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Abstract—Event-based communication is used in different
domains including telecommunications, transportation, and busi-
ness information systems to build scalable distributed systems.
The loose coupling of components in such systems makes it easy
to vary the deployment. At the same time, the complexity to
estimate the behavior and performance of the whole system is
increased, which complicates capacity planning. In this paper, we
present an automated performance prediction method supporting
capacity planning for event-based systems. The performance
prediction is based on an extended version of the Palladio
Component Model – a performance meta-model for component-
based systems. We apply this method on a real-world case study
of a traffic monitoring system. In addition to the application
of our performance prediction techniques for capacity planning,
we evaluate the prediction results against measurements in the
context of the case study. The results demonstrate the practicality
and effectiveness of the proposed approach.

I. INTRODUCTION

The event-based communication paradigm is used increas-
ingly often to build loosely-coupled distributed systems in
many industry domains including telecommunications, trans-
portation, supply-chain management, and business information
systems. Compared to synchronous communication using, for
example, remote procedure calls (RPCs), the event-based com-
munication among components promises several benefits, like
higher system scalability and flexibility [1]. The deployment
of components as well as the connections between producers
and consumers of events can be easily changed. However,
the event-based programming model is more complex as the
application logic is distributed among multiple independent
event handlers with decoupled and parallel execution paths.
For this reason, predicting the system’s behavior and estimat-
ing the required infrastructure resources is a complex task. To
guarantee adequate performance and availability, systems in
today’s data centers, are often deployed on server machines
with highly over-provisioned capacity [2]. Capacity planning
is performed based on data collected on test systems or live
systems with a similar setup and workload. Thus, changing
the system by adding new components and functionality or
changing the workload, often requires expensive and time-
consuming load testing. To improve the capacity planning
process and thereby the energy and resource efficiency of
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event-based systems, automated techniques are required that
help to estimate the amount of resources required for providing
a certain Quality-of-Service (QoS) level. Such techniques help
to answer the following questions that arise frequently both at
system deployment time and during operation:

• What would be the average utilization of system compo-
nents and the average event processing time for a given
workload and deployment scenario?

• How much would the system performance improve if a
given server is upgraded?

• How would a change in the workload affect the system’s
performance?

• What maximum load level can the system sustain for a
given resource allocation?

• What would be the influences of adding new event
producers and consumers on the system’s performance
and resource utilization?

• What would be the performance bottleneck for a given
deployment?

Answering such questions requires the ability to predict
the system’s behavior and performance for a given workload
and deployment scenario. Performance prediction techniques
for component-based systems, surveyed in [3], support the
architect in evaluating different design alternatives. However,
they often provide only limited support for modeling event-
based communication and automated evaluations of different
load scenarios. Both aspects are essential for the capacity
planning of event-based systems.

The Palladio Component Model (PCM) [4] is a mature
meta-model for component-based software architectures en-
abling quality predictions (e.g., performance, reliability) at
system design-time. As shown in a small proof-of-concept
case study [5], PCM can be used to evaluate the performance
of event-based systems, however, the modeling effort is rather
high, as manually performed workarounds [6] are required to
represent event-based communication. In [7], we presented an
extension of the PCM which natively supports the modeling
and prediction of event-based communication in component-
based systems. An automated transformation, which maps the
newly introduced model elements to existing PCM model
elements, allows us to exploit the available analytical and
simulative analysis techniques, e.g., [8], [9], [10], while sig-
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nificantly reducing the modeling effort by more than 80%.
Although the approach was shown to be conceptually sound,
so far no validation was presented to evaluate its effectiveness,
practicality and accuracy when applied to realistic systems.

In this paper, we present an in-depth evaluation and ex-
perience report on the use of our automated performance
prediction technique for capacity planning in a realistic con-
text. We present a novel case study of a real-life traffic
monitoring system based on the results of the TIME project
(Transport Information Monitoring Environment) [11] at the
University of Cambridge. We conducted capacity planning
for different evolution stages of the system. In various sce-
narios, we changed the deployment of software components
on the hardware infrastructure and/or enhanced the system
functionality by adding or substituting components. We eval-
uate the accuracy of our performance prediction technique
using measurements taken on a testbed distributed over up
to 10 quad-core machines and consisting of 8 different com-
ponents each deployed with up to 8 instances in parallel.
The prediction error was less than 20% in most cases. As
today’s systems are often over-provisioned by a factor of
2 or more [2], integrating our approach into the capacity
planning process promises significant improvements in terms
of resource efficiency. Additionally, the case study shows that
our extension and its automation reduces the effort required for
performance predictions within the capacity planning process
drastically. In summary, the contributions of this paper are:
i) An experience report on using an automated PCM-based
performance prediction for event-based systems to support the
capacity planning process, ii) a novel capacity planning case
study of a real-life event-based system considering multiple
deployment scenarios and resource allocations, and iii) a
detailed evaluation of the accuracy of our approach based on
measurements taken in a realistic test environment. To the best
of our knowledge, no comparable case studies of similar size,
complexity and representativeness exist in the literature. The
case study presented here is the first comprehensive validation
of our approach in a realistic context.

