
Self-Aware QoS Management in Virtualized Infrastructures

Samuel Kounev
Karlsruhe Institute of

Technology, 76131 Karlsruhe,
Germany

kounev@kit.edu

Fabian Brosig
Karlsruhe Institute of

Technology, 76131 Karlsruhe,
Germany

fabian.brosig@kit.edu

Nikolaus Huber
Karlsruhe Institute of

Technology, 76131 Karlsruhe,
Germany

nikolaus.huber@kit.edu

ABSTRACT
We present an overview of our work-in-progress and long-
term research agenda aiming to develop a novel method-
ology for engineering of self-aware software systems. The
latter will have built-in architecture-level QoS models en-
hanced to capture dynamic aspects of the system environ-
ment and maintained automatically during operation. The
models will be exploited at run-time to adapt the system
to changes in the environment ensuring that resources are
utilized efficiently and QoS requirements are satisfied.

Categories and Subject Descriptors
C.4 [PERFORMANCE OF SYSTEMS]: Modeling tech-
niques

General Terms
Performance, Management

1. INTRODUCTION
With the increasing adoption of virtualization and the

transition towards Cloud Computing platforms, modern en-
terprise software systems based on the SOA paradigm are
becoming increasingly complex and dynamic. The lack of
direct control over the underlying physical hardware and
the complex interactions between the applications sharing
the physical infrastructure pose some major challenges in
providing Quality-of-Service (QoS) guarantees, e.g., perfor-
mance, availability and reliability.
Service providers are often faced with questions such as:

What would be the effect on the QoS of running applications
if a new application is deployed in the virtualized infrastruc-
ture or an existing application is migrated from one physical
server to another? How much resources need to be allocated
to a newly deployed application to ensure that service-level
agreements are satisfied? How should the system configu-
ration (e.g., resource allocations, load balancing strategies)
be adapted to avoid QoS issues or inefficient resource usage
arising from changing customer workloads? Answering such

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICAC’11, June 14–18, 2011, Karlsruhe, Germany.
Copyright 2011 ACM 978-1-4503-0607-2/11/06 ...$10.00.

online QoS queries requires the ability to predict at run-

time how the QoS of running applications would be affected
if the system configuration or the workload changes. We
refer to this as online QoS prediction.
Predicting the QoS of a SOA application, even in an offline

scenario, is a challenging task. A detailed system QoS model

capturing the QoS-relevant aspects of both the software ar-
chitecture and the multi-layered execution environment is
needed. While a number of architecture-level model-based
prediction techniques exist, e.g., [5], most of them suffer from
two significant drawbacks which render them impractical for
use at run-time: i) QoS models are expensive to build and
provide limited support for reusability and customization,
ii) QoS models are static and maintaining them manually
during operation is prohibitively expensive [3,6].

2. RESEARCH AGENDA& VISION
The Descartes Research Group1 was started in July 2009,

funded by the German Research Foundation (DFG) as well
as by European projects and industrial partners. The group
is working on a novel software and systems engineering meth-
odology comprised of a set of methods, techniques and tools
for the engineering of so-called self-aware software systems.
The latter will have built-in online QoS prediction and self-
adaptation capabilities addressing the challenges described
in Sect. 1. Self-awareness is defined by the combination of
three properties: i) Self-reflective: systems should be aware
of their software architecture, execution platform and the
hardware infrastructure on which they are running as well
as of dynamic changes that occur during operation, ii) Self-

predictive: systems should be able to predict the effect of
dynamic changes (e.g., changing user workloads) on their
behavior, as well as predict the effect of undertaken sys-
tem adaptation actions in response to such changes, and
iii) Self-adaptive: systems should proactively adapt as the
environment evolves in order to ensure that their QoS re-
quirements are continuously satisfied in a cost- and energy-
efficient manner.
To realize this vision, we advocate the use of online mod-

els integrated into the system components and capturing the
QoS-relevant system aspects during operation. The models
will serve as a “mind” to the system controlling its behavior,
i.e., resource allocations and scheduling decisions. In anal-
ogy to Descartes’ dualism principle, the link between the
models and the system components they represent will be
bidirectional.
We are currently working on developing a newmeta-model

1http://www.descartes-research.net

for online QoS models designed to encapsulate all informa-
tion, both static and dynamic, relevant to predicting a sys-
tem’s QoS on-the-fly. While, initially, we are focusing on
performance, availability and efficiency aspects, long term
we are planning to consider further QoS properties such
as reliability and fault-tolerance. Our meta-model is based
on existing architecture-level2 performance meta-models for
component-based architectures surveyed in [5], in particular
the Palladio Component Model (PCM) [1]. It captures the
performance influences of the platforms used at each layer
of the execution environment (e.g., hardware, virtualization,
middleware) taking into account resource allocations.
Unlike conventional architecture-level QoS models, the in-

stances of the meta-model we are developing will be dynamic

in the sense that they will be maintained and updated auto-
matically to reflect the evolving system environment. To re-
alize this, we are working on enhancing execution platforms
with functionality to automatically extract and maintain on-
line models during operation. Depending on the type of
system considered (e.g., newly developed system vs. legacy
system) and the availability of monitoring and instrumen-
tation frameworks, the degree of automation of the initial
model extraction will vary.

