.8.

fi(wi) := hi · pi · vi(wi) (4.8)

4.2.6.3. Optimization

The method’s goal is to optimize the overall weights of all tenants. Therefore the function f sum-

marizes the results for all tenants, to achieve a global function.

f (w) :=
n

∑
j=1

f j(w j), (4.9)

Though, the optimization goal is to find a w for which f becomes minimal. It is worth men-

tioning again, that the optimization is subjected to consider the definition of wi. That results in the

conditions: ∑
n
j=1 w j = 1 and w j ≥ 0, ∀ j ∈ {1, . . . ,n}

fi ensures that tenants with high response times have fast increasing values, and thus they receive

higher weights to compensate this. In cases where this leads to violations for tenants, the optimiza-

tion finds a weight compensating both as good as possible. If one of these tenants exceeds its quota,

it significantly receives a reduction of the violation term by pi converging to 0.

As aforementioned, it bears advantages if fi is strictly convex, as this allows to use numerical

methods, which guarantee to compute fast the global optimum. For each convex function ϕ : R→R

the composition exp◦ϕ is convex. For one optimization of Equation (4.8) the terms hi, pi are con-

stant positive factors. Thus, it has to be shown that νi(wi) is strictly convex. Due to the exponential

character, and the constant factor cv, it remains to show that (Ri(wi)−gi)/gi is strictly convex. As

Lemma 2 shows that Ri(wi) is convex in [0,1], which is within the relevant boundaries, it is obvious

103

4. Methods for Performance Isolation

that the whole function is convex. Consequently, fi is convex, since the sum of n convex functions

is convex.

Another point to emphasize is, that the global minimum is within the boundaries defined by the

plane of weights given by condition ∑
n
j=1 w j = 1. In case a point on the boundary, or corner of the

plane is selected, at least one element of w is 0. This results in lim
w j→0

fi(w j) = ∞ and consequently in

an infinite value for f . However, for each point within the boundaries of the plane, each element of

w > 0. Thus, each result of fi < ∞. Together with the proved convexity it is shown that the global

minimum lies within the boundaries of the plane defined by ∑
n
j=1 w j = 1.

Convex optimization is broadly discussed in literature (e.g., [Boyd and Vandenberghe, 2004]) and

several solutions are available.

4.2.7. Concluding Remarks

In the following, the approach is critically discussed, followed by the summary which recaps the

main features of the proposed solution.

4.2.7.1. Critical Discussion

The presented method relies on a strictly convex system function for an interactive workload. How-

ever, the fitness functions used can be applied to any system function. Even if other system func-

tions for e.g., open workload models would not be strictly convex, a numerical optimizer is likely to

find good results. This means, by creating an appropriate system function other systems can be opti-

mized. In fact, the proposed system function is a potential starting point for open workload systems,

too. Another point concerns the think time of users. In case they significantly differ between tenants,

it has to be reflected by an additional term similar to the heaviness. This was not presented, but does

not violate the generality of the approach. Defining appropriate values for cv and cp significantly

influences the behavior of the method and finding good values might be challenging. However, once

the relevant system parameters are obtained, one can use the systems prediction function off-line to

determine good settings.

4.2.7.2. Summary

This section introduced a general approach to ensure performance isolation utilizing a model to

predict the performance of an MTA. The approach provides a weighted fair scheduling, to ensure

a tenants guarantee within a defined period of time. This PFQ works as request admission control.

The weights are adjusted by an optimization that relies on a performance prediction. The prediction

can either be analytically or simulative. In the preceding sections an analytical approach was used to

increase the speed of the adaptation. Thus an analytical prediction of the tenants’ response times in

an interactive system is possible. This model is continuously updated by the current runtime context.

For the optimization of the PFQ weights, a fitness function was defined. It reflects the definition

of performance isolation and the development goals for the isolation methods. The performance

104

4.3. Resource Isolation

prediction and fitness function can be efficiently solved by an optimization, since the resulting

function of both is convex.

4.3. Resource Isolation

The amount of resources that can be used by an application influence the response time and through-

put. Consequently, the control and isolation of tenant specific shares of a resource, is an essential

step to guarantee a certain tenant specific application performance. Given that sharing in the context

of multi-tenancy is done at the application layer, resource usage control is a challenge which was al-

ready referred to as layer discrepancy (Challenge 1). Fluctuating resource requirements of tenants,

be it because of variable load or changing request mixes, customized configuration or increasing

amount of persistent data, further increase the complexity. These challenges were already discussed

in detail in Section 1.3.3. The approach discussed subsequently ensures the isolation of resources

and thus performance.

It is worth mentioning again, that the mapping of an application level SLA to a certain low level

resource metric is a research question in itself [Emeakaroha et al., 2010]. Thus, this approach is

independent of any application level guarantee or quota and focuses on the resource guarantees and

quotas only.

This section presents three complementary contributions. First, a general approach how resources

for single tenants can be controlled. Second, an evaluation of the feasibility of three existing re-

source demand estimation techniques is done. Third, a request based admission control to enforce

resource quotas for tenants is presented. The section also includes a short discussion of enhance-

ments, based on the basic approach.

This section has already been published to large extent [Krebs et al., 2014d].

4.3.1. General Approach

This section discusses some alternative design decisions and then introduces the proposed solution.

One can defer if the resources used by a tenant are measured directly by a fine-grained monitoring

solution, or if the demands are estimated by an RDE method. The first approach allows determining

the used resources with high evidence, while it is not expected to be technically feasible. Although

approaches measuring e.g., the amount of resources used by one thread between two points in time

(e.g., ThreadMXBean [Oracle, 2015]) are available, and the tenant information is often mapped to

the thread context, it becomes insufficient in case the request processing spans over several threads

or processes. Furthermore, such an approach cannot map the overhead of the request processing,

like the operating system overhead, to a particular tenant. Some sophisticated solutions (e.g., Dy-

natrace [Dynatrace, 2015]) allow a fine-grained monitoring of requests over several processes, or

even system borders. This comes along with high technical overheads and still these methods do

not provide insights into the resource demands of requests.

105

4. Methods for Performance Isolation

This yields the usage of RDE techniques. Although their accuracy is less, they can include re-

sources used within different, technically independent threads and all layers between the application

and the operating system. Assuming that the estimation provides a feasible accuracy, the resource

usage is determined using RDE methods

To enforce the isolation two solutions are possible. The controller of the admission control can

derive the utilization of a resource on a tenant basis. The result can be compared with a resource

guarantee for the tenants and thus weights for a WFQ like admission control can be derived. How-

ever, this approach has two significant disadvantages. First, the estimation of the demands and uti-

lization requires some time. Thus, if the tenants’ request rates or mixture of request types changes,

an adaption will not occur before enough data is collected for a new accurate estimation. Second,

the weight of the admission control must be adjusted, based on the observed utilization. Thus, an

additional mapping is required. This constitutes another approach.

Figure 4.4 depicts the proposed solution. The MTA serves requests of different types and tenants

which vary in their resource demands. The throughput Xt,c and the service time St,c for tenants t

and request types c ∈C is monitored. It is worth mentioning, that Xt,c and St,c are measured after

the actual admission control.

The application server continuously forwards samples of its utilization Ui of resource i to the

Resource Demand Estimation component. Existing RDE approaches are applied to estimate the

demand per request type and tenant Dt,c,i. The Resource Isolation Scheduler uses Dt,c,i together

with the number of accepted requests, to track the consumption of a resource, for each tenant,

within a defined time interval. This is used to decide how the queued, or new incoming requests

should be treated.

System

MTA

ControllerEforEAdmissionEControl

RessourceE

IsolationE

Scheduler

IncomingERequestsErt,c AdmittedERequests Response

ThroughputEXt,c

ServiceETimeESr,c

DemandEDt,c,i

ResourceEDemandEEstimation

RessourceE

Guarantee

UtilizationEUi

Figure 4.4.: Approach for resource isolation.

All requests admitted to the MTA are used to determine the tenants’ utilization. To compute the

utilization, the average over a given period of time has to be conducted. This value has to be updated

very often, in short time frames of a few seconds. The estimation interval determines how often the

106

4.3. Resource Isolation

estimated resource demands are updated and sent to the Resource Isolation Scheduler (RIS). This

can be configured depending on the workload characteristics, but it is also limited by the sampling

intervals supported by the monitoring tools. The observation window is a sliding window based on

the observed data, which limits the data used for resource demand estimation. It is typically in the

range of a couple of minutes to a few hours. A tradeoff between the estimation accuracy and the

adaptation speed for the estimation needs to be found for the observation window.

This generic approach closes the gap between the various layers by (1) connecting the monitoring

information from lower layers using RDE techniques to gain knowledge about the requests impact

and (2) by controlling the request flow to limit the resources used by a tenant. In the present solution,

the current consumption is dynamically calculated at runtime, based on the admitted requests, within

the accounting period, in which the guarantee should be assured. Though, it can react to load

changes and variable compositions of request types at runtime. Changes in the resource demands,

for a particular tenant, are registered and lead to a modified behavior of the admission control.

The approach connects the different layers by using monitoring information of both layers and

reasoning about their relationship by using RDE techniques. The drawback of the slow RDE ap-

proaches is minimized, by dynamically calculating the consumption. In the following, this approach

can react to load changes, and variable composition of request types in real time. Changes in the

resource demand are updated continuously. Nevertheless, a fast estimation method which can work

with a low amount of data is still recommended.

Although this approach is presented, using a concrete selection of observation parameters, ori-

enting on the method used later, other RDE techniques rely on other information. However, at least

the throughput per-tenant/request type is monitored by almost all RDEs and most also rely on the

service time. Even in case of a direct measurement of resource demands, the general pattern of the

approach remains.

4.3.2. Resource Isolation Scheduler

This section presents the design criteria for a concrete admission control and its controller developed

with respect to the general approach from Section 4.3.1. The component ensures that the resource

usage of tenants is compliant with the guaranteed resource share. Its input consists of the estimated

resource demands, the resource guarantee/share per-tenant and incoming requests. The estimates

are expected to be based on the request type per-tenant. The algorithm presented in the following

focuses on active time sharing resources like CPUs.

4.3.2.1. General Requirements and Design Decisions

The proposed admission control maintains one FIFO request queue for each tenant. The goal is to

achieve a resource consumption for each tenant, that corresponds to the preconfigured values and

an efficient resource usage if one tenant does not require all resources. Efficiency in this context

means, a resource should not idle, if pending requests exist and unused portions of the resource

from one tenant should be available for other tenants to enable over-commitment on the resource

107

4. Methods for Performance Isolation

level. The priority on how to select requests from a set of queues can be statically or dynamically.

In the proposed solution, the priorities are continuously updated, whenever the scheduler forwards

a request. This allows to continuously adjust the prioritized queue, based on the actual consumption

in a given accounting period. In the present case, the priority reflects the ratio of guaranteed vs.

already consumed resources for a tenant.

4.3.2.2. Resource Isolation Scheduler for Multi-tenancy

This section introduces the algorithm for the scheduling of the requests. Due to the dependency

of the request selected for processing, to its determined resource demand, the algorithm becomes

more complex compared to Algorithm 1. Therefore, it is presented in a different granularity. Some

details, which were avoided in Algorithm 1 for the sake of clarity were added in this case, since they

make Algorithm 2 looking more intuitively.

Scheduling Algorithm Algorithm 2 uses predefined functions. The dequeue function removes

and returns the first element from a FIFO queue. The demand function returns the resource demand

of a request, based on its request type and tenant. This function uses an internal storage, where the

corresponding data is available. The function is not discussed in detail, at this place.

Further input parameters are the resource guaranties per-tenant G. A guarantee gi|gi ∈ G∧ 0 ≤
gi ≤ 1∧ ∑

g∈G

g = 1 expresses the fraction of time a tenant is allowed to use the resource under

investigation. The intrinsic parameters of the admission control component used for the scheduling

algorithm are the configured duration of the accounting period taccountingPeriod , for which the used

resources have to converge to the given guarantee, and a reference to the queues Q, with pending

requests for each tenant. The queues are continuously updated.

The algorithm internal set P contains the triples (priority,queue, tenant), used to find the next

request. A lower value for the priority corresponds to a higher probability to be selected. The

variable t specifies timestamps, identified by the given index and ui represents the already used

amount of a resource for a tenant i. The number of tenants is identified by n.

In line 1 the algorithm checks whether a new time interval has begun. If this is the case, tlastInterval

is reset in line 2 to have a trigger when the next interval will finish. P is reset in line 3 and initialized

with priority 0 in lines 4-6. In lines 7-10, the entry p ∈ P is searched, which has the lowest value

for the priority and is stored in the temporary variable plow defined in line 10. In line 11, the current

selection of p is removed from the set of all P, to update it later with a modified priority. Line 12

gets the next request from the selected queue, which is returned later as a result of the execution of

this algorithm. In line 13, the consumed resources for this accounting period are re-computed based

on the estimated demand for the request. The updated utilization ut for this tenant is used to update

the priority in line 14. The priority is the used resources, normalized by the guarantee. In a concrete

implementation, the set P can be replaced by a priority sorted set to improve the performance.

108

4.3. Resource Isolation

Algorithm 2: The Resource Isolation Scheduler.
Input: Q = {q1, · · · ,qn}: References to request queues.

G = {g1, · · · ,gn}: Set of resource guarantees.
taccountingPeriod time interval to reset the utilization counter.

Output: Request to be processed.
Data: tlastInterval = 0: To reset utilization counter.

u1 · · ·u|Q|: Used resources per-tenant.
P = {(p1,q1, t1), · · ·(p|Q|,q|Q|, t|Q|)}: Priority per-tenant.

1 if currentTimeStamp()− tlastInterval > taccountingPeriod then

2 tlastInterval ← currentTimeStamp()
3 P← /0
4 for i = 1 to |Q| do

5 ui← 0
6 P← P∪{(0,qi, t)}

7 plow← (∞,null,null)
8 foreach p ∈ P do

9 if p[1]≤ plow[1]∧|p[2]| 6= /0 then

10 plow = p

11 P← P\{plow}
12 rreturn← dequeue(plow[2])
13 uplow[3]← uplow[3]+demand(rreturn)

14 P← P∪{(ui

(gplow[3])
,qi, p[3])}

15 return rreturn

Properties of the Scheduler The design goals resource isolation/control and efficiency is dis-

cussed in more detail in this paragraph. The control is performed by delaying a tenant’s request

processing, when he already used a larger proportion of his quota as other tenants with pending

requests. If all tenants have always pending requests within an accounting period, the requests are

selected with the same probability during the complete period. Whereby the probability is based on

their share and average demand. If a tenant does not have pending requests at the beginning of the

period, other tenants are handled instead to maintain the resource utilized. However, compared to

the already active tenants, a tenant that starts sending requests later, is preferred due to its priority.

This again ensures the isolation aspect of the approach. In cases where a tenant already exceeded

its guarantee, it is still selected, if no other tenant has pending requests. In case several tenants

are exceeding their quota, the priority function selects the tenant, that exceeds its quota the least.

Assuming a situation where all tenants with pending requests exceeded their quota, the tenants with

higher weights are selected with higher probability, as their priority increases not as fast as for those

with lower priorities. Thus the behavior is similar to Algorithm 1, but with varying sizes for the

counter, which measures the number of admitted requests.

The Algorithm 2 has the worst case time complexity of O(n) to find the next tenant to be served.

Although the priorities can be maintained in a sorted list it is not below O(n), since in the worst case,

each queue has to be checked for containing requests. Let C be the set of all request classes of an

109

4. Methods for Performance Isolation

application, the demand function can be implemented in O(log(|C|)). This results in O(log(|C|) ·n)
for the complete processing.

The proposed scheduler guarantees a dedicated share for each tenant. It ensures a high utilization

by using unused processing time of one tenant to handle requests from the others. Thus, it allows

isolating resources while supporting over-commitment. Furthermore, a limited thread pool size

avoids overloaded situations at the application and the impact of workload fluctuations are damped

as the requests are buffered in the queues. This leads to steady monitoring data used by the RDE.

4.3.3. Resource Demand Estimation

The proposed method to isolate resources relies on the availability of accurate and timely estimates

of resource demands. In the context of the proposed isolation method the resource demand specifies

the processing time for a single request at a dedicated resource.

Each request belongs to a certain request type, according to a criterion depending on the applica-

tion. Examples are the HTTP request’s destination URL, a particular function invocation of a web

service, specific database transactions or batch jobs [Kounev et al., 2011]. In case it is possible to

identify request classes containing several request types with similar characteristics, the subsequent

estimation methods and the previously defined RIS may work on the basis of those.

In case of MTAs, each request can be associated with a certain tenant. Given that the resource de-

mands for a request type may vary significantly between two tenants (e.g., due to different database

sizes), the estimation needs to distinguish between different tenants to identify the correct resource

demands of a request type.

Assuming an application with a set of request types C, and serving a set of tenants T , it is neces-

sary to estimate |C| · |T | resource demands. Previous work, such as [Rolia and Vetland, 1995, Kraft

et al., 2009, Spinner, 2011], only considers the estimation in scenarios with a low number of re-

source demands. The maximum of 16 different demands was evaluated in [Spinner, 2011]. There-

fore, the existing RDE methods have to be evaluated with regard to their behavior for a vast number

of request types.

Given that the resource demands may dynamically change at system runtime, there is a need to

iteratively repeat the estimation for updated values. Therefore, a fast converging resource demand

estimation method is best suited for the current scenario. Further, it should come with a minimal

influence upon the application performance. For this purpose, three methods which have already

been successfully used in [Pacifici et al., 2008, Brosig et al., 2011, Wang et al., 2012] for the

dynamic estimation of resource demands at runtime will be applied. These are linear regression,

Service Demand Law (SDL) and Kalman filter. It is worth mentioning that [Wang et al., 2012]

applied the Kalman filter for a multi-tenant system.

In the following section, the selected methods for RDE are introduced.

110

4.3. Resource Isolation

4.3.3.1. Methods for Resource Demand Estimation

In the following the three selected methods for the estimation of resource demands are discussed.

Linear regression based approaches are used for resource demand estimation in [Rolia and Vetland,

1995, Pacifici et al., 2008, Casale et al., 2008, Zhang et al., 2007]. Two often used methods are the

Linear Least Squares (LSQ), minimizing the sum of squared residual errors, and the Least Absolute

Deviations (LAD). The latter minimizes the absolute value. The model for the regression is based

on the Utilization Law [Denning and Buzen, 1978]:

Ui =
|C|
∑
c=1

Dcλc,i +U0

Let Dc be the resource demand of each request type c ∈C and let U0 be the intercept capturing

any processing that cannot be attributed to requests. In each monitoring interval i, the aggregated

CPU utilization Ui and the average arrival rates of all request types λ1 . . .λ|C| are observed. By

using an Non Negative Least Square (NNLS) regression, the coefficients D1 . . .D|C|, representing

the resource demands are obtained.

The second approach is based on the SDL [Jain, 1991, Denning and Buzen, 1978]. It allows

computing the resource demand Dc as a function using the throughput λc and the utilization Uc:

Dc =
Uc

λc
. The utilization for a particular request type Uc is the portion of the total utilization, that

can be accounted to the processing of requests of type c. Monitoring tools commonly provide the

total utilization U . Therefore, a measure to partition the overall utilization between the request types

is required. Based on the assumption of an approximately proportional response time compared to

its resource demand, a partition scheme based on weighted response times was proposed by Brosig

et al. [Brosig et al., 2009]:

Uc =U · Rc ·λc

∑
|C|
d=1 Rd ·λd

(4.10)

Where C is the set of all request types, Rc is again the response time of request type c and λc its

arrival rate.

A Kalman filter [Kalman, 1960] is a stochastic filtering technique to estimate hidden states of a

dynamic system, based on a series of often noisy measurements. For the given scenario, the resource

demands of a system are the hidden state. A Kalman filter recursively updates its internal state used

to estimate the resulting hidden parameters. This state is updated as soon as new observations

become available based on the error between prediction and observation of the visible parameters.

Different Kalman filter designs have been proposed for resource demand estimation [Zheng et al.,

2008, Kumar et al., 2009, Wang et al., 2012]. The designs are differ in the information they rely on.

In the following the Kalman filter referring to Wang et al. [Wang et al., 2012] is utilized. This filter

was already applied in a multi-tenant scenario. Its internal model uses the Utilization Law [Jain,

1991].

111

4. Methods for Performance Isolation

4.3.3.2. Validation of the Methods

To identify the most suitable approach, a brief validation of the methods function was executed.

The goal of this evaluation was to assess the accuracy and the convergence behavior of the consid-

ered methods for resource demand estimation in cases where a high number of resource demands

need to be determined. Thus the questions answered are: Which method provides the fastest esti-

mation? Which method provides the most accurate result? Consequently, the metrics are the time

an approach needs to converge to a stable estimation and the error compared to the real demands.

Additionally, the computational time was investigated.

The implementations of linear regression, SDL and Kalman filter methods are based on the de-

scriptions in [Pacifici et al., 2008, Brosig et al., 2009, Wang et al., 2012]. The observation traces

were collected by using a simulation representing the real system. This allows to have well defined

demands, which can be used for calculating the error of estimation.

Experiment Design The simulation that has already been successfully used in the experiment

of Section 3.4.1, was used for the following experiments again. For the experiments here, only one

queue with a FIFO scheduling strategy representing an application server was used. The resource

demands were described by randomly generated Gaussian distributions with a mean value between

10ms-120ms and up to 10% standard deviation.

The experiments were simulated with 5 tenants and 5, 25 and 100 request types. In low load

scenarios, the competition of the tenants for the resource is low. Consequently the interference is

low and there is not much need to actively control the request flow. Thus, for low load scenarios

the accuracy of the estimator is less important. Thus, the workload was adjusted to result in an

utilization around 95%.

For SDL, the resource demands were estimated every 30 simulated seconds, using all observa-

tions from the beginning of the steady state period. In case of NNLS and Kalman filter, the length

of the required samples was adjusted for each experiment, to find an optimal value. In addition,

different initializations of the Kalman filter were used and the best results are presented.

Results Figure 4.5 illustrates the mean relative errors for 5, 25, 100 and 300 request types with

the best fitting sample lengths and initialization parameters. In Figure 4.5a, all methods continu-

ously increase their accuracy. The behavior for 25 types is similar. In case of 100 request types, the

NNLS approach increases its accuracy slowly. Further experiments with 300 request types show

that NNLS is not able to create a valid regression within a relevant observation time. Significant

efforts were taken to manually find scenario specific settings for the sample length, actualization

rate and initialization values for the NNLS and Kalman filter. In general, the estimates are less

accurate for a high number of request types and need more time to converge. It is remarkable, that

SDL always provides results better or as good as the Kalman filter and both outperform NNLS.

Moreover, SDL completed the actual computation in less than 0.3ms for 100 request types, while

112

4.3. Resource Isolation

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 60 120 180 240 300 360 420

M
e
a
n

R
e
la

ti
ve

E
rr

o
r

Time [s]

SDL

NNLS

Kalman

(a) Error for 5 request types.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 60 120 180 240 300 360 420

M
e
a
n

R
e
la

ti
ve

E
rr

o
r

Time [s]

SDL

NNLS

Kalman

(b) Error for 25 request types.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 60 120 180 240 300 360 420

M
e
a
n

R
e
la

ti
ve

E
rr

o
r

Time [s]

SDL

NNLS

Kalman

(c) Error for 100 request types.

0

0.2

0.4

0.6

0.8

1.0

1.2

0 60 120 180 240 300 360 420

M
e
a
n

R
e
la

ti
ve

E
rr

o
r

Time [s]

SDL
NNLS
Kalman

(d) Error for 300 request types.

Figure 4.5.: Comparison of RDE methods.

the Kalman filter required 2ms and the NNLS 17ms. NNLS showed super linearly increasing times

for the computation.

In summary, NNLS has significant weaknesses for huge type counts, Kalman filters go along

with a high configuration effort and less precise results and SDL is able to provide good results in

scenarios with a high number of request types.

Based on these results, the questions for this evaluation can be answered. The results let sug-

gest that SDL converges fastest and provides the highest accuracy. SDL is identified as the most

appropriate approach. It converges fast, has a low error, is of low technical complexity and has low

resource requirements.

4.3.4. Towards Multiple Resources and Efficient Resource Usage

The overall approach presented so far concerns only one resource. However, assume a system with

an application server and a database server. If tenants have low load, both servers are underutilized

and consequently no serious performance isolation problem is expected. If the load increases, only

one of both servers will result in a bottleneck, since the other will not receive enough requests, or is

waiting for responses. To ensure performance isolation, it is only necessary to isolate the bottleneck

resources. Checking which of the observed resources has a high utilization, can be easily realized

by the Admission Control Controller (ACC). The RIS does not even have to know which resource it

is isolating. The ACC simply forwards the resource demands for the bottleneck resource. The same

holds not only for separated hardware nodes, but also for resources shared within one node.

113

4. Methods for Performance Isolation

If knowledge about different resources is available, it could also be an option to use this knowl-

edge, to increase the overall utilization of resource for economic reasons. If, e.g. the database is

the bottleneck and a tenant already exceeded its quota, requests that have a very low impact upon

the databases resources, can still be accepted. Even though they may have a high at the application

server’s resources.

4.3.5. Concluding Remarks

This section provides a brief overview of critical points and their solution followed by a summary.

4.3.5.1. Critical Discussion

The SDL approach [Brosig et al., 2009] shows good results in the simulation, where only one single

resource is modeled. Due to the mapping of the response times, the method lacks in effectiveness, if

the request utilizes several resources. This situation leads to waiting times in resources not directly

under investigation. This is negligible if only one resource has a high utilization. In scenarios

with several high utilized resources, the throughput and response time for each resource has to be

monitored to apply the SDL based method. An alternative RDE approach might be an option.

The solution discussed so far focused on only one resource. However, as shown in Section 4.3.4

the enhancement to support several resources is easily possible, if one clear bottleneck resource

exists. If one clear bottleneck resource is not visible, due to an overall high utilization, another

scheduler computing the priority based on more than one resource is required.

Furthermore, the method provided is decoupled from any guarantees at the application service

level. However, for the sake of performance isolation, this is not necessary.

Finding a suitable configuration for the window length used to compute the demands might be

difficult, as this is a trade-off between accuracy and fast adaptation to changes. An automated

validation of the prediction results could be implemented to automatically adjust the window length.

4.3.5.2. Summary

The proposed approach allows to solve the layer discrepancy problem by providing resource infor-

mation at the application layer. It is based on a resource demand estimation method to quantify the

resource consumption of a tenant at runtime. This allows to control the number of requests admit-

ted to the application for each tenant, to ensure a certain share of the bottleneck resource. Three

different promising resource demand estimation methods based on Kalman filter, linear regression

and the SDL were evaluated. SDL was selected and combined with the RIS.

The request admission controls RIS dynamically computes a tenant’s priority. While the con-

sumed resources of a tenant converge to a predefined share, the tenant’s priority is reduced. Thus,

other tenants are preferred and the resources used by a tenant are isolated.

114

4.4. Further Performance Isolation Methods

4.4. Further Performance Isolation Methods

In this section, further isolation methods are presented. Although, they may be new in the context

of multi-tenant systems, in some implementation details, or their concrete usage scenario, they are

based on known techniques and therefore being discussed separately. These methods are used for

comparative measurements in Chapter 6. In the following, a performance isolation method based on

a Proportional Integral (PI) control loop is presented. This is followed by a simple quota enforcing

mechanism and a short excerpt on a round robin based scheduling.

4.4.1. Proportional Integral Control Loop

Closed control loops were applied in the field of informatics to control computer systems [Abdelza-

her et al., 2008, Zhu et al., 2009]. Lu et al. [Lu et al., 2006] is one concrete example, where a closed

control loop was used to control the performance of a web server and Lin et al. [Lin et al., 2009]

used them in multi-tenant systems. Thus, it is worth to discuss performance isolation methods using

this concept.

The previous methods also used information observed at runtime. However, this was not a feed-

back in the conventional sense, since they used information providing insight about the systems

characters. Whereas a feedback in this section, is related to the output of the system that should be

controlled.

Parts of this section have already been published [Krebs and Mehta, 2013].

4.4.1.1. General Approach

In general, the closed control loop based methods monitor the relevant metrics for the guarantee

and quota. In the concrete example, this is the throughput and the average response time. Based

on this information, the controller computes the weights for a WFQ. In contrast to the model based

approach, it does continuously adjust the real weights to converge to an optimum state. The model

is so to say replaced by the real system. As a basis for this, an error is calculated by comparing the

actual measured average response time and throughput with the guarantee and the quota. Figure 4.6

illustrates this approach.

4.4.1.2. Details on Scheduler and Controller

The scheduler uses a PFQ as described by Algorithm 1 or another WFQ approach. Similar to [Lin

et al., 2009] a PI controller (cf. Section 2.1.3) is presented, which enables performance isolation in

MTA.

However, compared to [Lin et al., 2009] a regulation of the overall system performance is not

necessary, since a fixed thread pool size is assumed. Another difference is the control of the request

admission, instead of the thread priority.

Subsequently, the controller function is presented. This function computes all new weights, based

on a selected subset of tenants Tc. At first, the present approach decides between two situations.

115

4. Methods for Performance Isolation

System

MTA

ControllerXforXAdmissionXControl

WeightedXFairX

Queueing

IncomingXRequestsXrt,c AdmittedXRequests Response

ThroughputXXt

ResponeXTimeXRt

Controller

QuotaX&X

Guarantee

Figure 4.6.: Approach for resource isolation.

1. Guarantee Violation: The state in case of existing guarantee violations. This constitutes that

some tenants have response times exceeding their guarantees, although they are within their

quota. This yields increasing weights for these tenants. Therefore Tc contains all tenants

exceeding their guarantees and being within their quota.

2. Volunteer Increase: The state in case tenants exceed their guarantee, while exceeding their

quota and no other tenant has guarantee violations, while being below the quota. Therefore

Tc contains all tenants exceeding their guarantee.

Let T be the set of all tenants, including those in Tc. Then a PI controller modifies the weights

of the tenants ti ∈ Tc independently in the first step. The proportional part of the PI controller uses

the error signal from the last period and the integral part use the average error value from the last

n intervals between scheduler updates. So far, the approach follows the description of a usual PI

controller. After that, the weights of all tenants in T are normalized to ensure that the sum of all

wi = 1.

4.4.2. Black List and Round Robin

The black list and round robin approach were already introduced in Section 3.4.1.2. For the sake

of completeness, both approaches are briefly discussed in this section, in the context of the request

based admission control from Section 4.1.2.

The black list, as it was presented previously, monitors the quota related information only (i.e.,

arrival rate/throughput). If a tenant exceeds this value for a defined duration it is black listed. This

information is forwarded to the Admission Control (AC). For a black list approach, various methods

for the AC are possible. Two are introduced in the following.

1. The AC maintains two queues. One for the black listed tenants, and one for all the others.

Both queues are FIFO based and do not differentiate tenants internally. An arriving request is

116

4.5. Proof of Concepts

put into the corresponding queue. As long as the queue for the white listed tenants contains

requests, the black listed queue is not served.

2. The AC maintains only one FIFO queue for the white listed tenants. All incoming requests

from black listed tenants are rejected. In case of an interactively closed system, the fast

response will lead to higher arrival rates, as the response time does not add any further delay.

Therefore, it can be beneficial to set the threshold for putting a tenant onto the black list higher

than the quota, for situations where the overall load is low. This avoids the tenant from being

black listed, in situations where its quota would not be exceeded, if the response times would

have been higher.

Thus, a black list approach can enforce quota constraints. This has the benefit, that the size of the

server thread pool does not necessarily have to be limited.

A round robin based method does not require an ACC nor the collection of any system metrics.

Each tenant has its own queue, which is served continuously in a row. If one queue is empty it is

skipped. This is the same as shown in Section 3.4.1.2.

4.5. Proof of Concepts

A detailed comparison of presented approaches for performance isolation is done in Chapter 6,

which also discusses the achievement of the thesis’ goals. This section shows that the two novel

methods work as designed. Furthermore, this section provides method specific insights, which are

not of general interest for all isolation methods, and therefore not included in Chapter 6. These in-

sights help to understand how the methods work. To achieve this, both methods were experimentally

analyzed.

4.5.1. Shared Aspects of the System Under Test

The following validations share some aspects concerning the deployment of the SUT. For the

evaluation and implementation of the isolation method, the PIF described in Section 5.3.2 was

applied. Figure 4.7 illustrates the three experiment environments used. The numbers in the lower

left corners depict the artifacts for a particular deployment. The Load Driver emulated the users,

that sent requests to the online store application (MTTPC-W). It was separated from the SUT to

avoid influence. The MTTPC-W (cf. Section 3.3) was hosted on the LJS, which was optionally

hosted within a VM. A MySQL version 5.1 database was used to persist the application’s data and

was either deployed in the same container as the LJS, or on a separate Database Host. The VM ran

SLES11 SP2 and was hosted on the Xen hypervisor version 4.1. It hosted the LJS, the application

and the database. The LJS executed the MTTPC-W and the admission control.

The Admission Control was implemented as a valve [Craig McClanahan, 2015]. A Resource

Monitor was installed to collect the CPU utilization of the CPU pinned to the VM. The monitors

delivered the required data for the RDE.

117

4. Methods for Performance Isolation

ControllWServer

LoadWDriver

AdmissionWControlWController

ApplicationWHost DatabaseWHost

XEN

ApplicationWVM

LJS

MTTPC-W

AdmissionW

Control

ResourceWMonitor

LoadWDriver

MySQL

MySQL

3

3

3

3

1

2

2

1 Gbit/s

1 Gbit/s

1 Gbit/s

Figure 4.7.: Deployment for proof of concept.

4.5.2. Resource Isolation

This section focus on the evaluation of the resource isolation. This section has already been pub-

lished to a large extent in [Krebs et al., 2014d]. The goals for the validation of the resource isolation

based approach are:

1. Analysis of the SDL concerning its accuracy in a realistic scenario.

2. Analysis of the resource isolation capabilities of the approach presented.

The section starts with details on the system environment, followed by two separate sections dis-

cussing more detailed questions and outcomes for the evaluation goals. The focus hereby is on

isolating the CPU.

4.5.2.1. System Environment and Configuration

Deployment 3 was chosen for the following experiment. Due to the use of virtualization, an addi-

tional layer was introduced, which makes the estimation of resource demands even more difficult.

The application host, and the load driver host were equipped with four cores providing 16 x 2.13

GHz and 16 GiB memory each. They were connected with a 1 Gbit/s Ethernet LAN. The virtual

machine in the application host was pinned to one CPU and 2 GiB memory. The RDE ran on a

standard desktop PC.

118

4.5. Proof of Concepts

4.5.2.2. Accuracy of the Resource Demand Estimation

In the following paragraphs, the results about the accuracy of the RDE proposed in Section 4.3.3

are discussed.

Experimental Setup The scenario consisted of eight tenants, resulting in 112 request types.

The database content was randomly generated, whereby tenant 1 to tenant 6 used an equally sized

small dataset and tenant 7 and tenant 8 an equally sized dataset with eight times more data. The

average response time and the throughput for each request type and tenant was collected together

with the overall CPU utilization. The information was aggregated periodically and sent to the RDE

every ten seconds. The experiment ran 17 min. The first 3 min were used to ramp-up the emulated

browsers, another 3 min were spent to warm up the system, which showed steady results from this

point. In this scenario, each tenant served 250 users in order to achieve a high CPU utilization of

around 95%.

Results This section answers the question how accurate the chosen approach to estimate the

resource demands is. Table 4.2 depicts the demand estimates for tenant t1, including the 95%

confidence interval. In general, the observed confidence intervals reflect a high precision. The

average resource demand per request for the tenants were: t1 = 3.2ms, t2 = 3.3, t3 = 3.5, t4 = 3.5, t5 =

3.1, t6 = 3.4, t7 = 5.1, t8 = 4.6. The obtained results show considerably higher demands for tenant 7

and tenant 8, which were caused by the larger dataset.

Requests type Demand (ms) Requests type Demand (ms)

Home interaction 2.2 [2.1|2.3] Execute 4.0 [3.9|4.1]

Admin request 3.6 [2.5|4.6] New products 4.3 [4.1|4.6]

Admin response 7.2 [5.7|8.7] Order display 2.6 [2.3|2.8]

Best sellers 5.8 [5.5|6.0] Product detail 2.0 [1.9|2.1]

Buy confirm 6.5 [6.0|7.0] Search request 1.9 [1.8|2.0]

Buy request 3.7 [3.5|4.0] Shopping cart 3.7 [3.4|4.0]

Customer registration 2.0 [1.2|2.7] Order inquiry 0.03[0.03|0.03]

Table 4.2.: Resource demand for MTTPC-W request types.

A cross-validation to calculate the prediction error at the same load as the training set, fits well

to the requirements, because the estimation is done online at the same workload where it is applied.

Therefore, samples were collected at a constant load of around 95% utilization for the training and

validation. The samples were randomly partitioned into a coherent training and a validation set.

The training set was used for the resource demand estimation and the remaining one to calculate the

prediction error. The same process was repeated to get different training and validation sets. The

observed mean error was 9%.

119

4. Methods for Performance Isolation

To get an error estimate for scenarios, where the workload suddenly increases from a low to a

higher utilization, a scenario with different utilization was considered. An estimation of the requests

demand at 60% utilization was chosen. The results were used for a prediction at 60% utilization

which result in an error of 19% and an error of 28% for 90% utilization. According to [Menasce

and Virgilio, 2000], the error rates are acceptable values. Furthermore, the used RDE underesti-

mated the demands for all tenants. Thus the RIS still maintains a similar ratio between tenants and

consequently a lower error for the resource isolation can be expected.

In Summary, the proposed RDE using the SDL provides sufficient estimations for scenarios with

a high load and a high number of request types.

4.5.2.3. Isolation Capabilities

In this section, the results concerning the isolation capabilities of the resource isolation mechanism

are presented. The questions to be answered are listed in the following.

Q1 Is the approach able to achieve performance isolation with regard to response times and

throughput by applying resource control?

Q2 What is the estimated isolation quality?

Q3 Does the approach efficiently distribute resources to allow over-commitment?

Q4 Does the approach reflect the demands of a tenant in the request processing?

Q5 Is it possible to provide different resource guarantees to the tenants?

Q6 Can the chosen mechanism dynamically react to changing resource demands?

To answer these questions, 5 scenarios were conducted. In all of them the RIS accounting period

was set to one second. This means, after one second the tenants resource usage counter was reset.

The resource demand information was updated every 15s, the observation window for the estimation

was set to 300s and the resource utilizations were updated every 10s.

Scenario and Results for Q1, Q2 To answer Q1 and Q2 a comparison between an isolated

and a non-isolated system is required. In order to answer Q1, the observed response time and

throughput of each tenant is needed. For Q2 the resource consumption for each tenant has to be

compared. The first experiment used a standard FIFO access mechanism without a tenant aware

admission control. The experiments started with 1000 users for each tenant. After a warm-up

phase, 1000 additional users were added to tenant 1.

In the second experiment, each tenant was allowed to allocate 50% of the resource, which had

to be enforced by the presented isolation method. 1250 users per-tenant were used as reference

workload, and the disruptive workload had 1000 users more for tenant 1.

In both situations, the database did not use indices, resulting in continuously increasing demands.

120

4.5. Proof of Concepts

0

2

4

6

8

10

12

500 1000 1500 2000 2500

R
e
s
p
o
n
s
e

T
im

e
[s

]

Time [s]

t1
t2

A
d
d
e
d

(a) Q1: Non-isolated resp. time.