The remainder of this paper is organized as follows. Sect. II
introduces the capacity planning process in general as well
as our automated performance prediction approach. Sect. III
presents our case study of a traffic monitoring system and the
application of the capacity planning process. In Sect. IV, we
evaluate the prediction accuracy of our approach and analyze
the achieved effort reduction. Next, we present an overview of
related work and finally in Sect. VI we conclude with a brief
summary and a discussion of future work.

II. CAPACITY PLANNING PROCESS

The use of event-based communication in software systems
promises better performance and scalability. However, the
maximum processable workload is highly dependent on the
available infrastructure resources. Due to the decoupling of
components in an event-based system, parts of the system
can be easily overloaded without any impact on the rest of
the system. Nevertheless, in such cases, the system would
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Fig. 1. Capacity Planning in the Software Life Cycle

be in an unstable state resulting in loss of events or other
malfunctions, which are hard to detect. Therefore, determining
the resource dimensioning and system deployment to ensure
stable processing of the system workload is crucially important
and it is the main goal of capacity planning. Additionally, there
might be QoS requirements, like maximum event processing
time, that must be fulfilled by the system. To guarantee
availability, hardware resources are often highly over provi-
sioned [2]. Increasing the efficiency of the system by removing
bottlenecks, substituting components, or reducing the required
infrastructure while ensuring the availability of the system is
an additional aspect of advanced capacity planning processes.

The integration of architecture-level performance prediction
techniques into the capacity planning process, as sketched in
Figure 1, enables software architects to analyze and evaluate
different system configurations and deployments. The specifi-
cation of the performance model including the estimation of
resource demands has to be done only once in the system’s
life cycle and later adapted to be aligned with the evolution
of the implemented system. The resource demands can be
estimated by the component developer or, if an implementation
of the system is available, based on measurements conducted
with this implementation. The performance model itself can
be developed manually or generated automatically as done
for example in [12]. The performance predictions within the
capacity planning process are performed at the model-level,
thus the implementation is not affected by the evaluation of
different configuration and deployment options. The running
system is only reconfigured if the prediction results show that
the considered reconfiguration scenario meets the performance
and efficiency requirements. As the system evolves (e.g., new
components or new hardware is added) or changes in the
system’s workload are detected, the capacity planning process
has to be conducted iteratively.

Each iteration of the capacity planning process consists of
several sub-activities. First, if required the system performance
model is adapted to reflect the current configuration of the
system. Then, by means of the model, a series of performance
predictions are conducted in which the load on the system is
systematically increased until the maximal sustainable load is
reached. The workload variation as well as the execution of the
performance predictions is fully automated. We will present
more details on our automated prediction approach after
introducing PCM in the next section. The results indicate the
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maximal workload that can be processed by the system. They
are additionally used to evaluate if the system fulfills all QoS
requirements. In case these requirements are not satisfied with
the evaluated system configuration and deployment, the system
architect modifies the configuration and/or deployment and
repeats the performance prediction process. If the requirements
are fulfilled, the system efficiency is evaluated. In case of an
efficient resource utilization, the capacity planning iteration
ends and the implemented system is reconfigured according to
the evaluated model. If efficiency improvements are required,
the architect again modifies the system configuration and/or
deployment within the model and repeats the performance
prediction process. In the following, we first give a general
overview of the PCM, then introduce our extension of the PCM
that enables the modeling of event-based communication, and
finally present the automation of the prediction process.

A. Performance Model
We use the Palladio Component Model (PCM) [4],

which is a domain-specific modeling language for modeling
component-based software architectures. It supports automatic
transformation of architecture-level performance models to
predictive performance models including layered queueing
networks [9], queueing Petri nets [10] and simulation mod-
els [8]. PCM supports the evaluation of different performance
metrics, including response time, maximum throughput, and
resource utilization. The PCM approach provides an Eclipse-
based modeling and prediction tool1. Further details and a
technical description can be found in [8].

The performance of a component-based software system is
influenced by four factors [8]: The implementation of system
components, the performance of external components used, the
deployment platform (e.g., hardware, middleware, networks),
and the system usage profile. In the PCM, each of these factors
is modeled in a specific sub-model and thus can be adapted
independently. The composition of these models forms a PCM
instance.

The Component Model specifies system components and
their behavior. Components refer to interfaces which are
provided or required. The PCM provides a description lan-
guage, called ResourceDemandingServiceEffectSpecification
(RDSEFF) to specify the behavior of components and their
resource demands.

The Composition Model describes the structure of the
system. By interconnecting components via their provided
and required interfaces, it specifies which other components a
component uses.

In the Deployment Model, physical resources are allocated
to the components of the system. It is required to specify
the hardware environment the system is executed on (like
processor speed, network links, etc).

The Usage Model describes the workload induced by the
system’s end-users. For example, the workload may specify
how many users access the system, the inter-arrival time of
requests, and their input parameters.

