
Model-based Management of Web Service Compositions in

Service-Oriented Architectures

Christof Momm, Christoph Rathfelder

Software Engineering

FZI Forschungszentrum Informatik

Haid-und-Neu-Straße 10-14

76131 Karlsruhe

{momm, rathfelder}@fzi.de

Abstract: Web service compositions (WSC), as part of a service-oriented

architecture (SOA), have to be managed to ensure compliance with guaranteed

service levels. In this context, a high degree of automation is desired, which can be

achieved by applying autonomic computing concepts. This paper particularly

focuses the autonomic management of semi-dynamic compositions. Here, for each

included service several variants are available that differ with regard to the service

level they offer. Given this scenario, we first show how to instrument WSC in

order to allow a controlling of the service level through switching the employed

service variant. Second, we show how the desired self-manageability can be

designed and implemented by means of a WSC manageability infrastructure. The

presented approach is based on widely accepted methodologies and standards from

the area of application and web service management, in particular the WBEM

standards.

1 0B0B0BIntroduction

Today, companies require IT support that is tightly aligned with their business processes

and highly adaptive in case of changes. These requirements can be met by employing a

Service-Oriented Architecture (SOA) [XXXvdAtHW03 XXX]. In SOA, functionality required for

executing business processes is provided by atomic web services (WS) or by web service

compositions (WSC). A WSC is designed in a strictly process-oriented way and

implements fully automated parts of business processes or even long-running workflows

[XXXLRS02 XXX].

Each service – composite or atomic - is characterized by the fact that it is operated by a

service provider and the terms of use are contractually fixed by means of Service Level

Agreements (SLA). Such an SLA may for instance constitute that a WSC has to adhere

to a certain response time constraint. While providing the service the provider has to

assure the compliance with the corresponding SLA. To this end, the provider has to be

able to monitor the actual service levels and be able to react to detected SLA violations

as part of his service level management. These management functions should be

automated as far as possible [XXXSMS+02 XXX]. Only in this way the vision of an “on-demand”

provisioning of the offered (composite) web services can be reached [XXXDDK+04 XXX].

An automated service level management for WSC can – at least partly - be achieved by

applying autonomic computing concepts, as for instance presented in [XXXIBM04 XXX]. The

managed resources in this context are the WSC. These resources should be equipped

with self-management capabilities, which are realized through autonomic managers.

More precisely, the autonomic managers implement so-called intelligent control loops,

which generally comprise a monitor, analyze, plan and execute function. To implement

these functions, the managed resources, in our case the WSC, have to provide an

adequate manageability interface allowing for both the monitoring and controlling of the

resources. This is enabled though sensors and effectors added to the managed resource,

which is also referred to as “instrumentation”.

As part of our preliminary work, we already presented the design and implementation of

a manageability infrastructure for WSC based on the Web-based Enterprise Management

(WBEM)FFF

1
FFF standards [XXXMMRA07 XXX, XXXRat07 XXX]. In this way, a standardized manageability

interface is offered that allows a fine-grained monitoring of WSC as part of an SLA-

driven management. The required monitoring instrumentation is based on sensors added

to the WSC.

This paper now focuses on the controlling instrumentation of WSC and the enhancement

of a WSC manageability infrastructure by incorporating autonomic management

concepts, in the following referred to as self-manageability. In this context, we regard

the autonomic managers themselves to be part of the manageability infrastructure. We

furthermore assume the WSC to be of semi-dynamic nature [XXXZK06 XXX]. This means that the

composition logic itself is static but several variants of the included services are

available that differ with regard to the service levels they offer [XXXTP05XXX]. The concretely

employed service variants may be selected dynamically during or prior to the execution.

The actual contribution of this paper is twofold. First, we present and discuss different

approaches to a controlling instrumentation (i.e. effectors) of WSC. To ensure universal

applicability, we focus on BPEL-based WSC. Additionally, the proposed solutions do

not rely on any vendor-specific extensions of the employed BPEL engines, i.e. they are

platform-independent. To minimize the effort for instrumenting the WSC we show how

generative techniques could be used for an automation of this process. Second, we show

how self-manageability can be designed and implemented by means of a tailored WSC

manageability infrastructure. Here, we leverage the WBEM standards to obtain a flexible

solution that may easily be integrated into existing management environments.

The management requirements and proposed solutions are demonstrated by means of a

concrete scenario taken from the field of higher education. Before introducing this

scenario, we first provide an overview of the relevant related work.