0

50

100

150

200

0 500 1000 1500 2000 2500

T
h
ro

u
g
h
p
u
t
[R

e
q
/s

]

Time [s]

t1
t2

A
d
d
e
d

(b) Q2: Non-isolated throughput.

0
1
2
3
4
5
6
7
8
9

10

500 1000 1500 2000 2500

C
o
n
s
u
m

p
ti
o
n

[s
]

Time [s]

t1
t2

A
d
d
e
d

(c) Q3: Non-isolated res. cons.

0

2

4

6

8

10

12

0 400 800 1200 1600

R
e
s
p
o
n
s
e

T
im

e
[s

]

Time [s]

t1
t2

A
d
d
e
d

(d) Q1: Isolated resp. time.

0

50

100

150

200

0 400 800 1200 1600

T
ro

u
g
h
p
u
t
[R

e
q
/s

]

Time [s]

t1
t2

A
d
d
e
d

(e) Q1: Isolated throughput.

0
1
2
3
4
5
6
7
8
9

10

200 700 1200 1700

C
o
n
s
u
m

p
ti
o
n

[s
]

Time [s]

t1
t2

A
d
d
e
d

(f) Q1: Isolated res. cons.

Figure 4.8.: Isolation capabilities of the resource isolation.

Results Q1 At the beginning of the non-isolated case (cf. Figure 4.8a) both tenants observed the

same performance, because they had the same load. Once 1000 users were added at 1600s the load

for tenant 1 increased. Although tenant 2 maintained a constant load its response time increased

exactly as the response times for tenant 1, since the FIFO queue does not differentiate tenants.

Figure 4.8b shows the complementary throughput and how it decreases for tenant 2 in response

to the disruptive behavior of the other tenant. In general, a slightly increasing response time and

decreasing throughput for both tenants is visible. This can be explained with an increasing database

volume during the experiment.

The isolated scenario (cf. Figure 4.8d and 4.8e) started for both tenants with response times at

the same level. After adding 1000 users to tenant 1 at 900s, the response time of tenant 1 started to

increase. Despite the increasing database size, the performance was clearly different between the

two tenants.

The mechanism provides steady response times for the tenant with steady load, while another

increases its load. Thus, it enforces performance isolation.

Results Q2 When tenant 1 increases its load in a FIFO scheduled system, its resource consump-

tion also increases (cf. Figure 4.8c) and influences tenant 2, since the consumption of it decreases.

In contrast, the consumption of tenant 1 maintains the guaranteed level in the isolated case (cf.

Figure 4.8f) and the consumption of tenant 2 is not influenced. In conclusion, the method has the

potential to ensure an almost perfect resource isolation between individual tenants.

Scenario and Results for Q3 To answer Q3, the guaranteed resources were uniformly dis-

tributed between the tenants, all tenants began with 1500 users. After 500s, 1000 users were re-

moved from tenant 1. Therefore, the request rate of tenant 1 was expected to be too low to allocate

all its guaranteed resources. As a consequence, the second tenant should have been able to use these

resources, in addition to its own share.

121

4. Methods for Performance Isolation

0

20

40

60

80

100

120

140

160

180

0 100 200 300 400 500 600 700 800

T
h
ro

u
g
h
p
u
t
[R

e
q
./
1
s
]

Time [s]

t1

t2

R
e
m

o
ve

d

Figure 4.9.: Q3: Efficiency of the system.

0
2
4
6
8
10
12
14
16
18

0 200 400 600 800 1000

R
e
s
p
o
n
s
e

T
im

e
[s

]

Time [s]

t1
t7

(a) Q4: Differentiation resp. time.

0

50

100

150

0 200 400 600 800 1000

T
h
ro

u
g
h
p
u
t
[R

e
q
/s

]

Time [s]

t1
t7

(b) Q4: Differentiation throughput.

0

2

4

6

8

10

12

300 400 500 600 700 800 900

R
e
s
p
o
n
s
e

T
im

e
[s

]

Time [s]

t1
t2

(c) Q5: Diff. guarantees resp. time.

0

50

100

150

200

0 200 400 600 800 1000

T
h
ro

u
g
h
p
u
t
[R

e
q
/s

]

Time [s]

t1
t2

(d) Q5: Diff. guarantees throughput.

-10

0

10

20

30

40

50

60

1100 1600 2100 2600

D
if
f.

C
o
n
s
u
m

p
t.

[%
]

Time [s]

C
h
a
n
g
e

(e) Q6: Demand change cons.

-30

-20

-10

0

10

20

30

1100 1600 2100 2600

E
rr

o
r

[%
]

Time [s]

C
h
a
n
g
e

(f) Q6: Estimation error.

Figure 4.10.: Evaluation results of the resource isolation.

In the first 210s, shown in Figure 4.9, the ramp-up time of the measurement is visible. Until

500s both tenants had 1500 users and the same response time. At 500s the workload of tenant 1

was decreased as seen in the figure. As a consequence, the amount of available resources increased

and tenant 1 took advantage of them. Although the resource guarantees were assigned equally to

both tenants, tenant 1 consumed more resources in this case. Both tenants observed a reduced

response time. Thus, the proposed mechanism ensures an efficient resource usage and allows over-

commitment.

In order to answer Q4, tenant 1 was configured to access a small database, and tenant 7 to access a

larger database. This result in different resource demands (cf. Section 4.3.3) and allows for insights

about the possible negative impact, the tenant with higher resource demands has onto the other. For

this experiment, the resource share was configured equally and both tenants ran 1250 users.

Figure 4.10a shows that tenant 1 with low demands received a better service quality. In case of

a non-isolated system, the throughput would be the same for both and thus the ratio of the share

would be 0.39 for tenant 1 and 0.61 for tenant 7, which is an error of 22% (cf. Section 4.3.3). In

the given experiment, the throughput ratio was 0.58 for tenant 1 and 0.42 for tenant 7 (cf. Figure

122

4.5. Proof of Concepts

4.10b) which resulted (cf. Section 4.3.3) in a resource share of approximately 0.48 and 0.52. This

is an error of 4%.

This shows the ability of the method to treat tenants with different demands in a differentiated

manner, and proves the ability of the mechanism to use the demand estimates.

Scenario and Results for Q5 To answer Q5, different resource shares were allocated to the

tenants. Tenant 1 had 25% of the resource and tenant 2 had 75%. The number of users for both

tenants was fixed to 1250.

The tenant with 75% of the resources had better response times (cf. Figure 4.3.3c) and a higher

throughput (cf. Figure 4.3.3d). Thus, the proposed resource controller is able to differentiate QoS

by providing different shares to each tenant.

Scenario and Results for Q6 To identify the system’s ability to adapt to changing resource

demands, two tenants using the system at high utilization were configured. After 1450s the resource

demands for each request type of tenant 1 were increased to a higher value, by adding artificially

computational overhead, simulating a change in the tenant-specific configuration. In a second ex-

periment, the system run at a utilization of around 30% and then the load of one tenant was increased

to achieve a utilization close to 100%.

Figure 4.3.3f depicts the error of the resource demand estimated in percent. At 1450s the demand

was 20% underestimated and due to the sliding window approach it took some minutes to converge

again to a good estimation. In total, it needed around 8 min before the estimated demands became

stable again. A short overshoot is observable in the figure. A smaller observation window can

speedup the adaptation at the cost of the prediction accuracy. Figure 4.3.3e depicts the difference

of the resource consumption between the two tenants in percent. Once the demand increased, the

difference raised up to 50%, before the estimation and system became stable at around 2100s.

The experiment was repeated several times, with similar characteristics. The second experiment

presented a very good resource isolation, similar to Figure 4.3.3f with a negligible error. This

shows that the RDE error in various load scenarios has only little impact on the isolation and control

mechanism.

Scalability Experiments with up to 8 tenants were executed. In an exemplary manner, the results

from an experiment based on the scenario used to answer Q4 and Q5 are discussed. In this scenario,

tenant 5 and tenant 6 had a larger dataset compared to the other tenants. The CPU shares of the

tenants were set to (t1..t6= 2
30 ;t7..t8= 9

30). It was observed, that with a higher number of tenants, a

longer observation window is beneficial. Therefore, it was set to 3s and the observation window

to 7 min. The observed response times showed that the system is capable to isolate the resource

usage between the tenants and to provide different QoS levels for different tenants (t1 = 5.0s; t2 =

4.3s; t3 = 4.2s; t4 = 5.0s; t5 = 7.1s; t6 = 7.5s; t7 = 0.8s; t8 = 0.5s).

123

4. Methods for Performance Isolation

4.5.2.4. Experiment Results and Discussion

The evaluation based on MTTPC-W showed the ability of the mechanism to isolate the CPU. In

addition, over-committed systems and QoS differentiation can be handled. Thus, it successfully

demonstrated:

1. The general approach how resource isolation can be achieved at the application level.

2. The SDL can be used to provide an accurate resource demand estimation, as sustained by the

analysis of three resource demand estimation methods.

3. A concrete admission control implementation enforcing isolated resources.

4.5.3. Model Based Isolation

This section focuses on the evaluation of the model based isolation method, to gather insights con-

cerning its behavior. The questions discussed are:

Q1 Do cv and cp influence the weights and the corresponding performance?

Q2 Does the approach provide measures to achieve performance isolation?

Q3 Does the approach efficiently distribute the weights?

Q4 How accurate is the prediction of the system model?

The evaluation is split into two scenarios. One based on a simulation, where no live monitoring data

is used to refine the model. Thus the performance predictions are based on artificially defined system

characteristics. The section starts with the simulation based evaluation, primarily focusing on the

investigations of the parameters influence. It is followed by a separate section using MTTTPC-W

to investigate the prediction accuracy and the real isolation capabilities.

4.5.3.1. Simulation Based Experiments

This section determines, how changes in the number of users mi, influences the weights and con-

sequently performance. It further shows how cv and cp influence the observed performance. That

helps to find a suitable configuration. The experiments in this section were not based on a real sys-

tem, instead the performance prediction function was used. For the optimization and prediction of

the performance, the algebra system Maple 10 [Monagan et al., 2005] was used.

Q1/Q3: Influence of Varying Workload Onto the Parameters In Figure 4.11a/b a plot

of the weights and the corresponding response times for an increasing load is presented. Tenant 3

increased the workload from 40 to 4000 users. The other parameters maintained constant values at

m1 = q1 = 500, m2 = 900,q2 = 750, q3 = 1000s, g1,g2,g3 = 4s, cv = 0.1, cp = 5 and the occupation

time of 0.005s

124

4.5. Proof of Concepts

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 500 1000 1500 2000 2500 3000 3500 4000

W
e
ig

h
t

Users

t1
t2
t3

(a) Weight with increasing load.

0.1

1

10

100

0 500 1000 1500 2000 2500 3000 3500 4000

R
e
s
p
o
n
s
e

T
im

e
[s

]

Users

t1
t2
t3

(b) Response time with increasing load.

Figure 4.11.: Results of the model based isolation for increasing load.

The x-axis shows the increasing load for tenant 3. The y-axis of Figure 4.11a shows the weights

as result of the penalty p3 and heaviness h3.

For an increasing load, the weight w3 strongly increases, since the heaviness h3 increases. This

leads to a reduction of the weights for the other tenants.

Weight w3 increases, until the third tenant’s load approaches the quota q3. It can be seen, that

the penalty p3 becomes more important in this area. Thus, p3 converges to 0 and consequently

tenant 3 becomes more unimportant for the optimization. The more tenant 3 exceeds the quota

q3, the more severe the penalty becomes and thus the weight is reduced, although the heaviness h3

increases linearly with the users. It implies, that the disruptive tenants positive effect of increasing

heaviness looses importance in relation to the penalty p3. Around a load equal to the guarantee,

the weight continuously converges to 0, since the tenant’s fitness becomes unimportant. This shows

that a tenant cannot increase its weight unrestrained, by increasing its workload.

When the disruptive tenants workload is at the quota, the abiding tenants observe lower response

times as before (cf. Figure 4.11b). Once a tenant exceeds its quota and becomes disruptive, the

response times start to increase significantly, while the other response times are decreasing again.

Q1: Influence of Violation Factor Figure 4.12a/b depicts the weights and response times,

determined by the optimization for increasing values of cv on the x-axis. The value of cv was varied

from 0.001 to 10. All other parameters were fixed m1 = q1 = 500, m2 = 900, q2 = 750, m3 = 1500,

q3 = 1000, g1,g2,g3 = 4s, cp = 5 and the occupation time was set to 0.005.

This configuration is similar to the previous example, but with changing cv. For a low cv, the

weights of the tenants converge to values proportional to their coefficient h j · p j. Contrary, for high

values of cv the term h j · p j is not significantly important.

In summary, a very high or very low value for cv is not feasible. The effects of the isolation via

h j · p j and guarantee violation should be of similar impact. This ensures the mechanism to provide

an efficient distribution of weights, while maintaining performance isolated. In the present scenario,

values between 0.1 and 1 are suitable.

125

4. Methods for Performance Isolation

0

0.1

0.2

0.3

0.4

0.5

0.6

0.001 0.01 0.1 1 10

W
e
ig

h
t

cv

t1
t2
t3

(a) Weight with increasing cv.

0

2

4

6

8

10

12

14

16

18

0.001 0.01 0.1 1 10

R
e
s
p
o
n
s
e

T
im

e
[s

]

cv

t1
t2
t3

(b) Response time with increasing cv.

Figure 4.12.: Evaluation results for increasing cv.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.1 1 10 100

W
e
ig

h
t

cp

t1
t2
t3

(a) Weight with increasing cp.

0.001

0.01

0.1

1

10

100

1000

10000

0.1 1 10 100

R
e
s
p
o
n
s
e

T
im

e
[s

]

cp

t1
t2
t3

(b) Response time with increasing cp.

Figure 4.13.: Evaluation results for increasing cp.

Q1: Influence of Penalty Factor Figure 4.13a/b presents the weights, and response times

for an increasing cp. cp is varied between 0.1 and 100 while the other parameters maintained

constant: m1 = q1 = 500, m2 = 900,q2 = 750, m3 = 1500,q3 = 1000, g1,g2,g3 = 4s, cv = 0.1 and

the occupation time was set to 0.005

For small a cp, the response times for all tenants converge to the same value. This is because

lim
cp→0

p j = lim
x→0

1
1+ exp(x)

= 1/2

. Thus, resulting in a penalty of approximately 1/2 for all tenants. Consequently, no performance

isolation is reflected in the optimization. If cp is very large, the penalty function converges towards

a non-continuous step function.

Thus, for large values of cp, the disruptive tenants penalties converges to 0 and the penalty for

abiding tenants to 1. This means, for very high values of cp, the resources are divided among the

tenant working within their quota only. In this situation, the disruptive tenant does not benefit from

unused parts of abiding tenants quota. Consequently, moderate values for cp are suggested. This

makes tenants being penalized gradually. Values between 1 and 10 seem to be suitable for this

scenario.

126

4.5. Proof of Concepts

0.1

0.3

0.5

0.7

0.9

0.80

0.85

0.90

0.95

1.00

1.05

1.10

30 50 70 90 110

W
e
ig

h
t

T
e
n
a
n
t
U

ti
lis

a
ti
o
n

Elapsed Time [min]

t1
t2
t3

(a) Utilization in high load scenario.

0

0.2

0.4

0.6

0.8

1.0

0.3

0.5

0.7

0.9

1.1

1.3

30 50 70 90 110

W
e
ig

h
t

T
e
n
a
n
t
U

ti
lis

a
ti
o
n

Elapsed Time [min]

t1
t2
t3

(b) Utilization in low load scenario.

Figure 4.14.: Utilization and weights for different loads.

4.5.3.2. MTTPC-W Based Experiments

System Environment and Configuration For the purpose of gathering insights into the

methods isolation in a real scenario, the model based isolation was implemented in a test envi-

ronment. The goals were the evaluation of the prediction accuracy and the functionality of the

isolation mechanism.

For the experiments, the deployment 1 and 2 from Figure 4.7 were conducted. The ACC was

deployed on on 4x3.4GHz and 16GiB memory. The optimization was realized by the open source

library JOptimizer [JOptimizer, 2014], which offers methods to efficiently solve convex optimiza-

tion problems based on [Boyd and Vandenberghe, 2004]. The load driver ran at 2x2.4GHz and 4GiB

memory. The application host at 4x3.4GHz, with totally eight hyper threads, the database host had

the same hardware. Due to the nature of the isolation mechanism, it abstracts completely from the

underlying technologies. To show this, the approach was also validated in a virtual environment in

Chapter 6. It is worth mentioning, that the database volume varied significantly compared to the

previous experiment for the model based approach.

The data of the first 15 min were discarded for each experiment, to ensure a proper warm up

phase of the system. The system parameters required by the method were calculated based on

moving averages of 2 min. The graphs presenting the results also plot the summarized values of two

minutes. An excerpt of the findings is given in the next paragraphs.

Utilizations of the Tenants First, the operational assumption, that all tenants utilizations are

approximately equal Ui = U j was validated. The first experiment in Figure 4.14a presents the ob-

servations for a setup where tenant 1 runs 200 users, tenant 2 runs 350 users and tenant 3 runs

500 users. The corresponding quota was at q1,q2,q3 = 1000 users and thus no tenant exceeded it.

In this scenario, all tenants utilizations Ui were close to 1. Therefore, the system fulfilled the precon-

ditions for Lemma 1. In the second experiment depicted in Figure 4.14b the quotas were configured

to make tenant 1 very disruptive. Tenant 1 was configured to run 400 users while the quota qi was

300. The other tenants were configured to use low workloads of 50 users and 100 users respectively.

The quota was set to q2,q3 = 300. In this configuration, the abiding tenant had unused portions of

its share and these were used by tenant 3. This shows the work-conserving character. Consequently,

unequal utilizations were observed, resulting in wrong predictions. It is worth mentioning again,

127

4. Methods for Performance Isolation

0

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0

1

2

3

4

5

6

7

8

15 20 25 30 35

W
e
ig

h
t

R
e
s
p
o
n
s
e

T
im

e
[s

]

Elapsed Time [min]

t1

t2

t3

(a) Weight and response time.

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

15 20 25 30 35

H
e
a
v
in

e
s
s

a
n
d

P
e
n
a
lt
y

Elapsed Time [min]

t1

t2

t3

(b) Heaviness and penalty.

Figure 4.15.: Isolation experiment with two load increasing tenants.

that in a real system, due to the work-conserving PFQ, this would result in a better performance of

the disruptive tenant.

Q4: Prediction Accuracy For the evaluation of the prediction accuracy, the measured response

time was compared with the estimated ones, provided by Equation 4.4. The mean relative error was

used and three experiments were executed. In the first experiment, three tenants with workload of

50 users for each tenant was conducted. The second experiment conducted 100 users for each tenant

and the last one 150 users. The quotas were kept constant at (q1,q2,q3 =400). An error of 98.7%

was observed in the first experiment. It is worth mentioning, that the error was equally distributed

among the tenants and the estimated response times were much higher as the real ones. The second

experiment showed results of around 8.5% error. In the third experiment, the prediction error was

at 9.2%. The standard deviation of the error in measurement 2 and 3 was below 1%. In the last two

measurements, the system was already in a state where extensive queuing arose. This illustrates the

good prediction capabilities in case of the relevant, high load, scenarios.

Q2/Q3: Isolation Capabilities In Figures 4.15a/b and 4.16a/b, the performance isolation

mechanism was evaluated. The computed weights wi are shown in the a graphs with dashed lines

while the measured response time is shown in solid lines. The b graphs present the penalty (dashed)

and heaviness (solid) parameters.

To simulate a changing user behavior, the workload for tenant 2 and tenant 3 was increased in the

first experiment. The parameters were configured as follows: q1,q2,q3=400 users and g1,g2,g3=4s

were chosen. All tenants started with 200 users, the number of users was increased between 20 min

and 30 min of the experiment for tenant 1 and tenant 2. The load was increased to 400 and 300 users

respectively.

In Figure 4.16b only two lines are visible, as the two abiding tenants observed the same value. The

parameters were configured as follows: q1,q2,q3 = 400 users and different guarantees of g1,g2 = 4s,

and g3 = 3s. All tenants started with 200 users, after 20 min the users of tenant 1 were continually

increased till 500 users in minute 30 were reached.

128

4.6. Conclusion

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0

2

4

6

8

10

12

14

15 20 25 30 35

W
e
ig

h
t

R
e
s
p
o
n
s
e

T
im

e
[s

]

Elapsed Time [min]

t1
t2
t3

(a) Weight and response time.

0

0.4

0.8

1.2

1.6

2.0

15 20 25 30 35

H
e
a
v
in

e
s
s

a
n
d

P
e
n
a
lt
y

Elapsed Time [min]

Average Abiding

t3

(b) Heaviness and penalty.

Figure 4.16.: Isolation experiment with one load increasing tenant.

4.5.3.3. Summary and Further Insights

Since all isolation measures rely on the prediction accuracy of the model, this is discussed more

extensively. The difference between workload and assigned capacity is low, if the tenants utilization

is equal. Vice versa, if tenants have unequal utilizations, the performance estimation is inaccurate.

This situation occurs in the case of low load. However, tenants with utilizations below 1 do not use

all of their available resources, they fulfill the guarantee, and other tenants with higher utilization

profit from their unused capacity. Consequently, this situation is not expected to be critical with

regard to performance isolation. Performance estimations also lack in accuracy when the server

does not utilize its full capacity, because of wrong estimations for Oi, which are too low. This

results in estimates significantly higher compared to the observed one. This implies an underloaded

system. This means, that all tenants’ fulfill their guarantee. Consequently, this is not critical, either.

In case of relative high response times, the response time prediction is very accurate and precise.

In the experiments, the error was consistently below 15%. Moreover, the prediction accuracy with

deployment 2, using an external database, was tested. In this scenario, the bottleneck was the

database server. Experiments with different load configuration were executed. In all scenarios, the

accuracy of the prediction was below an error of 20%. Thus Q4 is answered.

Finally, the presented data shows, performance isolation can be enforced, in accordance with

configured guarantees and quotas (Q2). However, the performance isolation mechanism can tend to

provide abiding tenants too much capacity if the disruptive tenant goes far beyond its quota. Thus

providing abiding tenants a performance better than the guarantee (cf. Figure 4.16). This is a minor

disadvantage in case of over-commitment and answers Q3. The experiment for cp and cv outline

that too high and too low values have major disadvantages. Value of cp around 5 and cv around 0.5

are a first point of reference, since in this region the particular functions change the most (Q1).

4.6. Conclusion

This section presents a short recap of the chapter, which presented various performance isolation

methods. First, the chapter defined the design goals for the isolation methods in accordance with

the overall requirements and challenges from Section 1.3.3, followed by a detailed discussion of the

general isolation method and several instances of it. Thereby, two are based on novel approaches.

129

4. Methods for Performance Isolation

Finally, the concept’s validity was proved and insight about the methods internal behavior was

collected.

The primary design goals of the methods were to ensure performance isolation, whereby an

efficient distribution of the weights had to be maintained. To achieve this, a request based admission

control was proposed. This admission control consists of a fast and low overhead implementation

regulating the flow of requests admitted to the application. It is always triggered to provide the

next request, when the application server is ready to process a new request. This admission control,

asynchronously receives configuration updates requiring more intense computations. This allows

a fast reaction to sudden and unpredictable changes in the workload, while improving the overall

efficiency with the updates.

The novel methods consist of an adapted implementation of a WFQ based scheduling. To com-

pute the weights for each tenant, a function to predict the response time for an interactive close

workload model is used. Additionally, a fitness function using the prediction function and the

weights of the tenants as input was used. An optimization finds suitable weights. The fitness func-

tion consists of one part to cover situations where tenants’ guarantees are violated and a second part

covering situations where tenants’ exceed their quota.

Another novel approach is based on a resource isolating implementation of the admission control.

This scheduler is aware of the resource demands of a particular request for the bottleneck resource.

It takes advantage of this knowledge, to dynamically reduce the priority of tenants close to the

guaranteed share, in order to prefer tenants not as close to their guaranteed resource usage. To

estimate the resource demands, various estimation approaches were discussed and evaluated. The

chosen one is based on [Brosig et al., 2009] and relies on the SDL.

Furthermore, an isolation method based on a black list, round robin and closed control loop were

briefly outlined. Very similar methods were already discussed in the literature. Therefore, only a

brief summary on how they can be applied for MTAs was given.

Both novel approaches were experimentally analyzed to figure out relevant characteristics. These

experiments conducted insights into the resource demand estimation, and performance prediction

function. Overall, both provide good isolation results. It was shown, that the resource isolation

mechanism reflects the resource demands of tenants, resulting in visible performance differences.

The influence of various configuration parameters, for the optimization of the model based ap-

proach, was investigated. Finally, both methods can provide performance isolation, whereby the

resource isolation is not able to efficiently share the system with regard to application level guaran-

tees, but on resource guarantees. A detailed discussion of the achieved goals is part of Chapter 6.

130

5. Decision Support and Architecture

The previous chapters presented measures to evaluate performance isolated systems and methods to

achieve performance isolation in MTAs. As outlined in the introduction, this is not enough to enable

an MTA provider creating performance isolated MTAs (cf. Section 1.2). A gap between the actual

isolation methods described at a conceptual level, and how to apply them in a scenario specific real

world context exists.

MTA providers neither know which characteristics of the methods are important, nor how the

methods behave according to these characteristics, nor which method provides the best isolation.

Isolation metrics were described in Section 3.1 and will be applied in Chapter 6 to get the required

insights. However, other aspects can also be of relevance and have to be identified. Furthermore,

an appropriate method to find a suitable isolation method for a particular application scenario needs

to be identified. Moreover, there is no feasible documented approach how potential performance

isolation methods can be implemented in an application, and how the application has to be built that

performance isolation is possible. Especially not if it runs on a PaaS.

The detailed goals of this chapter are described in the following. Since the goals of this section

aim at enabling an MTA provider to apply the presented isolation methods, they are referred to

as Enablement Goals. The according challenges and overall goals were already described in the

Section 1.3.3.

Enablement Goal 1 — Architectural Concerns

Analyze architectural decisions that have an impact upon the quality of a

performance isolation method. Beforehand, relevant multi-tenancy specific

architectural aspects have to be listed.

Enablement Goal 2 — Information Requirements

Identify the information required by different isolation methods. For broad

applicability a classification schema of the isolation methods must be de-

veloped. Accordingly, a classification of the various kinds of information,

required by the isolation methods, has to be defined.

Enablement Goal 3 — Decission Support

Identify a method to find the most feasible performance isolation method

for a given scenario. This method has to respect non-functional require-

ments as well as functional relations, which exclude potential mechanisms

from the candidates.

131

5. Decision Support and Architecture

Enablement Goal 4 — Reference Architecture

Design a reference architecture that provides insights on how the isolation

methods can be realized in an MTA. Relevant aspects are the required

information and its applicability as PaaS enhancement.

In summary, this chapter provides additional knowledge, relevant for potential developers of MTAs.

It identifies MTA specific architectural concerns, in which existing applications are different. Then,

it is discusses, how they influence an application’s performance isolation capabilities. Based on this,

recommendations are formulated. The section also discusses existing isolation methods and their

applicability in a systematic way. Therefore, a classification of isolation methods is developed, and

the advantages and disadvantages of each method are discussed. A concrete quantification of the

methods quality is presented in Chapter 6. To make this information consumable and applicable, a

decision support process is identified and adapted for the given scenario. This helps to identify the

best suited isolation method for a given MTA. As a foundation, relevant non-functional parameters

for the isolation methods are listed. Finally, the chapter provides a discussion on how the existing

methods are best integrated into existing systems, by using a reference architecture, whereby the

previous insights lay the foundations.

5.1. Architectural Concerns for Performance Isolated Multi-Tenant Applications

In this section, the relevant architectural characteristics, outlined in Section 2.1.1.1, are discussed

in more detail, with regard to their impact upon the performance isolation of MTAs, plus additional

concerns not yet investigated. Based on these insights, recommendations are formulated to increase

the isolation. The content of this section has already been published to a large extent in [Krebs et al.,

2012a].

5.1.1. Architectural Concerns

In the following, high level concerns influencing the architecture of an MTA are discussed. First,

details on the affinity, session stickiness and persistence concerns, which are usually transparent

for the tenants, are given. For each architectural concern, examples from real-life applications are

provided to show the relevance of these concerns as distinctive features of existing offerings and

thus also emphasize the relevance of these concerns for MTA providers.

5.1.1.1. Request Distribution

Tenant Affinity Applications where hundreds or even thousands of application nodes serve sev-

eral tens of thousands of tenants can be imagined [Schonfeld, 2009]. In such situations, the way

users of one tenant are distributed, becomes a significant issue for the design of MTAs. Affinity

refers to the binding of users, of the same tenant, to the application nodes. In contrast to traditional

132

5.1. Architectural Concerns for Performance Isolated Multi-Tenant Applications

request/response-based systems the method is using tenant specific attributes in order to route re-

quests, and not user specific ones referring to sticky user sessions. In the following, the different

types of tenant affinity are introduced and reasons for using them are explained. There are different

functional reasons, why an MTA has the one or other affinity. Examples are a tenant specific state.

Non-functional aspects can also be a reason. Examples are shared services (such as persistence)

with limited capacity, an increasing cache hit rate, intolerable high synchronization overheads and

legal restrictions.

In a non-affine application, a number of application nodes exist, and every incoming request can

be handled by any of the nodes, without attention to the tenant from which the request origins.

In server-affine cases, requests originating from the same tenant are processed by the same appli-

cation node, but one node can handle multiple tenants. A possible reason for such a behavior is a

tenant context, that cannot be shared between nodes. Furthermore, an artificially introduced affinity

can increase performance in some cases (e.g., by increasing the cache hit rate).

In cluster-affine situations, requests are served by a fixed subgroup of application nodes. One

subgroup can serve several tenants. This scenario also implies that each application node is only

part of exactly one subgroup. Keeping a tenant’s context in sync among several instances, or a long

logical network distance, can reduce the performance and thus limit the distribution.

Inter-cluster-affine is similar to the cluster affinity, but one application node is part of several

groups. For the tenant specific context, the same arguments as for the cluster-affine behavior arises.

Legal restrictions are other aspects, e.g., a server located in Germany is also located in the EU and

thus part of two groups.

Session Stickiness Orthogonal to a tenant’s affinity, requests are either statefull or stateless

(cf. Section 2.1.1.1). Therefore, two situations can be distinguished.

1. In case of non-sticky sessions, requests are processed by all available application nodes if no

tenant affinity exists.

2. In case of sticky sessions, a user specific state is bound to an application node. Therefore,

all requests from one user have to be served by the same node. However, tenant affinity can

bring in additional conditions for the initial binding of the user to nodes.

Examples The SAP Business ByDesign solution was developed with a server-affine behavior,

due to a high amount of caching and large tenant specific contexts. Other applications distribute

tenants over several nodes of the application. One example is SAP R/3 [Keller and Krueger, 2002,

pp. 505-506]. However, R/3 has sticky users. Applications hosted on e.g., the Google Cloud

Platform [Google, 2014] have usually neither a tenant-affinity nor sticky sessions.

5.1.1.2. Data Persistency

Multi-tenant database designs are widely discussed in the literature (cf. Section 2.1.1.1). In the

following, a short summary of the different approaches is given. In a dedicated database system,

133

5. Decision Support and Architecture

every tenant uses its own, completely separated database. A dedicated table/schema approach shares

one database, which contains a separate table or schema for each tenant. In such a scenario, one

achieves at least a partial sharing. The shared table/schema approach shares the same tables and

schemas, a differentiation of the data is usually provided by adding a tenantId column.

Examples SAP’s R/3 uses relational databases with a tenentId column [Keller and Krueger,

2002]. In contrast, Calvin [Calvin and Friedl, 2009] describes a solution using a separate database

within Windows Azure. The academia describes several approaches extensively (e.g., [Wang et al.,

2008, Chong et al., 2006]).

5.1.1.3. Customization

The ability to handle different tenant specific configurations regarding the UI, the functional and

non-functional behavior and the services referenced, is a major differentiation for MTAs. In Kozi-

olek’s architecture [Koziolek, 2011] a separate metadata manager provides the customization infor-

mation to adapt the application (cf. Section 2.1.1.1). Mietzner [Mietzner et al., 2009] created some

patterns for multi-tenant services and service compositions. Based on these patterns, they built up a

service-oriented system, allowing extensive modifications, including tenant specific developments.

These two papers exemplary differentiate the degree to which an MTA can be customized. A

configurable application is one which provides tenant specific behavior or appearance, where this

behavior is configured without tenant specific code enhancements. Thus, every tenant accesses the

same code base.

An application allowing tenant specific code extensions provides the most powerful way to adapt

it to customers’ needs. This leads to significant technical challenges in the multi-tenant scenario.

Mietzner’s et al. [Mietzner et al., 2008] SOA based approach for MTAs provides a way, in which a

tenant can replace or extend pieces of code, without influencing the others.

Examples Google Apps [Google, 2015] provides office applications for private use or companies

with limited opportunities for customer specific customizing. Other SaaS providers such as Sales-

force provide a wide range of options, including tenant specific code [Weissman and Bobrowski,

2009].

5.1.1.4. QoS Differentiation

QoS differentiation provides one tenant another service quality than another tenant. QoS differ-

entiation is not directly related to isolation aspects (cf. Section 2.1.1.2). One can differ between

input and output related service differentiation, which are not mutually exclusive. The input related

differentiation promises the same behavior, regarding non-functional properties, for all tenants, by

allowing a different quota. In the output case, the system allows the same amount of load for every

tenant, but differs in the output related properties, like response time.

134

5.1. Architectural Concerns for Performance Isolated Multi-Tenant Applications

Examples Service differentiation in multi-tenant environments is a topic of interest in academia.

Lin [Lin et al., 2009] provides an approach to differ response times within MTAs by using a closed

control loop and an admission control. Thule [Ruehl, 2013] and Schroeter [Schroeter et al., 2012]

can support additional non-functional tenant specific requirements using a tenant aware composi-

tions of components.

5.1.2. Mutual Interferences, Dependencies and Recommendations

In this section it is discussed how various architectural decisions influence the performance iso-

lation capabilities. This discussion is made on an abstract level and independent of the concrete

performance isolation methods. Furthermore, recommendations with respect to performance iso-

lation are given. These recommendations can be retrieved from the analysis of the architectural

concerns. These recommendations are not mandatory. However, not following them leads to more

sophisticated implementations of the performance isolation methods.

5.1.2.1. Affinity

In case a tenant’s request does not stick to one server, the performance isolation method must coor-

dinate its activities among several nodes to enforce the isolation. In the worst case, a tenant shares

on different nodes the resources with different tenants. In case of an arbitrary kind of cluster affin-

ity, where all application nodes share services like a database, it can happen that tenants from one

cluster negatively influence the performance of the tenants in another cluster. In these situations,

the required service must provide an isolation among tenants or at least clusters. Alternatively, a

limitation of the number of requests going to one cluster must be enforced in addition to the tenant

isolation related admission control.

Recommendation: From the performance isolation perspective, it is suggested that a server

affinity makes performance isolation easier and should be preferred. If a cluster or server affinity

exists, required services should not be shared among several clusters/nodes. If this is not the case,

the required services should support isolation by themselves on cluster or tenant basis. In case of an

inter-cluster affinity, serious efforts have to be taken to enforce isolation.

5.1.2.2. Session Stickiness

In case of a non-affine, cluster affine or inter-cluster affine system design, the user related session

stickiness also becomes important. Load balancers are able to distribute incoming requests between

nodes, maintaining an equal load and service qualities on the computing nodes. Consequently, the

same configuration can be applied to all nodes, or even centrally on the load balancer. The challenge

arisees, if the sessions are sticky. In this case, the load balancer cannot distribute the requests

arbitrary. Therefore, different nodes may have different utilizations and service qualities. Therefore,

135

5. Decision Support and Architecture

a performance isolation method must be able to globally optimize the weights, by providing each

node an individual configuration.

Recommendation: It is recommended to develop applications where no tenant and no users

state is held at dedicated application nodes. Instead, the state should be kept on the client or on

a shared storage/cache. This is a general recommendation for scaling web applications [Fehling

et al., 2014]. Since a shared storage or cache can also become a bottleneck and violate performance

isolation, the recommendations from Section 5.1.2.5 have to be considered.

5.1.2.3. QoS Differentiation

Providing QoS differentiation can have an impact on the persistence layer, because some aspects

can be achieved by taking advantage of database features, such as different storage capacities. An-

other point is to provide every tenant its single database, with different hardware settings. With

respect to performance isolation, it is worth to notice, that the decision for QoS differentiation can

influence the method used to ensure isolation. If for example, the QoS should be differentiated by a

dynamically adjusted thread priority, isolation methods like those proposed will try to compensate

this.

Recommendation: If performance related QoS differentiation is required, it should be tightly

integrated with the performance isolation method. Most performance isolation methods allow to

configure individual guarantees and quotas or shares per-tenant and thus already provide differenti-

ation measures.

5.1.2.4. Customization

It is worth thinking about different databases for each tenant, if extensive modifications are offered.

If, for different tenants, different execution paths are taken for the same request, this leads to differ-

ent demands. This makes the performance isolation more challenging, since this has to be reflected

by the isolation method in use. If tenants have separate database schemes, the performance isolation

on the persistence layer can be enforced using state-of-the-art database techniques. If performance

isolation cannot be ensured due to the unpredictable impact of a request onto the system, alternative

sharing approaches might be feasible (e.g., [Ruehl, 2013]).

Recommendation: From the performance isolation perspective, it is best to not allow any kind

of customization or code extensions. Since this is not always feasible, special care has to be taken

for the selection of a performance isolation method, to ensure its support for different resource

demands.

136

5.2. Selection of Performance Isolation Method

5.1.2.5. Persistence

The decision about the chosen persistence concept can influence the level of achievable performance

isolation. Independently from the tenant’s restrictions at the application level, one single query on

the database might cause significant performance issues for all tenants. This impact is difficult to

predict. Especially in cases where tenant specific code extensions are executed.

Recommendation: From the perspective of performance isolation, it would be best to provide

each tenant a database that is not shared at all. However, this is not feasible in practice, as this would

counteract the goal of an efficient resource usage of the MTA. Consequently, maximum query times

should be defined in the case of tenant specific code extensions, a well sized persistence layer should

be deployed, or other measures to performance isolate the persistence on the database have to be

undertaken.

5.1.3. Summary

Performance isolation is influenced by many aspects. As discussed before, one has to make dis-

tributed control mechanisms available in non-server affine situations. Besides that, sandbox ap-

proaches to isolate code extensions are required. Without sandbox, a tenant can easily deploy code

affecting other tenant’s performance. Another issue is, the database which needs to provide ad-

equate mechanisms to ensure performance isolation or a proper overall performance. The same

holds for other required services.

5.2. Selection of Performance Isolation Method

Concrete performance isolation methods are presented in Chapter 4. Additional approaches, similar

to the presented concepts in Chapter 4, can be realized. For instance, an approach using a system

performance function to model an open workload (cf. Section 4.2) can be expected to share most

characteristics with one using a closed workload system function. This section first introduces a

classification based on the discussed solutions from Chapter 4. The methods requirements and

benefits are discussed on this class level. To make the gained knowledge easier accessible, a short

decision process is discussed, in which the outcomes of the discussion can be made consumable for

MTA providers.