1http://www.palladio-simulator.com
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B. Modeling Event-based Interactions

To enable the semantically correct modeling of event-
driven communication, we extended the PCM meta-model
with new constructs (e.g., EventSource, EventSink,
EmitEventAction) and enhanced the graphical editors to
support them. An automated model-to-model transformation
transforms these new elements into existing PCM model-
ing constructs. The transformation allows us to exploit the
available analytical and simulative prediction techniques. We
substitute the connectors between sources and sinks with
several components which cover all aspects of the event
processing chain like processing on the client and receiver
side, distribution and replication of events, as well as server-
side processing. These elements are sketched in Fig. 2. For
more details on the component internals we refer to [7].
The transformation includes interfaces to integrate additional
components describing the behavior and resource demands of
the employed middleware.

C. Automation of the Performance Prediction Process

In the capacity planning process normally different design
variations as well as different load situations need to be
analyzed and evaluated. In order to reduce the required effort,
we have automated the performance prediction process (see
Fig. 3). The input of the performance prediction process is
a model of the system combined with a specification of the
parameter variations. This specification includes the upper and
lower bounds as well as the increments of the parameter
variations. By means of this specification, the values of model
parameters are set. This adapted model is the input of a
model-to-model transformation which, as described above and
illustrated in Fig. 2 (Step 1), substitutes the new elements of
the PCM with elements already supported within the classical
PCM. In a second step, components specified in a middleware-
specific repository are woven into the PCM model. Depending
on the selected prediction technique, this architecture-level
model is transformed into a prediction model, e.g., layered
queueing network or queueing Petri net, or it is transformed
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Fig. 3. Automated Performance Prediction Process
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into a Java-based simulation code. As a last step, the prediction
itself is performed by solving the analytical models or running
simulations. If the upper bounds of the considered param-
eters are reached, the prediction process ends. Otherwise,
the process starts again with a new parameter variation. We
now present our case study applying the presented capacity
planning and performance prediction process in the context of
a real-world event-based system.

III. CASE STUDY

The system we study is an event-based traffic monitoring
application based on results of the TIME project (Transport
Information Monitoring Environment) [11] at the University
of Cambridge. It consists of several components emitting
and consuming different types of events. The system is
based on a novel component-based middleware called SBUS
(Stream BUS) [13], which was also developed as part of
the TIME project. The SBUS framework encapsulates the
communication between components and thus enables easy
reconfiguration of component connections and deployment
options without affecting the component’s implementation.
After a short introduction of SBUS , we present the different
components the traffic monitoring system consists of. Finally,
we conduct the capacity planning process using our PCM-
based performance prediction approach in four different evo-
lution scenarios of the system.

A. SBUS Middleware

The SBUS middleware supports peer-to-peer event-based
communication including continuous streams of data (e.g.,
from sensors), asynchronous events, and synchronous remote
procedure calls (RPC). In SBUS each component is divided
into a wrapper, provided by the SBUS framework, and the
business logic that makes up the component’s functionality.
The wrapper manages all communication between compo-
nents, including handling the network, registration of event
sinks and sources, and marshaling of data.

The basic entity of SBUS is the component. Components
communicate via messages and this is how all data exchange
is implemented. Messages are published from and are received
by endpoints; each endpoint is connected with one or more
others. An endpoint specifies the schema of the messages that
it will emit and accept. The framework enforces matching of
sender and receiver schemas, ensuring that only compatible
endpoints are connected. Each endpoint can be a client, a
server, a source, or a sink. Clients and servers implement RPC
functionality, providing synchronous request/reply communi-
cation, and are attached in many-to-one relationships. On the
other hand, streams of events emitted from source endpoints
are received by sink endpoints in a many-to-many fashion.

B. Traffic Monitoring Application

The traffic monitoring application we study consists of 8
different types of SBUS components (see Figure 4).

ACIS

SCOOT      

LPRCamCam Speeding

Toll
Location

Bus Proximity

Fig. 4. Overview of Case Study Components

1) Cameras (the “Cam component”): As described in [14],
street lamps are equipped with cameras. These cameras only
collect anonymized statistical data. In our scenario, cameras
take pictures of each vehicle on the street. Each camera is
accompanied by an SBUS component, which is responsible
to emit the picture combined with position information of the
camera and a timestamp as an event to all connected sinks.

2) Licence plate recognition (the “LPR component”):
The LPR component can be connected to one or more Cam
components. The implementation of our LPR components uses
the JavaANPR library [15] to detect license plate numbers of
observed vehicles. The recognized number combined with the
timestamp and the location information received from the Cam
component is then sent out as an event.

3) Speeding Detection (the “Speeding component”): One
component consuming the events of detected license plate
numbers is the Speeding component. The component calcu-
lates the speed of a vehicle based on the distance between two
cameras and the elapsed time between the two pictures. [16]
reports about the installation of a similar system in London.

4) Toll Collection (the “Toll component”): Another com-
ponent processing the events emitted by the LPR component is
the Toll component. Assuming all arterial roads are equipped
with Cam components the toll component determines the toll
fee that must be payed for entering the city. The Express Toll
Route (http://www.407etr.com) system that is installed near
Toronto is an example of such a system which calculates
road fees amongst others based on recognized license plate
numbers.