���������
��� ������

������
�����������

���������
��� ������ ���

�����������

��������������
��������������

������������������
���������� �����

����������
���������� �����

���������� �����

�����
��������

�������������

Figure 1: Online QoS Prediction Process

The online QoS models will be used during operation to
answer QoS-related queries such as the ones discussed in
Sect. 1. Fig. 1 illustrates the process that will be followed in
order to provide an answer to a query. First, the QoS mod-
els of all involved system components will be retrieved and
combined by means of model composition techniques into a
single architecture-level QoS model encapsulating all infor-
mation relevant to answering the QoS query. This model
will then be transformed into a predictive QoS model by
means of an automatic model-to-model transformation. The
target predictive model type and level of abstraction as well
as the solution technique will be determined on-the-fly based
on the required accuracy and time available for the analysis.
The ability to answer online QoS queries during opera-

tion provides the basis for implementing techniques for self-
aware QoS management. Such techniques will be triggered
automatically during operation in response to observed or
forecast changes in application workloads. The goal will be

2We distinguish between descriptive architecture-level QoS
models and predictive QoS models. The former describe
QoS-relevant aspects of software architectures and execu-
tion environments (e.g., UML models augmented with QoS-
related annotations). The latter capture the temporal sys-
tem behavior and can be used for QoS prediction by means
of analytical or simulation techniques (e.g., Markov chains,
layered queueing networks or stochastic Petri nets).

to proactively adapt the system to such changes in order to
avoid anticipated QoS problems or inefficient resource us-
age. The adaptation will be performed in an autonomic
fashion by considering a set of possible system reconfigura-
tion scenarios (e.g, changing VM placement and/or resource
allocations) and exploiting the online QoS query mechanism
to predict the effect of such reconfigurations.
The presented research agenda and vision lies at the inter-

section of several computer science disciplines including soft-
ware architecture, computer systems modeling, autonomic
computing, distributed systems, and more recently, Cloud
Computing and Green IT.

3. CASE STUDIES
We are currently working on two case studies carried out

in the environment depicted in Fig. 2. We study a complex
Java EE application, the new SPECjEnterprise2010 bench-
mark, deployed in a cluster of Oracle WebLogic Server run-
ning in a virtualized environment. The aim of the first case
study is to show how detailed architecture-level performance
models can be extracted automatically at run-time based on
online monitoring data [2]. As a performance model we use
the PCM [1]. To validate the extraction method, we com-
pared predictions derived from the extracted PCM models
with measurements on the real system. The second case
study shows how the extracted performance models can be
exploited for self-adaptive performance management at run-
time by adding and removing resources on the virtualization
and middleware layer under varying workloads [4]. In ad-
dition to the overall vision and approach, the poster will
present our latest results of the two case studies as of the
time of the conference.

2 servers à:

Sun Fire X4440

4 x AMD Opteron 8431

SixCore CPUs, 2.4 GHz,

128 GB RAM

20 nodes à:

2 x Intel Xeon E5430

QuadCore CPUs,

2.66 GHz,

32 GB RAM

Gigabit Switch

1 GBit

4 x 1 GBit

time

Workload

Platform

Level

Infra-

structure

Level

Application

Level

Usage

Behavior

Figure 2: Experimental Environment

4. REFERENCES
[1] S. Becker, H. Koziolek, and R. Reussner. The Palladio

component model for model-driven performance prediction.
Journal of Syst. and Softw., 82:3–22, 2009.

[2] F. Brosig, S. Kounev, and K. Krogmann. Automated Extraction
of Palladio Component Models from Running Enterprise Java
Applications. In Proc. of ROSSA-2009. ACM, 2009.

[3] J. Hellerstein. Engineering Autonomic Systems. In Proc. of
ICAC’2009, pages 75–76. ACM, 2009.

[4] N. Huber, F. Brosig, and S. Kounev. Model-based Self-Adaptive
Resource Allocation in Virtualized Environments. In SEAMS’11.

[5] H. Koziolek. Performance evaluation of component-based
software systems: A survey. Performance Evaluation, 2009.

[6] M. Woodside, G. Franks, and D. Petriu. The future of software
performance engineering. In Future of Software Engineering
(FOSE’07), 2007.