5.2.1. Classification Schema for Existing Methods

In this section introduces the classification. Parts of this section have already been published

in [Krebs and Loesch, 2014].

The classes depicted in Figure 5.1 are primarily motivated by the information and knowledge

required by them. Location oriented approaches place tenants onto various application nodes with

regard to SLAs. Resource control mechanisms enhance the resource accessing mechanisms (e.g.,

137

5. Decision Support and Architecture

AdmissionD

Control

LocationD

Optimization

ResourceD

Control

PerformanceD

Isolation

ApplicationD

Unaware

ApplicationD

Aware

InputD

Neutral

InputDAware

GuaranteeD hD

QuotaD

Comparing

ResourceD

Demand

ModelD

Based

BlackDBox

WhiteDBox

Isolating

Exploiting Measurement

Estimation

Figure 5.1.: Classification of Isolation Methods

OS Schedulers) by the tenant concept. Allocation driven and resource control methods were identi-

fied as insufficient (cf. Section 2.3 and Section 4.1.1). Since the thesis focuses on admission control

based methods the other trunks are not presented in more detail.

5.2.1.1. Application Unaware Methods

The methods in this category do not use any information about the application’s state, nor perfor-

mance observed. However, they may rely on information about the input of a system.

Input Neutral approaches are not aware of any information. The admission control mechanism

has a static behavior, and thus constant priorities per-tenant for the decision which request is al-

lowed to pass to the MTA. They may indirectly use the guarantees or quotas to initially derive

an appropriate configuration of the admission control, but no change of the method’s behavior at

runtime appears. Different kinds of input neutral approaches are discussed in Section 4.4.2. Fur-

thermore, these approaches are widely applied in related fields, where a static scheduling is used

(cf. Section 2.2.2). An example is a round robin based scheduling, with a separate FIFO queue for

each tenant.

These approaches may provide a very good isolation with short settling times. However, since

they do not have any feedback, it can easily happen that one tenant observes a bad performance,

because it sends plenty of requests, although others have only a few requests pending. Thus, the

method has a rather low efficiency and can hardly support over-commitment (cf. Section 3.4.1.2).

Input Aware methods make decisions using information describing the input of the system. Thus,

they do not have any information from the systems processing or responses. A possible metric to

influence the admission controls behavior can be the request arrival rate, or the number of users us-

ing the system. Based on this information, a request is either delayed or refused. Such approaches

simply enforce a quota. In Section 4.4.2 and Section 3.4.1.2, the black list method was introduced

that realizes such a behavior. It is worth mentioning, that these methods do not leverage any knowl-

138

5.2. Selection of Performance Isolation Method

edge about the internal structure, nor the observable behavior of the application. This implies, that

based on the incoming information the method cannot infer the impact on other tenants.

The benefit of such approaches is their rather simple implementation and the opportunity to react

dynamically to load changes. The combination of random load and a hardly predictable system

behavior makes them insufficient with regard to resource usage, since they cannot use any feedback

from the system.

5.2.1.2. Application Aware Methods

These methods take advantage from knowledge that is either related to the output of the system or

influence of input parameters upon the system’s internal state. It can be assumed, that application

aware methods are implicitly input aware. Thus, they may be seen as an enhancement of these.

Resource Demand Based Approaches Approaches, such as the presented one in Sec-

tion 4.3, control the resource consumption of a tenant to ensure application level performance

guarantees. The methods do this by a resource aware admission control.

One subclass of approaches is Isolating resources. In this case, the admission control limits

the requests admitted for a tenant, based on the resources it already used. Such methods enforce

a certain share, based on a priority based AC. Whereby the priority is computed based on the

difference of the guaranteed and used resources (cf. Section 4.3).

Another subclass Exploits the knowledge of resource demands a particular request type has, but

does not directly ensure the isolation of a resource. In these scenarios, the knowledge is only used to

decide, which request types have to be rejected for a particular tenant, in case performance problems

appear. Wang et al. [Wang et al., 2012] describes such a method.

In general, the mapping of application level SLAs, such as response time guarantees to low level

resource requirements is not covered, and is a research topic in itself. The root cause of a low

performance isolation, is the inability to control resources. It can be expected, that these approaches

outperform the others if the request demands vary strong among the tenants.

Measurement vs. Estimation For determining a tenant’s resource demand, two approaches

are possible: Measurements and Resource Demand Estimations.

Measurements on a fine-grained basis, initiated by the application level, may allow to directly

gather the resources consumed by a tenant. This is possible, if supported by the operating system or

platform used. If such monitoring functionality is available, it often comes along with a significant

overhead or lacks monitoring capabilities among different processes. However, the accuracy is

better.

Methods based on Resource Demand Estimation determine the resource demand on a tenant

and/or request type basis, by using information that can be measured from outside, without special

fine-grained monitoring measures. Most RDE approaches use the resource utilization, throughput

and response time. Such a method was presented in Section 4.3.

139

5. Decision Support and Architecture

Guarantee and Quota Comparing Isolation Methods The previously discussed approaches

have disadvantages in over-committed scenarios, when shares have to be adapted, to fulfill a disrup-

tive tenants guarantee in case of over-commitment on the application level guarantees.

A disruptive tenant should receive a performance fulfilling its guarantee, if other tenants have

resources left. The tenants’ quality can be increased by reducing the quality of tenants observing

a quality better as the guarantee. Runtime information must be considered to adjust the priorities

according to dynamically occurring load changes. The interesting parameters are the guarantee

and the quota and their corresponding observed qualities. It is worth mentioning, that the internal

structure of the application is not known by these approaches. Usually, closed control loops are

considered for such scenarios. The approaches come with more complexity, but potentially more

efficient usage of resources. Lin et al. [Lin et al., 2009] or Section 4.4.1 depict examples.

Model Based Approaches Model based approaches use performance models to forecast the

impact of a change in the context, or the application’s configuration, upon the observed perfor-

mance. To create such a model, structural knowledge of the application is required. Moreover,

model specific monitoring information, to calibrate the model at runtime, are needed. In case the

internal application aspects are modeled, resource demand estimations are often required. In case of

Black Box oriented models, information observable from outside the application are sufficient (cf.

Section 4.2). They usually model less details of the system. Analytical solutions are often black

box oriented. In Section 4.2, a concrete example was introduced, which black boxed the application.

White Box based approaches describe more details, using internal application information. Thy usu-

ally apply simulation oriented solutions to solve situation not yet covered by analytic approaches.

However, simulation based solvers require much more time (cf. Section 2.1.2.2). Thus, this class

does not directly utilize the measured guarantee or performance related metrics, although it tries to

optimize them.

Performance models and their usage in self aware/adaptive systems are of interest in the respec-

tive research area (e.g., [Kounev et al., 2010]). The model based approaches benefit from adapting

the system without manipulating the real system, while doing the optimization. This increases the

adaptation speed, reduces performance oscillations and allows to even proactively react to future

incidents. The drawback is the complexity of the model and the abstraction of reality, which can

lead to wrong adaptations in case of erroneous predictions.

5.2.2. Informational Requirements

The Table 5.1 depicts an overview of the information required by each isolation class. In the fol-

lowing, a brief explanation is given. Input is related to information coming from a tenant into the

system. For example, the arrival rate, or the number of users. The output is the information related

to the response to the tenants, e.g., the response time. The extrinsic information is related to metrics

that can be measured from outside the MTA. Note that this does not include the AC, while output

does. An example is the time a request is actively processed by the MTA. The extrinsic information

140

5.2. Selection of Performance Isolation Method

is differentiated on per-request or a per-tenant basis. Intrinsic information includes aspects that can

only be measured by having access to the MTA and its underlying stack. Examples are resource

utilizations, or fine-grained monitoring on how long a request is processed by different nodes or

resources. Actually, Resource Demands are part of the intrinsic information. However, due to the

challenges in measuring resource demands on a tenant basis (cf. Section 4.3.1), this is listed as a

separate point. It can further be differentiated between a tenant based or request type based mea-

surement. A profound system understanding is necessary to build a reliable performance model of

the MTA. This point is not directly related to information, that have to be gathered at runtime, while

all the previous are.

Input

Neu-

tral

Input

Aware

Quota

and

Guar-

antee

Res.

Isol.

(RDE)

Res.

Isol.

(Mea-

sured)

Res.

Expl.

(RDE)

Res.

Expl.

(Mea-

sured)

Model

(White

Box)

Model

(Black

Box)

Quota -
√ √

- - (
√
) (

√
)

√ √

Guarantee - -
√ √ √ √ √ √ √

Input -
√ √

- - (
√
) (

√
)

√ √

Output - -
√

- - (
√
) (

√
) (

√
) (

√
)

Intrinsic - - -
√

-
√ √

- (
√
)

Extrinsic (Ten.) - - -
√

-
√

-
√

(
√
)

Extrinsic (Req.) - - - (
√
) -

√
- (

√
) (

√
)

Res. Demand (Ten.) - - - -
√

-
√

- (
√
)

Res. Demand (Req.) - - - - (
√

) -
√

- (
√
)

System Understanding - - - - - - -
√ √

Table 5.1.: Overview of informational requirements for various methods.

In case of the resource isolation methods, it is possible that request are treated by the average

resource demand per tenant. Therefore, the request based information is optional, although the

method proposed in this thesis requires it. A resource exploiting mechanism necessarily requires

request type specific information. Independently on how the demand is gathered, it also needs in-

formation about the system, in order to find the bottleneck resource. This allows to reject only the

disturbing requests. Depending on the trigger to start the resource exploiting mechanism, additional

information can be required. As previously mentioned, black box methods usually assume a higher

degree of abstraction. It is not expected, that black box models will reflect various intrinsic infor-

mation. The overall predictions of the model might be calibrated with the output information of

the system. White box approaches rather use intrinsic and resource demand information. However,

both models require a certain system understanding.

141

5. Decision Support and Architecture

5.2.3. Selecting an Isolation Method

This subsection describes how an MTA provider can find the most suitable performance isolation

method for a given scenario. According to [Baker et al., 2001] a general decision making process

consists of 8 steps, which are outlined in the following.

1. Definition of the problem.

2. Determination of requirements the solution must meet.

3. Establishment of goals.

4. Identification of alternatives.

5. Development of evaluation criteria.

6. Selection of decision making tool.

7. Application of the tool to determine a solution.

8. Validate the solution of the tool.

This is a very general process and can be specialized for the particular scenario of performance

isolation, already pre-answering recurring points.

The problem is that an MTA is not performance isolated (1). Therefore, the requirements a solu-

tion must fulfill have to be defined (2). Goals are usually related to the identification of alternatives.

It defines what an alternative has to do, while the requirements define how they do it (3). Alternative

solutions were already identified by the classification in Section 5.2.1 (4). The fifth step (5) defines

the evaluation criteria to ensure the fulfillment of the requirements. The sixth step (6) has to identify

an appropriate tool/method that helps to compare the different alternatives. This tool is applied (7)

and finally it is implemented and validated if the result fulfills the requirements. In the following

the focus is on the steps 1-6.

For an inexperienced stakeholder in the field of performance isolation, several questions arise. He

does not know which requirements are important differentiators for the isolation methods, and does

not know how to assess the various methods, with regard to these requirements and do not know,

which decision making tool is appropriate for the existing problem.

Subsequently, these relevant questions are discussed to enable an MTA provider selecting an

appropriate isolation method.

5.2.3.1. Solution Requirements and Goals

The general goal of the selection process is to find a method, which increases performance iso-

lation according to the requirements from the MTA provider. The goal can be more detailed in

some situations. An example is, that the solution should be able to enforce an application level

guarantee, such as response time. Or the isolation method has to reflect varying resource demands.

142

5.2. Selection of Performance Isolation Method

Concerning the requirements it is convincing that the metrics identified in Chapter 3 are potential

candidates. That means, the solution should provide good isolation, short settling times and a low

oscillation. Moreover, the isolation methods are subject to efficiently distribute resources to support

over-commitment. Consequently, this should also be reflected.

Non-Functional Properties Besides the already mentioned performance isolation related as-

pect, further non-functional properties are of importance for some MTA providers. Several pub-

lications list potential candidates [Sommerville, 2006, McCall, 1977, Boehm et al., 1976, Davis,

1993, Dromey, 1995, ISO/IEC, 2011b]. However, only Pors et al. [Pors et al., 2013] identified the

most relevant non-functional properties of interest in the context of multi-tenancy. They identified

21 properties. Not all of these properties are relevant in the context of the performance isolation

methods. Subsequently, the irrelevant properties are listed.

Irrelevant Aspects Deployment time is the time to get an existing and complete software run-

ning on a system. However, this strongly depends on the organization and the target system. It can

further be assumed, that this is almost similar for most of the isolation methods and thus a weak

property to differentiate isolation methods. Flexibility is the degree to which a system fulfills func-

tional and non-functional requirements, specific to an individual tenant. However, although some

approaches may enable the MTA to provide different service qualities, this is not a requirement for

the approach itself. If it has to support this, it should be defined as a goal. Variability refers to the

"degree to which the system can support customized solutions and tenant-dependent configurations,

extension and evolution" [Pors et al., 2013]. Following the previous argumentation, it is not relevant

either. Diverse SLAs are irrelevant, since it is assumed that the isolation method itself is not part of

any SLA. The application is likely to be subject to a certain SLA, which is ensured by the admission

control. However, this is not relevant for the selection of the isolation method since these properties

are already covered by the performance isolation quality metrics. Additionally, the methods were

not developed with QoS differentiation in mind. Monitoring is important to realize certain isolation

methods. However, the monitoring functionality of the approach itself is less important. If it is im-

portant to keep records of the method’s behavior, it should be fairly easy for each approach to do so.

Security, authorization and authentication aspects belong to the concrete realization of a method.

Therefore, these aspects should not be a criteria for the selection of a method. If such aspects are of

relevance, they have to be realized, and they can be implemented in each of the methods.

Merged Relevant Aspects As the results in Section 6.1.3.2 and Section 6.1.4 outline, it is

not necessary to discuss throughput, supported number of tenants/end users separately. Therefore,

these three parameters identified as important by [Pors et al., 2013] are referred to as capacity in the

following. Furthermore, the resources used by the methods and thus the performance, is negligibly

different. Consequently, this is also covered by capacity. The software complexity is closely related

to aspects such as maintainability and development costs. Therefore, software complexity is not

discussed separately, to avoid an overlap and thus double counting. Originally, development costs

143

5. Decision Support and Architecture

were not considered by Pors et al. although they are of high importance to argue for or against

MTA (cf. [Momm and Krebs, 2011]). Since performance isolation methods will be introduced to

increase the economic success, a trade-off between expected revenue increase and costs of their

development has to be made. Recoverability and availability aspects are subsumed to the reliability

of the isolation method.

Considered Requirements for the solution Based on the previous statements, the follow-

ing criteria were selected to find a suitable performance isolation method in the set of alternatives:

Isolation capabilities, settling time, oscillation, efficiency, capacity, reliability, maintainability, de-

velopment costs and operating costs.

Goals Based on the characteristics of the various isolation method classes (cf. Section 5.2.1), the

following goal a solution has to achieve can be obtained: The method should isolate the performance

of the tenants. This means, that all classes identified in Section 5.1 are potential candidates.

5.2.3.2. Decision Making

The way a particular alternative of the isolation methods is evaluated concerning the requirements,

is an interplay with the decision making tool and technical constraints, limiting the usage of some

methods.

Process Steps To find an appropriate isolation method for a given MTA, the subsequently

present process is proposed. The preparation phase compares existing isolation methods concern-

ing the identified selection criteria, described by the requirements. This is an independent and

asynchronous activity. However, it can be done with a dedicated application type in mind, to be

more representative. The comparison can be based on concrete implementations, or on the class

level. Furthermore, a set of rules to define, in which situations a particular method cannot be ap-

plied is created. The created artifacts are used later, to find a suitable solution for a concrete MTA,

and can be reused for other scenarios. The preparation process requires a performance isolation

specialist, because detailed knowledge about the isolation methods is needed.

Once the documents exist, the concrete selection process can start. Hereby the criteria/require-

ments are ranked according to the importance for the given application scenario. The set of rules

is then applied, to see if the best ranked method can be applied. If this is not the case, the next

best methods are checked against the rules, until an appropriate method is found. However, if no

satisfying solution can be found, it is an option to modify the application, to fulfill the requirements

of another isolation method. It is worth mentioning that this is an optional step and may require

detailed knowledge about the isolation methods. Finally, the method can be applied. A decision

method that allows to quantify the difference between two alternative performance isolation meth-

ods can help to justify potential modifications. For the selection process, detailed knowledge about

144

5.2. Selection of Performance Isolation Method

CompareL

Alternatives

RankL

ImportanceLofL

Criteria

CheckLforL

Applicabilty

ModifyL

Application

ApplyLMethod

NeutralLCriteriaL

Ranking

StartLPreparation

EndLSelection

RankedLListRuleLSet
CreateLRuleLSet

EndLPreparation

StartLSelection

SatisfyingL

Selection

NoLSatisfyingL

Selection

Optional

Figure 5.2.: Selection process to find the most suitable isolation method.

performance isolation methods is not necessarily required. Consequently, the expert knowledge is

reusable in different contexts.

Ranking of Isolation Methods The selection of a proper decision making tool or method is

crucial to receive a proper ranking of the isolation methods. Therefore, it is reasonable to system-

atically look for a decision support method, fitting to the given task. Multiple Criteria Decision

Making (MCDM) tools/methods are used in situations where multiple criteria are present. They can

be branched in two groups. Multiple Attribute Decision Making (MADM) address problems where

the alternatives are a finite set. Whereas Multiple Objective Decision Making (MODM) assume the

alternatives to be infinite. This is possible, e.g., if a value in a continuous value range has to be

determined. In the given scenario, the decision space is discrete, containing the isolation methods,

and therefore MADM is discussed in more detail.

A decision making method should fulfill a few requirements to be used for the selection of a

performance isolation method. It should be possible to compare the alternative methods with regard

to each criteria. However, for a concrete application, different criteria are of different importance.

This should be reflected by the method. Ideally, a comparison of the isolation method can be

reused for several applications. To allow a comparison of different results, a ranked list of isolation

methods, with an indication of the difference between two positions should be the output.

145

5. Decision Support and Architecture

More than 70 MADMs exist [Koen, 2008, Figueira et al., 2005]. Sen et al. and Fülöp et al. [Sen

and Yang, 2011, Fülöp, 2005] distinguish between: elementary-, Multi-Attribute Utility Theory

(MAUT)- and outranking methods.

Elementary methods do hardly allow criteria weighting. This means that all criteria used for

the comparison have the same weight. Furthermore, if one criterion is evaluated bad, it cannot be

compensated by another. In the context of performance isolation, various requirements may have

different importance. Consequently, elementary methods do not seem to be appropriate. This is

similar for most outranking methods, which discard alternatives.

MAUT methods usually support trade-offs between different criteria and produce a ranked result

list. Furthermore, they allow the elicitation of weights and can handle qualitative information. A

relative weighting to express the preference of one alternative to another alternative concerning a

criteria is an appropriate option for the present task. This allows to easily compare the identified

criteria. AHP [Saaty, 2000] is the concrete method used in the following. It is a widely used solution

with a large support on existing tools.

The execution of AHP can be split in two parts. The first part compares the alternatives with

regard to the criteria, while the second one provides a relative weighting of the criteria. This allows

the application in the context of the proposed process.

Rules Based on the classes and the discussed drawbacks, as well as the information requirements,

at least three rules can be derived. These rules can be used to strike out inapplicable results from

the AHP. For concrete methods, additional rules might appear. Isolation methods provide a more

or less efficient distribution of resources and thus support over-commitment in different quality. A

rule for over-commitment support might be possible. However, this aspect is already covered by the

efficiency criteria in the AHP.

Scenario Situations Consequence

SLA Guarantees Exists Only isolation methods that are aware of guarantees/quotas
and the respective metrics at runtime can enforce isolation.
This includes the guarantee & quota class and the model based
approaches. Other methods are less efficient and/or have more
often isolation violations.

Missing Monitoring Information According to Table 5.1, each method has dedicated infor-
mation requirements. A system must provide the required
information.

Variable Res. Demands If resource demands vary among tenants, non-resource de-
mand based methods will not be able to provide proper
isolation.

Unknown Request Types If incoming requests cannot be mapped to a certain type, with
significantly different resource demand at the admission con-
trol, a resource exploiting approach cannot be realized.

Table 5.2.: Set of application rules for existing isolation classes.

146

5.3. Reference Architecture

5.3. Reference Architecture

This section answers how the performance isolation methods can be realized. Therefore, two sce-

narios are considered.

1. In the motivating example (cf. Section 1.2) an MTA is hosted on a PaaS. Therefore, the

platform provider has to provide an environment for the SaaS developer, in which he can

deploy the application-specific isolation algorithms. A development of such features, solely

based on traditional PaaS runtime environments, is not possible, because the necessary access

to runtime performance information and the requests flow is limited.

2. In case the MTA is not deployed within a PaaS, it is still required to find an architecture that

helps to realize the methods.

The reference architecture presented is primarily designed to be used as an enhancement for a PaaS,

to support performance isolated MTAs. Nevertheless, it can also be used for the second scenario.

The focus hereby is on the isolation relevant aspects only. In this section, an analysis of the best

position reflecting the information required by the admission control is evaluated. After that, the

architecture is presented, and finally important decisions are outlined.

The content of this section has already been published to large extent [Loesch and Krebs, 2014,

Loesch and Krebs, 2013, Krebs et al., 2014a].

5.3.1. Position of the Admission Control

In this subsection, the information available on different positions in a load balanced MTA is de-

scribed. The information available is then elaborated with regard to the scenarios for which per-

formance isolation is possible. Thus, this section discusses the information required for distributed

scenarios, whereas Section 5.2.2 discussed the information for a concrete method, without consid-

ering distributed scenarios. The recommendations from Section 5.1.2 discussed on an abstract level

which kind of affinity is preferred. However, if the recommendations is not followed, the subsequent

insights become more important.

5.3.1.1. Possible Positions

Depending on the position of the request admission control, in a cluster, it gathers different data.

Figure 5.3 depicts three possible positions for a request based admission control in a load balanced

cluster.

Position 1 In front of the load balancer the admission control has access to requests of all ten-

ants and can gather all application level quota and guarantee information on the global level, on a

tenant and request basis. This is important, since the isolation is measured on the global level from

147

5. Decision Support and Architecture

Tenants

Persistence

Application

Load Balancer

R

R R R

Position 1

Position 2

Pos. 3 Pos. 3 Pos. 3

. . .

. . .
Instance

1

Instance

2

Instance

3

Figure 5.3.: Positions to enforce performance isolation.

the user’s perspective. The load balancer decides, for each request, at which node, it has to be pro-

cessed. Thus, at the position before the load balancer, no information about the request distribution

is available.

Position 2 Directly after or included into the load balancer the admission control retrieves a

superset of the information from Position 1, since it has access to the request distribution. Thus it

is known, which node is responsible for which request, and still an overall view is possible. Again,

if internal knowledge about the state of processing nodes is required, additional communication

overhead is expected.

Position 3 In front of the application, the admission control has no global information. Instead,

node specific performance information is available and access to the processing node’s internal state

is possible, with low overhead. If the information of all nodes is shared, the information is a superset

of Position 2.

5.3.1.2. Comparison of Different Positions

The kind of tenant affinity and session stickiness are important decisions concerning the applica-

tion’s scalability. A load balancer’s goal is to homogeneously distribute load equally among all

available application nodes. Thus, the accumulation of requests from one tenant onto a single appli-

cation node is avoided. In the following, different positions are discussed, with regard to isolation

methods relying on tenant specific input and output related performance measurements.

Position 1 In front of the load balancer, the type of tenant affinity is important.

Server-affine: Performance isolation is not possible. It is possible to observe performance qual-

ities, like increasing response times. It is known, that one tenant is always served by one node.

However, it is not known, which tenants share the same node. This makes it hard to separate ten-

148

5.3. Reference Architecture

ants, and thus more complicated to identify the tenant responsible for the problem. Sticky sessions

are not important in this case.

Non-affine: For non-sticky sessions, isolation can be achieved. Access to global information is

available and thus it can be reasoned for the tenants overall achievement of guarantees and quota.

This allows to performance isolate tenants ,by a request admission, in front of the load balancer.

If sticky sessions are used, requests are processed by an unknown node. Thus, requests are not

longer uniformly distributed. Hence, the most aggressive tenant is not necessarily responsible for

a potentially bad performance of another. Although initial requests are distributed homogeneously,

the system has a certain risk that long running session lead to an unbalanced system.

Cluster-Affine: A proper performance isolation is not possible and the system behaves similar to a

sticky session and non-affine setup. The fundamental problem is, the missing allocation information

or the missing uniform distribution of requests.

Position 2 Directly after, or included in the load balancer, the same characteristic appears for all

kinds of affinities. Server-Affine, Non-Affine, Cluster-Affine: Performance isolation is possible. The

load balancer keeps state to ensure a certain tenant affinity and session stickiness. The information

available includes the information from the two other positions (except the node internal state). This

allows to increase performance isolation.

Position 3 In front of the application, different types of tenant affinity have to be considered.

Server-affine: Performance isolation is possible. Information from other nodes does not provide

any benefits, as all requests of one tenant are processed by the same nodes. Thus, all information is

directly accessible. Since requests are bound to a node, the session behavior is irrelevant.

Non-affine: Performance isolation requires further information. The load balancer distributes

requests of each tenant homogeneously. However, the overall information for each tenant is not

available. Thus, it cannot be decided, whether a tenant exceeds its guarantee or quota on a global

level. A particular session stickiness does not influence this.

If the processing capacity of each node is equal, the sessions are not sticky, the total number

of nodes is known and the requests are load balanced, the global metrics can be determined by

projecting one nodes results onto the others.

Cluster-affine: Performance isolation without further information is not possible. The situation

is comparable to the non-affine case with less nodes.

Missing information about other node’s performance raises a challenge. Session stickiness is

again not influencing this. However, isolation is possible, if all processing nodes have the same

capacity and requests are homogeneously load balanced.

5.3.1.3. Implications

The session stickiness is not always relevant. In a non-affine setup, with session stickiness, a cen-

trally managed admission control, using the global information of all requests and the node specific

149

5. Decision Support and Architecture

performance is required. Position 1 and position 3 do not offer isolation, because of missing infor-

mation about the requests on each individual node. Position 2 can realize isolation for all situations.

Table 5.3 summarizes the findings from above. The first column defines the tenant affinity and the

second column the session stickiness. The other columns depict for each position the capability to

maintain performance isolated.

Tenant Affinity Sticky Session Pos. 1 Pos. 2 Pos. 3

affine
- -

√ √

yes -
√ √

non-affine
-

√ √ √

yes -
√

-

cluster-affine
no -

√ √

yes -
√

-

Table 5.3.: Positions of admission control and possibility to achieve performance isolation.

This section discussed the required information for distributed scenarios and methods reflecting

quotas and guarantees, or being input aware only. For model based approaches, the data to calibrate

the model is required. If resource demand based approaches are applied, a deployment at the ap-

plication node has more advantageous, since resource information and other intrinsic data are more

likely to be available, and with a better accuracy. However, if resource usage of tenants should be

globally optimized, a communication between the separate admission controls is required. Conse-

quently, if data is transferred between nodes, position 3 has the highest potential to realize isolation

methods.

If the recommendations for the development of performance isolated MTA is followed (cf. Sec-

tion 5.1.2), a load balancer would be able to maintain the utilization of all nodes the same. Thus an

isolation would be possible on each position.

5.3.2. Performance Isolation Framework

This subsection prospects a framework used to implement performance isolation methods. The

requirements are elicited, an overview of the general concept and a brief discussion on the details

of the components is presented.

5.3.2.1. Requirements Elicitation

The discussion is separated into concrete requirements concerning the functionality, the scope of

supported isolation methods and non-functional aspects.

Functionality Enforcing performance isolation is the primary goal. In addition, some tenants

are willing to pay more for performance as others. Hence, the solution may provide QoS differenti-

150

5.3. Reference Architecture

ation, although it was not the primary goal of the thesis. Over-commitment increases the economic

efficiency of SaaS offerings. If every tenant is using the full quota and thus the system runs in

an overloaded situation, the framework must keep a valid state. Since workloads from tenants are

characterized by fluctuations, this must be covered by the solution.

Isolation Method Categories Several classes for performance isolation methods are intro-

duced in Section 5.2.1. All have application scenario specific pros and cons, all methods have

specific information requirements. The proposed architecture should be able to provide the infor-

mation for all classes. However, a concrete implementation of the architecture might focus on some

classes only.

Generic Solution The system should support various performance isolation methods, since

the preferred approach, strongly depends on the application deployed on the platform. Thus, the

application-specific isolation algorithm, has to be decoupled from the generic parts, that are com-

mon for all algorithms. This includes technical details like data transfer, and domain specific reused

functionality. The proposed solution should be portable. This means, it should not rely on a partic-

ular PaaS, middleware or operating system features

Scalability Issues In MTAs, horizontal scaling is widely used. A load balancer represents

the endpoint for the tenants and forwards requests to the nodes [Koziolek, 2011, Koziolek, 2010].

Therefore, the architecture should provide measures to cover various kinds of affinity and session

stickiness. Some applications may support elasticity and thus dynamically add or remove nodes.

It is not the goal of the framework to enable elasticity. However, if the application is elastic, the

framework should be able to work with this dynamic behavior.

Performance Overhead and Application Scenario The focus is on interactive web appli-

cations and consequently low performance overhead onto the MTA is expected. Furthermore, the

general overhead, including the communication should be low.

5.3.2.2. Overall Concept

The load may be unequally distributed among the application nodes. Thus, the admission control

has to be specific for each node in a cluster. The discussion in Section 5.3.1 outlines that a central

controlling instance of the request processing is needed to support all kinds of affinity. Hence, the

proposed PIF architecture splits the functionality in two parts (cf. Figure 5.4). First, the application

node specific request admission control (Execution Point), which can be a separate proxy, or part

of the runtime containers request processing pipeline. Its behavior follows a specific Admission

Control Strategy. Second, the Performance Isolation Framework Core (PIF Core), which contains

the application specific isolation algorithm. It periodically sends a Policy to the strategy.

151

5. Decision Support and Architecture

Admissionk

Control

Persistence

App.k

Instances
. . .

Shared Database

App.k

Nodek1

App.k

Nodek1

App.k

Nodek1

R

. . .

R R R

LoadkBalancer

R R R

Exec.k

Point

Exec.k

Point

Exec.k

Point

Proxy

Admissionk

Controlk

Strategy

Response Request

Runtime Information

Performancek

Isolationk

Frameworkk

Core

Policy

. . .Tenants

Figure 5.4.: Conceptual overview of the Architecture.

An Admission Control Strategy is a parametrized algorithm/scheduler, defining how to admit, re-

ject or delay a request based on the tenant it originates from. Thus, it realizes the request scheduling.

Examples of strategies are the schedulers presented in Section 4.2.3 and 4.3.2.2.

Policies adjust the strategy. They are fragments containing the new configuration, exchanged

between the PIF core and the execution point. An example is the definition of weights per-tenant,

for a weighted round robin admission control.

Structural Overview An overview covering all entities in the system is depicted in Figure 5.5.

It consists of seven major entities:

A Tenant with several users send requests that are distributed by the Load Balancer. Thereby,

potential tenant or session affinities are considered. The Execution Point handles the request admis-

sion, based on an exchangeable strategy. The Performance Isolation Framework Core tracks state

of data required for the generation of policies. Furthermore, it creates the policies for the Execution

Point.

The Application Instances run the MTA’s business logic and process requests. Monitoring infor-

mation is collected from required services such as a (Shared) Database and the application nodes.

An Elasticity Manager in cloud environments usually realizes horizontal scalability. In the context

of the framework, it is also responsible to start the respective execution point.

Detailed Component Description In Figure 5.5 layers can be identified. The persistence

stores the monitored data. The next layer, consisting of two parts (dashed rectangles), preprocesses

the data when triggered by the Information Collector. The information collector combines the infor-

mation and provides a single view on the system. The policy controller ensures the communication

with the clientside execution points and the activities executable their. More details onto the com-

ponents depicted in Figure 5.5 follow.

152

5.3. Reference Architecture

Admissionb

Controll

Database

Tenants

Performance Isolation Framework

R

PolicybController

Guarantee

Checker

. . .

. . .

(Shared) Database

Execution

Point 1

Execution

Point 2
Execution

Point n
. . .

R R R

R R R

Load Balancer

App.b

Nodeb1

App.b

Nodeb1

App.b

Nodeb1

Quotab

Checker

R

Elasticityb

Manager

R R

Efficiencyb

Checker

Tenantb

Allocationb

Observer

R R

R

Resourceb

Utilizationb

Observer

RR R

R

R

Resourceb

Demandb

Provider

InformationbCollector

Data Maintenance

Monitor

Server

S S S

PolicybGenerator

R

Application

Figure 5.5.: Architecture of the Performance Isolation Framework

Execution Point The component is responsible for admitting, rejecting or delaying incoming

requests in order to guarantee isolated performance. In case of static approaches, the policy is up-

dated only once at the beginning, based on the existing SLA, affinity and allocation of tenants onto

nodes. At start-up/shutdown, this component registers/unregisters itself at the Policy Controller.

The concrete strategies (S) running as plugin, can be changed at runtime. This allows to fundamen-

tally change the behavior. In case of DoS attacks, for example, another strategy might be beneficial

as in normal situations.

Policy Controller/Generator The Policy Controller generates the policy for the strategy, exe-

cuted by the execution point, and keeps the state of them to establish the communication. This in-

cludes the registration process of execution points. The Policy Generator is an application scenario

specific plug-in component. The Information Collector periodically triggers the Policy Controller.

This generates new policies, with the help of the policy generator, for each Execution Point. An

individual policy is required, as affinities or variable performance of the application nodes can lead

to different performance.

153

5. Decision Support and Architecture

The created policies are strategy specific and thus tightly coupled to each other. One strategy

might require a delay per-tenant, while another needs a set of priorities. Therefore, the interface be-

tween the Execution Point Strategy and the Policy Controller defines meta information (e.g., tenant

IDs) and a generic part used by the policy data.

Monitor Server The Monitor Server receives data from different probes at runtime and persists

it within the Data Maintenance. The various probes push aggregated data in defined intervals to the

monitor server. The time frames for the aggregation can be configured. The two most important

probes are listed below.

Execution Point Probe: Reports the overall response times, the processing time of requests after

admission, discarded requests and throughput at least on a tenants granularity. It is possible to

configure the monitoring based on request type and the aggregation interval.

Application Server Probe & (Shared) Database Probe: The resource demand is usually computed

at runtime. Therefore, the utilization of the respective resources is measured. The required granu-

larity depends on the configuration and used isolation method. This allows the implementation of

resource isolation mechanisms.

Information Collector The Information Collector iteratively collects the necessary information

for a policy generation. The information is forwarded to the policy controller in a coherent view.

Policy update intervals, and the call sequence of the components are managed by this component.

Guarantee Checker, Aggressiveness Rater and Efficiency Checker The Guarantee

Checker determines the compliance of the guarantee per-tenant and application node, as well as the

overall compliance. The tenant- and node-individual evaluation is needed due to the aforementioned

differences, caused by affinity and stickiness. By default, the guarantee checker computes the ratio

between the guarantee and the observed quality, additionally it provides the absolute values.

The Aggressiveness Rater component reports the aggressiveness for all tenants. It uses the dif-

ference between the quota and the induced load. To optimize the policies, the distribution of the

requests among all application nodes is also provided.

The Efficiency Checker calculates the efficiency of the current policy. One possible metric for

efficiency is the ratio between the current throughput and the maximum throughput a system can

achieve. In context of over-commitment, the differences of the abiding tenants to their guarantee is

more appropriate. This enables algorithms to increase the throughput for a tenant, which already

exceeds its quota, to keep the overall resource utilization in a good state.

The calculation rules for all three components, discussed in this section, are realized as a plugin,

and can easily be replaced by an application scenario specific variant. Furthermore, additional

outlier filters can be added. All the calculations are done on an application node basis.

Tenant Allocation Observer In case of an affine behavior, tenants that mutually influence each

other are identified. It also identifies which application nodes are shared with each other.

154

5.3. Reference Architecture

Resource Utilization Observer and Resource Demand Estimator The Resource Uti-

lization Observer provides the average resource utilization for a relevant time frame, for a dedicated

resource. If a particular resource utilization can not be directly measured, this component provides

estimates. The utilization per-tenant is either derived by statistical methods and stored in the Data

Maintenance or directly measured and already persisted by the Monitor in the same table. When

the component is called, to deliver the corresponding data, it selects the information stored in the

Data Maintenance and returns it. The information is required by the most RDE methods and for the

resource exploiting isolation methods.

The Resource Demand Estimator estimates the resource demands. This is based on the tenant

or request type and is subject to the chosen isolation method. Whereby the same request type

of different tenants is considered separately. This component works asynchronously. When it is

triggered, it returns the precomputed data. In case the demands are directly measured, they are

stored in the data maintenance and returned instead of the estimates.

Elasticity Manager The elasticity manager usually already exists and must be adapted to start/-

modify an execution point for each added application node.

5.3.2.3. Isolation Method Related Plugins

A concrete performance isolation method consists of (1) a strategy, and (2) a strategy-specific isola-

tion algorithm, referred to as Policy Generator. Both are realized as plug-ins and hence the proposed

architecture allows to realize performance isolation, with regard to specific needs, by implementing

the two interfaces. The framework periodically starts the generation of a policy for a certain execu-

tion point, based on the preprocessed information. The strategy has to implement two methods. The

first is called to add an incoming request. The transferred request object is framework-specific and

provides metadata (e.g., tenant ID, request type). The second method returns a request for process-

ing. It is called when a server thread becomes free. Moreover, the add method can directly forward

a request to the application server not waiting for the get call, or immediately reject a request. To

identify a certain request type, the implementation of an additional interface is required. It defines

only one method, with the request object as parameter, returning a unique identifier for the request

type. Furthermore, it can add additional information, such as relevant application specific metadata.

An example is a request that belongs to the context of a larger number of data to be transferred.

Depending on the MTA, such requests might be admitted with preference.

5.3.3. Relevant Design Decisions

The various design and trade-off decisions taken to fulfill the requirements elaborated in Section

5.3.2.1 are discussed in the following.

155

5. Decision Support and Architecture

5.3.3.1. Isolation Capabilities

High Degree of Isolation vs. Performance Overhead A policy, configuring the execution

point for a fixed time frame, results in a lower accuracy, since the workload may change in the

meantime. Contrarily, the overhead to make complex computations for each request is not accept-

able. Such approaches may make sense, if long running jobs have to be scheduled. However, the

focus within the thesis is on interactive scenarios. Therefore, the execution point implements a fast

working strategy to control the requests, and complex computations are done asynchronously, in the

policy generator.

Data aggregation in the monitoring processes further reduces the accuracy and adoption speed.

However, due to the enormous number of requests, there is no adequate alternative. It is worth

mentioning, that monitoring intervals and policy update intervals can be adjusted, to increase the

adaptation speed.

QoS Differentiation & Over-Commitment The policy generator receives all relevant infor-

mation. To ensure this, the classification of the approach and the corresponding informational re-

quirements were identified Section 5.2.2. Additionally, the information required in a load balanced

system was investigated. Consequently, the policy generator can realize the isolation methods and

has the information to efficiently provide over-committed systems.