5) Bus location provider (the “ACIS component”): The bus
location provider uses sensors (in our case, GPS coupled with
a proprietary radio network) to note the locations of buses
and report them as they change. The component produces a
stream of events, each containing a bus ID, a location, and the
timestamp of the measurement.

6) Location storage (the “Location component”): The lo-
cation storage component maintains state that describes, for a
set of objects, the most recent location that was reported for
each of them. The input is a stream of events consisting of
name/location pairs with timestamps, making ACIS a suitable
event source.

7) Traffic light status reporter (the “SCOOT component”):
In the city of Cambridge, the city’s traffic lights are controlled
by a SCOOT system [17], designed to schedule green and red
lights so as to optimize the use of the road network. The
SCOOT component is a wrapper of this system. It supplies
a source endpoint emitting a stream of events corresponding
to light status changes (red to green and green to red), a
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second source endpoint emitting a stream of events that reflect
SCOOT’s measurements of the traffic flow, and two RPC
endpoints that allow retrieval of information about a junction.

8) Proximity detector (the “Bus Proximity component”):
The Bus Proximity component receives a stream of trigger
events reflecting when lights turn from green to red. This
stream is emitted by the SCOOT component. Upon such
a trigger, the SCOOT component’s RPC facility is used to
determine the location of the light that just turned red. This
is collated with current bus locations (stored in a relational
database by the location storage component) to find which
buses are nearby.

C. Capacity Planning Study

Thanks to the SBUS middleware, which completely en-
capsulates the communication between components, the de-
ployment of components as well as the connections between
components can be changed with almost no effort. However,
as already mentioned in Sect. I, the influence of such changes
on the system’s performance are hard to estimate. In the
following, we apply the capacity planning process introduced
in Sect. II to the traffic monitoring system. After introducing
the initial performance model, we incrementally extend the
model aligned with the system’s evolution from a single server
deployment to a distributed environment.

1) Performance Model: In this case study, we use the
extended version of PCM, which natively supports modeling
of event-based communication. The performance model con-
sists of several sub-models described in the following. The
complete model is available online2.

a) Component Models: The parametrization of PCM
allows us to specify a repository with reusable components
that can be instantiated multiple times if component redun-
dancy is required in the system. To connect the components
with the usage model, which specifies the rate of incoming
events, we need some additional trigger interfaces. Thus, in
addition to the event sinks and sources in Figure 4, the three
components ACIS, SCOOT, and Cam provide such additional
trigger interfaces. Except for the LPR, the resource demands
of the components are nearly constant and independent of the
data values included in the event. This allows us to model
them as fixed demands in an InternalAction of the respective
RDSEFF associated with the component. For each component
we measured the internal processing time under low system
load and derived the resource demands. Measurements with
different pictures showed, that the resource demands required
by the LPR component highly depend on the content of
the picture. PCM allows to specify parameter dependencies,
however, it is not possible to quantify the content of a picture.
Thus, we modeled the resource demand using a probability
distribution. We systematically analyzed a set of 100 different
pictures. For each image, we measured the mean processing
time required by the recognition algorithm over 200 detection
runs. The standard deviation was less then 2% of the mean

2http://sdqweb.ipd.kit.edu/wiki/PCM Event-Based Communication

value for all measurements. The measurements indicated that
the processing of pictures that can be successfully recognized
is nearly log-normal distributed (µ = 12.23,σ = 0.146).
Pictures where no license plate could be detected have a
significantly higher but fixed processing time of 109.2ms. To
represent this behavior in the RDSEFF of the LPR component,
we used a BranchAction. One BranchBehavior contains an
InternalAction with the fixed demand for undetected images
and the other one contains a log-normal distribution which we
fitted to the measurements for successfully detected images.

The second component repository we use in our predic-
tion model is the SBUS-specific middleware repository. The
modeled middleware components are integrated into the pre-
diction model by the automated model transformation. The
repository includes one component representing event sources
and one representing event sinks. Both components include
a semaphore to model the single threaded behavior of the
SBUS implementation. Furthermore, the RDSEFFs include
InternalActions to represent the resource demands required
within the SBUS-middleware. We instrumented the SBUS
implementation to measure the processing time in the different
event processing steps.

b) Composition Model: In the composition model, in-
stances of the components in the repository are connected to
build the system. The EventSource role of a component
is connected with the receiving EventSink roles. In case
of a reconfiguration of the component connections, the model
can be adapted by dragging the Connector from one com-
ponent to another. The composition model describes only the
connection between components and thus it is independent of
the component’s deployment on different hardware resources.

c) Deployment Model: The deployment model de-
scribes the allocation of components on individual hard-
ware nodes. It consists of two parts, the resource envi-
ronment model, which describes the available hardware,
and the allocation model, which specifies the mapping of
components to hardware nodes. In our case study, the re-
source model describes our test environment, which con-
sists of 8 ResourceContainers each containing one
ProcessingResource representing the CPU. We selected
processor sharing on 4 cores as SchedulingPolicy, as
all machines in our testbed are equipped with quad-core
CPUs. The ResourceContainers are connected by a
LinkingResource with a throughput of 1 GBit/s. The
mapping of components to hardware nodes is adapted accord-
ing to the individual deployment options in the scenarios.