5.3.3.2. Generic Solution

Suitability for Various Isolation Methods The proposed architecture provides components

and measures to deliver all information required by the mechanisms identified in Section 5.2.1.

Plugin Mechanism for Isolation Algorithm The policy controller abstracts the technical

details concerning the communication, registering and unregistered of an execution point. Thus,

it keeps state of the execution points. The information collector collects all relevant information

and forwards it to the policy controller. Thus, the policy generator can easily be implemented

and replaced by an alternative implementation, as it is decoupled from technical details and the

actual preprocessing of the required information. If needed, individual implementations for the

SLA/efficiency checker and the aggressiveness rater are possible.

Portability Between Different System Environments Not all load balancers support en-

hancements to control/delay requests based on strategies, hence the are implemented in the exe-

cution points. The execution points are deployed together with the MTA instance. Furthermore,

no reason to use OS dependent interfaces exists. Even the RDE methods are independent of the

concrete technique used to measure the utilization of resources.

156

5.4. Conclusion

5.3.3.3. Scalability Issues

The elasticity manager has to ensure that for each new application node a corresponding execution

point is instantiated. The new execution point is automatically registered at the policy controller.

Therefore, policies are generated from that point on for the execution point. In general, the amount

of policies increases linearly with the number of application nodes and the data to be processed

grows linearly with the amount or tenants. Furthermore, the framework can deal with different loads

on the application nodes, and thus it supports different types of affinity. The allocation observer

identifies the relevant nodes and tenants, which are responsible for a potential isolation incident.

Thus, the policy generator can focus on the relevant entities to solve the issue.

Another decision was to put the execution point close to the application server. This hinders the

execution point from being a bottleneck, in case a high number of requests arrive and queuing is

required.

5.4. Conclusion

This chapter outlined relevant aspects, when it comes to the implementation of a performance iso-

lation method. A critical discussion of the proposed solutions is presented before a summary con-

cludes this chapter.

5.4.1. Critical Discussion

Three positions for a request based admission control in a load balanced cluster are discussed in

Section 5.3.1. This discussion is based on the distribution of the throughputs and response times

per tenant and node. If an isolation method does not rely on this information, the results may

not be useful for it. A short outline of the impact on other relevant isolation classes was given in

Section (5.2.1).

Only AHP was considered in detail for the decision making process. Other methods might also

be applicable. The existence of other decision making approaches does not falsify the general

approach. AHP itself is not a contribution, but one very feasible approach fulfilling all requirements.

AHP has a rank reversals issue. This is a phenomena in several decision making methods. Rank

reversal means that adding a new alternative can change the ranking of the old alternatives in relation

to their previous rank. For example, a new alternative is ranked on position three and the rank of

position 1 and 2 changes. However, this also happens in human decision making, since the amount

of references increases and thus the amount of information.

Only a limited set of criteria, relevant for the selection of performance isolation methods was

identified. This might not be feasible for all situations. If a criteria is of importance, which was not

yet covered, this information can be forwarded to the performance isolation expert who updates the

criteria ranking. AHP allows to easily add new criteria without readjusting previous settings.

157

5. Decision Support and Architecture

5.4.2. Summary

An overview and a discussion of various architectural concerns in MTA and how they interact with

performance isolation was given. Based on these insights, design recommendations for MTA were

defined.

Furthermore, existing performance isolation methods were classified and their specific advan-

tages and disadvantages were outlined. A comparison of their information requirements, helping

developers of multi-tenant applications to find an appropriate method was also provided.

After that, relevant requirements for MTAs, which are of interest for the performance isolation

method, were identified and a method and process using AHP to select an appropriate isolation

method was proposed.

The best place for a performance isolation component, levering request admission control, was

analyzed from an information centric point of view. While the classification schema and its infor-

mation requirements focused on the methods, this investigation focused on a deployment question,

when it comes to an implementation in a load balanced environment. It was shown that the positions

before the load balancer, or directly before the applications have disadvantages. However, the use

of information about a processing node’s state allows to increase the performance isolation quality

and this is best possible when the component is located at the respective processing node.

Finally, a reference architecture was prospected that enhances PaaSs or non-PaaS based MTAs to

enable application developers realizing tailored performance isolation mechanisms.

158

6. Evaluation

This chapter summarizes validations from previous chapters and adds additional evaluations of per-

formance isolation methods, to identify the strength and weaknesses of them. Especially the latter

provides important insights for MTA providers to identify a suitable isolation method for a given

scenario (cf. Section 5.2.3.2).

Chapter 1 defines the general goal of the thesis as “This thesis aims at providing performance

isolation mechanisms, a methodology to quantify performance isolation and insights based on these

methods that support MTA providers realizing performance isolated MTAs.”. Consequently, the

validations an evaluations in this thesis focus on the three major parts, listed in the following.

Evaluation Goal 1 — Quality of the Isolation Methods

It has to be shown, that performance isolation between tenants in an inter-

active web based application can be increased, by the admission control of

incoming requests using the proposed methods. In addition, a comparison of

performance isolation methods, with regard to the effectiveness of the iso-

lation, the efficiency of the share distribution, settling times, oscillation and

performance related overheads are relevant.

Evaluation Goal 2 — Method to Quantify Performance Isolation

Quantifying the degree of isolation is essential for the evaluation of the meth-

ods and for the MTA stakeholders. Thus, the metrics and measurement re-

lated contributions have to be tested, concerning their functionality and ap-

plicability.

Evaluation Goal 3 — Applicability of the Performance Isolation Methods

Another focus for the validation is whether the developed framework can be

applied in different contexts and if it is able to realize the isolation methods

of the different classes defined in Section 5.2.1. Moreover, it has to be shown

that the selected decision support method and process can help increasing the

performance isolation.

To systematically validate the contributions, the GQM approach is used [van Solingen et al., 2002,

van Solingen and Berghout, 2001]. The separate chapters already provided insights and validations

of distinct contributions. The measurement environment was already used by the validation of the

methods in Chapter 4. The metrics are used in the experiments in this chapter. Therefore, a brief

evaluation was already done in Chapter 3. For the isolation methods, it made sense to analyze their

159

6. Evaluation

behavior and the underlying hypotheses together with the method to support the understanding of

the detailed outcomes. However, for a global comparison or isolation methods and a summary of

the results, this dedicated section is more appropriate.

The remaining chapter is organized as follows. At first, the isolation methods are compared

to each other. The results of the metrics and measurement related contributions are summarized

at second, since they rely on some insights from the first part of the evaluation. The last section

focuses on the enabling of the MTA developer and includes a case study.

6.1. Isolation Methods

In Chapter 4 two novel methods to realize performance isolation are presented together with known

patterns from related fields. In this section, the evaluation goals are outlined and motivated together

with the related questions and metrics. Experiments are conducted to answer the relevant questions

if not already done by the previous chapters. The summary of the results comprises all insights from

this and the previous chapters to cover all results with respect to the GQM plan.

6.1.1. Goal, Questions and Metrics

The first goal G1 is to evaluate the isolation methods capabilities to efficiently isolate a system in

terms of performance. Whereby efficiency is interpreted in two ways. First, with regard to the

ability to provide over-commitment. That means, a disruptive tenant should be able to use resources

from abiding tenants, as long as the abiding QoS is not beyond the guarantee (cf. Section 1.3.2).

Second, the overhead of the methods. To achieve this goal, the following questions (Q) will be

answered by using the subsequently listed metrics (M).

Q1.1 How good is the isolation provided by the performance isolation methods?

M1.1.1 Isolation (Ibase, IintBase, IintFree IQoS) for increasing disruptive load.

M1.1.2 Settling time, after a load increase by the disruptive tenant.

M1.1.3 Oscillation, while the workload is not changed.

M1.1.4 Percentage of time, in which a guarantee violation appeared, for a replayed real

workload.

Q1.2 How efficiently can the performance isolation methods support over-commitment and the

distribution of the resources?

M1.2.1 Gap between observed performance and the guarantee for abiding tenants, while

another tenant continuously increases its load.

M1.2.2 Settling time, after a decreasing load of the abiding tenants.

Q1.3 What is the overhead of the performance isolation methods and how well do they scale?

M1.3.1 Impact upon the response time and throughput.

160

6.1. Isolation Methods

M1.3.2 Impact upon the utilization of the server, hosting the core parts of the isolation frame-

work.

In addition to Q1.1 to Q1.4, some method specific questions are of relevance to understand in detail

how they utilize their knowledge about the system. For the resource isolation methods presented in

the thesis, the goal (G2) is to gain insights on how accurate, these methods can leverage the resource

demand knowledge to ensure resource isolation. For the model based approach, the goal (G3) is

to gain insights on how accurate the method can maintain isolation and an efficient distribution of

weights.

Q2.1 How accurate is the resource demand estimation?

M2.1.1 Difference between predicted utilization and real utilization.

M2.1.2 Resource demand estimation reflects tenant individual demands.

Q2.2 Can the method enforce performance isolation, by using the resource demand knowledge?

M2.2.1 Influence of one tenant upon the performance of another while both have the same

resource demands per request.

M2.2.2 Allocated resources for each tenant, while both have the same demands per request.

M2.2.3 Difference of performance between two tenants with the same load, while the re-

source demand is different.

Q2.3 Can the method provide different resource guarantees to individual tenants?

M2.3.1 Difference of performance between two tenants with the same resource demands per

request, while the resource quota is different.

Q2.4 Can the approach adapt to a changing demand at runtime?

M2.3.1 Time to provide a proper isolation, after the demand for one tenant has changed.

Q2.5 How accurate is the isolation of the method?

M2.5.1 Influence of the disruptive tenant upon the abiding.

Q3.1 Can the mode model provide accurate results?

M3.2.2 Difference between predicted and observed response times for tenants.

M3.2.3 Difference between predicted and observed throughput for tenants.

Q3.2 Do the fitness functions configurable parameters influence the isolation and efficiency capa-

bilities?

M3.2.1 Change in response times/throughputs for the tenants for various tuning parameters.

Q3.3 How accurate is the isolation of the method?

161

6. Evaluation

M3.3.1 Influence of the disruptive tenant upon the abiding.

G2 and G3 are answered by the experiments in the respective sections of Chapter 4. Therefore, the

focuses is on the first goal, which is the comparison among all the methods. However, the outcomes

from the previous section are summarized again in this section, to answer the respective questions.

6.1.2. Multi-Tenant Application Based Experiments

Subsequently, the system landscape for the evaluation of the isolation methods is presented, fol-

lowed by the experiments and workloads. After that, the results of the experiments are discussed.

This section primarily focuses on Q1.1 and Q1.2

6.1.2.1. System Landscape

Hypervisors can have a significant impact upon the performance behavior observed by an appli-

cation hosted within a virtual machine [Huber et al., 2010, Huber et al., 2011] and may obfuscate

typical characteristics. However, virtualization is a widely used technique, and at least 70% of x86

server workloads are virtualized with increasing numbers [Bittman et al., 2014]. One example is

the HCP (cf. Section 1.2). Consequently, an environment where the application runs in a hardware

virtualized setup is more realistic. To apply results from a non-virtualized measurement, additional

knowledge about the hypervisor is required. Predicting the performance of applications running in

a virtualized environment, where the characteristics of the hypervisor and the applications have not

been evaluated together, is a research question in itself. Furthermore, it is convincing that the dif-

ferences between two different hypervisors are less, compared to the difference to a non-virtualized

system. Consequently, using virtualization is seen as beneficial for the experiments answering G1.

The environment presented subsequently is motivated by the relevant aspects of the HCP. The

methods were evaluated from the perspective of an MTA provider, who hosts the application on

the platform. Assuming the platform services to be isolated from other applications and tenants,

the relevant parts for the experiment environment were the runtime container (LJS) and a relational

database system. Figure 6.1 presents the detailed deployment, based on the motivating example

from Section 1.2.

As workload generator, the multi-tenant version of the TPC-W benchmark (MTTPC-W) was

used. (cf. Section 3.3). The experimental setup comprised five physical servers: The Load Server

run the Load Driver, which emulated the users. The Application Server hosted the MTTPC-W

application together with the Isolation Valve within a LJS. The isolation valve leveraged the valve

concept [Craig McClanahan, 2015] to implement the execution point. Thus, it enforced the admis-

sion control. The LJS was running within the Application VM on the SAP JRE 1.7, and the Database

Server served as the persistence layer. The MySQL server, running within the Database VM used

the Storage server to save the database files. The core part of the Performance Isolation Framework

was hosted on a separate node.

162

6.1. Isolation Methods

ControllNServer

LoadNDriver Storage

PerformanceNIsolationNFramework

ApplicationNHost DatabaseNHost

XEN

ApplicationNVM

LJS

MTNTPC-W

IsolationNValve

XEN

ApplicationNVM

ApplicationNResourceNMonitor DatabaseNRessourceNMonitor

LoadNDriver Files

MySQL

1 Gbit/s 1 Gbit/s

1 Gbit/s

1 Gbit/s

Figure 6.1.: Deployment for comparing the various isolation methods.

The Application Server, Database Server and Storage Server had the same characteristics. In

particular, each of them had a processing power of 8x1.6 GHz, and a main memory of 16 GiB.

The Load Server was a 4x1.6 GHz server. Each node was connected by a 1 Gbit/s Ethernet LAN

to the network. The network was isolated from other traffic. SUSE Enterprise 11 SP2 was used

as operating system at all places. A MySQL version 5.1 database was used and Xen 4.1 was the

hypervisor. The VMs allocated 2 GiB memory, with one VCPU pinned to one physical CPU. The

dom0 was pinned to another physical CPU.

6.1.2.2. Conducted Experiments

In this section, the general performance behavior of the system is investigated. Based on these

results, the detailed load profiles for the experiments were derived.

System characteristics To gather the system characteristics, three tenants (t1, t2, t3) were

configured. The workload was equally distributed among all tenants and was stepwise increased. In

each step, the users were uniformly added within a duration of five minutes. After that, a waiting

period of 15 min was maintained. The duration for gathering the data was dynamically adjusted

to ensure a representative result. The response time and the throughput were collected as average

value for a five seconds window, aggregating the data among all request types and tenants.

The x-axis for all subfigures in Figure 6.2 depicts the total number of users. Figure 6.2a shows the

throughput and response times for the SUT, while the load has been increased, and an unlimited size

of the server’s thread pools was configured. The diagram shows a typical behavior. The throughput

163

6. Evaluation

0

50

100

150

200

250

0

0.5

1.0

1.5

2.0

2.5

3.0

500 900 1300 1700 2100

T
h
ro

u
g
h
p
u
t
[1

/s
]

R
e
s
p
o
n
s
e

T
im

e
[s

]

Total Number of Users

Resp. Time
Throughput

(a) Response time and throughput
without request admission.

1

5

25

125

625

500 900 1300 1700 2100

#
R

e
q
u
e
s
ts

in
S

y
s
te

m

Total Number of Users

(b) Amount of parallel requests in the
system.

0

50

100

150

200

250

300

0

2

4

6

8

10

12

14

1250 2250 3250 4250 5250

T
h
ro

u
g
h
p
u
t
[1

/s
]

R
e
s
p
o
n
s
e

T
im

e
[s

]

Total Number of Users

Resp. Time
Throughput

(c) Response time and throughput with
request admission.

Figure 6.2.: System characteristics with and without limited thread pool.

increased linearly, until the beginning of a slight plateau became present around 1650 users. The

maximum throughput was observed at 1800 users, with 230 requests/s. With more load, the through-

put reduced significantly. In parallel, the response times started to increase above 1800 users. The

dotted line shows, that in this area the measurements were no longer reliable. From this point on,

a high portion of requests had not been able to successfully establish a connection, and the results

were not longer within the defined confidence intervals. Since the measurements in this area were

already beyond the point of interest for configuring the system, no further investigations about the

detailed behavior of the system had been done. Before that point, all experiments showed results,

according to the expectations, with a low fluctuation.

Figure 6.2b presents the average number of requests served in parallel by the MTTPC-W appli-

cation. The system had been in flow equilibrium while the measurements were made. Based on

[Little, 1961], the known response times, and the throughput/arrival rate, the number of requests

served in parallel were calculated. The y-axis is printed base 5 logarithmic scale.

Based on these insights, the optimal size for the application server’s thread pool was determined.

For the given scenario, 27 threads turned out to be optimal. However, due to the fact that this point

has been very close to an overloaded state and trashing system behavior, a safety margin of 10%

was chosen, resulting in 24 threads.

The observed system characteristics for a setup with limited thread pool size is depicted in Fig-

ure 6.2c. As the graph shows, the system did not enter an overloaded state. At 1850 users the

observed throughput was at 248 requests/s. The increased throughput stems from the limitation of

the maximum parallel requests. The throughput maintained a rather steady value.

Isolation Mechanisms Configuration The response times and throughput for the evalua-

tion were collected in five second intervals. To avoid a high overhead, only the aggregated values

for this time frame were logged. Besides the scenario dependent configuration for the quotas and

guarantees, the isolation methods configuration was the following. Average resource utilization in-

formation was sent from the monitors to the PIF core every two seconds. The request type/tenant

dependent average throughput, response times, processing times for application server and database

server, were reported every two seconds by a probe, integrated in the valve. The update periods

for the strategy, and the window size for averaging the guarantee and quota relevant performance

metrics were set to 30s. The resource demand estimator was configured to use data from the last

164

6.1. Isolation Methods

seven minutes for the estimation, which showed good results in the experiments from Section 4.5.2.

For the computation of the users’ average think times, a two minutes timeframe was configured.

The violation parameter cv for the model based optimization was set to 0.8 and the penalty pa-

rameter cp to 2.6. The proportional gain for the closed control loop based isolation was set to 0.175

and the integral gain to 0.06.

Abiding tenants can be black listed if the resources from the black listed tenant are allocated by

them, since this increases their throughput. Therefore, the black lists threshold was set to 1.3 ·quota.

Furthermore, a disruptive tenant had to exceed three periods in a row, i.e., 90s its quota, before it

was black listed. This was configured to smooth out short peaks in the request rate. The method

specific configurations were selected by doing several experiments to find a good isolation. This

was done at 50% of the maximum disruptive load.

In the following, several workload configurations are presented. The mapping of workloads to

questions is done within the concrete experiment description, following this section.

Workload I This workload profile was primarily used to determine the isolation and oscillation of

the different methods. Thus, it focused on M1.1.1, M1.1.3 and M1.2.1. Section 3.1.6 emphasizes

the benefits of a reference workload close to the maximum throughput. In the characterization

of the system, with a limited thread pool size, the throughput maintained a rather steady value

around 240 requests/s when exceeding 1800 users. Consequently, any point above 1800 users is an

appropriate reference workload.

The classical doctrine in the field of usability engineering says that a response time, including

rendering, below 0.1s is not recognized by a user. With response times higher than one second,

the users flow of thought is already interrupted. In case of more than ten seconds a user looses

attention [Miller, 1968, Card et al., 1991, Nielsen, 1994]. However, this does not finally answer

which response time is still acceptable for situations of high load. According to [Jupiterresearch and

Akamai, 2006, Young and Smith, 2006] three to four seconds are the time at which web users start to

leave the web page. Thus, the authors recommend to maintain response times below four seconds,

including rendering. As reference workload and guarantee, a response time of three seconds was

selected for the experiments. This is below the four seconds, to have some buffer for rendering.

Three seconds correspond to a reference workload of 850 users per-tenant and a throughput/arrival

rate of 80 request/s per-tenant.

Instead starting every tenant with the same number of users, the following distribution was chosen

t1 = 500, t2 = 850, t3 = 1200. Tenant 1 and t2 was seen as abiding, while t3 was the disruptive tenant.

Using this setup, an efficient isolation method should be able to maintain the QoS for all tenants at

the reference load. Selecting the loads this way, it is possible to gain insights into the behavior of

the methods for the most relevant situations. The first situation is an abiding tenant, who is exactly

at its guarantee/quota, and thus requires very good isolation. The second situation is defined by a

tenant, far below its quota. Thus its unused resources should be used by the others, if the method is

efficient.

165

6. Evaluation

For the isolation related experiment series, the load for t3 was continually increased by 100 users.

Each load configuration was maintained for a period of 30 min. The first ten minutes of each period

were omitted for the calculation of the isolation, to avoid warm-up effects influencing the results.

Workload II This workload definition was used to quantify the settling time (M1.1.2 and M1.2.2).

Increasing the load by 100 users was not enough to clearly identify the events for the time measure-

ment (cf. Section 3.1.5.1), due to relatively high noise, compared to the increasing workload. How-

ever, a similar workload as in the previous workload definition was considered. For experiments

investigating increasing load, the start workload was t1 = t2 = t3 = 850 users. This workload was

kept for 120 min, before the users for t3 were increased by a factor of three, resulting in 2550 users.

The users were added uniformly within 180s. For load decreasing experiments, the starting load

was t1 = t2 = 850 users and t3 = 2550 users. After a minimum waiting time of 120 min, the load

for t1 and t2 was reduced to 200 users. Users were removed, when the request token was at the load

driver, emulating the think time. Thus, no open connections awaiting an outstanding response were

interrupted. Each experiment was repeated five times.

Workload III This workload was used to evaluate the isolation methods in a dynamic load con-

text (M1.1.4 and M1.2.2). The scenario describes a dynamic load behavior by using monitoring

information from a real application. In this case, the RuneScape dataset version 1.0 [Marzolla et al.,

2012] was used. It contains the amount of RuneScape users from 2011-05-04 to 2011-11-22, with a

resolution of two minutes. The dataset stems from a closed workload scenario and lists the number

of users, and not the average arrival rates as other popular workload traces such as the FIFA 98 [Ar-

litt and Jin, 2000] or the wikipedia [wikimedia, 2015] logs. Consequently, it can be easily applied

for the MTTTPC-W. Furthermore, it stems from a cloud based application, has a high resolution,

contains data from a time frame of six months and is based on an interactive web application.

Moreover, it is publicly available. The major drawback is, that it does not stem from a multi-tenant

application. However, publicly available, representative and technically usable workload load traces

from MTAs are not available.

A multi-tenant application provides each tenant a similar functionality. Thus, it is assumed that

tenants will use it with similar characteristics, and it can be assumed, that the load profiles are

comparable. Most potentially, they vary in intensity and the time when the load is generated.

For this workload configuration, three 24h slices were used from the RuneScape trace. Every

sample was multiplied by a slice individual factor, to adapt the number of users to the SUT. Table 6.1

characterizes these data sets.

Figure 6.3a depicts the load behavior of the tenants, while Figure 6.3b presents the overall load.

The x-axis shows in both cases the time in minutes, for which the number of users is depicted on the

y-axis of Figure 6.3a. In Figure 6.3b the y-axis depicts the difference between the overall number

of users using the system, and the amount at which an efficient method would fulfill the guarantee

for all tenants.

166

6.1. Isolation Methods

Tenant Start End Factor Max Users Min Users Average

Users

t1 2011-5-10
06:00:01

2011-5-11
05:58:01

0.0039753 997 681 842

t2 2011-5-15
12:00:01

2011-5-10
11:58:01

0.0053899 1334 391 1051

t3 2011-5-26
12:00:01

2011-5-10
11:58:01

0.0041461 851 550 716

Table 6.1.: Slices used to simulate a real workload.

300

500

700

900

1100

1300

0 200 400 600 800 1000 1200 1400

#
U

s
e
rs

Time [min]

t1
t2
t3

(a) Users per-tenant based on the time.

-800

-600

-400

-200

0

200

400

600

0 200 400 600 800 1000 1200 1400

#
U

s
e
rs

Time [min]

(b) Difference between actual and maximum workload.

Figure 6.3.: Traces of real load profiles.

The resolution of two minutes is still a bit coarse-grained. Therefore, the data was linearly inter-

polated and discretized to 20s intervals.

6.1.2.3. Resulting Influence Between Tenants

The subsequent results are based on Workload I. The figures present the average response time

and throughput for each tenant, together with the achieved IQoS. Thus, it contributes to M1.1.1.

To emphasize the relevant characteristics, the plotted data is normalized by the performance at the

reference workload. This allows to immediately see the relative impact of the increasing load onto

different tenants. The x-axis of each subfigure depicts the relative increase of the overall workload

induced by the disruptive tenant. The y-axis depicts the relative influence on the throughput and

response time. Subfigure (c) shows the IQoS for each ∆W and its average value Iavg. Iavg is the

arithmetic mean of all measured IQoS between the reference load and the current load configuration.

The IQoS refers to the influence of the disruptive tenant upon the response time of the abiding.

Non-Isolated System Figure 6.4 shows the results for a non-isolated system with a limited

thread pool as reference for further discussions. The response times of all tenants increased the

same way, since all requests were treated the same way. Consequently, the results of the throughput

show the decreasing value for the abiding tenants. The relative decrease of the abiding tenants was

almost the same. The IQoS converged from a value short above 3.5 to a value around 5.2.

167

6. Evaluation

0
1
2
3
4
5
6
7
8
9
10

0 0.2 0.4 0.6 0.8 1.0 1.2

R
e
s
p
o
n
s
e

T
im

e
R

a
ti
o

∆W

t1
t2
t3

(a) Response time normalized.

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

0 0.2 0.4 0.6 0.8 1 1.2

T
h
ro

u
g
h
p
u
t
R

a
ti
o

∆W

t1
t2
t3

(b) Throughput normalized.

0
1
2
3
4
5
6
7
8
9
10

0 0.2 0.4 0.6 0.8 1.0 1.2

Is
o
la

ti
o
n
[I
]

∆W

IQoS
Iavg

(c) Isolation based on QoS impact.

Figure 6.4.: Measurement results for a non-isolated system.

Round Robin The round robin method’s results in Figure 6.5 show similar characteristics as in

the simulation from Section 3.4.1.4. The response times for the abiding tenants maintained a close

to constant value. The response times for the disruptive tenant increased linearly. The throughput

had negligible fluctuations below 5%. Consequently, the isolation was very good. After a low peak

at the beginning, IQoS and Iavg converged to a value around 0. On the assumption that the response

times of the disruptive tenants keep a ratio around 1, it is convincing that round robin achieves a

perfect isolation.

0

1

2

3

4

5

6

7

0 0.2 0.4 0.6 0.8 1.0 1.2

R
e
s
p
o
n
s
e

T
im

e
R

a
ti
o

∆W

t1
t2
t3

(a) Response time normalized.

0.80

0.85

0.90

0.95

1.00

1.05

1.10

0 0.2 0.4 0.6 0.8 1.0 1.2

T
h
ro

u
g
h
p
u
t
R

a
ti
o

∆W

t1
t2
t3

(b) Throughput normalized.

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1.0

0 0.2 0.4 0.6 0.8 1.0 1.2

Is
o
la

ti
o
n

[I
]

∆W

IQoS
Iavg

(c) Isolation based on QoS impact.

Figure 6.5.: Measurement results for round robin.

Resource Isolation The resource isolation method is presented in Figure 6.6. Similar to round

robin, the response times for the disruptive tenant increased linearly. The response times for the

abiding tenants maintained a rather steady value. However, between the first and second measure-

ment, a minor impact upon the throughput and response time of the abiding tenants can be observed

in the figure. The performance for t1 became negligible worse, while the performance of t2 de-

creased by around 5%. The throughput of the abiding tenant, reduced by 10%. Consequently, the

overall performance of the system became a bit less at the beginning of the experiment. However,

the general insights are still valid: The method obviously provides a very good isolation, as the

observed parameters maintained a constant value for most of the experiment time. The IQoS and Iavg

isolation value converges to 0. Without the disturbance at the beginning, the same behavior as for

the round robin can be expected.

Closed Control Loop The closed control loop in Figure 6.7 shows increasing response times

and decreasing throughputs for the abiding tenants. For the abiding tenants, the relative change in

response time and throughput was very similar. The change for the disruptive tenant was steeper

168

6.1. Isolation Methods

0
1
2
3
4
5
6
7
8
9

0 0.2 0.4 0.6 0.8 1.0 1.2

R
e
s
p
o
n
s
e

T
im

e
R

a
ti
o

∆W

t1
t2
t3

(a) Response time normalized.

0.85

0.90

0.95

1.00

1.05

0 0.2 0.4 0.6 0.8 1.0 1.2

T
h
ro

u
g
h
p
u
t
R

a
ti
o

∆W

t1
t2
t3

(b) Throughput normalized.

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0 0.2 0.4 0.6 0.8 1.0 1.2

Is
o
la

ti
o
n

[I
]

∆W

IQoS
Iavg

(c) Isolation based on QoS impact.

Figure 6.6.: Measurement results for resource isolation.

than those of the abiding tenants. This shows, that the closed control loop provides isolation to a

certain degree. The response times and throughput curves characteristics can be interpreted as being

linear. The curves for the disruptive tenant show fluctuations. However, there is still a linear trend

visible. This leads to isolation values worse as those observed before. Iavg became steady around

0.91 and can be expected to maintain this value due to the linear behavior.

0

1

2

3

4

5

0 0.2 0.4 0.6 0.8 1.0 1.2

R
e
s
p
o
n
s
e

T
im

e
R

a
ti
o

∆W

t1
t2
t3

(a) Response time normalized.

0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

0 0.2 0.4 0.6 0.8 1.0 1.2

T
h
ro

u
g
h
p
u
t
R

a
ti
o

∆W

t1
t2
t3

(b) Throughput normalized.

-0.5

0

0.5

1.0

1.5

2.0

0 0.2 0.4 0.6 0.8 1.0 1.2
Is

o
la

ti
o
n

[I
]

∆W

IQoS
Iavg

(c) Isolation based on QoS impact.

Figure 6.7.: Measurement results for closed control loop.

Black List The black lists response times in Figure 6.8 vary between a relative value of 2.2

and 0.25. Although the response time of the disruptive tenant did not increase significantly, one

has to keep in mind, that not all requests from this tenant have been serviced. Therefore, a high

amount of them became immediately answered without a valid response, but short response times.

The same holds for the throughput. The diagram shows an increasing throughput for the disruptive

tenant, although the throughput for the abiding ones keeps constant, or even increases for ∆W =

[0.2,0.8]. Accordingly, the isolation of this approach converged to a value around 0. Especially at

the beginning of the experiment series, the response times behaved very similar for all tenants. This

is because the quota was configured with some buffer. Thus, the system behaved like a non-isolated

at the beginning, and all tenants observed the same system behavior for low load increase.

Model Figure 6.9 presents the measurement results of the model based approach. The configu-

ration of the optimization algorithm leads to slightly increasing response times for abiding tenants,

which became flatter in the second half. The response times for the disruptive tenant increased

significantly. The throughput for the abiding tenants decreased slowly, while the throughput for

the disruptive one increased. However, this value also became more stable in the second half. The

isolation value was close to 0.9.

169

6. Evaluation

0

0.5

1.0

1.5

2.0

2.5

0 0.2 0.4 0.6 0.8 1.0 1.2

R
e
s
p
o
n
s
e

T
im

e
R

a
ti
o

∆W

t1
t2
t3

(a) Response time normalized.

0

0.5

1.0

1.5

2.0

2.5

0 0.2 0.4 0.6 0.8 1.0 1.2

T
h
ro

u
g
h
p
u
t
R

a
ti
o

∆W

t1
t2
t3

(b) Throughput normalized.

-5

0

5

10

15

20

0 0.2 0.4 0.6 0.8 1.0 1.2

Is
o
la

ti
o
n

[I
]

∆W

IQoS
Iavg

(c) Isolation based on QoS impact.

Figure 6.8.: Measurement results for black list.

0

1
2

3

4

5

6

7

8

0 0.2 0.4 0.6 0.8 1.0 1.2

R
e
s
p
o
n
s
e

T
im

e
R

a
ti
o

∆W

t1
t2
t3

(a) Response time normalized.

0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0 0.2 0.4 0.6 0.8 1.0 1.2

T
h
ro

u
g
h
p
u
t
R

a
ti
o

∆W

t1
t2
t3

(b) Throughput normalized.

-3

-2

-1

0

1

2

3

4

0 0.2 0.4 0.6 0.8 1.0 1.2

Is
o
la

ti
o
n

[I
]

∆W

IQoS
Iavg

(c) Isolation based on QoS impact.

Figure 6.9.: Measurement results for the model based isolation method.

6.1.2.4. Resulting Influence Based on Guarantee

The following results are based on Workload II and help to answer M1.1.1. The subsequent Fig-

ures 6.10a/b present the achieved isolation, in relation to the guarantee, for each isolation method.

Figure 6.10a depicts on the x-axis the relative increase of the overall workload ∆W , originated by

the disruptive tenant. The y-axis depicts the isolation IQoS, whereby the reference for the guarantee

is 3s. The figure shows negative values for some approaches, and mostly a significant change of the

isolation at the beginning. In the previous experiment series, the reference value was the observed

response time at the reference workload. Consequently, the response time increased with higher

load and the difference to the reference value was usually positive. When comparing the observed

quality, with a reference not gathered by a measurement, there can be a high difference at the begin-

ning. However, a constant difference converges IQoS→ 0, due to the increasing workload. Another

aspect is, that some methods increase their restrictions onto the disruptive tenant with growing load,

and therefore need some time before adapting.

Figure 6.10b depicts the quartiles of the achieved isolation IQoS for ∆W > 30%. Above that value,

the most methods already converged to a rather steady value. The x-axis depicts the method for the

corresponding box plot, while the y-axis shows the achieved isolation value.

The following paragraphs discuss the results of the various methods investigated.

Non-Isolated The workload conducted for the experiments was configured such, that every ten-

ant could be served with a response time of 3s. The non-isolated system does not influence the

processing of the requests. Consequently, all tenants observed the same response times during the

experiment series. The observed response times at the beginning of the experiment series was short

170

6.1. Isolation Methods

below the guaranteed 3s, which resulted in an isolation value short below 0. The response times

increased for all tenants, and thus IQoS increased to a value around 5.

Round Robin and Resource Isolation Round robin is a static approach. Therefore, the re-

sponse times for the abiding tenants did not change at all. Although the resource isolation method

uses knowledge about the system, it does not actively observe the achieved response times. There-

fore, both methods provide a similar behavior as long as the requests resource demands are the

same. This was the case in the given scenario. The response times were too short for t1, and thus

the average response time of the abiding tenants. This resulted in a negative isolation, which means

that the quality observed was better as the guarantee. The difference maintained a steady value,

while the workload increased. Consequently, the isolation slowly converged to 0. Although the data

has a clear tendency, the corresponding box plot helps to estimate the quality at higher loads. In

summary, the round robin and resource isolation methods will always maintain a negative value.

Both describe the lower border line of the measurements, since they are not adaptive with regard to

the guarantees and observed performance.

Closed Control Loop The closed control loop immediately started with an IQoS short below 0.

This emphasizes its ability to shift resources from the abiding tenants to the disruptive. However,

while the load increased, the response times increased slightly for the abiding tenants. As a result,

the negative isolation value increased from around −0.15 to a value around 0.9. These values are

very similar to those observed in Figure 6.7, because the observed quality at the reference workload

was already close to that one guaranteed.

Black List The black list begins with an IQoS around 15. Then it converged fast to a value close

to 0. This is similar to the observations in Figure 6.8. At the beginning, the disruptive tenant did not

exceed the guarantee, and therefore it was not black listed. Therefore, the response times were very

high for all tenants. However, in this figure, it becomes clear, that ones the disruptive tenant is black

listed, the observed response times seem to be close to the guarantee. In average, this resulted in an

isolation IQoS of −0.1. The second and third quartile is between −1.1 and 0.1. The overall range of

results is between −1.9 and 2.

Model The model based approach started with IQoS at −8.3, converging fast to 0 at ∆w = 0.35.

This behavior is based on the utility function, optimizing the weights. At the beginning, the dis-

ruptive tenant did not exceed its guarantee so much. Therefore, there was not much need to shift

priorities from the abiding tenants to the disruptive. The process of shifting resources became

stronger with increasing load. Nevertheless, the isolation was maintained with regard to the guaran-

tee. Additionally, it can be seen, that the model based approach converges much faster and closer to

0 as the resource control and round robin method. This shows an advantage of an active optimiza-

tion. The model based method ended up with an average isolation of IQoS = 0, while the second and

third quartile was within 0.7 and −0.3. The first and fourth quartile showed a trend to the better

171

6. Evaluation

-20

-15

-10

-5

0

5

10

15

20

0 0.2 0.4 0.6 0.8 1.0 1.2

Non-Isolated
Round Robin
Resource Isolation
Control Loop
Black List

Is
o
la

ti
o
n

[I
Q

o
S
]

∆W

Model

(a) Isolation for increasing load.

-4

-2

0

2

4

6

8

10

Non-
Isolated

Round
Robin

Resource
Isolation

Control
Loop

Black List Model

Is
o
la

ti
o
n

[I
Q

o
S
]

(b) Quartiles of achieved Isolation for load > 0.3

Figure 6.10.: IQoS based on the guarantee.

isolation. Although the isolation quality of the model and closed control loop look very similar in

the Figure 6.7 and Figure 6.9, they are different. The model based isolation method started with

lower response times for the abiding tenants, which increased rather fast, due to the optimization,

as it can be seen in Figure 6.10a. Therefore, the previous results are different, compared to those in

this analysis.

6.1.2.5. Resulting Isolation Based on Workload Ratios

The results described in the following are based Workload I and contribute to M1.1.1. The used

metrics are based on the workload ratios (cf. Section 3.1.4). Only the control loop based approach

would have significantly decreasing abiding workload, if the guarantee is considered (cf. results

from Section 6.1.2.4). Consequently, the response time observed at the reference workload was

considered as the reference.

Figure 6.11 shows the results for the integral based metric over the whole range of ∆W analyt-

ically derived (cf. Section 3.5.1). The size of the y-axis was limited to emphasize the differences

within the relevant areas. At low disruptive loads, negative values occurred for the blacklist isola-

tion method and the resource isolation. The negative values origin from minor fluctuations in the

response times, resulting in isolation values even worse than non-isolated systems. Minor fluctu-

ations at the beginning have a very strong impact upon the workload ratio based metrics. This is

caused by the small difference between the two curves for a low ∆W (cf. Figure 3.3). However, the

values achieved a positive value fairly fast.

Table 6.2 contains the results for Ibase (cf. Section 3.1.4.1). Wbase would correspond to ∆W ≈
0.529. This relevant point was not covered by a direct measurement. Therefore, the results for Wabase

were calculated by a linear interpolation of the next lower ∆W ≈ 0.509 and next higher ∆W ≈ 5.490.

Due to the high isolation qualities, the Iend metric was not considered in the evaluation. While

adjusting the amount of abiding workload, situations appeared, in which the abiding load could

have been larger as the one of the reference measurement. This was primarily due to variance in the

measurements. For these situations, the abiding load from Wre f was considered for the calculation

of the isolation.

172

6.1. Isolation Methods

At a glance, all methods finally achieved a value for IintFree > 0.5 and Ibase > 0.6. Subsequently

the result for each approach is discussed on an individual basis.

-0.5

-0.3

-0.1

0.1

0.3

0.5

0.7

0.9

1.1

0 0.2 0.4 0.6 0.8 1.0 1.2

Is
o
la

ti
o
n

[I
in

tF
re

e
]

∆W

Resource Isolation

Control Loop

Black List

Model

Round Robin

Figure 6.11.: IintFree based on the observed response time at the reference workload.

Resource Isola-

tion

Control Loop Black List Model Round Robin

0.8 0.65 0.98 0.78 0.97

Table 6.2.: Evaluation results for the Ibase metric.