d) Usage Model: The usage model consists of three
different types of scenarios, which are executed in paral-
lel. Two UsageBehaviors are used to trigger SCOOT
and ACIS to emit events. For both behaviors, we specify
an OpenWorkload with an exponentially distributed inter-
arrival time with a mean value of 200ms. Additionally, we
introduce a UsageBehavior for each street equipped with
two cameras. In these behaviors, the two triggering calls of
the cameras are connected by a DelayAction. With this
equally distributed delay, we simulate the driving time of
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Fig. 5. Predicted CPU utilization

a vehicle from the first cam on the street to the second
one. Each camera call includes the specification of the image
size. Similar to the other behaviors, we use an exponentially
distributed inter-arrival time for the first camera. To analyze
different load situations, we automatically vary the mean value
of this distribution function in a predefined value range.

2) Capacity Planning: After introducing the system’s com-
ponents and the performance model, we now apply the PCM-
based performance prediction technique to conduct capacity
planning. In the real-world, the requirements on the system,
the system itself, and the available hardware infrastructure
evolve over time. These changes require to evaluate the system
and conduct the capacity planning process iteratively. Our case
study consists of four different scenarios which cover most of
the changes (e.g., change of the system’s workload, change of
the available hardware resources, modification of a component,
or introduction of new components) that require a new iteration
of the capacity planning process. We consider four scenarios
representing different steps in the evolution of the system.

a) Scenario 1: Base Scenario: The scenario we use as
a basis for all other scenarios consists of single instances
of SCOOT, ACIS, Location and Bus Proximity. ACIS and
SCOOT have a fixed event-rate of 5 events per second.
Additionally, one street is equipped with two cameras and
two instances of the Cam component which are connected
to one LPR component. The detected license plate numbers
are processed by the Speeding component. In this scenario,
all processing components (i.e. LPR, Speeding, Location,
and Bus Proximity) are deployed on one central server. The
utilization of this central server needs to be analyzed. The
Cam components are running on individual computing nodes
which are part of the camera systems mounted on the street
lights. In our model, we deployed them on a separate node to
avoid any influences on the other components. As ACIS and

SCOOT are the connections to other system and thereby to
other network segments, they have to be deployed on separate
servers for security reasons. In this scenario, there is only one
possible deployment option, however, for capacity planning
the utilization of this central server as well as the maximal
throughout needs to be analyzed subject to the event-rate. The
maximal utilization of the CPUs should not exceed 80% to
guarantee a stable operation.

In this scenario, we have only one system and allocation
model. To analyze and evaluate different load situations, we
automatically reduced the timespan between two pictures
emitted by the Cam component. The results showed that the
system can handle a traffic flow of up to 0.35 seconds between
two cars respectively a frequency of ≈2.86 cars per second
until the limit of 80% resource utilization is reached.

b) Scenario 2: Growing Workload: In this second sce-
nario, two additional streets are equipped with cameras to
monitor the traffic, thus the load on the system is increased to
a total of six cameras sending images. Additionally, a second
server is available. As with the previous scenario, we first
analyze the deployment option with all processing components
on a single machine, the AllOnOne option, to detect the
component which induces most load. We add the new camera
components to the performance model and connect them
with the LPR component. Again, we specify a automatic
variation of the workload induced by the cam components.
The bottleneck analysis shows that the recognition algorithm
of LPR induces most load on the CPU, so this component is
the best candidate to be deployed on the second server. We
compare these two deployment options, namely all processing
components on one system and LPR separated from the
other processing components. In Fig. 5(a) the results of the
prediction series are visualized. As the machine hosting the
LPR component is still the bottleneck no further optimization
is possible in this scenario. Assuming an upper limit of 80%
CPU utilization for a stable state, the prediction results show
that the AllOnOne deployment can handle up to 0.8 images per
second and Cam. The Distributed deployment can handle up to
1 image per second. Thanks to the easy to use graphical editors
the required adaptations of the composition and allocation
models could be done in less than 10 minutes. After that, the
prediction and variation of the event-rate is fully automated.

c) Scenario 3: New Functionality: With the cameras
added in the previous scenario, in this scenario all arterial
roads in and out of the city centre are equipped with cameras.
Based on this data, it is possible to monitor vehicles entering
and leaving the inner city. This allows to build up an automated
toll collection system, represented by the Toll component. The
Toll component is the second component processing the events
emitted by the LPR component. It induces additional load on
the CPU which was not foreseen in the previous scenarios.
To increase the system’s throughput, additional hardware is
added and it is now possible to run three independent instances
of LPR on different nodes. In the first configuration scenario
we consider, the new hardware is not used and the LPR
component is running separated from all other components
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similar to the previous scenario. Again, the LPR component
is the bottleneck. Based on these results, we evaluated two
further deployment options. In both options, three individ-
ual instances of LPR are running on different nodes each
responsible for the events of two cameras. In the first case,
all other components are running on one node (see Figure 6)
(centralized deployment) and in the second case Speeding and
Toll are deployed with three separate instances and co-located
with the LPR instances on the three nodes (decentralized
deployment).