Resource Isolation The resource isolation started with a negative value of −2.0 for IintFree

and increased fast to a positive value. It became steady at a level short above 0.7. The result for

Ibase = 0.8, which was above the integrals ratio at this point. This shows, that the negative values at

the beginning have a high impact upon the overall result. With regard to IintFree at the highest ∆W ,

the method is the third best.

Closed Control Loop The closed control loop started with a low isolation value of 0.13,

reached a short top of 0.72 at ∆W ≈ 0.12 and than became steady around 0.6. The result of Ibase is

similar to the final value 0.57 for IintFree. With regard to the overall isolation capabilities, the closed

control loop is performing worst in the given scenario. Which corresponds to the observations in

Section 6.1.2.4.

Black List The black list started with a value of −3.31 and converged as slowest of all methods.

The best isolation was observed at ∆W ≈ 0.86 with a value of 0.88. The value for Ibase ≈ 0.98 and

had the highest difference to IintFree. This stems from the high negative values of the method at the

beginning. This shows, that the method can provide good isolation for high disruptive loads. For

the given configuration, it had a weak isolation for low ∆W . The reason was the configured safety

margin. The end value for IintFree ≈ 0.83 and the second best.

173

6. Evaluation

Model With an IintFree ≈ 0.57, it is the second best method for the first measurement. In the

experiments conducted, the isolation worsened at the beginning, before it started to increase again

and maintaining a value of approximately 0.65 around ∆W ≈ 0.25. The final value was 0.65. The

observed Ibase ≈ 0.78 was also better, as the overall value of IintFree. With regard to Ibase, the method

has a value comparable with the resource isolation. The closed control loop is outperformed by 20%.

The low IintFree stemmed from the problems for a low ∆W . This can be explained by the chosen

fitness function configuration.

Round Robin Starting with an isolation value of 1, round robin roughly maintained the isolation

quality, except a minor decrease between ∆W ∈ [0.1,0.2]. The IintFree at the end of the measurement

was approximately 0.97. Overall, the IintFree was always better as for other methods. The Ibase value

was 0.97. This is only 0.01 lower as the black list’s value.

6.1.2.6. Resulting Oscillation

The following results are based on Workload I. For the evaluation of the oscillation, the consider-

ations from Section 3.1.5.2 come to bear. Thus, this section contributes to M1.1.3. Figure 6.12

depicts the oscillation over the whole range of measurements of all tenants. As denominator, the

arithmetic mean was conducted (cf. Section 3.1.5.2). For Figure 6.12a, the response time was in-

vestigated, while Figure 6.12b presents the details on the throughput. As expected, the results are

similar in both cases. The y-axis is limited, to emphasize the relevant values range.

The round robin and the resource isolation method had the lowest dynamic in their behavior.

Thus, the oscillation is considered to be low, which is also shown in the diagrams. Since these two

methods do not much adapt their preferences for one tenant, their value can be seen as the borderline.

The closed control loop and the black list had a strong variability. The response time’s median for

the closed control loop was 0.65 and for the throughput 0.25. For the black list, the corresponding

values were 1.08 and 0.28. Additionally, the general trend argues against the black list, which

exceeds the maximum value of the closed control loop by 307% for the response times. The model

based isolation method also provides a low oscillation over a wide range, and is clearly better than

the closed control loop and the black list approach. Nevertheless, it still has more fluctuations than

the round robin, and the resource isolation mechanism.

For the black list, the oscillation of the response times reached a median of 1.08. This means,

that a high portion of the observed response times perceived by the tenants significantly varied. For

an abiding tenant with a guaranteed response time of 3s, this results in a variable time between 1.5s

and 4.5s for 50% of the requests. Additional 25% exceeded 4.5s. Thus, several requests are above

an acceptable value of 4s [Jupiterresearch and Akamai, 2006], although the average response time

was good. This shows the importance of the metric.

174

6.1. Isolation Methods

0

0.5

1.0

1.5

2.0

2.5

3.0

Round Robin Resource
Isolation

Control
Loop

Black List Model

A
ve

ra
g
e

O
s
c
ill

a
ti
o
n

(a) Oscillation of response time.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Round Robin Resource
Isolation

Control
Loop

Black List Model

A
ve

ra
g
e

O
s
c
ill

a
ti
o
n

(b) Oscillation of throughput

Figure 6.12.: Oscillation of response time and throughput.

6.1.2.7. Resulting Performance Gap for Abiding Tenants

The following results are based on Workload I and provide insight on M1.2.1. The guaranteed

response time for the tenants was set to 3s. Tenants generating less load than their quota, would

have faster response times when using completely isolated resources. However, to fully use the

benefits of shared systems, the isolation methods should foster the reduction of a tenant’s share, if

it requires less resources. This allows to maintain the guarantee of tenants exceeding their quota at

the same time. This capability was one of the mentioned design goals (cf. Section 4).

-1

0

1

2

3

Round Robin Resource Isolation Control Loop Black List Model

R
e
la

ti
ve

D
if
fe

re
n
c
e

to
S

L
A

G
u
a
ra

n
te

e

Figure 6.13.: Relative difference of the average response from the abiding tenants to the guaranteed one.

The relative, average difference, of all response times, from the abiding tenants’ guarantee was

calculated. The box plots in Figure 6.13 summarize the results.

Round robin and the resource isolation method are not able to reflect any response time oriented

guarantee. Consequently, both showed a widely comparable behavior. As a result of the low os-

cillation, these values were also very stable. Their median was at −0.61 for the round robin, and

−0.64 for the resource isolation. Thus, resources were spent for the abiding tenants, although their

response times were very good. The closed control loop based method had a median of 0.45. The

positive value stems from the bad isolation of the method. It shifts resources from the abiding ten-

ants to the disruptive, but was not able to ensure a proper isolation. The black lists median was

at −0.16 and the mean with 0.06 noticeably higher. The model based approach with a median of

−0.08 and a mean of 0.05 has a negligible small difference. However, the blacklist achieves this

with a much higher deviation and some outliers.

175

6. Evaluation

6.1.2.8. Resulting Settling Times

The following results on settling times (cf. Section 3.1.5.1) are based on the Workload II. Thus, this

section provides the results for M1.1.2 and M1.2.2. The average value, to identify the end event

was computed from the samples collected between n+60s and n+180s. For the non-isolated case,

it does not make sense to measure the settling time. Round robin and the resource isolation method

do not utilize a direct feedback concerning the tenants’ performance. Consequently, the admission

control keeps its behavior independent of the load. Therefore, the settling times can be assumed to

be 0. Table 6.3 summarizes the other isolation methods. The results of the increasing and decreasing

load scenarios are depicted.

Control Loop Black List Model

Increasing 130s 128s 52s

Decreasing 206 13s 43s

Table 6.3.: Settling times for the isolation methods.

The model based isolation method performs best. The settling times were less than 1 minute.

Followed by the closed control loop with 130s in the increasing, and 206s in the decreasing scenario.

For both methods, the measurements delivered repeatable results. The fast reaction of the model

based approach is in line with the expectation. The optimization adapts the weights every 30s,

if the systems underlying characteristics have changed. However, once the system is adapted, no

reconfiguration is made. This is different for the closed control loop, which needs several iterations.

In case of the black list method, the results had a high variance. For the decreasing scenario, no

significant pattern stands out of the noise. In view of the chosen workload, and isolation method,

this is comprehensible. Even with a reduction of the load from the abiding tenants, the disruptive

tenant is not able to use these resources. The high number of users always leads to request rates

exceeding the quota, and therefore the disruptive tenant has been black listed always. Therefore, the

results for the black list should be treated with caution.

6.1.2.9. Results Based on Dynamic Load

The subsequent results are based on the dynamic load described by the Workload III. That delivers

the results for M1.1.4 and M1.1.2. Due to the continually changing load, it is not possible to

determine the settling times and the oscillation. The same holds for the isolation metrics. Therefore,

the amount of time is observed, in which:

1. A tenant has less users as allowed, but observes response times longer than the guarantee.

This measures the isolation capabilities.

2. A tenant exceeds its quota, but has faster or equal response times as the guarantee defines.

This expresses the methods capabilities to efficiently share the system.

176

6.1. Isolation Methods

0

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Non-Isolated Black List Contol
Loop

Model Resouce
Isolation

Round Robin

P
o
rt

io
n

o
f
T
o
ta

l
T

im
e t1

t2
t3

(a) Guarantee violation without quota violation.

0

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Non-Isolated Black List Contol
Loop

Model Resouce
Isolation

Round Robin

P
o
rt

io
n

o
f
T
o
ta

l
T

im
e t1

t2
t3

(b) Achieved guarantee despite quota violation.

Figure 6.14.: Results for the dynamic load scenario.

Figure 6.14a/b depict the results. The bar diagram in Figure 6.14a, shows the fraction of time in

which situation 1 appeared. As a basis, the mean of 5s intervals is used. The system’s load originated

from three tenants. The total amount of time three tenants spend on the system, is three times the

time a single tenant uses it. This results in 3x24h for a complete day. Consequently, the reference

value for the computation of the bar’s overall size is 72 hours. If one is interested in the value for

one single tenant, the bar size has to be multiplied by three. The same holds for Figure 6.14b. It

presents the fraction of time where situation 2 appeared.

The black list, resource isolation and round robin provide all an almost perfect isolation. Com-

pared to a non-isolated system, the two approaches, providing an active adaptation of scheduling

weights, are still significantly better. The closed control loop based approach outperforms the model

based approach.

The advantages of the control loop and model based approach become visible in Figure 6.14b.

Both outperform the resource isolation and round robin. It is worth mentioning, that the value of

the black list method is not highly representative. Having a detailed look into the data shows, that

t2 is black listed almost the whole time. This resulted in fast response times, but without any useful

content.

For the experiment, the configuration of the isolation methods was the same as for the first work-

load description. The used configuration for the model based approach (cv, cp) needs a certain

degree of guarantee violation before the optimization becomes a significant counterpart (cf. Sec-

tion 6.1.2.3). The change of load in this experiment was much less as in the previous. Therefore,

the model based approach performs worse as the closed control loop, which already showed good

results for low violation scenarios before.

In general, one can observe that t2 is seldom the reason for guarantee violations. The rationale

behind is its load behavior. Tenant 2 exceeds its quota almost all time. Therefore, it cannot be

responsible for any guarantee violations. Tenant 3 is almost the whole duration below the quota,

while t1 exceeds it sometimes. This is clearly reflected in the results depicted in Figure 6.14a. In

Figure 6.14b t3 never appears. This is due to the fact that t3 never exceeds its quota and thus cannot

benefit from the implemented dynamic shift of resources. Accordingly, t2 who exceeds quota the

most time, benefits the most.

177

6. Evaluation

6.1.3. Core Components Overhead

Subsequently, the system landscape for the evaluation of the methods impact upon the performance

of the application is presented (M1.3.1), together with the corresponding results.

6.1.3.1. Experiment Setup

As outlined in Section 5.3, the functionality of several components is required to run a concrete

implementation of an isolation method. The PIF implementation calls only the relevant components

for a given method. Thus, the functionality provided by the framework for a particular method has

to be seen as part of a method, because others methods do not require it. Therefore, it does not make

sense to evaluate the performance of the policy generator isolated.

The following parameters are of relevance: the number of tenants, the number of request types

and the number of application nodes. The information sent by the diverse monitors is aggregated

and thus the number of requests is not important.

To generate the relevant data, in a realistic scenario, the probes were mocked to send artificial

monitoring information. Thus, it was possible to simulate the number of tenants, requests and

application servers. The admission control was emulated as well.

The framework’s configuration was the same as described in Section 6.1.2.2. The framework was

executed within the SAP JRE 1.7 on a SLES11 SP2 installation. The hardware was configured to

use 1x1.6GHz CPU and 16GiB memory. A MySQL version 5.1 database provided persistence for

the isolation framework. It was deployed together with the framework on the same server. The

emulated parts of the load generation were deployed on a separate host.

In a first experiment series, two parameters were modified. The number of tenants was varied

between 1 and 101. The number of request types was varied between 1 and 101 for each tenant. The

number of tenants and request types was increased by a step width of 10. Each load configuration

was held for 20 min. The first 10 min were the warm-up phase, for which no data was gathered.

To prove the linearly increasing demands, for an increasing number of application nodes, a second

experiment series was conducted.

6.1.3.2. Results

The closed control loop, the resource isolation, black list and the model based method were evalu-

ated. Since the round robin method not necessarily requires the core parts of the framework, it was

not subject to the experiments. During the observation time, the total processing time of the java

and MySQL process was observed. The accumulated value was divided by the number of executed

strategy generations, which were triggered every 30s.

For the closed control loop, black list and the model based method, a linear relationship between

the number of request types m, the number of tenants n and the processing time was observed. A

function of the form fprocTime : c1 +m ·n · c2 predicts the real observed values with an accuracy be-

tween 4.9% and 5.0% error for all three approaches. Thus c1 and c2 contain enough information to

178

6.1. Isolation Methods

compare these methods. The resource isolation based method did not show such a linear character-

istic and is discussed separately. For the black list method c1 = 24 ms;c2 = 0.5066 was observed,

for the control loop c1 = 27 ms;c2 = 0.5059, for the model c1 = 22 ms;c2 = 0.5113. The results

show, that the approaches are not significantly different. The constant values are negligible. For 101

tenants and 101 request types this result in 5188 ms for the control loop, which is the fastest. With

5238 ms the model based isolation method is the slowest. In fact, the differences are not signifi-

cant. However, the resource isolation based solution has c1 = 26;c2 = 0.6043, which shows a clear

difference. Compared to the average c2 = 0.5079 from the other isolation methods, this is ≈ 19%

worse. Moreover, the error of fprocTime was with 15.8% significantly higher. Looking at Figure 6.15

one can see that the results for 101 tenants and request types are significantly higher as those of the

other approaches. Furthermore, a light, super linear characteristic of each curve is visible.

0

2000

4000

6000

8000

10000

12000

0 20 40 60 80 100

T
im

e
[m

s
]

Requests

1

11

21

31

41

51

61

71

81

101

T
e
n
a
n
ts

Figure 6.15.: Processing time of resource isolation method for different number of tenants.

Concerning the number of application nodes, random samples showed the expected relationship

of a linear increase by the number of application servers. It is worth mentioning, that the policies

were optimized using only the data of the server they were thought for. Thus, no overall optimization

was triggered. The memory allocated by the java virtual machine varied between 250MiB and

320MiB, while the database server allocated around 700MiB. A relation to the induced load was

not observable.

In summary, except the resource isolation method, all approaches have almost the same perfor-

mance and scale linearly. Within the observed boundaries, the resource isolation method performs

19% worse.

6.1.4. Admission Control Strategy Overhead

Subsequently, the system landscape and experiments for the evaluation of the impact upon the re-

quest processing (M1.3.1) is presented. Furthermore, the corresponding results are discussed.

179

6. Evaluation

6.1.4.1. Experimental Setup

The expected overhead of the admission control’s strategy is low. Therefore, a significant differ-

ence between the application induced load is hardly observable. Moreover, the time required by

the actual admission control strategy should be analyzed independent of other aspects, which are

commonly used technologies and often integrated into the system anyway. These aspects can be the

overhead induced by monitoring, the limitation of the thread pool size, and adding a valve to the

system. Therefore, a setup was conducted that captured only the overhead of the admission control

strategy. To achieve this, the strategy was instantiated outside an application runtime container,

by a mocked proxy/execution point. The mocked execution point realized the following tasks. It

generated request objects with a random selection of request types and tenants. Furthermore, it

provided all necessary information like a suitable policy (e.g., providing a random selection of re-

source demands) and iteratively added and removed requests to/from the strategy. The experiments

were executed on a SAP JRE 1.7, installed on SLES11 SP2. The hardware was configured to use

1x1.6GHz CPU and 16GiB memory.

Three parameters were modified in the experiment series. The number of tenants was varied

between 1-501. The number of request types between 1-501 for each tenant, whereby the resource

demand was different for each request type. The total number of requests enqueued varied between

the minimum value, given by the number of tenants of a particular experiment, and 10001. The

number of requests was homogeneously distributed among all tenants. The number of tenants was

increased by a step width of 50, the number of enqueued requests by 500 each step and the request

types by 50 per step. In case of the black list strategy, 5% of the tenants were black listed. All

requests were added to the strategy in advance. After a waiting time of 2 min, requests were removed

and added iteratively, with a 5 ms delay between each call. The time difference was measured using

the java System.nanoTime() method. The measurement was stopped after 2000 samples for each

method.

6.1.4.2. Results

The results gathered did not show any significant change based on the varied parameters. Therefore,

a discussion about the influence of the various parameters is discarded. Instead, a box plot (cf.

Figure 6.16a/b) that summarizes the results gathered among all configurations is present.

Figure 6.16a shows the quartiles for the time to add a request to the strategy. The median of the

RIS, PFQ and round robin are comparable. The black list queue performs best. The difference in

the median between the black list (205 ns) and the round robin (776 ns) is the largest. Nevertheless,

the processing time spent for the task of adding a request to the strategy is negligible for interactive

web applications.

Figure 6.16b depicts the quartiles for the time required to retrieve the next request from the

strategy. Again, the RIS, PFQ and round robin show similar results. However, in the measurements

conducted, the results of the round robin are roughly 30% better, comparing the medians. The black

list requires only 6% of the time the RIS needs, and 9% of the time the round robin needs. However,

180

6.1. Isolation Methods

0

500

1000

1500

2000

2500

3000

RIS PFQ Round Robin Black List

T
im

e
[n

s
]

(a) Time to add an isolated request.

0

2000

4000

6000

8000

10000

12000

14000

RIS PFQ Round Robin Black List

T
im

e
[n

s
]

(b) Time to get an isolated request.

Figure 6.16.: Resource consumption of the strategy.

with a maximum median delay of 5918 ns, even the slowest of the three approaches should not

significantly influence the overall response times.

In the scenario from Section 6.1.2, the system was configured to provide a throughput of 240 re-

quests/s at 24 threads. Thus a request was processed by the MTA in 1/10s. For each processed

request, 6661 ns were spent in the worst case. This result in ≈ 0.007% of the overall time for

processing.

In summary, an observable difference between the isolation strategy’s performance exists. How-

ever, they all perform fast and the impact upon the overall performance is negligible for almost all

web applications.

6.1.5. Concluding the Isolation Methods Experiments

In this subsection, the results from the previous experiments are summarized and interpreted to

answer the evaluation questions. This section does not recapitulate all the details from before, but

focuses on the key messages using only the most important results.

6.1.5.1. Outcomes

Isolation Qualities The results shown in the Sections 6.1.2.3, 6.1.2.4, 6.1.2.5, 6.1.2.9 help to

answer Q1.1, which concerns the quality of the isolation with regard to metric M1.1.1 and M1.1.4.

The Section 6.1.2.8 answers the question concerning the settling time (M1.1.2) while Section 6.1.2.6

discusses the oscillation of a particular approach, which refers to M1.1.3.

Table 6.4 shows the overall results gathered, to answer the questions about the isolation capa-

bilities. For an overview of the value ranges and the corresponding interpretation of the isolation

metrics please refer to Section 3.5.2. Where relevant, the disruptive load of the measurement and

type of the performance reference values is added.

The results show, that all methods have always a better isolation as a non-isolated system. The

resource isolation, round robin and black list converge to a perfect isolation with increasing disrup-

tive load, while the model based approach and the closed control loop maintain an IQoS ≈ 1, when

compared to the reference loads response time.

181

6. Evaluation

Metric Non-

Isolated

Round

Robin

Resource

Isol.

Control

Loop

Black

List

Model

Iavg (∆W = 1.1/reference) 5.78 0.07 0.65 0.91 1.13 0.90

IQoS (∆W = 1.1/reference) 7.27 0.03 0.12 1 0.08 1.02

Iavg (∆W = 1.1/guarantee) 4.39 -2.14 -2.23 0.46 1.75 -0.53a

IQoS (∆W = 1.1/guarantee) 6.25 -0.57 -0.61 0.8 -0.05 0.09

IintFree (∆W = 1.1/reference) 0.00 0.97 0.78 0.57 0.83 0.65

Ibase 0.00 0.97 0.80 0.65 0.98 0.78

Violations (Dynamic Load) 0.29 0.01 0.01 0.07 0.00 0.10

Settling Time [s] N/A N/A N/A 130 128b 52

Oscillation N/A 0.19 0.18 0.65 1.08 0.40

aAverage for ∆W > 0.2≈ 0.0.
bNot necessarily representative (cf. Section 6.1.2.8).

Table 6.4.: Overview of the results for the isolation capabilities of various methods.

The metrics, using the guaranteed response time as a reference, also show the ability to outper-

form a non-isolated system. In these experiments, round robin and the resource isolation have a

negative isolation. The black list has a large difference between IQoS and Iavg, which stems from the

high errors at the beginning.

A difference between the isolation values calculated for the guarantee and for the observed re-

sponse times at the reference workloads exits. For the round robin and the resource isolation this is

higher as for the methods to actively adapting the admission control. This is a sign that the closed

control loop, black list and the model based isolation have an influence upon the observed response

times at the reference workload.

In general one can observe, that the approaches with fixed scheduling weights provide a better

isolation. Furthermore, they do not rely on a direct feedback from the system and therefore do

not have any settling times when the load changes. In the group of methods, where the admission

control is directly adapted by the asynchronous calls, the model based approach is the fastest and

it has the lowest oscillation within this group. Round robin and the resource isolation method have

the lowest oscillation values among all.

The results gathered from the experiments show the isolation capabilities of the methods. Thus,

they answer the relevant question concerning the quality of the isolation. In general, the round robin

and resource isolation provide the best isolation, followed by the other approaches sharing similar

capabilities. If the tenants have significantly different request type ratios, or different demands

per request type, the resource isolating approach is advantageous as shown by the results from

Section 4.5.2.

Efficiency of Isolation Methods Q1.2 is answered by the experiments in Section 6.1.2.7,

which tackle the metric M1.2.1 and Section 6.1.2.8 for M.1.2.2. The round robin’s and the resource

182

6.1. Isolation Methods

isolation’s average abiding tenant response times are far below the guarantee. Thus, resources

that can be used by the disruptive tenants are not used. The methods which actively control the

scheduling weights, and being aware of guarantee and/or quota, perform better. The closed control

loop exceeds the guarantee for the abiding tenants by around 45%, whereby the black list is 16%

below, and the model based approach almost perfectly achieves the optimum. For situations where

the load decreases, and thus resources can be rescheduled to achieve a better distribution, the closed

control loop performs worst. It has a delay of more than 3 min. The model based approach achieves

a value of 43s. The black lists settling time was measured with 13s. However, the black list cannot

really leverage resources which become dynamically free from other tenants. This is caused by its

limited view onto the input information only.

In summary, the model based approach provides the most efficient solution, followed by the

closed control loop, black list and the other approaches.

Scalability The investigations of the scalability are subject to Q1.3. The results from Sec-

tion 6.1.4 and Section 6.1.3.2 can answer this question. The black list performs better than the

others, while the others have all the same impact. Overall, the methods impact upon the perfor-

mance of the application server is negligible for every strategy in use. The time spent to process

them, is independent of the number of tenants, request types or amount or requests. This is different

for the policy generation. Except the resource isolation based method, all approaches scale linearly

with the number of tenants, request types and application nodes. Furthermore, all scale by the same

linear member. The resource isolation method scales slightly super linear, performing 19% worse

for the configurations investigated.

Thus, all approaches are equally good, except the resource isolation which provides less scalabil-

ity.

Using Resource Demand Information The evaluation goal G2 concerns the accuracy of the

resource isolation method as presented in Section 4.3. The actual results for the metrics investigated

are presented in Section 4.5.2. Herewith, a brief summary of the results is given.

Q2.1 focuses on the preconditions and technical foundation for the resource isolation method,

namely the quality of the resource demand estimation. The presented resource demand estimation

shows a high accuracy for the relevant, high load situations, where one major bottleneck exists.

Tenants, with higher demands, are also estimated with higher demands by the method (cf. Sec-

tion 4.5.2.2).

Concerning Q2.2, it is shown that resource isolation, and consequently performance isolation, is

achieved. The isolation is maintained, if tenants have the same or different demands per request.

The ability to provide a service quality differentiation (Q2.3), is also discussed in the respective

section. The method is able to adapt to changing resource demands per request type (Q2.4). The

time it takes depends on the chosen configuration of the resource demand estimator. However, a

time frame of several minutes is much more likely as a duration measured in seconds.

183

6. Evaluation

The method provides an acceptable degree of isolation (Q2.5) for scenarios where the database is

deployed on a separate node (cf. Section 6.1.2) and in scenarios where the database is deployed to-

gether with the application (cf. Section 4.5.2.1). However, application level SLAs are not reflected.

Using a Model to Optimize Scheduling Weights The G3 of the evaluation is to gain in-

sights on how accurate the model based isolation method can maintain isolation and an efficient

distribution of shares. The metrics and results for the questions are presented in Section 4.5.3,

together with the explanation of the method. This paragraph gives a short overview of the results.

The basis for the optimization is the model. Thus the accuracy Q3.1 of it is a relevant metric.

Section 4.5.3 shows that for high load scenarios accurate results for the response times and the

throughput can be obtained. The error margin is consistently below 20%. According to [Menasce

and Virgilio, 2000] these are acceptable values.

Q3.2 is answered by the plots in Section 4.5.3.1. The optimal value of the configuration param-

eter, depends on the given system characteristics and scenario. However, a rough indication saying

that cv should be between 0.1 and 1.0 and cp between 1 and 10 is possible.

The method showed an acceptable isolation (Q3.3) for scenarios using a virtual environment (cf.

Section 6.1.2). The same holds for non-virtualized environments, with a database deployed together

with the application server or separately (cf. Section 4.5.3.2). It can reflect application level oriented

SLAs. However, depending on the configuration parameters a trade-off between over-commitment

and isolation must be found.

6.1.5.2. Critical Discussion

This subsection introduces some threats that might concern the validity of the experiments presented

in the previous sections.

Limited Amount of Experiment Configuration In the experiments, only a few tenants were

used. If a high number of tenants are deployed on the system, the differences in the observed

performance are less for each tenant. Thus, it is more complex to analyze the relevant patterns.

Furthermore, although an MTA might be subscribed by several tenants, it is likely that only few

produce a significant load. In general, the number of potential configurations for an experiment

depends on many factors. The two most relevant are the number of tenants, and the amount of

workload each of them is generating. It is not possible to test all combinations. However, the

general insights gathered in the experiments are representative for other configurations as well.

A round robin and black list will provide the same characteristics independent of the number of

tenants or configurations. It can be assumed that it will always provide a very good isolation.

The capabilities of the resource isolation methods depend on the way the resource demands are

determined. If a resource demand estimation is used, the quality of the isolation will be limited

for a high number of tenants or request types. An estimation of these limitations is possible by the

experiments conducted in Section 4.5.2.2. If the resource demands can be exactly determined, the

184

6.1. Isolation Methods

isolation behavior is the same for a high number of tenants and request types. The model based

approaches optimization always selects the global optimum (cf. Section 4.2.6.3), independent of

the number of tenants. The general capabilities of the closed control loop to maintain a system

isolated is neither affected by the number of tenants, nor the distribution of workloads. However, if

the number of tenants increase, the share they get from a system is less. Thus, the reactions of the

isolation method or the system onto the same absolute size of changing load per-tenant is stronger.

Therefore, oscillation and settling times may increase.

Selection of Workloads The experiments to measure the isolation in the evaluation chapter

conducted only one load configuration. As outlined in Section 6.1.2.2, this configuration covered the

relevant aspects. Furthermore, in Section 4.5 additional experiments with other configurations were

described. Additionally, the dynamic load scenario also reflected a numerous amount of workload

combinations. All experiments showed consistent results concerning the overall conclusions.

Configuration of Isolation Methods The configuration of the methods was based on the ob-

servations of only one load profile. Better results might be possible, if the configuration is optimized

for the whole measurement space. This might be possible for an artificially benchmarked system,

where all relevant load combinations are known. Evaluating the weights for every possible situation

in a realistic scenario is not possible. It is reasonable that MTA providers will optimize their con-

figuration for a selected subset of situations. Consequently, the methods were configured with the

same quality as it is expected from an MTA provider.

6.1.5.3. Summary of the Isolation Methods Evaluation

Several experiments in different system environments were executed, in order to evaluate the perfor-

mance isolation methods. Some experiments rather focus on the internal behavior and functionality

of the novel methods. These experiment results were primarily part of Section 4.5. The experiment

results of an overall comparison were presented in this chapter. For evaluating the isolation capa-

bilities, the MTTPC-W was used and the metrics from Chapter 3 were applied. To understand the

characteristics of the methods, a representative MTA was emulated, in an environment motivated

by a real world example. The results of these measurements were extensively discussed. Within

the summary section, the results from all relevant experiments were collected and interpreted to

find a ranking of the methods. Furthermore, it discussed the validity and representativeness of the

experiments.

All novel methods, developed in the thesis, can increase performance isolation. They do it by

either reflecting the resources used by a tenant, or using an analytical model together with a utility

function. These methods outperform simple black list or round robin methods by lower oscillation

or a more efficient sharing of the resources. The latter is required to enable over-commitment.

However, in case a very reliable isolation is required, a round robin based request scheduling is

still a relevant option. Moreover, it was shown that the analytic description, used in the model

185

6. Evaluation

based isolation method, provides good predictions of the performance. Furthermore, the resource

demand estimation approach, based on the service demand law, can provide appropriate estimations

for MTAs.

A significant difference between the methods was visible with respect to the isolation capabilities,

efficiency of sharing the system, and maintaining a performance with low oscillation and stable

values.

It is possible to cluster the isolation methods in two large groups. Those using admission con-

trols, where the policies directly influence the admission of a tenants request (i.e., black list, model

based, closed control loop), and those which do not have a policy at all, or providing information

used within the strategy, to dynamically adjust the priority (i.e., resource isolation, round robin).

The latter have the lowest oscillation, while the model based, closed control loop and black list

behave in ascending order. However, the first group is able to share the system more efficient, and

thus enables over-commitment, considering application level guarantees. Both approaches from the

second group do not provide this, or only if one tenant does not have any request in the queue. The

resource isolation and round robin do not face the problem of settling times. However, this can

hardly be seen as an advantage, since this means they do not adapt at all. They outperform the other

methods concerning the isolation. More details can be found in the previous Section 6.1.5.1.

It is worth to compare these results with the experiments from Section 3.4.2, which evaluated

the performance isolation capabilities of the hypervisor Xen. In the experiments of the admission

control based isolation, the database was deployed separately. Due to the multi-tenancy, the tenants

were able to dynamically use resources not used by other tenants. The most similar Xen deploy-

ment to be compared with, is the unpinned scenario where the database was deployed in a separate

domain. In this scenario, the achieved isolation was Iavg ≈ 4.20. The methods described in this the-

sis were able to outperform this. Using the reference workloads observed performance, the method

with the lowest isolation achieved an Iavg≈ 1.13 (cf. Section 6.4). It is the same case for Ibase≈ 0.36

vs. Ibase ≈ 0.65 and similarly for the other metrics. As a matter of fairness, however, it has to be

mentioned that in case of the hypervisor, the workload of all abiding tenants had already been close

to their maximum. In the multi-tenancy scenario, one tenant was far below its maximum. Since the

metrics used for comparison reflect the measured performance quality at the reference workload,

this should not weigh much.

6.2. Measurement of Isolation

In Chapter 3, metrics and tools to quantify the performance isolation of MTA are introduced. These

foundations laid the ground for the measurements in Section 6.1. They are essential for the evalua-

tion of the methods and for MTA stakeholders. The contributions for the metrics and measurement

were already validated in Section 3.4.

This chapter summarizes the results, and combines them with insights gained in Section 6.1.

At first, a complete list of relevant goals, derived questions and metrics is provided. A separate

section links the metrics to the corresponding experiments from the previous sections and outlines

186

6.2. Measurement of Isolation

the relevant aspects. Finally, this section is concluded. The previous validations did not outline the

experiment goals with respect to the overall thesis goals. This is done here and set in the correct

context. The oscillation metric and the settling time are not investigated in deep detail, since similar

metrics were already described in other contexts. Nevertheless, at the end a brief summary about

their applicability in the field of performance isolation is presented.

6.2.1. Goal, Questions and Metrics

Goal (G4) aims at evaluating the isolation metrics capability to answer the questions they were

defined for in Section 3.1.1. Thus the questions for the evaluation are listed below.

Q4.1 Can the metrics describe isolation in relation to a perfect isolated system and a non-isolated

system?

M4.1.1 Amount of scenarios a metric is applied to describe a system in relation to an isolated

or non-isolated system.

Q4.2 Can the metrics express the impact one tenant has onto another?

M4.2.1 Prediction error of the performance observed by the abiding tenants.

M4.2.2 Amount of scenarios the metric is applied, to describe the impact.

Q4.3 Can the metrics be used to compare various isolation methods?

M4.3.1 The metric corresponds to the isolation of a system.

M4.3.2 Amount of scenarios the metrics is applied, to compare systems.

Since the number of scenarios, where a metric was applied to, is investigated, the applicability of

the metrics is reflected. It is also worth to investigate the soft properties a metric should fulfill (G5)

(cf. Section 3.1.1). These were defined in accordance with [Hoecker et al., 1984]. Based on that,

the subsequent listed questions can be derived.

Q5.1 Are the metrics objective?

M5.1.1 Metrics do not depend on a subjective assessment.

Q5.2 Is the metric reliable?

M5.2.1 Metric provides the same results when measured multiple times.

M5.2.2 Metric provides a stable value for different disruptive loads.

Q5.3 Is the usage of the metrics economically?

M5.3.1 It is possible to derive the metric automated.

M5.3.2 Amount of domains in which the metrics can be applied.

M5.3.3 Time required to obtain a value for the metric.

187

6. Evaluation

Q5.3 Is the metric useful?

M5.3.1 Amount of cases, where the metric provided useful insights.

The sixth evaluation goal (G6) aims at evaluating the applicability of the tools for automated mea-

surement (cf. Section 3.2) and the developed benchmark application (MTTPC-W) (cf. Section 3.3).

By doing so, it is also shown that the metrics calculation can be independent of a concrete scenario.

It also shows, that the knowledge on how to calculate the metrics can be encapsulated, to make the

metrics available for users without detailed knowledge of them.

Q6.1 Is the measurement framework applicable?

M6.1.1 Amount of scenarios, it is used.

M6.1.2 Efforts to adapt it to a new scenario.

Q6.2 Does the MTTPC-W provide the basis to gather system’s behavior insights?

M6.2.1 Amount of scenarios, where it is used to successfully evaluate a system’s behavior.

6.2.2. Reflection on Experiments and Results

This section briefly summarizes the results by answering the various questions. For more details

and insights see Chapter 3.

6.2.2.1. Quantifying Isolation

The metrics were applied in a case study, evaluating the performance isolation capabilities of a

hypervisor (Section 3.4.2), for three different deployments. They were applied in a simulation

based environment with four different isolation mechanisms (Section 3.4.1) and in a comparison of

six performance isolation methods. In accordance with M4.1.1, the metrics based on the workload

ratios were successfully used in all scenarios. Together with the design rationales of the metric, this

shows that they can be used to describe a system’s isolation in relation to a non-isolated and isolated

system (Q4.1).

All these scenarios also applied the metrics based on the QoS impact and thus answer M4.2.2.

When the Iavg for a ∆W of 1.1 is applied to predict the response times of the abiding tenants in the

experiments from Section 6.1, an overall median error of 24.2% is observed (M4.2.1). The accuracy

highly depends on the scenario observed. Figure 6.17 shows the quartiles of the prediction errors

for different scenarios. Although in case of the non-isolated system and the black list, the median

error is very high, and for the other approaches respectively low, it is convincing that this metric

allows to indicate the potential impact. Thus the metrics can express the impact one tenant has onto

another (Q4.2). The isolation value for a concrete ∆W represents the impact even more accurate.

As outlined by the experiments in Section 3.4.3.4, the metrics are able to rank existing systems in

correct order, according to their isolation capabilities (M4.3.1). Additionally, both case studies and

the experiments within the evaluation chapter successfully applied the metrics, to compare various

188

6.2. Measurement of Isolation

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Round Robin Resource Isolation Control Loop Black List Model Non-Isolated

R
e
la

ti
ve

P
re

d
ic

ti
o
n

E
rr

o
r

Figure 6.17.: Prediction accuracy of the metrics.

isolation methods, in different system environments (M4.3.2). Consequently, the metrics can be

used to compare various isolation methods (Q4.3).

Iend was seldom used in the scenarios considered, since the observed isolation was rather good.

Therefore, the use of Iend seems to be limited to scenarios with low isolation.

6.2.2.2. Applicability of the Metrics

The isolation metrics have a clear definition, but how the metric is applied to a particular situation

can influence the results. For example, the selected reference workload or the step width to adjust

the load have a significant influence. Nevertheless, this is true for almost all performance related

metrics. The isolation metrics can be automatically calculated, as shown by the solution developed

in Section 3.2. This means, that the metrics are not influenced by a human observer, and thus they

are objective (Q5.1).

If the measurement process receives exactly the same results from the SUT in two different ex-

periment series, the metrics derived will provide the same isolation value (M5.2.1). However, as

the measurement of performance is usually subject to random processes, it is unlikely to observe

exactly the same results two times. It can be observed, that the isolation metrics tend to show a

stronger change in value for low disruptive loads. This can be explained by the fact that minor,

possibly even random, changes in the observed QoS have a stronger influence at the beginning.

This is especially true for the metrics not considering an average value, consisting of measurements

at different ∆W . For low disruptive loads, the integral based metrics have a very small difference

between the two reference bounds. This makes these approaches less robust concerning changes

in the underling performance metrics. However, once the disruptive load exceeded a certain value,

the isolation value becomes more steady (M5.2.2). Overall, the metric can be seen as reliable and

reflecting reality with regard to Q5.2.

In the context of this thesis, the metrics were already successfully applied in a simulated envi-

ronment, a hypervisor virtualized system and for a benchmark application (M5.3.2). The metrics

189

6. Evaluation

were used in these scenarios by using the measurement framework (cf. Section 3.2). This shows,

that the knowledge required to compute the metrics can be encapsulated. The framework automati-

cally adapts the workload, and thus reduces human efforts. Furthermore, it is based on the SoPeCo,

and leverage its adapter mechanism. This allows to technically easily apply the metrics to other

domains (M5.3.1). The capability to easily integrate other technical environments into the SoPeCo

was already demonstrated by Westermann (e.g., [Westermann, 2013]).

The time it takes to calculate the metrics, depends on the number of experiments, and the time

required to obtain a reliable result for each experiment. The latter one depends on the SUT, the first

one depends on the experiment series configuration. For the workload ratio based metrics, a simple

approach requires O(n ·m) load configuration in the worst case. Here n refers to the maximum

of steps for the increasing load and m refers to the maximum steps possible to adjust the abiding

load. Obviously, one can improve this by using a binary search to adjust the abiding load, resulting

in O(n · log(m)). The IQoS based metric requires only one optional experiment at the reference

workload. If the influence should be calculated on an artificially defined guarantee, no additional

measurement is required. Thus O(1) is possible. If an average value along a range of disruptive

loads is investigated, the complexity is O(n). Additionally, it can be necessary to find a good

reference workload, which is a task not directly related to the metrics. Although the workload ratio

based metrics may require a high number of experiments (M5.3.3), the opportunity to automate the

measurement, and the wide field of applicability makes these metrics economically usable (Q5.3).

The metrics were used as a basis to compare the performance isolation methods developed. Fur-

ther usage scenarios investigated were based on the hypervisor Xen and a simulated MTA. In all

these contexts they provided useful insights (M5.3.1/Q5.3)

6.2.2.3. Technical Contributions Concerning the Metrics

The rather technical contributions directly related to the metrics make them even more feasible

for an MTA provider. The measurement framework was applied in almost all cases of the thesis,

where the isolation was considered (M6.1.1). Thereby, the adaption for a concrete scenario was of

low overhead. Only the technical adapter for the load driver and monitors had to be implemented.

For sure, the efforts are much lower than adapting the load profiles manually (M6.1.2). Thus, the

measurement framework is applicable (Q6.1) and it is shown that the knowledge to measure the

isolation can be encapsulated.

The MTTPC-W was applied to evaluate the potential performance related benefits of a multi-

tenant system in a related paper [Krebs et al., 2013]. It was also used in this chapter, to compare

various isolation methods (cf. Section 6.1.2) and in several other experiments (cf. Section 4.5) focus-

ing on isolation method specific aspects (M6.2.1). Consequently, the MTTPC-W already provided

several times the basis to gather insights into a system’s behavior (Q6.2).

190

6.3. Performance Isolated Document Service

6.2.3. Concluding the Isolation Measurement Validation

This section presented the summary of all questions concerning the isolation metrics discussed in

this thesis. Thereby, it was shown, how the metrics and the technical contributions were successfully

applied. This way, the experiments described in the thesis, can be seen as case study showing the

effectiveness and feasibility of the contributions made.

In summary, the metrics can be used to describe a system’s isolation in relation to an isolated

and non-isolated system. This expresses how much potential they have to improve. They allow to

investigate the impact a disruptive tenant has, and they can be used to compare various solutions.

The metrics are objective, reliable, economical and useful. The rather technical contributions show,

how the metrics can be used by an automated approach. Only Iend lacks in practical applicability if

a good isolation is provided.

6.3. Performance Isolated Document Service

A “...case study is an empirical method aimed at investigating contemporary phenomena in their

context.” [Runeson et al., 2012]. In the present case study, the context is defined by the SAP HANA

Cloud Document Service and the investigated phenomena are the contributions to enable a devel-

oper, to realize performance isolated applications.

The SAP HANA Cloud Document Service provides the opportunity, for applications deployed

on the HCP, to persist unstructured documents (cf. Section 1.2). At first, the goals of the case study

are outlined. Then a brief overview of the service is provided, followed by a problem statement.

After that, the environmental setup used for the case study is explained. In the further course of

the section, the decision process from Section 5.2.3 is used to identify the most suitable isolation

method. This method was realized and validated against the previously identified problem scenario.

The technical details and performance related observations presented within this case study are

based on a test environment.

6.3.1. Goal and Questions

In this section, the goals of the case study are outlined. It has to be differentiated between the

technical goal, which is to performance isolate the Document Service, and the goals related to the

phenomena under investigation. The primary focus of the second is on the contributions concerning

Chapter 5. The isolation methods were already validated by the previous sections of this chapter.

The first case study’s goal CG1 is to show the relevance of the architectural concerns. Further-

more, it should be investigated, if the process to select a certain isolation method can be applied on

a real world application, which is the case study’s goal CG2. Finally, the applicability of the archi-

tecture and the selected method is CG3. Due to the goals and questions characteristics, a separation

into metrics seems not feasible. The questions listed subsequently are answered directly later in this

section.

CQ1.1 Do the identified architectural concerns appear in the Document Service?

191

6. Evaluation

CQ2.1 Is it possible to initialize AHP with appropriate data, to compare the isolation methods?

CQ2.2 Can a developer apply the defined process, to find a suitable isolation method?

CQ3.1 Can the architecture and the selected isolation method be applied to the Document Service?

CQ3.2 Does the implemented isolation mechanism increase the isolation for the given problem

scenario?

6.3.2. SAP HANA Cloud Document Service

The SAP HANA Cloud Document Service is a content repository for binary objects. This data can

be structured or unstructured. An application served by the HCP accesses, the Document Service

via a client library, provided by the runtime container. However, the Document Service provides

a standard protocol for the communication, also used by the library. This protocol is the Content

Management Interoperability Services (CMIS) [OASIS, 2012] standard from OASIS.

6.3.2.1. Technical Details

Figure 6.18 depicts a simplified view on the system under investigation. Several accounts host

different applications (cf. Section 1.2). Each Application is used by one or several Tenants. The

load onto the Document Service is load balanced by a simple round robin scheduling. The nodes of

the actual service require a Relational Database system, storing meta information for documents. A

separate Storage contains the documents, whereby the same storage system is shared among tenants.

Account 2Account 1

Application 1 Application 2

Tenant

1

Tenant

2

Tenant

1

Tenant

3

Application 3

Tenant 3

Document

Service

Instance 1 Instance n

...

Relational

DB
Storage

Figure 6.18.: Simplified logical view onto the Document Service.

Figure 6.19 depicts an abstracted view onto the dynamic behavior. Usually, when a user of a

tenant calls a function of the application, the application first opens a session to communicate with

the Document Service. Then it browses some metadata, such as traversing a folder structure, before

192

6.3. Performance Isolated Document Service

it uploads, deletes or downloads a document. This happens in a sequential order for each processed

user request. Such sessions are bound to one particular node of the Document Service but load

balanced when initiated. This binding does not rely on the application, nor the account, and not

on the tenant. Thus, there is a session stickiness per users application call, but no affinity on any

other entity. This may lead to unbalanced load scenarios. Furthermore, there is a thinking delay

between consecutive application calls, but usually a negligible delay between Document Service

calls, within the processing of one user request. Thus, the requests arrive in bulks. It is worth to

emphasize that this reflects a closed workload concerning the requests arriving at the Document

Service. The request’s originating tenant is encoded in each HTTP request’s header, sent to the

Document Service.

Loop

:User :Application :DocumentService

application call

service callLoop

think

Sticky session

for this

application call

Figure 6.19.: Call sequence of the Document Service.

Additionally, the account information and application related identifiers are embedded.

6.3.2.2. Problem Statement

From the Document Service’s perspective, several potential performance isolation objectives appear.

An isolation method could focus on accounts, the applications or the tenants. However, isolating

accounts or applications would not lead to performance isolation among tenants. Assume a very

document centric application, its primary concern would be to get the Document Service calls per-

formance isolated. In the context of the case study, the Document Service aims at maintaining

performance isolated on the tenants level. This supports a document centric application the most.

An example of a document centric application is a file hosting application. The following sce-

nario for such an application is considered in the case study. Users browse their folders and upload

new content once a while, but usually download single files shared with other users. From time to

193

6. Evaluation

time, users download a vast amount of data, e.g., their whole repository or a folder containing many

files. In such a scenario, the file hosting application opens one session, traverses the folders and

downloads one file after the other from the Document Service. The service calls are independent

of previous results in this use case. Therefore, parallelism is used to increase the download speed

within one session. However, the maximum number of threads used is limited by the application. It

is easily imaginable that in these cases, the load onto the Document Service node, serving this par-

ticular user’s requests, suddenly increases. Consequently, a negative impact upon the other tenants

appears.

Figure 6.20 depicts an example from the test environment, where a download of a large amount

of files was made. The average response times are displayed as normalized values. They were

normalized by the arithmetic mean between 0s to 650s of the depicted observation time. Around

650s the download started, and around 1750s it finishes. This is clearly visible by the significantly

increasing response times of the Document Services respective node.

0

1

2

3

4

5

6

7

0 200 400 600 800 1000 1200 1400 1600 1800

N
o
rm

a
liz

e
d

R
e
s
p
o
n
s
e

T
im

e

Time [s]

Figure 6.20.: Increasing response times in a non-isolated Document Service.

6.3.3. System Setup and Load

This section introduces the system setup of the case study, and how the load was modeled to ensure

a realistic load behavior.

6.3.3.1. Landscape

Figure 6.21 depicts the deployment of the Document Service, including the PIF.

In the experiments conducted, the two nodes of the Document Service application instance, are

hosted on two separated servers. Both nodes run within an LJS instance, in a virtual environment.

Storage 1 is used to store the documents and is mounted via Network File System (NFS). The

MongoDB is hosted on a separate server. The Database Management System (DBMS) is running in

a virtual environment, referencing a storage system via NFS. The Load Servlets emulates, together

with JMeter, realistic call scenarios. The load servlets represent a PaaS hosted application using

the Document Service. However, to have more flexibility in generating various load profiles, the

194

6.3. Performance Isolated Document Service

load servlets provide only one atomic operation per call. Examples of atomic operations are: The

download of one single document, loading metadata from one object, or loading a list of all elements

in a folder. Thus, the JMeter model creates the call sequences to represent an application and the

users. The only missing component in this scenario is the load balancer. However, since the load

balancer realizes a round robin for each session, it does not reflect the actual load of the servers.

Therefore, each of the two load servlet applications is bound to exactly one Document Service node.

The Performance Isolation Framework core is connected with the Document Services Isola-

tion Valve and its Application Resource Monitor, which collects the required information. The

valve [Craig McClanahan, 2015] realizes the execution point, using a particular strategy for the

request scheduling.

ControllNServer LoadNDriver

StorageN 2

PerformanceNIsolationNFramework

DocumentNServiceNHost

DatabaseNHost

XEN

ApplicationNVM

LJS

DocumentN

ServiceNApp

IsolationNValve

XEN

ApplicationNVM

ApplicationNResourceNMonitor

JMeter

Files

MongoDB

1 Gbit/s

ApplicationNHost

XEN

ApplicationNVM

LJS

LoadNServlets

StorageN 1

Files

1 Gbit/s

1 Gbit/s

1 Gbit/s

1 Gbit/s 1 Gbit/s

2 2

2

1

1

1

1 1

Figure 6.21.: Simplified view onto the deployed test landscape.

6.3.3.2. Representative Workload Generation

Service Calls and Files In the Appendix A.1, a limited view on an analysis of the state de-

pendent call probability for a particular atomic Document Service call is presented as Markovian

model (cf. Section 2.1.2.1). The data is based on monitored system traces. The data reflect the call

behavior within one bulk, arriving the Document Service. The first table in Appendix A.1 omits

negligibly seldom calls and was chosen such, that it includes the 15 most often called transitions.

195

6. Evaluation

The second table displays all the services, with an overall call probability of more than 5% of the

cases. The second table, was used to create the JMeter script. Moreover, the average number of

requests within such a bulk varies. This was modeled by an additional transition going into a sleep

state, waiting until the new bulk starts.

10000 files with sizes between 1KiB and 1MiB plus 350 files with sizes between 1MiB and 30

MiB and 1000 folders were created for each tenant.

Time Behavior Another important aspect is the timing of calls. Within a bulk, the next call is

immediately sent after the response arrived. However, the time span between two bulks needs some

additional investigations. In Appendix A.2, the observed probability density of think time between

two bulks is shown. Some clear outliers were removed. Moreover, a prediction function assuming

a Poisson process is added to the diagram. The prediction error for each interval was weighted with

the number of requests sent in this interval. In total, a request is predicted with an error of 57%.

This is due to the long tail in the observations.

Download Behavior Considering the problem statement, the disruptive tenant starts a bulk

download. This downloads files without pausing or sending other requests in significant amount

in between. Moreover, this task is parallelized by starting several threads. However, the number of

additional threads started for the download, is still negligible low compared to the overall number

of end users using the Document Service. In relation to the overall number of users per node, the

downloading user’s number of threads is below 0.5%.

6.3.4. Application of the Selection Process

This section applies the selection process defined in Section 5.2, to find a suitable isolation method

for the SUT. For the application of AHP, the tool Open Decision Maker [Bender et al., 2013] was

used.

6.3.4.1. Preparation

Five isolation methods were evaluated in detail in Section 6.1, and additionally a method based

on artificial delay in Section 3.4.1.2. Further potential isolation methods were classified, but not

presented in detail in Chapter 5. As foundation for the criteria comparison, the measurement results

of this thesis were considered. For the non-implemented methods, the behavior was estimated by

a conceptual analysis based on Section 5.2.1. For example, a simulation model based approach

will clearly be able to solve the oscillation problem as the analytical model does. However, it will

for sure have longer settling times, will have much higher implementation efforts and will be more

complicated to maintain in case of a white box model.

Some of the identified criteria from Section 5.2.3.1 are difficult to predict. In particular, this

includes, reliability, maintainability, development and operating costs. An adequate estimation

method of these aspects, for the isolation methods, was not considered to be in the scope the thesis.

196

6.3. Performance Isolated Document Service

These questions are a research topic in themselves. These aspects were estimated by two, and part

wise by three persons guesses. All had a detailed understanding of the isolation methods conducted

and had been working on this particular topic for at least 7 months. The experts were graduated, or

about to graduate in the field of computer science. In general, one can consider approaches requir-

ing more information or the core parts of the PIF to be more complex. Thus, they are less reliable,

have higher development costs and higher operational costs.

Due to the large extent of comparisons, an excerpt of the alternative comparison (cf. Section 5.2)

is provided in tabular form in Appendix B.

6.3.4.2. Selecting an Isolation Method

The data from the previous step was used as a foundation for selecting a concrete isolation method.

Members of the Document Service’s development team provided a ranking of the criteria impor-

tance. Based on their weighting, the ranking in Table 6.5 results.

Method Value

Input Neutral (Round Robin) 22.49%.

Input Aware (Black List) 20.78%.

Resource Exploiting (Measurement) 11.16%.

Resource Isolating (Measurement) 10.95%.

Model Based (Analytical) 10.54%.

Guarantee & Quota 9.92%.

Resource Isolating (Estimation) 5.25%.

Resource Exploiting (Estimation) 5.24%.

Model Based (Simulation) 3.67%.

Table 6.5.: Ranking of isolation methods for case study.

Applying the rules from Section 5.2.3.2, most of the solutions had to be discarded for the Docu-

ment Service.

The Document Service has variable resource demands per request, depending on whether it re-

quests meta information or downloads a file. The latter one also varies in the file size. Furthermore,

when the considered problem scenario appears, the average demand for a request of the disruptive

tenant is significantly higher, since the proportion of requests downloading a file increases. For the

system considered in the case study, the Document Services Application CPU was identified as the

bottleneck. In case of a bandwidth issue, the resource demand would have been directly measurable

by the data transferred by a request. However, in this case it is not possible. Therefore, the mea-

surement based approaches are not of relevance. Model based and guarantee based methods have

to be discarded, since no service level guarantee is provided by the Document Service, and they do

not reflect resource demands.

197

6. Evaluation

For the particular case study system, the CPU demand correlates with the size of data trans-

ferred. Thus, the average demand was calculated based on this information. Moreover, it was easily

possible to receive the according monitoring information on short time intervals. Consequently,

a resource isolation method based on resource demand estimations was selected for the outlined

scenario.

6.3.5. Experiments

In this section, the experiment results are outlined. Additionally, to the resource isolation method, a

round robin based isolation method was implemented for comparison. Additionally, a scenario was

assumed where one tenant accesses files of larger sizes, compared to the other tenants. Thus, the

goal G1 was to evaluate the performance isolation of both methods and G2 to evaluate, if the rules

defined are helpful. These goals allow to derive the following questions.

1. What is the influence of the disruptive tenant upon the observed response times of the other

tenants?

2. How much is the difference of the observed response times between the two isolation meth-

ods?

6.3.5.1. Results

Figure 6.22 exemplary shows the results for the round robin based isolation method. It shows the

average response time in a sliding window of 300 requests. For the three abiding tenants, the average

value of all three is depicted. At 550s the disruptive tenant started its download. From this point in

time on, the disruptive tenant had higher response times as the abiding. Due to the high noise, it is

hard to identify clear patterns.

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

100 300 500 700 900 1100 1300

N
o
rm

a
liz

e
d

R
e
s
p
o
n
s
e

T
im

e

Time [s]

Abiding Tenants

Disruptive Tenant

Figure 6.22.: Response times for a round robin isolated Document Service.

Therefore, Figure 6.23 depicts a comparison of the observed response times for the abiding and

disruptive tenants in a box plot. For the download scenario in Figure 6.23a and the scenario with

different file sizes in Figure 6.23b. All figures show the response times, normalized by the mean of

198

6.3. Performance Isolated Document Service

0

1

2

3

4

5

6

7

8

9

Reference Non-Isol.
Abiding

Non-Isol.
Disruptive

Round R.
Abiding

Round R.
Disruptive

Res. Isol.
Abiding

Res. Isol.
Disruptive

N
o
rm

a
liz

e
d

R
e
s
p
o
n
s
e

T
im

e

(a) Downloading a large set of files.

0

5

10

15

20

25

30

35

40

Reference Non-Isol.
Abiding

Non-Isol.
Disruptive

Round R.
Abiding

Round R.
Disruptive

Res. Isol.
Abiding

Res. Isol.
Disruptive

N
o
rm

a
liz

e
d

R
e
s
p
o
n
s
e

T
im

e

(b) Accessing different sized files.

Figure 6.23.: Relative response times of abiding and disruptive tenants in different isolation scenarios.

the response times in a non-isolated system, without disruptive load. The upper and lower whisker

show the 95% and 5% percentile to filter outliers.

In both scenarios, the non-isolated system has for both tenants the same response times. The

round robin provides a certain isolation in the downloading use case, which become visible when

comparing the median of the abiding tenants with the disruptive tenants’ median. This is primarily

due to the increasing request arrival rate, caused by the parallelism without think times. In the

scenario with different file sizes, but no change in the request arrival rate, the difference is negligible.

In Plot 6.23b the round robin scenario provides a slightly better performance as the non-isolated

case. However, as the differences between the abiding and disruptive tenant is the same for both

methods, the root cause is a general performance fluctuation of the system. Only the resource

isolation based method is able to guarantee a satisfying performance isolation. In both scenarios,

the abiding tenants’ performance is close to the reference workload performance, and the disruptive

tenants’ response times are convincingly higher.

There was no influence of the disruptive tenant upon the performance on other nodes visible.

Therefore, the results from the other node are not presented.

6.3.6. Related Insights

This section briefly discusses insights related to the case study and relevant to answer the questions

related to it.

6.3.7. Application of the Architecture

For the case study, the PIF was applied. The existing framework, used in the previous experiments,

was modified by a minor modification concerning the communication between the execution point

and the core parts of the framework. A second modification belonged to the monitoring, which had

to collect the size of the files transferred. This was not foreseen as a potential parameter of interest.

The resource isolation strategy from the previous experiments was reused without modifications.

The resource demand estimation component was reimplemented, to support the new estimation

method based on transferred file size. Despite the minor modifications in the framework’s compo-

nents, the overall architecture was not modified for this scenario.

199

6. Evaluation

6.3.7.1. Usefulness of Selection Method

It is worth thinking about the usefulness of the selection approach, because of two reasons. First, the

AHP approach might always result in the same ranking, and can therefore be skipped. Second, the

rules to be applied might always leave only one method, which then has to be used independently

from the AHP selection.

Adjusting the weighting of the criteria such that efficiency gains more importance, leads to a

completely different result, preferring the model based approach, followed by the guarantee & quota

based methods. Changing any other criteria weight, also results in rank changes. Usually the input

neutral methods outperform the others. However, changing ranks between the other methods are

observed more often. The best ranked method is not always applicable. Following this insight, rank

changes are always of relevance. This implies that AHP based ranking is important.

The rules strike out particular options. However, it does not mean that the process always ends up

with just one solution. Even more interesting, if a non-supported method seems much better than

the first directly applicable, it can be an option to modify the system, or to adapt the requirements.

Assume a system, where the resource demand aware methods receive much better ranking than the

guarantee & quota based methods and additionally, SLAs are defined and resource demands do not

vary much among tenants. In this case, an adjustment of the requirements for the isolation methods

can be the solution. The provider can still provide SLAs for the tenant, but he may use a non-SLA

aware resource isolation, because of its benefits. Another example is a situation where, based on the

rules, the analytical model and the guarantee & quota based methods are applicable. This happens

easily if resource demands can be ignored. In this case an additional ranking is helpful.

It is worth mentioning, that the rules are defined on the level of the classes. If the alternatives

of various concrete implementations within one class exist, a ranking method becomes even more

important.

6.3.8. Concluding the Document Service Case Study

In this section, a brief summary and critical discussion of the case study is presented.

6.3.8.1. Critical Discussion

Workload Model A trade off between efforts, representativeness, a feasible degree of abstraction

and legal aspects have to be considered. Consequently, the workload model did not consider all

transitions and transactions observed in the traces. The modeled timing behavior differed from the

observations made in the productive landscape. The file sizes, as well as their meta-information,

was not based on the productive system environment, since access to this information is limited.

The data selected, to create the workload model and the transition probabilities covered 88% of

all transactions running on the service. The most significant lacking are the upload operation and

the query operations as defined by CMIS. However, the appearance of an upload operation was

negligible, in the traces analyzed. The query operation might cause long running operations at the

200

6.3. Performance Isolated Document Service

Document Service. However, modeling representative query operations consumes a vast amount

of time. Furthermore, it was assumed, that their impact upon the performance of the bottleneck

resource is small compared to a download activity. One indicator is that queries may have many

round trips to the database and waiting for its response. At this time, the application CPU, and thus

the bottleneck, is not utilized.

Another point to discuss is that only four tenants were considered. In a productive environment,

much more tenants can be expected. The system used in the case study allows to estimate the

demands very accurate, even for a high number of tenants. Additionally, although a high number

of tenants can be registered in a system, usually only few of them produce significant load at once.

It is convincing, that the selected isolation method will also be able to deal with higher amounts of

tenants.

Distributed approach The Document Service was provided by two nodes in the present exam-

ple. Although different utilizations of the nodes can be expected, the solution ensures performance

isolation on an individual node basis only. Section 5.3.1 outlined, that this can lead to disadvantages

concerning the overall efficient distribution of weights. This is true in this case as well. However,

in the following it will be outlined why this weighs not much in the given scenario, where resources

are isolated.

Consider a situation with two nodes A and B that provide the service with a round robin based load

balancing for each session. In case one user, of one tenant starts to download a large amount of data,

the load increases on node A. A distributed isolation method might now shift resources from node B

to A, if the disruptive tenant does not use its entirely guaranteed resources on node B. This happens

only, if the disruptive tenants load is low, except that load created by one single downloading user.

Consequently, it would provide the other tenants more share on node B, by removing resources of

them on node A. However, since the global load of the tenant with a disruptive download has to be

rather low, the additional resource might not be helpful. The reason is, that the maximum number

of threads for the downloading user is limited, and therefore additional resources cannot be utilized.

Furthermore, since the load balancer is not aware of the modified node guarantees. It would not

adapt the balancing and thus the modifications cannot be utilized. In the case where one tenant

access larger files, the requests are distributed among the nodes and thus a local optimization is

sufficient.

Note that this is not the case, if the number of users significantly changes in a multi-tenant system

with sticky, long running user sessions.

6.3.8.2. Summary

In this section, a case study based on the HCP was presented. First, the section outlined the relevant

goals of the case study. After that, the technical details of the Document Service were presented and

the workload was characterized. Furthermore, a realistic problem statement was explained. Based

on this knowledge, the selection process for a performance isolation method presented in Section 5.2

201

6. Evaluation

was applied and a resource isolation method was suggested. For comparative reasons, a round

robin based isolation method was implemented. Both methods were applied, using the insights,

architecture and the PIF discussed in Section 5.3. Finally, the measurements clearly showed that the

isolation method selected by the process, provides a very good performance isolation, while round

robin fails in providing sufficient isolation.

The relevance of the architectural concerns, especially referring to session stickiness and affin-

ity, play a major role in the case study and the previous discussion helped to identify important

aspects related to performance isolation. Customer based customizing did not appear. However, the

different sized data volumes reflect realistic problem. Furthermore, the Document Service uses a

shared table schema (CQ1.1). It was possible to initialize the AHP process, with useful information

(CQ2.1). Furthermore, the results were used by the development team of the Document Service

to find a proper isolation method for their scenario (CQ2.2). Two isolation methods were realized,

using the reference architecture from Section 5.3. The isolation method selected by the AHP, and

the proposed process achieved a very good isolation in the case study (CQ3.1, CQ3.2). The round

robin isolation method selected for comparison failed to provide sufficient isolation (CQ2.2).

6.4. Concluding the Overall Evaluation Results

This chapter was divided into three sections. Each summarized the evaluation results and conducted

a critical discussion. In this section, a brief overall summary and a critical discussion on an overall

level is conducted. For the evaluation details, please refer to the corresponding subsection.

6.4.1. Critical Discussion

Amount of Environments In most of the experiments, only the LJS was conducted as the run-

time container for the measurements and proof of concepts. However, the LJS is used in a public

available, productive cloud offering and thus it is a representative runtime container. Furthermore,

it was deployed in a variety of system setups. In virtual an non-virtual environments, with separated

or integrated databases, and separated storage or local storage. Additionally, the general applica-

bility of the performance isolation framework was also under investigation in a simulation based

environment. Although it was not part of the extensively discussed environments within this thesis,

further related experiments were made. Thereby, a standard tomcat server and an execution point

implementation as part of a stand alone proxy [Krebs et al., 2014a], completely decoupled from any

runtime container dependent technology, were implemented. These implementations also provided

a sufficient isolation.

Valve as Execution Point In the experiments presented in this chapter, only valve based execu-

tion points were considered (cf. [Craig McClanahan, 2015]). However, as in the previous paragraph

mentioned, other implementations based on a stand alone proxy implementation were also used

successfully. Furthermore, similar concepts to filter incoming requests are also known from other

202

6.4. Concluding the Overall Evaluation Results

containers. Overall, this is a technical issue without impact upon the general applicability of the

contributions presented. Another issue not discussed so far is that using a valve like concept may

result in a high number of open sessions, since for each queued request a session is kept open. This

may lead to situations where performance isolation becomes violated, due to an insufficient number

of connections on the lower layers. However, in the experiments conducted with a realistic configu-

ration, this specific limit was not reached. Additionally, adding an upper limit for the queue length

and rejecting further arriving requests is only a minor modification.

Amount of Case Studies Only one case study was conducted to evaluate the contributions

from Chapter 5, since realistic case studies are hard to find and time consuming to setup. How-

ever, the case study validated almost all aspects from Chapter 5, by walking through the whole

process identified in the motivation (cf. Section 1.2). The single contributions of the Chapter 5,

e.g., architecture and the resulting framework, were also applied in other contexts. This shows the

applicability in various contexts. Moreover, it was possible to easily integrate the isolation methods

into the existing framework. Furthermore, the classification, informational requirements, architec-

tural concerns and the analysis of relevant requirements were derived by valid arguments and a

conceptual analysis of the existing methods. An empirical study on applying AHP is not necessary.

The method is widely accepted and thus already proved to support decision finding processes. That

AHP is an appropriate solution to select performance isolation methods, can be concluded from the

analysis of requirements in Section 5.2.3.

6.4.2. Summary

This chapter validated the contributions of the thesis in numerous experiments and case studies.

Overall, functional validations and case studies were provided in Chapter 4 and Chapter 3. More-

over, this chapter provided comparative measurements of five isolation methods, with regard to

isolation, settling times, oscillation and overheads. Furthermore, by applying the contributions

from Chapter 3, the metrics were again validated against their applicability and usefulness. More-

over, a case study based on the SAP Hana Cloud Document Service was conducted to evaluate the

contributions from Chapter 5. The main findings of all these aspects are outlined in the following:

1. A Request based admission control, with a fast reacting and asynchronously updated work-

conserving scheduler can increase performance isolation.

2. There are significant differences in the various quality aspects of isolation methods from dif-

ferent classes.

3. The two novel performance isolation methods, were are able to provide performance isolation

to a certain degree. Furthermore, they outperform comparable approaches by either the iso-

lation quality, in case of variable resource demands, by lower oscillation or efficiency when

over-commitment is used.

203

6. Evaluation

4. In general, the overhead onto the application is negligible for all methods. Overall, the meth-

ods provide a good scalability.

5. The analyzed performance isolation methods can be clustered in two groups. Those where the

policies directly influence the admission of a tenant’s request, and those which do not have a

policy at all, or using the information internally, to adjust the priorities based on input data.

The latter have the lowest oscillation, and the first group is able to share the system more effi-

cient, enabling over-commitment, while reflecting application level performance guarantees.

6. Results from experiments utilizing hypervisors can be compared with the results from the

proposed request based admission control. For scenarios, providing similar properties, both

achieve a similar isolation.

7. The isolation metrics describe a system’s isolation, referring to the questions arising for vari-

ous stakeholders. They are also applicable in cases where the system is a black box.

8. The metrics computation can be automated, and the developed benchmark application allows

to evaluate multi-tenant environments.

9. The information gathered by the experiments, and discussed as enabling knowledge can be

used to find an appropriate isolation method for a given problem scenario.

204

7. Conclusion

This chapter starts by summarizing the thesis. Additionally, a critical discussion section focusing

on general aspects of the whole thesis and its limitations follows. An outlook on potential future

research directions and concluding remarks finalize the thesis.

7.1. Summary

First, a brief summary of the content of the various chapters in this thesis is given, followed by a

summary of the research questions answers. This indirectly reflects the contributions made. For

more detailed summaries, the reader may refer to the respective summary sections in the previous

chapters.

7.1.1. Recapture of the Chapters

The Introduction motivated the need for multi-tenant applications to increase economic efficiency,

followed by a discussion of the relevance of performance in general and, conclusively, the need for

performance isolation. Thereby the understanding of performance isolation, which briefly means

that a disruptive tenant has no negative impact upon the performance observed by other tenants,

was discussed. Based on this, the goals of the thesis, the challenges, and the research questions

were derived. In the Foundations and State-of-the-Art section, the novelty of the topic for MTA was

emphasized. In most related approaches, the information about the isolated entity is transported

to the resource controlling layers or the entities are allocated according to their SLAs to different

resource pools. This is insufficient for MTAs, as it would mean introducing new operating system

concepts and forwarding the tenant information to several resources distributed among the whole

stack. An SLA-aware allocation requires knowledge about future workload, which is not the case

here. The related work considering MTAs rather focuses on service differentiation. The Measure-

ment of Isolation section presented metrics based on the impact one tenant’s workload has upon the

performance of another. Thereby, common requirements for metrics were respected. Furthermore,

methods to gather the metrics were introduced. These metrics were validated in different contexts.

In general, the Methods for Performance Isolation section described a request based admission con-

trol, which is dynamically reconfigured at runtime to reflect the observed workload scenario. One

proposed approach is based on a black box model of the MTA, and one utilizes resource demand

estimations of single requests. Additionally, the section showed a proof of concept for these ap-

proaches on depicted scenarios. The section Decision Support and Architecture provided relevant

insights that are needed to realize the isolation methods. Therefore, the informational requirements

205

7. Conclusion

of various isolation methods were outlined and relevant non-functional aspects were collected. A

process using AHP was recommended to find the best isolation method for a given problem sce-

nario. Furthermore, implementation recommendations were given in the form of a framework that

can realize several isolation methods. The Evaluation compared the isolation methods and identi-

fied their strengths and weaknesses. It clearly showed the advantages of the advertised methods,

when resource demands of tenants are different or MTAs are over-committed. The knowledge was

used to apply an isolation method on a real world application, to solve a realistic problem. Finally,

this chapter summarizes the results.

7.1.2. Answering the Research Questions

This section summarizes the answers for the research questions from Section 1.3.4.

RQ 1 — What is an appropriate approach to provide performance iIsolation in multi-tenant appli-

cations?

A request admission control is able to limit the mutual influence of tenants on several

layers. By using work-conserving schedulers, it is possible to provide a good utilization

of the system. The automatic reconfiguration of the admission control’s behavior ensures

best performance for tenants, while considering guarantees. A framework can be used to

implement application-specific isolation methods.

RQ 2 — What are appropriate metrics to quantify the level of performance isolation a system

provides?

The measure of the impact of one tenant’s changing workload upon the performance ob-

served by another tenant can be used in two ways to quantify isolation. Either one sets

the change in quality in relation to the increasing load, or one can identify workload com-

binations of disruptive and abiding tenants, for which the quality of the abiding tenants

maintains the same value for all disruptive loads. The relation between the two workloads

can then be used as a basis for a metric. Besides that, metrics covering the dynamic behav-

ior are required: one covering the time a method needs to settle to a stable configuration

and one describing how the performance changes, although the load is kept constant.

RQ 3 — What are the relevant characteristics of MTAs and the isolation methods to select and

realize a feasible isolation method for a given scenario?

For MTA, the session/tenant affinity and the tenant’s freedom in customizing, which may

result in different demands per request, are most relevant. Besides the quality of the iso-

lation methods, the informational requirements are of importance to select an isolation

method that is supported by a certain scenario.

RQ 4 — What is the best isolation method for a particular scenario?

206

7.2. Critical Discussion, Future Research and Limitations

In general, non-feedback based approaches provide a better isolation with lower complex-

ity if the resource demands among all tenants’ requests are the same. Some feedback

based methods can provide better isolation if resource demands for tenants are different.

Other feedback based methods also provide a more efficient request handling in case of

over-commitment at application level SLAs.

7.2. Critical Discussion, Future Research and Limitations

At the end of each chapter, a critical discussion of the chosen approach was conducted. Therefore,

this section focuses on some aspects of global interest that were not yet covered.

Additional Isolation Methods Potential solutions transferring the tenant concept to the re-

source access layers, or based on the placement of tenants, were not evaluated in detail. These

approaches might be appropriate for certain scenarios. The drawbacks for interactive web applica-

tions were discussed in Section 4.1.1.

While methods based on allocating tenants onto dedicated nodes cannot provide proper isolation,

resource control methods might do. The primary reason against resource control methods is that the

complexity and coupling between the application and the underlying layers would make the practical

use insufficient. However, from a research point of view, it could be interesting to investigate this

topic in the future to either prove or falsify this assumption.

Other approaches could be based on thread pool and thread priority management per tenant.

Hereby, it is worth mentioning that limiting the thread pool sizes on a tenant basis is similar to

the tenant individual request admission control. The latter can easily realize a work-conserving

mechanism without the risk of overload.

For the future work, it would be interesting to identify certain scenarios in which isolation meth-

ods not using an admission control are beneficial and how they can be realized. It could also be

worth developing methods that use workload forecasts on a short-term basis to reduce settling times.

Combining placement driven approaches with the request based admission control methods from

this thesis might also be advantageous.

Considering Malicious Workload Scenarios Malicious workload relates to, e.g., manipu-

lated requests or DDoS attacks, executed by one tenant with bad intention. The work in this thesis

excludes malicious attacks that aim at reducing the performance of the system, since this is related

to security research. However, if a tenant is identified to generate malicious requests, the admission

control might add a black list approach rejecting all requests from this tenant. Thus, the overall

concept is still feasible. In a first proof of concept, not discussed in the thesis, it was already shown

that the isolation method can be dynamically changed at runtime to handle malicious loads. This

mechanism has been successfully applied in situations where a tenant tries to send many requests

to catch all connections on the operating system level. This would result in a denial of service,

although the requests are queued.

207

7. Conclusion

Future work may validate this approach in more detail, and could identify existing mechanisms

or new ones from the security domain to decide when to switch to a new admission control strategy.

Non-Isolated Applications It was assumed that application instances and application nodes do

not influence each other. However, as shown in several publications, application instances installed

on different virtual machines on the same host are likely to influence each other. Nevertheless, if

performance is important for the providers, a deployment of the applications can be optimized for

low inference. Moreover, the isolation methods presented do not necessarily rely on a constant

performance of the application. Thus, the isolation among tenants is still better isolated, and con-

sequently the tenants’ performance is more stable than those without the contributions made in this

thesis.

It could be interesting to evaluate the influence of variable performance of an application node

upon the isolation mechanisms. Additionally, applying the proposed isolation methods in a cross

application scenario potentially increases isolation among application instances’ performance.

Cluster Deployments MTAs might be deployed on more than one server, and thus consist of

several application nodes. The isolation methods considered are optimized for one node so far.

However, following the design recommendations for MTAs leads to systems where the isolation

can be maintained by the proposed isolation methods. Although several nodes may exist, tenants

are usually not distributed among them. It is rather common to have a server affinity. If tenants

produce much workload, the need for approaches distributing the application among several nodes

increases. However, this would also mean that the economic benefits of MTA are reduced, which

is also a reason that server affinity is not uncommon. Even if an application does not follow the

design recommendations, the isolation is better with the contributions made in the present thesis

than without. Furthermore, the admission control could be realized at the load balancer, providing

less efficiency but still ensuring proper isolation.

Although the most relevant scenarios are already covered, the development of distributed isolation

methods could be beneficial for selected scenarios and thus worth being discussed in future. The

foundation for such work is already provided. Existing mechanisms from the field of virtualization

describe how an all-embracing configured resource guarantee can be enforced by adjusting the

shares on single nodes [Gulati et al., 2012]. These mechanisms do not answer how to maintain

performance isolation within one multi-tenant application node, but provide solutions to make the

isolation methods cluster enabled. The model based isolation method can be enhanced for cluster

scenarios by combining the independent server functions and using an adjusted optimization space,

covering the weights for each tenant, on each server. Therefore, the most relevant research-related

challenges are covered by the thesis.

Implementation of Additional Approaches Although the classification schema in Sec-

tion 5.2.1 defined measurement-based resource demand and simulation-based methods, these were

not evaluated by the experiment in this work. It can easily be assumed that resource isolation works

208

7.3. Potential Further Applications

with higher accuracy if the demands can be measured. In a proof of concept not discussed in the

thesis, the Queuing Petri Net Modeling Environment [Kounev and Dutz, 2009] has been enhanced

to simulate the admission controls of the isolation methods. The model predicted the performance

of individual tenants, with high accuracy. However, the simulation scales worsened with higher

numbers of tenants and runs into unsustainable simulation times for the sake of performance iso-

lation when workloads change fast. Therefore, it can be assumed that only very few situations can

benefit from a simulation.

Since a simulation can include application internal characteristics, it could be beneficial for situ-

ations that cannot be covered by the analytical black box model proposed. Therefore, investigations

to speed up the simulation would be beneficial.

Tenant-Specific Presentation Quality Dynamically adapted presentation quality is one ap-

proach used to reduce a server’s load when facing high workloads. It could also be an option to

reduce the functional qualities of an application for disruptive tenants to decrease their influence

upon others tenants; e.g., checking the liquidity of a credit card is an optional task in a payment

process. It could be delayed to a point with low loads. Such concepts might be considered in future

work.

Automated configuration The proper configuration of the presented isolation methods is a

time consuming task. In future, algorithms might be applied, which automatically detect suitable

settings and reconfigure the isolation methods at runtime. This may include the monitoring and

update intervals, as well as method-specific parameters.

7.3. Potential Further Applications

Since the presented isolation methods can control performance on a tenant basis, it is also possible

to provide different tenants individual performance qualities. Both isolation methods presented in

detail already support this idea, although it was not the primary goal of the thesis. This also lays

the foundations for tenant-individual elasticity. Since the share a tenant is allowed to use can be

controlled, additional resources added to the application can be explicitly guaranteed to the tenant

who pays for them.

The focus of the contributions in this thesis is on performance isolation of individual tenants

in an MTA. Nevertheless, several contributions and approaches are also beneficial in other fields.