The required adaptation effort of the model is slightly higher
compared to the previous scenario. However, the adaptation
can still be done in less than 20 minutes. The results of the
prediction series are visualized in Fig. 5(b). The option with
only one instance of the LPR has a maximum throughput of
about 1 image per second and camera while the other two
options (with three instances) can handle up to 2.5 images
per second and camera. Looking at the load balance between
the machines hosting the LPR and the machine hosting the
other components, the centralized deployment is preferable.
The most efficient utilization, i.e., equally balanced CPU
utilization, is at an event load with an offset of roughly 0.9
seconds between two images.

d) Scenario 4: Upgraded Hardware: In this last sce-
nario, an additional street is equipped with two cameras.
Furthermore, the existing cameras are replaced by a newer
and improved model. The new cameras are able to take
pictures with higher resolution and improved quality. With
the improved quality, the detection error ratio can be reduced
from 30% to 5%. It is known, that the resource demands
for processing pictures with undetectable license plates is
significantly higher than for successfully recognized license
plates. However, the resource demands also depend on the
image size. In this scenario, the influences of introducing the
new camera version on the overall system’s performance are
evaluated. This evaluation allows to decide if the investment
into new cameras will improve the system’s performance.
Similar to the previous scenario, we evaluate a centralized and
a decentralized deployment of the Toll and Speeding compo-
nents. These two deployment options that are considered, both
have four instances of LPR, as a new server node is available.

To represent the new cameras in the prediction model
only two model parameters, the size of an image and the
probability of an unsuccessful detection, must be changed.
Additionally, the new Cam and LPR instances must be added
to the composition and allocation models. Nevertheless, the
required modeling time is less then 20 minutes. The results

ACIS

SCOOT      

LPR
Cam

Speeding

Toll

Location

Bus
Proximity

Cam LPR Server 1

LPR
Cam

Cam LPR Server 2

LPR
Cam

Cam LPR Server 3 Processing Server Gateway Server

Fig. 6. Scenario 3: Centralized Deployment

are visualized in Fig. 5(c) and (d). In contrast to all other
scenarios, the bottleneck in the centralized deployment option
with the new cameras is the machine hosting the event
processing components and not the machines hosting the LPR
components. This means that further replication of the LPR
component has no influence on the maximum throughput.
Comparing the new and old cameras, the max throughput
could be improved slightly by the introduction of the new
cameras.

IV. VALIDATION

When applying the PCM-based performance prediction
technique in the previous section, we assumed that the ac-
curacy of the results is sufficient. In this section, we will
validate this assumption and compare measurements in our
testbed with the predicted values. Furthermore, we evaluate
the effort reduction, that can be achieved by our performance
prediction approach.

A. Prediction Accuracy

To evaluate the prediction accuracy, we set up all scenarios
described in Sec. III-C in our testbed depicted in Fig. 7.
We extended the implementations of SCOOT, ACIS and Cam
with configurable and scalable event-generators. The events
emitted by SCOOT and ACIS are based on an event stream
recorded in the City of Cambridge. The event generator added
to the Cam component uses a set of real pictures of different
vehicles including their license plates. All event generators
have in common that the event-rate can be defined using a
configuration file.

A single run of the prediction series simulates about 100,000
pictures and its execution lasts about 3 minutes. On a real
system, measuring such a set of data will last up to 5 hours
and longer. For this reason, we had to limit the number of
experiment runs and workload scenarios. For each scenario,
we conducted up to seven experiments which cover the whole
range from low to high load on the system. In the following,
we present the results of these measurements compared to the
predicted values.

1) Scenario 1: Base Scenario: In the base scenario, all
event-consuming components are deployed on the same ma-
chine. In our testbed, we used three machines. On the first
one, we deployed ACIS and SCOOT, on the second one the
two Cam components, and on the last one the LPR component
together with Speeding, Location, and Bus Proximity. Table I
shows the measured and predicted values combined with the

S3

Experiment
Controller

S2S1

S9S8S7

S4 S5 S6

S10 S11 S12

Gigabit
Switch

Each machine equipped with:
Intel Core 2 Quad Q6600 2,4GHz,
8GB RAM, Ubuntu 8.04

Fig. 7. Experiment Testbed
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Image rate per Cam [1/s]: 0.67 1 1.43 2 3.33

CPU Utilization:
Measurement [%]: 24.78 33.9 54.64 68.63 92.5
Prediction [%]: 21.8 30.7 42.4 56.9 92.8

Error [%]:: 12 9.4 22.4 17.1 0.3

Event Processing Time in LPD:
Measurement [s]: 0.517 0.52 0.637 0.806 2.409
Prediction [s]: 0.48 0.485 0.503 0.538 2.09

Error [%]:: 7.3 6.9 21.1 33.3 13.2

TABLE I
SCENARIO 1: CPU UTILISATION AND EVENT PROCESSING TIME

calculated prediction error. Overall, the mean prediction error
is less than 20% and the maximal error less than 25% and
thus sufficient for capacity planning purposes.

2) Scenario 2: Growing Workload: We set up the
AllOnOne as well as Distributed deployment option in our
testbed. Figure 8(a) visualizes the predicted and measured
mean CPU utilization of the machines hosting the LPR compo-
nent as well as the machine hosting the remaining components
in the distributed deployment. Overall, the mean prediction
error of the CPU utilization in this scenario is less than 5%.
In both deployment options, the prediction error increases with
higher CPU load, which can be explained by caching effects
since the algorithm used within the LPR component is very
memory-intensive and the high CPU load leads to increasing
number of context switches during execution. The measured
utilization under the highest load in both options is lower than
expected. The analysis of throughput measurements shows that
some images were queued up and not processed by the LPR
component, if the CPU utilization is higher than 80%. This
is an indicator for an overloaded and instable system state.
We conducted some more experiments running the system
continuously over several hours as well as with an increased
event rate. In both cases, the system crashed and completely
halted. This confirms our assumption of an overloaded and
instable system state.

3) Scenario 3: New Functionality: Again, we set up two
deployment options in our testbed. In the centralized deploy-
ment, the event processing components with exception of the
three instances of LPR are deployed on one machine. In the
decentralized option, one instance of Toll and one instance of
Speeding are deployed with one instance of LPR on the same
machine. Figure 8(b) shows the predicted and measured mean
utilization of the machines hosting the LPR component for
both deployment options. Additionally, it includes the utiliza-
tion of the machine hosting the processing components in the
centralized deployment options. We leave out the values for
the decentralized deployment options, as they are independent
of the image frequency. Overall, the mean prediction error for
the CPU utilization of the machine hosting the LPR component
is 11.52% and never exceeded 20%.

Image rate per Cam [1/s]: 0.4 0.67 1 1.43 2 2.5 3.33

Measurement (centralized) [s]: 0.47 0.48 0.49 0.55 0.66 0.84 1.99
Prediction (centralized) [s]: 0.41 0.47 0.44 0.43 0.52 0.59 0.96

Error (centralized) [%]: 12.4 2.0 10.0 21.7 21.7 30.4 52.1

Measurement (decentralized) [s]: 0.49 0.48 0.52 0.57 0.68 1.09 -
Prediction (decentralized) [s]: 0.44 0.47 0.44 0.44 0.49 0.73 -

Error (decentralized) [%]: 9.6 2.8 15.0 22.4 27.4 32.2 -

TABLE II
SCENARIO 3: LPR MEAN PROCESSING TIME
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Fig. 8. Predicted and Measured CPU Utilization

Additionally, we compared the measured and predicted pro-
cessing time within the LPR component. The results are listed
in Table II and visualized in Figure 9(a). Under the highest
workload, the decentralized deployment option was overloaded
and thus these values are not present in the table and figure.
Due to the caching effects, which can not be predicted by
the model, the prediction error increases with higher event-
rates respectively higher CPU utilization. However, the mean
prediction error is still under 20%.

4) Scenario 4: Upgraded Hardware: In this scenario, we
set up four different variants of the system, in which we
varied between the new and the old version of the cam-
eras by changing the used images and considering again a
centralized and decentralized deployment. The results of the
measurements and predictions of the mean CPU utilization of
the machines hosting an instance of the LPR component are
shown in Figure 8(c). Again the prediction error increases with
higher load due to the caching effects induced by the memory
intensive algorithm of the LPR. However, the mean prediction
error is only 5.56%.

We also analyzed the measured and predicted mean pro-
cessing time within the LPR component. In Figure 9(b), we
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present the processing times of LPR in the scenarios using the
improved cameras. The mean prediction error is 5.36% and
never exceeded 15%. Similarly to Scenario 2, the measured
CPU utilization and processing time in the decentralized
deployment option are lower than expected as again events
are queued up. The results for an even higher load which
completely overloaded the system are not included.

B. Modeling and Prediction Effort

Thanks to the automated prediction process (Sec. II-C) the
only manual task that needs to be performed is the adaptation
of the system’s architecture-level model. In [7], we already
demonstrated that the presented PCM extensions combined
with the automated model-to-model transformation reduce the
modeling effort by up to 80% compared to the use of the
original PCM. As already mentioned in the different scenarios,
the adaptations of the models could be done with a time
effort less than 30 minutes in all cases. The execution of the
prediction series is then fully automated. To evaluate the effort
reduction achieved with our process automation, we compare
the required time to execute the prediction with the time
required to conduct equivalent measurements on our test sys-
tem. One simulation run, which consists of 100000 simulated
events, takes about 3 minutes on a MacBook Pro with Core
i7 processor and 8 GB RAM. Assuming the highest event-
rate of five images per camera per second, this corresponds
to a time span of 2.7 hours to collect the same amount of
measurements in the testbed. For lower event-rates the required
time can be a whole day or more. Thanks to the automated
parameter variation, different load situations can be evaluated
automatically in less than 1 hour which might require several
days of measurements on the test system to obtain the same
results.

In summary, the prediction error of CPU utilization and
response time is less than 20% in most cases and the max-
imum error of the always underestimated CPU utilization
never exceeded 25%. With this accuracy, the performance
prediction can improve the system performance and efficiency
significantly given that today’s systems are normally over-
provisioned by a factor of 2 or more [2]. The presented
extension of the PCM combined with the automated model-
to-model transformation leads to a significant reduction of the
modeling effort by up to 80%. Furthermore, the automated ex-
ecution of performance prediction series dramatically reduces
the required time compared to the execution of measurements
on a test system.