Relevant to other fields are the isolation metrics. The metrics are defined independently from any

technical domain or concrete quality metric that has to be isolated. Thus, the metrics are likely to be

applied in other contexts, where resources are shared among several entities. Examples are active

network components, like switches or routers, storage systems or fine-grained schedulers on the

operating system level. The case studies already showed how the metrics can be applied to study

the Xen hypervisor. Besides performance related metrics, other quality aspects might be applicable

as long as they can be quantified adequately.

209

7. Conclusion

Resources are also shared outside IT related topics. For instance, call centers are often shared by

different clients. They may use them for, e.g., first level support, or to handle ordering processes. In

such situations, the call center providers might be interested in sharing their resource fairly among

the clients. Imagine a client starts an advertising campaign, or a bug in a product suddenly arises

with an update. These are situations where isolation methods might be considered. However, since

the metrics were rather developed for benchmarked environments, it might be difficult to apply

them. If the request arrivals of one client maintain a steady value, the QoS impact-based metrics are

an option. Besides the metrics, isolation methods could be applied. Depending on the situation, the

demand between clients might vary significantly. In the given example it could be measured, and

thus demand-based approaches might be applicable. By using an open workload model, it would

also be possible to apply a model-based isolation method. It is worth mentioning that the isolation

methods proposed might also be applicable to other fields in the IT context. Among others, I/O

schedulers could benefit from the ideas, since they rather consider a QoS differentiation and have to

handle a hidden internal state of the device.

Since resources are isolated between tenants sharing one application instance, this allows the

creation of new business models. Usually prices are paid based on application level quantities,

such as the number of business transactions or number of requests. If resources can be mapped to

requests, and isolation of resources can be achieved, the pricing might relate to resources.

The reference architecture was developed to fulfill performance isolation related requirements.

However, similar information is required for self-aware systems in general. Thus, the performance

isolation framework might also be used in other contexts. One option could be to automatically

adapt the thread pool sizes to optimize the overall performance.

The insights from the side contributions are also relevant outside the performance isolation con-

text. Resource demand estimations are required when, e.g., performance models are generated, or

as basis for capacity planning. The benchmarking application can be used when an MTA supporting

middleware should be studied.

7.4. Concluding Remarks

Providing sustainable performance for tenants, while sharing one application instance, is an es-

sential enabler for high quality SLA guarantees in SaaS environments. Within the present work,

methods are provided to establish reliable performance in multi-tenant application instances. The

thesis provides performance isolation methods based on request admission control. The experiments

proved the capabilities of the methods to increase isolation by maintaining a high efficiency in the

real world based application scenarios. Metrics and methods are provided to quantify the isolation

quality of an approach. The metrics were successfully applied in several experiments, consider-

ing a variety of technical domains. Moreover, important characteristics of isolation methods and

multi-tenant applications are described, and design recommendations for developers of multi-tenant

applications are given. Moreover, an evaluation of several isolation methods and the development

of a decision-making process helps to find the best isolation method. Overall, this thesis makes nine

210

7.4. Concluding Remarks

important contributions directly related to the goals, and three side contributions tackling the wider

field of shared systems and multi-tenancy. More than ten systems were deployed or simulated, each

used for several experiment series to show the validity and applicability of the contributions. Fur-

thermore, several contributions can also be applied in fields other than tenant based performance

isolation.

211

Acronyms and Abbreviations

AC Admission Control

ACC Admission Control Controller

AHP Analytical Hierarchical Process

CMIS Content Management Interoperability Services

CPU Central Processing Unit

DB Database

DBMS Database Management System

EB Emulated Browser

FIFO First In First Out

GQM Goal Question Metric

HCP SAP Hana Cloud Platform

IaaS Infrastructure as a Service

LAD Least Absolute Deviations

LJS Lean Java Server

LSQ Linear Least Squares

MADM Multiple Attribute Decision Making

MAUT Multi-Attribute Utility Theory

MCDM Multiple Criteria Decision Making

MIMO Multiple Input Multiple Output

MODM Multiple Objective Decision Making

MTA Multi-Tenant Application

MTTQR Mean Time To Quality Repair

213

7. Conclusion

NFS Network File System

NNLS Non Negative Least Square

PaaS Platform as a Service

PASTA Poisson Arrivals See Time Averages

PFQ Priority Fair Queuing

PI Proportional Integral

PID Proportional Integral Differential

PIF Performance Isolation Framework

QN Queuing Network

RAM Random Access Memory

RDBMS Relational Database Management System

RDE Resource Demand Estimation

RIS Resource Isolation Scheduler

SaaS Software as a Service

SDL Service Demand Law

SDN Software Defined Networks

SISO Single Input Single Output

SLA Service Level Agreement

SoPeCo Software Performance Cockpit

SPE Software Performance Engineering

SUT System Under Test

VM Virtual Machine

WFQ Weighted Fair Queuing

214

Glossary

Alternative In decision making processes: One of the options from which the solution is selected.

Application Instance Deployed and running application serving requests. Could exist of several

nodes.

Availability Degree to which a system is in a specified operable state within a given period in

time.

Cluster Set of nodes providing a service together.

Criteria In decision making processes: The characteristics of the alternatives used to identify the

best alternative for achieving a goal.

dom A VM in the Xen context.

dom0 Privileged VM in Xen allowing direct access to hardware and controlling of other doms.

Java Runtime Environment Abstract definition of computing system to execute java byte code.

Several compatible implementations exist.

Java Programming language.

Lean Java Server Application server of the SAP HCP.

Maintainability Degree to which a system can be maintained.

MapReduce Programming paradigm for the processing of large datas ets using parallelism and

distributed algorithms.

Application Node One instance of an application that is part of a cluster.

Reliability A system’s ability to correctly perform its required functions under stated conditions.

SOA Principle for designing and developing inoperable software services.

UI User Interface

VM A virtual machine adds a virtualization layer between hardware and operating system. Often

used to operate several virtual machines on the same hardware.

Xen Software to enable the operation of VMs.

215

List of Figures

1.1. Motivating example, inspired by the SAP Hana Cloud Platform. 4

1.2. Overview of the contributions and research methodologies/approaches. 15

2.1. Multi-tenant architecture based on [Koziolek, 2011]. 22

2.2. Typical performance pattern for increasing load based on [Kounev, 2011] 27

2.3. Queue and a server. 28

2.4. Closed queuing network. 29

2.5. Schematic view onto a closed control loop. 31

3.1. Influence of the disruptive tenant onto the response time. 52

3.2. Influence of the disruptive tenant onto the response time with a load adapting

abiding tenant. 52

3.3. Fictitious isolation curve, including upper and lower bounds. 53

3.4. Example of measuring settling times. 57

3.5. Example of oscillation. 57

3.6. Enhancements and Components of the Software Performance Cockpit. 61

3.7. Overview of the multi-tenant TPC-W benchmark. 68

3.8. Simulated methods to achieve performance isolation. 71

3.9. Measurement of throughput and response time in simulation. 73

3.10. Reduction of abiding workload while artificial delay is activated in the

over-committed scenario. 75

3.11. Normalized reduction of abiding workload in the unpinned and unpinned two-tier

scenario. 78

4.1. General approach for performance isolation. 90

4.2. Approach for the model based isolation. 92

4.3. Cycles in a multi-threaded system. 96

4.4. Approach for resource isolation. 106

4.5. Comparison of RDE methods. 113

4.6. Approach for resource isolation. 116

4.7. Deployment for proof of concept. 118

4.8. Isolation capabilities of the resource isolation. 121

4.9. Q3: Efficiency of the system. 122

4.10. Evaluation results of the resource isolation. 122

217

LIST OF FIGURES

4.11. Results of the model based isolation for increasing load. 125

4.12. Evaluation results for increasing cv. 126

4.13. Evaluation results for increasing cp. 126

4.14. Utilization and weights for different loads. 127

4.15. Isolation experiment with two load increasing tenants. 128

4.16. Isolation experiment with one load increasing tenant. 129

5.1. Classification of Isolation Methods . 138

5.2. Selection process to find the most suitable isolation method. 145

5.3. Positions to enforce performance isolation. 148

5.4. Conceptual overview of the Architecture. 152

5.5. Architecture of the Performance Isolation Framework 153

6.1. Deployment for comparing the various isolation methods. 163

6.2. System characteristics with and without limited thread pool. 164

6.3. Traces of real load profiles. 167

6.4. Measurement results for a non-isolated system. 168

6.5. Measurement results for round robin. 168

6.6. Measurement results for resource isolation. 169

6.7. Measurement results for closed control loop. 169

6.8. Measurement results for black list. 170

6.9. Measurement results for the model based isolation method. 170

6.10. IQoS based on the guarantee. 172

6.11. IintFree based on the observed response time at the reference workload. 173

6.12. Oscillation of response time and throughput. 175

6.13. Relative difference of the average response from the abiding tenants to the

guaranteed one. 175

6.14. Results for the dynamic load scenario. 177

6.15. Processing time of resource isolation method for different number of tenants. . . . 179

6.16. Resource consumption of the strategy. 181

6.17. Prediction accuracy of the metrics. 189

6.18. Simplified logical view onto the Document Service. 192

6.19. Call sequence of the Document Service. 193

6.20. Increasing response times in a non-isolated Document Service. 194

6.21. Simplified view onto the deployed test landscape. 195

6.22. Response times for a round robin isolated Document Service. 198

6.23. Relative response times of abiding and disruptive tenants in different isolation

scenarios. 199

A.1. Limited view onto the call probability of the Document Service. 243

218

LIST OF FIGURES

A.2. Filtered probability density of bulk inter arrival times. 244

B.1. Upper table: isolation. Lower table: oscillation. Tables copied from created PDF

file using [Bender et al., 2013] . 245

219

List of Tables

3.1. Overview of variables and symbols for performance isolation metrics. 50

3.2. Overiew and definition of relevant points for performance isolation. 54

3.3. Results of QoS based metrics. 74

3.4. Results of workload ratio based metrics. 74

3.5. Results for the scenario setup and configuration. 78

3.6. Results of IQoS in the various scenarios. 79

3.7. Overview of the isolation metrics. 85

4.1. Overview of definitions and symbols relevant for the performance model. 95

4.2. Resource demand for MTTPC-W request types. 119

5.1. Overview of informational requirements for various methods. 141

5.2. Set of application rules for existing isolation classes. 146

5.3. Positions of admission control and possibility to achieve performance isolation. . . 150

6.1. Slices used to simulate a real workload. 167

6.2. Evaluation results for the Ibase metric. 173

6.3. Settling times for the isolation methods. 176

6.4. Overview of the results for the isolation capabilities of various methods. 182

6.5. Ranking of isolation methods for case study. 197

221

Bibliography

[Abdelzaher et al., 2008] Abdelzaher, T., Diao, Y., Hellerstein, J. L., Lu, C., and Zhu, X. (2008).

Introduction to control theory and its application to computing systems. In Performance Model-

ing and Engineering, pages 185–215. Springer.

[Aiken, 2011] Aiken, L. (2011). Why Multi-Tenancy is Key to Successful and Sustainable

Software-as-a-Service (SaaS). Cloudbook, 2(1).

[Ali-Eldin et al., 2012] Ali-Eldin, A., Tordsson, J., and Elmroth, E. (2012). An adaptive hybrid

elasticity controller for cloud infrastructures. In Network Operations and Management Sympo-

sium (NOMS), pages 204–212.

[Amazon, 2014] Amazon (2014). Running databases on aws. Technical report, amazon corpora-

tion. last accessed: 19. Nov 2014.

[Andrikopoulos et al., 2013a] Andrikopoulos, V., Chabanoles, N., Exertier, F., Jimenez, R., Krebs,

R., Pelletier, B., and Riggs, S. (2013a). Immigrant PaaS Technologies: Scientific and Technical

Report D7.1.3. Technical report, 4CaaSt - Seventh Framework Programme (FP7/2007-2013),

grant agreement no 258862.

[Andrikopoulos et al., 2013b] Andrikopoulos, V., Chabanoles, N., Exertier, F., Krebs, R., Jimenez-

Peris, R., Pelletier, B., and Riggs, S. (2013b). Immigrant PaaS Technologies: Scientific and

Technical Report D7.2.3. Technical report, 4CaaSt - Seventh Framework Programme (FP7/2007-

2013), grant agreement no 258862.

[Andrikopoulos et al., 2013c] Andrikopoulos, V., Chabanoles, N., Exertier, F., Krebs, R., Pelletier,

B., Porcher, G., and Jimenez-Peris, R. (2013c). Immigrant PaaS Technologies: Scientific and

Technical Report D7.3.3. Technical report, 4CaaSt - Seventh Framework Programme (FP7/2007-

2013), grant agreement no 258862.

[Arlitt and Jin, 2000] Arlitt, M. and Jin, T. (2000). A workload characterization study of the 1998

World Cup Web site. Network, IEEE, 14(3):30–37.

[Armbrust et al., 2009] Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz, R. H., Konwinski,

A., Lee, G., Patterson, D. A., Rabkin, A., Stoica, I., and Zaharia, M. (2009). Above the Clouds: A

Berkeley View of Cloud Computing. Technical Report UCB/EECS-2009-28, EECS Department,

University of California, Berkeley.

223

BIBLIOGRAPHY

[Aulbach et al., 2008] Aulbach, S., Grust, T., Jacobs, D., Kemper, A., and Rittinger, J. (2008).

Multi-tenant Databases for Software As a Service: Schema-mapping Techniques. In Proceedings

of the 2008 ACM SIGMOD International Conference on Management of Data, SIGMOD ’08,

pages 1195–1206, New York, NY, USA. ACM.

[Baker et al., 2001] Baker, D., Bridges, D., Hunter, R., Johnson, G., Krupa, J., and Murphy,

J.and Sorenson, K. (2001). Guidebook to decision-making methods. Technical Report WSRC-

IM-2002-00002, United States Department of Energy.

[Bender et al., 2013] Bender, Blocher, Rossmehl, and Rotter (2013). Open decision maker v1.0.1.

❤tt♣✿✴✴s♦✉r❝❡❢♦r❣❡✳♥❡t✴♣r♦❥❡❝ts✴♦♣❡♥❞❡❝✐s✐♦♥♠❛❦.

[Bezemer and Zaidman, 2010] Bezemer, C.-P. and Zaidman, A. (2010). Multi-tenant SaaS Ap-

plications: Maintenance Dream or Nightmare? In Proceedings of the Joint ERCIM Workshop

on Software Evolution (EVOL) and International Workshop on Principles of Software Evolution

(IWPSE), IWPSE-EVOL ’10, pages 88–92, New York, NY, USA. ACM.

[Binnig et al., 2009] Binnig, C., Kossmann, D., Kraska, T., and Loesing, S. (2009). How is the

weather tomorrow? In Proceedings of the Second International Workshop on Testing Database

Systems - DBTest ’09, DBTest ’09, page 1, New York, New York, USA. ACM Press.

[bitcurrent, 2011] bitcurrent (2011). BITCURRENT CLOUD COMPUTING SURVEY 2011.

[Bittman et al., 2014] Bittman, T., Margevicius, M., and Dawson, P. (2014). Magic quadrant

for x86 server virtualization infrastructure. Technical report, Gartner. Gartner Reference ID:

G00262673.

[Boehm et al., 1976] Boehm, B. W., Brown, J. R., and Lipow, M. (1976). Quantitative Evaluation of

Software Quality. In Proceedings of the 2nd International Conference on Software Engineering,

ICSE ’76, pages 592–605, Los Alamitos, CA, USA. IEEE Computer Society Press.

[Bolch et al., 1998] Bolch, G., Greiner, S., de Meer, H., and Trivedi, K. S. (1998). Queueing Net-

works and Markov Chains: Modeling and Performance Evaluation with Computer Science Ap-

plications. Wiley-Interscience, New York, NY, USA.

[Boyd and Vandenberghe, 2004] Boyd, S. and Vandenberghe, L. (2004). Convex Optimization.

Berichte über verteilte messysteme. Cambridge University Press.

[Braden et al., 1997] Braden, R., Zhang, L., Berson, S., Herzog, S., and Jamin, S. (1997). RFC

2205: Resource ReSerVation Protocol (RSVP) - Version 1 Functional Specification. Technical

report, IETF.

[Brataas, 2014] Brataas, G. (2014). CloudScale: Design support Deliverable D1.2. FP7-ICT-2011-

8-317704.

224

http://sourceforge.net/projects/opendecisionmak

BIBLIOGRAPHY

[Brey and Lamers, 2009] Brey, T. and Lamers, L. (2009). Using Virtualization to Improve Data

Center Efficiency.

[Brosig et al., 2011] Brosig, F., Huber, N., and Kounev, S. (2011). Automated Extraction of

Architecture-Level Performance Models of Distributed Component-Based Systems. In 26th

IEEE/ACM International Conference On Automated Software Engineering (ASE 2011).

[Brosig et al., 2009] Brosig, F., Kounev, S., and Krogmann, K. (2009). Automated extraction of

palladio component models from running enterprise Java applications. In VALUETOOLS 09:

Proceedings of the Fourth International ICST Conference on Performance Evaluation Method-

ologies and Tools. ICST.

[Brosig et al., 2015] Brosig, F., Meier, P., Becker, S., Koziolek, A., Koziolek, H., and Kounev,

S. (2015). Quantitative Evaluation of Model-Driven Performance Analysis and Simulation of

Component-based Architectures. IEEE Transactions on Software Engineering (TSE), 41(2):157–

175.

[Cain et al., 2001] Cain, H. W., Rajwar, R., Marden, M., and Lipasti, M. H. (2001). An Archi-

tectural Evaluation of Java TPC-W. In Proceedings of the Seventh International Symposium on

High-Performance Computer Architecture, pages 229–240, Monterrey, Mexico.

[Calvin and Friedl, 2009] Calvin, P. and Friedl, S. (2009). Lessons Leraned: Building Multitenant

Applications with the Windows Azure Platform. recording: ❤tt♣✿✴✴✇✇✇✳♠✐❝r♦s♦❢t♣❞❝✳❝♦♠✴

✷✵✵✾✴❙❱❈✸✸.

[Card et al., 1991] Card, S. K., Robertson, G. G., and Mackinlay, J. D. (1991). The information

visualizer, an information workspace. In Proceedings of the SIGCHI Conference on Human

factors in computing systems, pages 181–186. ACM.

[Casale et al., 2008] Casale, G., Cremonesi, P., and Turrin, R. (2008). Robust Workload Estimation

in Queueing Network Performance Models. 16th Euromicro Conference on Parallel, Distributed

and Network-Based Processing (PDP 2008), pages 183–187.

[Chandra et al., 2006] Chandra, A., Pradhan, P., Tewari, R., Sahu, S., and Shenoy, P. (2006). An

observation-based approach towards self-managing web servers. Computer Communications,

29(8):1174–1188.

[Cherkasova et al., 2007] Cherkasova, L., Gupta, D., and Vahdat, A. (2007). Comparison of the

three CPU schedulers in Xen. SIGMETRICS Performance Evaluation Review, 35(2):42–51.

[Chong et al., 2006] Chong, F., Carraro, G., and Wolter, R. (2006). Multi-Tenant Data Architecture.

❤tt♣✿✴✴♠s❞♥✳♠✐❝r♦s♦❢t✳❝♦♠✴❡♥✲✉s✴❧✐❜r❛r②✴❛❛✹✼✾✵✽✻✳❛s♣①. last accessed: 10. March

2015.

225

http://www.microsoftpdc.com/2009/SVC33
http://www.microsoftpdc.com/2009/SVC33
http://msdn.microsoft.com/en-us/library/aa479086.aspx

BIBLIOGRAPHY

[Cooper et al., 2010] Cooper, B. F., Silberstein, A., Tam, E., Ramakrishnan, R., and Sears, R.

(2010). Benchmarking Cloud Serving Systems with YCSB. In Proceedings of the 1st ACM

Symposium on Cloud Computing, SoCC ’10, pages 143–154, New York, NY, USA. ACM.

[Courtois and Woodside, 2000] Courtois, M. and Woodside, M. (2000). Using Regression Splines

for Software Performance Analysis. In Proceedings of the 2Nd International Workshop on Soft-

ware and Performance, WOSP ’00, pages 105–114, New York, NY, USA. ACM.

[Craig McClanahan, 2015] Craig McClanahan, Gunnar Rjnning, P. D. (2015). Interface Valve -

Apache Tomcat 7.0.59. ❤tt♣s✿✴✴t♦♠❝❛t✳❛♣❛❝❤❡✳♦r❣✴t♦♠❝❛t✲✼✳✵✲❞♦❝✴❛♣✐✴♦r❣✴❛♣❛❝❤❡✴

❝❛t❛❧✐♥❛✴❱❛❧✈❡✳❤t♠❧. last accessed: 1. March 2015.

[Das et al., 2011] Das, S., Nishimura, S., Agrawal, D., and El Abbadi, A. (2011). Albatross:

Lightweight Elasticity in Shared Storage Databases for the Cloud Using Live Data Migration.

Proc. VLDB Endow., 4(8):494–505.

[Davies et al., 2014] Davies, J., Thompson, E., Herschel, G., Maoz, M., Desisto, R. P., Sarner, A.,

Collins, K., Kraus, D., Correia, J. M., Sullivan, P. J., and Elliot, B. (2014). The Gartner CRM

Vendor Guide. Gartner report, Gartner. Gartner Reference ID: G00261534.

[Davis, 1993] Davis, A. M. (1993). Software Requirements: Objects, Functions, and States.

Prentice-Hall, Inc., Upper Saddle River, NJ, USA.

[Denning and Buzen, 1978] Denning, P. J. and Buzen, J. P. (1978). The Operational Analysis of

Queueing Network Models. ACM Computing Surveyes, 10(3):225–261.

[Diao et al., 2002a] Diao, Y., Gandhi, N., Hellerstein, J., Parekh, S., and Tilbury, D. (2002a). Us-

ing MIMO feedback control to enforce policies for interrelated metrics with application to the

Apache Web server. In IEEE/IFIP Network Operations and Management Symposium, 2002.,

pages 219–234.

[Diao et al., 2002b] Diao, Y., Hellerstein, J. L., and Parekh, S. (2002b). Optimizing Quality of

Service Using Fuzzy Control. In DSOM ’02: Proceedings of the 13th IFIP/IEEE International

Workshop on Distributed Systems: Operations and Management, pages 42–53, London, UK.

Springer-Verlag.

[Dirlewanger, 1994] Dirlewanger, W. (1994). Messung und Bewertung der DV-Leistung: auf Basis

der Norm DIN 66273. Hüthig.

[Dory et al., 2011] Dory, T., Mejías, B., Van Roy, P., and Tran, N.-L. (2011). Measuring elasticity

for cloud databases. In The Second International Conference on Cloud Computing, GRIDs, and

Virtualization, CLOUD COMPUTING 2011, pages 154–160.

[Dromey, 1995] Dromey, R. G. (1995). A Model for Software Product Quality. IEEE Trans. Softw.

Eng., 21(2):146–162.

226

https://tomcat.apache.org/tomcat-7.0-doc/api/org/apache/catalina/Valve.html
https://tomcat.apache.org/tomcat-7.0-doc/api/org/apache/catalina/Valve.html

BIBLIOGRAPHY

[Dynatrace, 2015] Dynatrace (2015). Website: Dynatrace. ❤tt♣✿✴✴✇✇✇✳❞②♥❛tr❛❝❡✳❝♦♠. last

accessed: 15. March 2015.

[Eclipse, 2013] Eclipse (2013). Solutions Guide for EclipseLink Release 2.5.

[Elmasri and Navathe, 1999] Elmasri, R. A. and Navathe, S. B. (1999). Fundamentals of Database

Systems. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 3rd edition.

[Emeakaroha et al., 2010] Emeakaroha, V. C., Brandic, I., Maurer, M., and Dustdar, S. (2010). Low

level Metrics to High level SLAs - LoM2HiS framework: Bridging the gap between monitored

metrics and SLA parameters in cloud environments. In High Performance Computing and Sim-

ulation (HPCS) 2010.

[Fehling et al., 2010] Fehling, C., Leymann, F., and Mietzner, R. (2010). A Framework for Opti-

mized Distribution of Tenants in Cloud Applications. In Proceedings of the 3rd IEEE Interna-

tional Conference on Cloud Computing, CLOUD 2010, pages 252–259. IEEE Computer Society.

[Fehling et al., 2014] Fehling, C., Leymann, F., Retter, R., Schupeck, W., and Arbitter, P. (2014).

Cloud Computing Patterns: Fundamentals to Design, Build, and Manage Cloud Applications.

Springer Publishing Company, Incorporated.

[Figueira et al., 2005] Figueira, J., Greco, S., and Ehrgott, M. (2005). Multiple criteria decision

analysis: state of the art surveys, volume 78 of International Series in Operations Research &

Management Science. Springer Verlag.

[Fülöp, 2005] Fülöp, J. (2005). Introduction to Decision Making Methods. Technical report, Hun-

garian Academy of Sciences.

[Galante and Bona, 2012] Galante, G. and Bona, L. C. (2012). A survey on cloud computing elas-

ticity. In Proceedings of the IEEE/ACM Fifth International Conference on Utility and Cloud

Computing, pages 263–270. IEEE Computer Society.

[Gao et al., 2011] Gao, B., An, W. H., Sun, X., Wang, Z. H., Fan, L., Guo, C. J., and Sun, W.

(2011). A Non-intrusive Multi-tenant Database Software for Large Scale SaaS Application. In

Proceedings of the 2011 IEEE 8th International Conference on e-Business Engineering, ICEBE

’11, pages 324–328, Washington, DC, USA. IEEE Computer Society.

[Georges and Eeckhout, 2010] Georges, A. and Eeckhout, L. (2010). Performance Metrics for Con-

solidated Servers. In HPCVirt 2010.

[Glanz, 2012] Glanz, J. (2012). The Cloud Factories: Power, Pollution and the Internet.

[Glass et al., 2002] Glass, R. L., Vessey, I., and Ramesh, V. (2002). Research in software engineer-

ing: an analysis of the literature. Information and Software Technology, 44(8):491–506.

227

http://www.dynatrace.com

BIBLIOGRAPHY

[Google, 2014] Google (2014). Implementing Multitenancy Using Namespaces. ❤tt♣s✿✴✴❝❧♦✉❞✳

❣♦♦❣❧❡✳❝♦♠✴❛♣♣❡♥❣✐♥❡✴❞♦❝s✴❥❛✈❛✴♠✉❧t✐t❡♥❛♥❝②✴♠✉❧t✐t❡♥❛♥❝②. last accessed: 25. Nov

2014.

[Google, 2015] Google (2015). Google Apps for Work. ❤tt♣s✿✴✴✇✇✇✳❣♦♦❣❧❡✳❝♦♠✴✇♦r❦✴❛♣♣s✴

❜✉s✐♥❡ss. last accessed: 16. March 2015.

[Grzech et al., 2009] Grzech, A., Swikatek, P., and Rygielski, P. (2009). Improving QoS Guaranties

via Adaptive Packet Scheduling. In Proceedings of the 16th Polish Teletraffic Symposium (PTS

2009), pages 53–56. Technical University of Łódź, Technical University of Łódź. Young Author

Best Paper Award.

[Gulati et al., 2010] Gulati, A., Merchant, A., and Varman, P. J. (2010). mClock: Handling

Throughput Variability for Hypervisor IO Scheduling. In Proceedings of the 9th USENIX Con-

ference on Operating Systems Design and Implementation, OSDI’10, pages 1–7, Berkeley, CA,

USA. USENIX Association.

[Gulati et al., 2012] Gulati, A., Shanmuganathan, G., Holler, A., Waldspurger, C., Ji, M., and Zhu,

X. (2012). VMware Distributed Resource Management: Design, Implementation, and Lessons

Learned. VMware Technical Journal, 1(1):45–64.

[Guo et al., 2007] Guo, C. J., Sun, W., Huang, Y., Wang, Z. H., and Gao, B. (2007). A Framework

for Native Multi-Tenancy Application Development and Management. In The 9th IEEE Inter-

national Conference on ECommerce Technology and the 4th IEEE International Conference on

Enterprise Computing ECommerce and EServices 2007 CECEEE 2007, pages 551–558. IEEE

Computer Society.

[Gupta et al., 2006] Gupta, D., Cherkasova, L., Gardner, R., and Vahdat, A. (2006). Enforcing

performance isolation across virtual machines in Xen. In Proceedings of the ACM/IFIP/USENIX

2006 International Conference on Middleware, Middleware ’06, pages 342–362, New York, NY,

USA. Springer-Verlag New York, Inc.

[Hellerstein et al., 2002] Hellerstein, J., Diao, Y., and Parekh, S. (2002). A first-principles approach

to constructing transfer functions for admission control in computing systems. In Proceedings of

the 41st IEEE Conference on Decision and Control, volume 3.

[Hellerstein et al., 2004] Hellerstein, J. L., Diao, Y., Parekh, S., and Tilbury, D. M. (2004). Feed-

back Control of Computing Systems. John Wiley & Sons, Inc., Hoboken, NJ, USA.

[Hellerstein et al., 2008] Hellerstein, J. L., Morrison, V., and Eilebrecht, E. (2008). Optimizing

Concurrency Levels in the .NET ThreadPool: A Case Study of Controller Design and Imple-

mentation. In Proceedings of the FeBID Workshop 2008.

228

https://cloud.google.com/appengine/docs/java/multitenancy/multitenancy
https://cloud.google.com/appengine/docs/java/multitenancy/multitenancy
https://www.google.com/work/apps/business
https://www.google.com/work/apps/business

BIBLIOGRAPHY

[Herbst et al., 2013] Herbst, N. R., Kounev, S., and Reussner, R. (2013). Elasticity in Cloud Com-

puting: What it is, and What it is Not. In Proceedings of the 10th International Conference on

Autonomic Computing (ICAC 2013). USENIX.

[Herbst et al., 2015] Herbst, N. R., Kounev, S., Weber, A., and Groenda, H. (2015). BUNGEE:

An Elasticity Benchmark for Self-Adaptive IaaS Cloud Environments. In Proceedings of the

10th International Symposium on Software Engineering for Adaptive and Self-Managing Systems

(SEAMS 2015).

[Herndon et al., 2006] Herndon, B., Smith, P., Roderick, L., Zamost, E., Anderson, J., Makhija, V.,

Herndon, B., Smith, P., Zamost, E., and Anderson, J. (2006). VMmark: A Scalable Benchmark

for Virtualized Systems. Technical report, VMware.

[Hoecker et al., 1984] Hoecker, H., Itzfeld, W.-D., Schmidt, M., and Timm, M. (1984). Compara-

tive descriptions of software qualtiy measures. Gesellschaft fÃijr Mathematik und Datenverar-

beitung.

[Huber et al., 2010] Huber, N., Von Quast, M., Brosig, F., and Kounev, S. (2010). Analysis of

the performance-influencing factors of virtualization platforms. In On the Move to Meaningful

Internet Systems, OTM 2010, pages 811–828. Springer.

[Huber et al., 2011] Huber, N., von Quast, M., Hauck, M., and Kounev, S. (2011). Evaluating and

Modeling Virtualization Performance Overhead for Cloud Environments. In CLOSER, pages

563–573.

[Hung and Danson, 2013] Hung, J. and Danson, N. (2013). From Slow To Fast: Improving Perfor-

mance On Intuit Web Sites By Up To 5x.

[IBM, 2010] IBM (2010). Dispelling the vapor around cloud computing. Technical report, IBM Fi-

nancial Services.

[IEEE, 1998] IEEE (1998). IEEE Std 1061-1998. IEEE Standard for a Software Quality Metrics

Methodology.

[IEEE, 2006] IEEE (2006). IEEE Standard for Local and Metropolitan Area Networks Virtual

Bridged Local Area Networks. IEEE Std 802.1Q-2005 (Incorporates IEEE Std 802.1Q1998,

IEEE Std 802.1u-2001, IEEE Std 802.1v-2001, and IEEE Std 802.1s-2002).

[Internap, 2014] Internap (2014). Cloud Landscape Report: Price & Performance. Technical report,

Internap.

[Iosup et al., 2011a] Iosup, A., Ostermann, S., Yigitbasi, M., Prodan, R., Fahringer, T., and Epema,

D. (2011a). Performance Analysis of Cloud Computing Services for Many-Tasks Scientific Com-

puting. IEEE Transactions on Parallel and Distributed Systems, 22(6):931–945.

229

BIBLIOGRAPHY

[Iosup et al., 2011b] Iosup, A., Yigitbasi, N., and Epema, D. (2011b). On the Performance Vari-

ability of Production Cloud Services. In International Symposium on Cluster, Cloud and Grid

Computing (CCGrid), 2011 11th IEEE/ACM, pages 104–113.

[Islam et al., 2012] Islam, S., Lee, K., Fekete, A., and Liu, A. (2012). How a consumer can measure

elasticity for cloud platforms. In Proceedings of the third joint WOSP/SIPEW international

conference on Performance Engineering - ICPE ’12, page 85, New York, New York, USA. ACM

Press.

[ISO/IEC, 2011a] ISO/IEC (2011a). ISO/IEC 14756 - Measurement and rating of performance of

computer-based software systems. Technical report, International Organization for Standardiza-

tion/International Electrotechnical Commission.

[ISO/IEC, 2011b] ISO/IEC (2011b). ISO/IEC 25010 - Systems and software Quality Requirements

and Evaluation (SQuaRE). Technical report, International Organization for Standardization/In-

ternational Electrotechnical Commission.

[Iyer et al., 2001] Iyer, R., Tewari, V., and Kant, K. (2001). Overload control mechanisms for web

servers. In Performance and QoS of Next Generation Networking, pages 225–244. Springer.

[Jackson, 2011] Jackson, K. L. (2011). The Economic Benefit of Cloud Computing.

[Jacobs and Aulbach, 2007] Jacobs, D. and Aulbach, S. (2007). Ruminations on Multi-Tenant

Databases. In BTW, volume 103, pages 514–521.

[Jain, 1991] Jain, R. (1991). The art of computer systems performance analysis - techniques for

experimental design, measurement, simulation, and modeling. Wiley professional computing.

Wiley.

[Janert, 2013] Janert, P. K. (2013). Feedback Control for Computer Systems. O’Reilly Media, Inc.

[Jex, 1998] Jex, S. M. (1998). Stress and job performance: Theory, research, and implications for

managerial practice. Sage Publications Ltd.

[JOptimizer, 2014] JOptimizer (2014). JOptimizer Version 3.4.0. ❤tt♣✿✴✴✇✇✇✳❥♦♣t✐♠✐③❡r✳❝♦♠.

[Jupiterresearch and Akamai, 2006] Jupiterresearch and Akamai (2006). RETAIL WEB SITE

PERFORMANCE - Consumer Reaction to a Poor Online Shopping Experience. Technical re-

port, Jupiterresearch.

[Kabbedijk et al., 2015] Kabbedijk, J., Bezemer, C., Jansen, S., and Zaidman, A. (2015). Defin-

ing multi-tenancy: A systematic mapping study on the academic and the industrial perspective.

Journal of Systems and Software, 100:139–148.

[Kalman, 1960] Kalman, R. E. (1960). A new approach to linear filtering and prediction problems.

Transactions of the ASME-Journal of Basic Engineering, 82:35–45.

230

http://www.joptimizer.com

BIBLIOGRAPHY

[Karl-Dieter and Oliver, 2012] Karl-Dieter, T. and Oliver, R. (2012). Keine Panik vor Regelung-

stechnik. Springer.

[Karlsson et al., 2005] Karlsson, M., Karamanolis, C., and Zhu, X. (2005). Triage: Performance

differentiation for storage systems using adaptive control. Transactions on Storage, 1(4):457–

480.

[Keller and Krueger, 2002] Keller, H. and Krueger, S. (2002). ABAP Objects. PEARSON EDU-

CATION LIMITED.

[Koen, 2008] Koen, R. (2008). Aspects of MCDA classification and sorting methods. dissertation,

University of South Africa (UNISA).

[Koh et al., 2007] Koh, Y., Knauerhase, R., Brett, P., Bowman, M., Wen, Z., and Pu, C. (2007). An

analysis of performance interference effects in virtual environments. In Performance Analysis of

Systems Software, 2007. ISPASS 2007. IEEE International Symposium on, pages 200–209.

[Kounev, 2011] Kounev, S. (2011). Performance Engineering of Enterprise Software Systems. - 7

Benchmarking. Lecture Notes: Karlsruhe Institute of Technology.

[Kounev et al., 2011] Kounev, S., Bender, K., Brosig, F., Huber, N., and Okamoto, R. (2011). Au-

tomated Simulation-Based Capacity Planning for Enterprise Data Fabrics. In 4th International

ICST Conference on Simulation Tools and Techniques, pages 27–36, Brussels, Belgium, Bel-

gium. ICST.

[Kounev et al., 2010] Kounev, S., Brosig, F., Huber, N., and Reussner, R. (2010). Towards Self-

Aware Performance and Resource Management in Modern Service-Oriented Systems. In IEEE

International Conference on Services Computing (SCC), pages 621–624.

[Kounev and Dutz, 2009] Kounev, S. and Dutz, C. (2009). QPME - A Performance Modeling Tool

Based on Queueing Petri Nets. ACM SIGMETRICS Performance Evaluation Review (PER),

Special Issue on Tools for Computer Performance Modeling and Reliability Analysis, 36(4):46–

51.

[Koziolek, 2010] Koziolek, H. (2010). Towards an Architectural Style for Multi-tenant Software

Applications. In Proceedings on Software Engineering (SE’10), volume 159 of LNI, pages 81–

92. GI.

[Koziolek, 2011] Koziolek, H. (2011). The SPOSAD Architectural Style for Multi-tenant Software

Applications. In Proceedings of the 9th Working IEEE/IFIP Conf. on Software Architecture

(WICSA’11), pages 320–327. IEEE.

[Kraft et al., 2009] Kraft, S., Pacheco-Sanchez, S., Casale, G., and Dawson, S. (2009). Estimat-

ing Service Resource Consumption from Response Time Measurements. In Proceedings of the

231

BIBLIOGRAPHY

Fourth International ICST Conference on Performance Evaluation Methodologies and Tools,

VALUETOOLS ’09, pages 48:1–48:10. ICST.

[Krebs and Loesch, 2014] Krebs, R. and Loesch, M. (2014). Comparison of Request Admission

Based Performance Isolation Approaches in Multi-Tenant SaaS Applications. In Proceedings of

4th International Conference On Cloud Computing And Services Science (CLOSER). SciTePress.

[Krebs et al., 2014a] Krebs, R., Loesch, M., and Kounev, S. (2014a). Platform-as-a-Service Ar-

chitecture for Performance Isolated Multi-Tenant Applications. In Proceedings of the 7th IEEE

International Conference on Cloud Computing (IEEE Cloud 2014). IEEE.

[Krebs and Mehta, 2013] Krebs, R. and Mehta, A. (2013). A Feedback Controlled Scheduler for

Performance Isolation in Multi-tenant Applications. In Proceedings of the 3rd IEEE Interna-

tional Conference on Cloud and Green Computing (CGC 2013).

[Krebs et al., 2012a] Krebs, R., Momm, C., and Kounev, S. (2012a). Architectural Concerns in

Multi-Tenant SaaS Applications. In Proceedings of the 2nd International Conference on Cloud

Computing and Services Science (CLOSER 2012). SciTePress.

[Krebs et al., 2012b] Krebs, R., Momm, C., and Kounev, S. (2012b). Metrics and Techniques

for Quantifying Performance Isolation in Cloud Environments. In Buhnova, B. and Vallecillo,

A., editors, Proceedings of the 8th ACM SIGSOFT International Conference on the Quality of

Software Architectures (QoSA 2012), pages 91–100, New York, USA. ACM Press.