V. RELATED WORK

Over the last fifteen years numerous approaches have been
proposed for integrating performance prediction techniques
into the software engineering process. Efforts were initiated
with Smith’s seminal work on Software Performance Engi-
neering (SPE) [18]. Since then a number of architecture-
level performance meta-models have been developed by the
performance engineering community. The most prominent
examples are the UML SPT profile [19] and its successor

the UML MARTE profile [20], both of which are extensions
of UML as the de facto standard modeling language for
software architectures. Classical capacity planning techniques
based on queueing theory have been studied by Menasce [21].
However, these model do not support an explicit modeling of
the software architecture.

In recent years, with the increasing adoption of component-
based software engineering, the performance evaluation com-
munity has focused on adapting and extending conventional
SPE techniques to support component-based systems which
are typically used for building modern service-oriented sys-
tems. A recent survey of methods for component-based
performance-engineering was published in [3].

Several approaches use model transformations to derive
performance prediction models (e.g., [22], [23], [24], [8]).
Cortellessa et al. surveyed three performance meta-models
in [25] leading to a conceptual MDA framework of different
model transformations for the prediction of different extra-
functional properties [26]. The influence of certain architec-
tural patterns on the system’s performance and their integration
into prediction models was studied by Petriu [23] and Go-
maa [27]. In [23], UML collaborations are used to model the
pipe-and-filter and client-server architectural patterns which
are later transformed into Layered Queueing Networks.

A method for modeling message oriented middleware sys-
tems using performance completions is presented in [28].
Model-to-model transformations are used to integrate low-
level details of the middleware system into high-level software
architecture models. However, this approach is limited to
Point-to-Point connections.

In [29], an approach to predicting the performance of
messaging applications based on Java EE is proposed. The
prediction is carried out during application design, without
access to the application implementation. This is achieved
by modeling the interactions among messaging components
using queueing network models, calibrating the performance
models with architecture attributes, and populating the model
parameters using a lightweight application-independent bench-
mark. However, again the workloads considered do not include
multiple message exchanges or interaction mixes.

Several performance modeling techniques specifically tar-
geted at distributed publish/subscribe systems exist in the
literature (e.g., [30], [31]). However, these techniques are
normally focused on modeling the routing of events through
distributed broker topologies from publishers to subscribers as
opposed to modeling interactions and message flows between
communicating components in event-driven applications.

In [32], a methodology for workload characterization and
performance modelling of distributed event-based systems is
presented. A workload model of a generic system is developed
and analytical analysis techniques are used to characterize the
system traffic and to estimate the mean notification delivery
latency. For more accurate performance prediction queueing
Petri net models are used. While the results are promising, the
technique relies on monitoring data obtained from the system
during operation which limits its applicability.
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VI. CONCLUSION

In this paper, we presented the application of an automated
performance prediction approach in the context of capacity
planning for a real-world traffic monitoring system. The
performance prediction approach is based on the Palladio
Component Model (PCM), which we extended to support
the modeling of event-based communication. An automated
model-to-model transformation allows to exploit all existing
performance prediction techniques supported by the PCM. The
presented case study includes different evolution scenarios to
which the capacity planning process was applied. A detailed
experimental evaluation of the prediction accuracy using a
number of different scenarios representing different system
configurations and workloads showed the applicability and
accuracy of the prediction approach. The prediction error was
less than 20% in most cases. Compared to the original PCM
approach, our extension reduces the required modeling effort
for event-based systems by up to 80%. The automation of
the performance prediction process promises a significant time
reduction compared to measurements on a test system.

The presented case study covers the most common evolution
scenarios of event-based systems in general and not only in
the context of traffic monitoring systems. For this reason,
the presented work forms the basis to apply the automated
performance prediction approach to different event-based sys-
tems in industry and research. The approach allows us to
evaluate different design options and supports the detection
of performance bottlenecks.

The results presented in this paper form the basis for several
areas of future work. In the current version of the proposed
PCM extension, filtering of events has to be modeled manually
in the sinks. We plan to further extend the PCM to specify
filtering rules. Furthermore, we plan to work on extracting
prediction models automatically at run-time. The resource
discovery component (RDC) which is part of the SBUS
framework provides methods to determine the connections
between endpoints. This information can be used to create
the system model. Additionally, we plan to extend the instru-
mentation we integrated in the SBUS framework making the
measured resource demands available during operation. This
will allow to extract model parameters dynamically at run-
time and will support the use of models for adaptive run-time
performance management. Analyzing the influences of caching
effects on the system’s performance and their consideration
within performance predictions is an additional research topic.
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[21] D. A. Menascé, V. A. F. Almeida, and L. W. Dowdy, Performance by
Design. Prentice Hall, 2004.

[22] M. Marzolla, “Simulation-based performance modeling of UML soft-
ware architectures,” PhD Thesis TD-2004-1, Dipartimento di Informat-
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