[Krebs et al., 2014b] Krebs, R., Momm, C., and Kounev, S. (2014b). Metrics and Techniques for

Quantifying Performance Isolation in Cloud Environments. Elsevier Science of Computer Pro-

gramming Journal (SciCo), Vol. 90, Part B:116–134.

[Krebs et al., 2014c] Krebs, R., Schneider, P., and Herbst, N. (2014c). Optimization Method for

Request Admission Control to Guarantee Performance Isolation. In Proceedings of the 2nd

International Workshop on Hot Topics in Cloud Service Scalability (HotTopiCS 2014), co-located

with the 5th ACM/SPEC International Conference on Performance Engineering (ICPE 2014).

ACM.

[Krebs et al., 2014d] Krebs, R., Spinner, S., Ahmed, N., and Kounev, S. (2014d). Resource Us-

age Control In Multi-Tenant Applications. In Proceedings of the 14th IEEE/ACM International

Symposium on Cluster, Cloud and Grid Computing (CCGrid 2014). IEEE/ACM.

[Krebs et al., 2013] Krebs, R., Wert, A., and Kounev, S. (2013). Multi-Tenancy Performance

Benchmark for Web Application Platforms. In Proceedings of the 13th International Confer-

ence on Web Engineering (ICWE 2013). Aalborg University, Denmark, Springer-Verlag.

[Kumar et al., 2009] Kumar, D., Tantawi, A., and Zhang, L. (2009). Real-Time Performance Mod-

eling for Adaptive Software Systems. Proceedings of the 4th International ICST Conference on

Performance Evaluation Methodologies and Tools.

232

BIBLIOGRAPHY

[Kupperberg et al., 2011] Kupperberg, M., Herbst, N., Kistowski, J., and Reussner, R. (2011).

Defining and Quantifying Elasticity of Resources in Cloud Computing and Scalable Platforms.

Technical report, Karlsruhe Institute of Technology.

[Lang et al., 2012] Lang, W., Shankar, S., Patel, J. M., and Kalhan, A. (2012). Towards multi-tenant

performance SLOs. In 28th International Conference on Data Engineering (ICDE), pages 702–

713. IEEE.

[L’Ecuyer and Buist, 2005] L’Ecuyer, P. and Buist, E. (2005). Simulation in java with SSJ. In

Proceedings of the 37th conference on Winter simulation, WSC ’05, pages 611–620. Winter

Simulation Conference.

[Lenk et al., 2009] Lenk, A., Klems, M., Nimis, J., Tai, S., and Sandholm, T. (2009). What’s Inside

the Cloud? An Architectural Map of the Cloud Landscape. In Proceedings of the 2009 ICSE

Workshop on Software Engineering Challenges of Cloud Computing, CLOUD ’09, pages 23–31,

Washington, DC, USA. IEEE Computer Society.

[Li et al., 2008] Li, X. H., Liu, T., Li, Y., and Chen, Y. (2008). SPIN: Service Performance Isola-

tion Infrastructure in Multi-tenancy Environment. In 6th International Conference on Service-

Oriented Computing - ICSOC, pages 649–663.

[Lin et al., 2009] Lin, H. L. H., Sun, K. S. K., Zhao, S. Z. S., and Han, Y. H. Y. (2009). Feedback-

Control-Based Performance Regulation for Multi-Tenant Applications. In 15th International

Conference on Parallel and Distributed Systems (ICPADS), pages 134–141. IEEE.

[Little, 1961] Little, J. D. (1961). A Proof for the Queuing Formula: L= Îż W. Operations Research,

9(3):383–387.

[Liu et al., 2007] Liu, X., Zhu, X., and Padala, P. (2007). Optimal multivariate control for differen-

tiated services on a shared hosting platform. In 46th IEEE Conference on Decision and Control,

pages 3792–3799.

[Loesch and Krebs, 2013] Loesch, M. and Krebs, R. (2013). Conceptual Approach for Perfor-

mance Isolation in Multi-Tenant Systems. In Proceedings of the 3rd International Conference on

Cloud Computing and Service Science (CLOSER 2013). RWTH Aachen, Germany, SciTePress.

[Loesch and Krebs, 2014] Loesch, M. and Krebs, R. (2014). Locations for Performance Ensuring

Admission Control in Load Balanced Multi-Tenant Systems. In Springer, editor, Communica-

tions in Computer and Information Science - Third International Conference, CLOSER 2013,

Aachen, Germany, May 8-10, 2013, Selected Papers.

[Lu et al., 2006] Lu, C., Lu, Y., Abdelzaher, T. F., Stankovic, J. A., and Son, S. H. (2006). Feedback

Control Architecture and Design Methodology for Service Delay Guarantees in Web Servers.

IEEE Transactions on Parallel and Distributed Systems, 17(9):1014–1027.

233

BIBLIOGRAPHY

[Marco et al., 2012] Marco, V., Henrique, M., Kai, S., and Samuel, K. (2012). Resilience Bench-

marking, pages 283–301. Springer Berlin Heidelberg.

[Marzolla et al., 2012] Marzolla, M., Ferretti, S., and D’Angelo, G. (2012). Dynamic Resource

Provisioning for Cloud-based Gaming Infrastructures. Comput. Entertain., 10(3):4:1–4:20.

[Matthews et al., 2007] Matthews, J. N., Hu, W., Hapuarachchi, M., Deshane, T., Dimatos, D.,

Hamilton, G., McCabe, M., and Owens, J. (2007). Quantifying the Performance Isolation Proper-

ties of Virtualization Systems. In Proceedings of the 2007 Workshop on Experimental Computer

Science, ExpCS ’07, New York, NY, USA. ACM.

[McCall, 1977] McCall, J. (1977). Factors in Software Quality: Preliminary Handbook on Soft-

ware Quality for an Acquisiton Manager. General Electric.

[Mell and Grance, 2011] Mell, P. and Grance, T. (2011). The NIST Definition of Cloud Computing.

Technical Report Special Publication 800-145, NIST.

[Menascé et al., 1994] Menascé, D. A., Almeida, V. A. F., and Dowdy, L. W. (1994). Capacity

Planning and Performance Modeling: From Mainframes to Client-server Systems. Prentice-

Hall, Inc., Upper Saddle River, NJ, USA.

[Menasce et al., 2004] Menasce, D. A., Dowdy, L. W., and Almeida, V. A. (2004). Performance by

Design: Computer Capacity Planning By Example. Prentice Hall PTR, Upper Saddle River, NJ,

USA.

[Menasce and Virgilio, 2000] Menasce, D. A. and Virgilio, A. F. A. (2000). Scaling for E Business:

Technologies, Models, Performance, and Capacity Planning. Prentice Hall PTR, Upper Saddle

River, NJ, USA, 1st edition.

[Mietzner et al., 2008] Mietzner, R., Leymann, F., and Papazoglou, M. P. (2008). Defining Com-

posite Configurable SaaS Application Packages Using SCA, Variability Descriptors and Multi-

tenancy Patterns. In 2008 Third International Conference on Internet and Web Applications and

Services, pages 156–161. IEEE.

[Mietzner et al., 2009] Mietzner, R., Unger, T., Titze, R., and Leymann, F. (2009). Combining

Different Multi-tenancy Patterns in Service-Oriented Applications. 2009 IEEE International

Enterprise Distributed Object Computing Conference, pages 131–140.

[Miller, 1968] Miller, R. B. (1968). Response time in man-computer conversational transactions. In

Proceedings of the December 9-11, 1968, fall joint computer conference, part I, pages 267–277.

ACM.

[Momm and Krebs, 2011] Momm, C. and Krebs, R. (2011). A Qualitative Discussion of Different

Approaches for Implementing Multi-Tenant SaaS Offerings. In Reussner, R. and Pretschner,

234

BIBLIOGRAPHY

Alexander amd Jähnichen, S., editors, Proceedings of the Software Engineering 2011 – Work-

shopband (ESoSyM-2011), pages 139–150, Bonn-Buschdorf, Germany. Fachgruppe OOSE der

Gesellschaft für Informatik und ihrer Arbeitskreise, Bonner Köllen Verlag.

[Monagan et al., 2005] Monagan, M. B., Geddes, K. O., Heal, K. M., Labahn, G., Vorkoetter, S. M.,

McCarron, J., and DeMarco, P. (2005). Maple 10 Programming Guide. Maplesoft, Waterloo ON,

Canada.

[Moy, 1994] Moy, J. (1994). RFC 1583: OSPF Version 2. ❤tt♣✿✴✴✇✇✇✳✐❡t❢✳♦r❣✴r❢❝✴

r❢❝✶✺✽✸✳t①t.

[Musabbir et al., 2013] Musabbir, S., Krishnamurthy, D., and Casale, G. (2013). RPO: Runtime

web server optimization under simultaneous multithreading. In IFIP/IEEE International Sympo-

sium onIntegrated Network Management (IM 2013), pages 85–92.

[Natis, 2012] Natis, Y. (2012). Gartner Reference Model for Elasticity and Multitenancy. Gartner

report, Gartner.

[Nelson et al., 2009] Nelson, A. L., Barlow, G. J., and Doitsidis, L. (2009). Fitness Functions in

Evolutionary Robotics: A Survey and Analysis. Robot. Auton. Syst., 57(4):345–370.

[Nichols et al., 1998] Nichols, K., Blake, S., Baker, F., and Black, D. (1998). RFC 2474: Definition

of the Differentiated Services Field (DS Field) in the IPv4 and IPv6 Headers. Technical report,

IETF.

[Nielsen, 1994] Nielsen, J. (1994). Usability engineering. Elsevier.

[Noorshams, 2014] Noorshams, O.-Q. (2014). Modeling and Prediction of I/O Performance in

Virtualized Environments. PhD thesis, Karlsruher Institute of Technology. defendet, not yet

published.

[Noorshams et al., 2013] Noorshams, Q., Kounev, S., and Reussner, R. (2013). Experimental eval-

uation of the performance-influencing factors of virtualized storage systems. In Computer Per-

formance Engineering, pages 63–79. Springer.

[OASIS, 2012] OASIS (2012). Content Management Interoperability Services (CMIS) Version 1.1.

Technical report, OASIS Committee.

[ONF, 2013] ONF (2013). OpenFlow Switch Specification Version 1.4.0. Technical report, Open

Network Foundation.

[Oracle, 2015] Oracle (2015). Java SE 6.0 API: Interface ThreadMXBean. ❤tt♣✿✴✴❞♦❝s✳

♦r❛❝❧❡✳❝♦♠✴❥❛✈❛s❡✴✻✴❞♦❝s✴❛♣✐✴❥❛✈❛✴❧❛♥❣✴♠❛♥❛❣❡♠❡♥t✴❚❤r❡❛❞▼❳❇❡❛♥✳❤t♠❧. last ac-

cessed: 06. March 2015.

235

http://www.ietf.org/rfc/rfc1583.txt
http://www.ietf.org/rfc/rfc1583.txt
http://docs.oracle.com/javase/6/docs/api/java/lang/management/ThreadMXBean.html
http://docs.oracle.com/javase/6/docs/api/java/lang/management/ThreadMXBean.html

BIBLIOGRAPHY

[Pacifici et al., 2008] Pacifici, G., Segmuller, W., Spreitzer, M., and Tantawi, A. (2008). CPU de-

mand for web serving: Measurement analysis and dynamic estimation. Performance Evaluation,

65(6-7):531–553.

[Padala et al., 2009] Padala, P., Hou, K.-Y., Shin, K. G., Zhu, X., Uysal, M., Wang, Z., Singhal, S.,

and Merchant, A. (2009). Automated control of multiple virtualized resources. In Proceedings of

the 4th ACM European conference on Computer systems, EuroSys ’09, pages 13–26, New York,

NY, USA. ACM.

[Pors et al., 2013] Pors, M., Blom, L., Kabbedijk, J., and Jansen, S. (2013). Sharing is Caring - A

Decision Support Model for Multi-Tenant Architectures.

[Qin and Wang, 2005] Qin, W. and Wang, Q. (2005). Feedback performance control for computer

systems: an LPV approach. In Proceedings of the 2005 American Control Conference.

[Rolia et al., 2010] Rolia, J., Kalbasi, A., Krishnamurthy, D., and Dawson, S. (2010). Resource

demand modeling for multi-tier services. In WOSP/SIPEW 10: Proceedings of the first joint

WOSP/SIPEW international conference on Performance engineering. ACM.

[Rolia and Vetland, 1995] Rolia, J. and Vetland, V. (1995). Parameter estimation for performance

models of distributed application systems, page 54. IBM Press.

[Ross, 2006] Ross, S. M. (2006). Introduction to Probability Models, Ninth Edition. Academic

Press, Inc., Orlando, FL, USA.

[Ruehl, 2013] Ruehl, S. (2013). Mixed Tenancy - A hybrid Approach between Single and Mulit-

Tenancy. PhD thesis, Technical University Clausthal.

[Runeson et al., 2012] Runeson, P., Host, M., Rainer, A., and Regnell, B. (2012). Case Study

Research in Software Engineering: Guidelines and Examples. Wiley Blackwell.

[Saaty, 2000] Saaty, T. (2000). Fundamentals of Decision Making and Priority Theory With the

Analytic Hierarchy Process. AHP series. RWS Publications.

[SAP SE, 2014] SAP SE (2014). Multitenant Applications. ❤tt♣s✿✴✴❤❡❧♣✳❤❛♥❛✳♦♥❞❡♠❛♥❞✳

❝♦♠✴❤❡❧♣✴❢r❛♠❡s❡t✳❤t♠❄✺✹❛✼✻✶✺✻❝❞✶✶✹❡✺❞✾✷✽✻✹✷❜✽❞❞❡✹✼❜✾✶✳❤t♠❧. last accessed: 25.

Nov. 2014.

[Schad et al., 2010] Schad, J., Dittrich, J., and Quiané-Ruiz, J.-A. (2010). Runtime Measurements

in the Cloud: Observing, Analyzing, and Reducing Variance. Proceedings of the VLDB Endow-

ment, 3(1-2):460–471.

[Schneider, 2014] Schneider, P. (2014). Performance Isolation Controller for Multi-Tenant Appli-

cations. Master’s thesis, Karlsruhe Institute of Technology (KIT), Am Fasanengarten 5, 76131

Karlsruhe, Germany. Advisor: Rouven Krebs.

236

https://help.hana.ondemand.com/help/frameset.htm?54a76156cd114e5d928642b8dde47b91.html
https://help.hana.ondemand.com/help/frameset.htm?54a76156cd114e5d928642b8dde47b91.html

BIBLIOGRAPHY

[Schonfeld, 2009] Schonfeld, E. (2009). The Efficient Cloud: All Of Sales-

force Runs On Only 1,000 Servers. ❤tt♣✿✴✴t❡❝❤❝r✉♥❝❤✳❝♦♠✴✷✵✵✾✴✵✸✴✷✸✴

t❤❡✲❡❢❢✐❝✐❡♥t✲❝❧♦✉❞✲❛❧❧✲♦❢✲s❛❧❡s❢♦r❝❡✲r✉♥s✲♦♥✲♦♥❧②✲✶✵✵✵✲s❡r✈❡rs.

[Schroeter, 2013] Schroeter, J. (2013). Feature-based configuration management of reconfigurable

cloud applications. PhD thesis, Technische Universitaet Dresden.

[Schroeter et al., 2012] Schroeter, J., Cech, S., and Götz, S. (2012). Towards Modeling a Vari-

able Architecture for Multi-Tenant SaaS-Applications. In Proceedings of the sixth international

workshop on variability modeling of software-intensive systems, pages 111–120.

[Schuller, 2009] Schuller, S. (2009). What if Salesforce.com were not multi-tenant? ❤tt♣✿

✴✴✇✇✇✳s❛❛s❜❧♦❣s✳❝♦♠✴❜✉s✐♥❡ss✴✇❤❛t✲✐❢✲s❛❧❡s❢♦r❝❡❝♦♠✲✇❡r❡♥t✲♠✉❧t✐✲t❡♥❛♥t. last

accessed: 23. November 2014.

[Schurman and Brutlag, 2009] Schurman, E. and Brutlag, J. (2009). The User and Business Impact

of Server Delays, Additional Bytes, and HTTP Chunking in Web Search.

[Sen and Yang, 2011] Sen, P. and Yang, J.-B. (2011). Multiple Criteria Decision Support in Engi-

neering Design. Springer.

[Shing Wai Chan, 2013] Shing Wai Chan, R. M. (2013). Java Servlet Specification Version 3.1.

Technical report, ORACLE.

[Shivam et al., 2008] Shivam, P., Marupadi, V., Chase, J., Subramaniam, T., and Babu, S. (2008).

Cutting Corners: Workbench Automation for Server Benchmarking. In USENIX 2008 Annual

Technical Conference on Annual Technical Conference, ATC’08, pages 241–254, Berkeley, CA,

USA. USENIX Association.

[Shue et al., 2012] Shue, D., Freedman, M. J., and Shaikh, A. (2012). Performance Isolation and

Fairness for Multi-tenant Cloud Storage. In Proceedings of the 10th USENIX Conference on

Operating Systems Design and Implementation, OSDI’12, pages 349–362, Berkeley, CA, USA.

USENIX Association.

[Smith and Williams, 1993] Smith, C. U. and Williams, L. G. (1993). Software Performance En-

gineering: A Case Study Including Performance Comparison with Design Alternatives. IEEE

Trans. Softw. Eng., 19(7):720–741.

[Smith, 2011] Smith, D. (2011). Hype Cycle for Cloud Computing, 2011. Technical report, Gart-

ner. Gartner Reference ID: G00214915.

[Smith, 1988] Smith, J. E. (1988). Characterizing Computer Performance with a Single Number.

Communications of the ACM, 31(10):1202–1206.

237

http://techcrunch.com/2009/03/23/the-efficient-cloud-all-of-salesforce-runs-on-only-1000-servers
http://techcrunch.com/2009/03/23/the-efficient-cloud-all-of-salesforce-runs-on-only-1000-servers
http://www.saasblogs.com/business/what-if-salesforcecom-werent-multi-tenant
http://www.saasblogs.com/business/what-if-salesforcecom-werent-multi-tenant

BIBLIOGRAPHY

[Sommerville, 2006] Sommerville, I. (2006). Software Engineering: (Update) (8th Edition) (In-

ternational Computer Science). Addison-Wesley Longman Publishing Co., Inc., Boston, MA,

USA.

[Sousa and Machado, 2012] Sousa, F. R. and Machado, J. C. (2012). Towards Elastic Multi-Tenant

Database Replication with Quality of Service. In Proceedings of the 2012 IEEE/ACM Fifth In-

ternational Conference on Utility and Cloud Computing, UCC ’12, pages 168–175, Washington,

DC, USA. IEEE Computer Society.

[SPEC, 2012] SPEC (2012). SPECjEnterprise2010 version 1.03. ❤tt♣s✿✴✴✇✇✇✳s♣❡❝✳♦r❣✴

❥❊♥t❡r♣r✐s❡✷✵✶✵. last accessed: 2. April 2015.

[SPEC, 2013] SPEC (2013). SPECvirt. ❤tt♣✿✴✴✇✇✇✳s♣❡❝✳♦r❣✴❜❡♥❝❤♠❛r❦s✳❤t♠❧★✈✐rt✉❛❧.

last accessed: 02. April 2015.

[SPEC, 2015] SPEC (2015). Standard Performance Evaluation Corporation Glossary. ❤tt♣s✿

✴✴✇✇✇✳s♣❡❝✳♦r❣✴s♣❡❝✴❣❧♦ss❛r②. last accessed: 14. February 2015.

[Spinner, 2011] Spinner, S. (2011). Evaluating Approaches to Resource Demand estimation. Mas-

ter’s thesis, Karlsruhe Institute of Technology (KIT), Am Fasanengarten 5, 76131 Karlsruhe,

Germany.

[Stallings, 2008] Stallings, W. (2008). Operating Systems: Internals and Design Principles. Pren-

tice Hall Press, Upper Saddle River, NJ, USA, 6th edition. Part 4: Scheduling.

[Strauch et al., 2013] Strauch, S., Andrikopoulos, V., Gomez Saez, S., and Leymann, F. (2013).

ESB MT: A Multi-tenant Aware Enterprise Service Bus. International Journal of Next-

Generation Computing, 4(3):230–249.

[Suleiman and Venugopal, 2013] Suleiman, B. and Venugopal, S. (2013). Modeling Performance

of Elasticity Rules for Cloud-Based Applications. In 17th IEEE International Enterprise Dis-

tributed Object Computing Conference (EDOC), pages 201–206.

[Tanenbaum and Wetherall, 2011] Tanenbaum, A. S. and Wetherall, D. J. (2011). Computer Net-

works. Prentice Hall, 5th edition.

[TPC, 2002] TPC (2002). TPC BENCHMARK W. Technical report, Transaction Processing Per-

formance Council.

[van Solingen et al., 2002] van Solingen, R., Basili, V., Caldiera, G., and Rombach, H. D. (2002).

Goal Question Metric (GQM) Approach. John Wiley and Sons, Inc.

[van Solingen and Berghout, 2001] van Solingen, R. and Berghout, E. (2001). Integrating Goal-

Oriented Measurement in Industrial Software Engineering: Industrial Experiences with and Ad-

ditions to the Goal/Question/Metric Method (GQM). In IEEE METRICS, page 246.

238

https://www.spec.org/jEnterprise2010
https://www.spec.org/jEnterprise2010
http://www.spec.org/benchmarks.html#virtual
https://www.spec.org/spec/glossary
https://www.spec.org/spec/glossary

BIBLIOGRAPHY

[VMWare, 2012] VMWare (2012). Whitepaper: Implementing Cloud Solutions Within Your Ex-

isting IT Environment.

[von Kistowski et al., 2015] von Kistowski, J., Arnold, J. A., Huppler, K., Lange, K.-D., Henning,

J. L., and Cao, P. (2015). How to Build a Benchmark. In Proceedings of the 6th ACM/SPEC

International Conference on Performance Engineering (ICPE 2015), ICPE ’15, New York, NY,

USA. ACM.

[Walraven et al., 2012] Walraven, S., Monheim, T., Truyen, E., and Joosen, W. (2012). Towards

Performance Isolation in Multi-tenant SaaS Applications. In Proceedings of the 7th Workshop

on Middleware for Next Generation Internet Computing, MW4NG ’12, New York, NY, USA.

ACM.

[Walsh et al., 2004] Walsh, W. E., Tesauro, G., Kephart, J. O., and Das, R. (2004). Utility Functions

in Autonomic Systems. In International Conferance on Autonomic Computing, pages 70–77.

[Wang et al., 2012] Wang, W., Huang, X., Qin, X., Zhang, W., Wei, J., and Zhong, H. (2012).

Application-Level CPU Consumption Estimation: Towards Performance Isolation of Multi-

tenancy Web Applications. In 2012 IEEE Fifth International Conference on Cloud Computing,

pages 439–446. IEEE.

[Wang et al., 2008] Wang, Z. H., Guo, C. J., Gao, B., Sun, W., Zhang, Z., and An, W. H. (2008).

A Study and Performance Evaluation of the Multi-Tenant Data Tier Design Patterns for Service

Oriented Computing. In IEEE International Conference on e-Business Engineering, pages 94

–101.

[Weissman and Bobrowski, 2009] Weissman, C. D. and Bobrowski, S. (2009). The design of the

force. com multitenant internet application development platform. In SIGMOD Conference,

pages 889–896.

[Welsh and Culler, 2003] Welsh, M. and Culler, D. (2003). Adaptive Overload Control for Busy

Internet Servers. In Proceedings of the 4th Conference on USENIX Symposium on Internet Tech-

nologies and Systems - Volume 4, USITS’03, pages 4–4, Berkeley, CA, USA. USENIX Associa-

tion.

[Wert et al., 2012] Wert, A., Happe, J., and DennisWestermann (2012). Integrating software

performance curves with the palladio component model. In Proceedings of the third joint

WOSP/SIPEW international conference on Performance Engineering, pages 283–286. ACM.

[Westermann, 2013] Westermann, D. (2013). Deriving Goal-oriented Performance Models by Sys-

tematic Experimentation. PhD thesis, Karlsruhe Institute of Technology (KIT), Karlsruhe, Ger-

many.

239

BIBLIOGRAPHY

[Westermann et al., 2010] Westermann, D., Happe, J., Hauck, M., and Heupel, C. (2010). The

Performance Cockpit Approach: A Framework for Systematic Performance Evaluations. In

Proceedings of the 36th EUROMICRO Conference on Software Engineering and Advanced Ap-

plications (SEAA 2010), pages 31–38. IEEE Computer Society.

[Westermann and Momm, 2010] Westermann, D. and Momm, C. (2010). Using software perfor-

mance curves for dependable and cost-efficient service hosting. In Proceedings of the 2nd Inter-

national Workshop on the Quality of Service-Oriented Software Systems, QUASOSS ’10, pages

3:1–3:6, New York, NY, USA. ACM.

[wikimedia, 2015] wikimedia (2015). Page view statistics for Wikimedia projects. ❤tt♣✿✴✴❞✉♠♣s✳

✇✐❦✐♠❡❞✐❛✳♦r❣✴♦t❤❡r✴♣❛❣❡❝♦✉♥ts✲r❛✇. last accessed: 09. March 2015.

[Wilder, 2012] Wilder, B. (2012). Cloud Architecture Patterns. O’Reilly & Associates.

[Wolff, 1982] Wolff, R. W. (1982). Poisson Arrivals See Time Averages. Operations Research,

30(2):223–231.

[Xen, 2012] Xen (2012). Xen.org. ❤tt♣✿✴✴①❡♥✳♦r❣.

[Xen Project, 2015] Xen Project (2015). Credit scheduler. ❤tt♣✿✴✴✇✐❦✐✳①❡♥♣r♦❥❡❝t✳♦r❣✴

✇✐❦✐✴❈r❡❞✐t❴❙❝❤❡❞✉❧❡r. last accessed: 16. February 2015.

[Xi et al., 2011] Xi, S., Wilson, J., Lu, C., and Gill, C. (2011). Rt-xen: towards real-time hyper-

visor scheduling in xen. In Proceedings of the International Conference on Embedded Software

(EMSOFT), pages 39–48. IEEE.

[Yaish and Goyal, 2013] Yaish, H. and Goyal, M. (2013). Multi-tenant Database Access Control.

In Proceedings of the 2013 IEEE 16th International Conference on Computational Science and

Engineering, CSE ’13, pages 870–877, Washington, DC, USA. IEEE Computer Society.

[Young and Smith, 2006] Young, J. and Smith, S. (2006). Akamai and JupiterResearch Identify ’4

Seconds’ as the New Threshold of Acceptability for Retail Web Page Response Times. ❤tt♣✿✴✴

✇✇✇✳❛❦❛♠❛✐✳❝♦♠✴❤t♠❧✴❛❜♦✉t✴♣r❡ss✴r❡❧❡❛s❡s✴✷✵✵✻✴♣r❡ss❴✶✶✵✻✵✻✳❤t♠❧. last accessed:

02. February 2015.

[Zeng et al., 2013] Zeng, L., Wang, Y., Shi, W., and Feng, D. (2013). An Improved Xen Credit

Scheduler for I/O Latency-Sensitive Applications on Multicores. In Proceedings of the 2013

International Conference on Cloud Computing and Big Data, CLOUDCOM-ASIA ’13, pages

267–274, Washington, DC, USA. IEEE Computer Society.

[Zhang et al., 2007] Zhang, Q., Cherkasova, L., and Smirni, E. (2007). A Regression-Based An-

alytic Model for Dynamic Resource Provisioning of Multi-Tier Applications, page 27ff. IEEE

Computer Society.

240

http://dumps.wikimedia.org/other/pagecounts-raw
http://dumps.wikimedia.org/other/pagecounts-raw
http://xen.org
http://wiki.xenproject.org/wiki/Credit_Scheduler
http://wiki.xenproject.org/wiki/Credit_Scheduler
http://www.akamai. com/html/about/press/releases/2006/press_110606.html
http://www.akamai. com/html/about/press/releases/2006/press_110606.html

BIBLIOGRAPHY

[Zhang et al., 2010] Zhang, Y., Wang, Z., Gao, B., Guo, C., Sun, W., and Li, X. (2010). An effec-

tive heuristic for on-line tenant placement problem in saas. Web Services, IEEE International

Conference on, 0:425–432.

[Zheng et al., 2008] Zheng, T., Woodside, M., and Litoiu, M. (2008). Performance Model Es-

timation and Tracking Using Optimal Filters. IEEE Transactions on Software Engineering,

34(3):391?406.

[Zhu et al., 2009] Zhu, X., Uysal, M., Wang, Z., Singhal, S., Merchant, A., Padala, P., and Shin, K.

(2009). What does control theory bring to systems research? ACM SIGOPS Operating Systems

Review, 43(1):62.

[Zimmermann, 1980] Zimmermann, H. (1980). OSI Reference Model – The ISO Model of Archi-

tecture for Open Systems Interconnection. Communications, IEEE Transactions on, 28(4):425–

432.

241

A. Call Characteristics of Document Service

A.1. Analysis of Call Probability

, 2 3 4 5 6 7 8 9

StartState 0,030 0,008 0,804 0,008 0,137 0,004 0,002 0,000 0,005

,:BgetChildrenTD 0,543 0,001 0,450 0,000 0,001 0,002 0,003 0,000 0,000

2:BgetContentStreamTD 0,067 0,760 0,135 0,000 0,000 0,000 0,000 0,000 0,038

3:BgetObjectTD 0,373 0,001 0,378 0,038 0,002 0,013 0,014 0,001 0,177

4:BgetObjectByPathTD 0,000 0,000 0,922 0,056 0,002 0,018 0,000 0,003 0,000

5:BgetRepositoryInfosTD 0,013 0,000 0,567 0,006 0,014 0,133 0,265 0,000 0,001

6:BgetTypeDefinitionTD 0,073 0,000 0,448 0,012 0,243 0,178 0,038 0,000 0,001

7:BqueryTD 0,039 0,000 0,819 0,000 0,110 0,015 0,013 0,000 0,003

8:BsetContentStreamTD 0,047 0,000 0,860 0,070 0,000 0,000 0,000 0,023 0,000

9:BgetObjectParentsTD 0,001 0,000 0,978 0,000 0,000 0,000 0,000 0,000 0,003

Average 0,119 0,077 0,636 0,019 0,051 0,036 0,034 0,003 0,023

, 2 3 4

StartState 0,031 0,008 0,821 0,140

,:BgetChildrenTD 0,546 0,001 0,453 0,001

2:BgetContentStreamTD 0,070 0,790 0,140 0,000

3:BgetObjectTD 0,495 0,001 0,501 0,002

4:BgetRepositoryInfosTD 0,022 0,000 0,954 0,024

TopB,5BTransitionsBforBDocumentBService

ServicesBWithBanBOverallBCallBPropabilityB>B0A005

Figure A.1.: Limited view onto the call probability of the Document Service.

243

A. Call Characteristics of Document Service

A.2. Timing Behavior of Calls

Figure A.2.: Filtered probability density of bulk inter arrival times.

The data was normalized. The real time span between two bulks of the same user are described

by multiplying the x-axis value, with a constant factor.

244

B. AHP Weighting Matrix

Figure B.1.: Upper table: isolation. Lower table: oscillation. Tables copied from created PDF file using
[Bender et al., 2013]

245

C. Proof of Convexity for System Function

In the following a proof of Lemma 2 is shown. The proof is a minor modified version of [Schneider,

2014].

Proof : For the sake of simplicity, the system function from Equation 4.4 is shortened by sub-

suming parameters into constants. This results in

Ri(wi) =
ai

wi
+bi +

√
(

ai

wi
+bi

)2

+ ci,

with ai := Oi mi/2, bi := (Oi−Z)/2 and ci := OiZ, whereat ai,ci > 0. The derivative of Ri(wi)

is then given by

d

dwi
Ri(wi) = −

ai

w2
i



1+
ai

wi
+bi

√

(ai

wi
+bi)2 + ci



 .

The fraction inside the bracket is strictly bigger than −1 as shown in the following.

Obviously it holds that
ai

wi
+bi

√

(ai

wi
+bi)2 + ci

>−1.

since ci > 0 in a given system which ensures that

| ai

wi
+bi|<

√

(
ai

wi
+bi)2 + ci

Thus

d

dwi
Ri(wi) = − ai

w2
i

︸ ︷︷ ︸

<0 ∀wi>0



1+
ai

wi
+bi

√

(ai

wi
+bi)2 + ci





︸ ︷︷ ︸

>0

< 0.

That proofs that Ri is strictly monotonically decreasing. In the following, the convexity of

Ri(wi) is proved for wi ∈ [0,1]. For this reason, d2

d2wi
Ri(wi)> 0 is shown which and thus strict

247

C. Proof of Convexity for System Function

convexity is proved. The second derivative d2

d2wi
Ri(wi) is given by

2ai

w3
i

︸︷︷︸

>0



1+
ai

wi
+bi

√

(ai

wi
+bi)2 + ci





︸ ︷︷ ︸

>0 (shown before)

+
a2

i

w4
i

√

(ai

wi
+bi)2 + ci

︸ ︷︷ ︸

>0, since ci>0









1−
(ai

wi
+bi)

2

(ai

wi
+bi)2 + ci

︸ ︷︷ ︸

<1, since ci>0









︸ ︷︷ ︸

>0

> 0.

Obviously lim
w→0

R j(w) = ∞ holds. Note that therefore Ri(wi), as well as its derivatives have

singularities at wi = 0. By defining −∞ < c < ∞ for each c ∈ R, the result of this lemma is

conserved.

248

	Abstract
	Kurzfassung
	Table of Content
	1 Introduction
	1.1 Motivation
	1.2 An Example
	1.3 Goals, Challenges and Research Questions
	1.3.1 Assumptions and Context
	1.3.2 Goals
	1.3.3 Challenges and Requirements
	1.3.4 Research Questions

	1.4 Contribution and Methodology
	1.4.1 Limitations of Existing Approaches
	1.4.2 Contributions and Approach
	1.4.3 Research Methodology

	1.5 Problem Solution and Validation
	1.5.1 Mastering the Challenges
	1.5.2 Achievement of the Goals

	1.6 Thesis Organization
	1.6.1 Structure
	1.6.2 Information for Reading the Thesis

	2 Foundations and State-of-the-Art
	2.1 Foundations
	2.1.1 Common Properties of a Multi-Tenant Application
	2.1.2 Performance Engineering
	2.1.3 Closed Control Loop

	2.2 Related Fields
	2.2.1 Hardware Virtualization
	2.2.2 Scheduling of Processes, Threads and I/O
	2.2.3 Networks
	2.2.4 Elasticity

	2.3 Web Server Based Performance Control
	2.3.1 Performance Driven Deployment
	2.3.2 Closed Control Loops
	2.3.3 Source Depending Performance Control
	2.3.4 Multi-tenancy

	2.4 Performance Measurement in Shared Environments
	2.5 Summary of Related Work

	3 Measurement of Isolation
	3.1 Metrics and Load Profiles
	3.1.1 Goal of the Metrics
	3.1.2 General Idea of the Isolation Metrics
	3.1.3 QoS Impact Based Metrics
	3.1.4 Workload Ratios Based Metrics
	3.1.5 Further Quality Aspects
	3.1.6 Load Profiles
	3.1.7 Further Applications and Limitations

	3.2 Domain Independent Framework for Performance Isolation Measurement
	3.2.1 Overview of the Existing Software Performance Cockpit
	3.2.2 Multi-Tenancy Enhancements
	3.2.3 Exploration Strategy Extensions
	3.2.4 Analysis Strategy Extensions

	3.3 Benchmark Application
	3.3.1 Characteristics of a Multi-Tenant Benchmark Application
	3.3.2 A Multi-Tenancy Benchmark

	3.4 First Assessment of the Metrics
	3.4.1 Simulation Based Case Study
	3.4.2 Hypervisor Based Case Study
	3.4.3 Discussion

	3.5 Conclusion
	3.5.1 Critical Discussion
	3.5.2 Summary

	4 Methods for Performance Isolation
	4.1 Request Based Admission Control
	4.1.1 Alternative Approaches
	4.1.2 Double-Staged Admission Control

	4.2 Model Based Isolation
	4.2.1 General Approach
	4.2.2 Analysis of System Aspects
	4.2.3 Priority Fair Queuing for Performance Isolation
	4.2.4 Performance Prediction Approach
	4.2.5 Determining Required Parameters
	4.2.6 Fitness Function and Optimization
	4.2.7 Concluding Remarks

	4.3 Resource Isolation
	4.3.1 General Approach
	4.3.2 Resource Isolation Scheduler
	4.3.3 Resource Demand Estimation
	4.3.4 Towards Multiple Resources and Efficient Resource Usage
	4.3.5 Concluding Remarks

	4.4 Further Performance Isolation Methods
	4.4.1 Proportional Integral Control Loop
	4.4.2 Black List and Round Robin

	4.5 Proof of Concepts
	4.5.1 Shared Aspects of the System Under Test
	4.5.2 Resource Isolation
	4.5.3 Model Based Isolation

	4.6 Conclusion

	5 Decision Support and Architecture
	5.1 Architectural Concerns for Performance Isolated Multi-Tenant Applications
	5.1.1 Architectural Concerns
	5.1.2 Mutual Interferences, Dependencies and Recommendations
	5.1.3 Summary

	5.2 Selection of Performance Isolation Method
	5.2.1 Classification Schema for Existing Methods
	5.2.2 Informational Requirements
	5.2.3 Selecting an Isolation Method

	5.3 Reference Architecture
	5.3.1 Position of the Admission Control
	5.3.2 Performance Isolation Framework
	5.3.3 Relevant Design Decisions

	5.4 Conclusion
	5.4.1 Critical Discussion
	5.4.2 Summary

	6 Evaluation
	6.1 Isolation Methods
	6.1.1 Goal, Questions and Metrics
	6.1.2 Multi-Tenant Application Based Experiments
	6.1.3 Core Components Overhead
	6.1.4 Admission Control Strategy Overhead
	6.1.5 Concluding the Isolation Methods Experiments

	6.2 Measurement of Isolation
	6.2.1 Goal, Questions and Metrics
	6.2.2 Reflection on Experiments and Results
	6.2.3 Concluding the Isolation Measurement Validation

	6.3 Performance Isolated Document Service
	6.3.1 Goal and Questions
	6.3.2 SAP HANA Cloud Document Service
	6.3.3 System Setup and Load
	6.3.4 Application of the Selection Process
	6.3.5 Experiments
	6.3.6 Related Insights
	6.3.7 Application of the Architecture
	6.3.8 Concluding the Document Service Case Study

	6.4 Concluding the Overall Evaluation Results
	6.4.1 Critical Discussion
	6.4.2 Summary

	7 Conclusion
	7.1 Summary
	7.1.1 Recapture of the Chapters
	7.1.2 Answering the Research Questions

	7.2 Critical Discussion, Future Research and Limitations
	7.3 Potential Further Applications
	7.4 Concluding Remarks

	Acronyms and Abbreviations
	Glossary
	List of Figures
	List of Tables
	Bibliography
	A Call Characteristics of Document Service
	A.1 Analysis of Call Probability
	A.2 Timing Behavior of Calls

	B AHP Weighting Matrix
	C Proof of Convexity for System Function