1 http://www.dmtf.org/standards/wbem/

2 1B1B1BRelated Work

The controlling and eventually self-management capabilities for WSC may be used

within an SLA management infrastructure. In literature, two major solutions for a SLA-

based management of WS and WSC have been presented, which rely on an

instrumentation of the managed resources and a manageability infrastructure. In

[XXXDDK+04 XXX], a solution for an automated SLA-driven management on basis of Web

Service Level Agreements (WSLA) is presented. However, this solution mainly focuses

on monitoring SLA compliance of atomic WS and does neither adequately support the

monitoring nor the controlling of WSC. In [XXXDK03 XXX], the approach is extended by a

WBEM-based monitoring infrastructure. WSC monitoring is now partially supported,

but management capabilities are not covered either. In [XXXSMS+02 XXX], a competing solution

is presented which supports an automated SLA compliance monitoring of atomic WS

and WSC. However, the solution represents a very proprietary approach as the

manageability interface is not built on standards. Furthermore, the solution is also

limited to monitoring capabilities.

Each of the previously introduced approaches supports the flexible negotiation of

discrete or continuous service level parameters. This results in a vast variety of offered

service variants and implies enormous challenges for the service provider concerning the

provisioning and management of the eventually provided service variants. In [XXXTP05XXX], a

more pragmatic approach is presented, based on a language for defining web service

offerings [XXXTPP03XXX]. This allows the specification of different discrete variants of one WS

in terms of service offerings. In contrast to WSLAs, the customer cannot freely negotiate

all kinds of service level parameters, but may rather choose the predefined service

variant most appropriate for him. A corresponding management infrastructure is

presented in [XXXTMPE04XXX]. The scope of this infrastructure is limited to the monitoring of

atomic WS. However, the idea of offering discrete service variants of one service serves

perfectly well as a basis for (autonomically) controlling and managing the service level

of a WSC. On the one hand, this is because algorithms and protocols used by the WSC

provider to determine and negotiate the optimal service allocation for a WSC are much

simpler. On the other hand, support for dynamic negotiation and provisioning for the

offered services is not required.

Given a discrete set of service variations for a service included in a WSC, the WSC

provider still requires a clear understanding of the dependencies between the service

levels offered by the WS and the resulting service level of the WSC. More precisely,

detailed knowledge of how the service level parameters are composed according to the

(functional) composition pattern is needed. This aspect is particularly addressed in

[XXXJRGM05XXX]. In [XXXZLD+05 XXX], a completive approach is presented, which also addresses the

optimization of the service selection for dynamic WSC. However, this infrastructure

builds on a proprietary workflow engine. The issue of an interoperable and standard-

based instrumentation and manageability interface is not addressed. Furthermore, the

automated adaptation of the WSC is triggered by changing service offerings or user

preferences. An adaptation on basis of self-manageability model as part of an intelligent

control loop is not considered.

In [XXXKap05XXX], an interesting approach to the specification of such self-manageability

policies is presented. The authors propose to create health models based on finite state

machines to model the autonomic behaviour as a starting point for the manageability

design. Unfortunately, it is not shown how these models are actually implemented by

means of a manageability infrastructure.

With regard to the controlling instrumentation, the concept of parameterized web

services flows described in [XXXKLB05 XXX] represents a very promising approach. This allows

the fully dynamic selection of included services at runtime by adding and evaluating

corresponding mapping rules within the WSC. Unfortunately, these selection rules may

not be changed at runtime. They are rather set at design time. Our solution can therefore

be regarded as complementary to the aforementioned approach.

3 2B2B2BMotivating Example and Self-Manageabililty Requirements

In this section, we introduce a simplified real-life scenario motivating the application of

a semi-dynamic service selection. On the basis of this scenario, we present major

requirements for a corresponding manageability infrastructure and the controlling WSC

instrumentation. Furthermore, assumptions and limitations implied by the scenario are

pointed out.

The scenario is situated in the field of higher education. More precisely, we are working

on a project that is concerned with the development of a SOA which is supposed to

support study and administrative processes [XXXFJL+06 XXX]. In the following, we focus on a

service-oriented IT support for the process of managing examinations. An examination

management system (EMS) is offered by the central administration. The functionality

(e.g., registering for exams or capturing exam results) of the EMS is exposed through

atomic WS, also provided by the central examination. The examination management

process is supported by process-oriented, long-running WSC. The departments account

for developing, adapting and operating their specific WSC, as they are specific to the

study courses offered by them.

The WSC provider solely accounts for ensuring the guaranteed service levels. The

service level of a WSC thereby relies on the workload, the service levels of the

composed WS and the performance of the execution environment, in particular the

employed composition engine. The WSC has to be adjusted to a changing workload.

The WS provider – the central administration – offers several variants of the same

service with regard to the provided service level. Depending on the given workload, the

WSC provider – the university departments – may choose the most appropriate variant

of the WS.

The long-running WSC supporting the process of managing examinations, is illustrated

in Figure 1. This WSC requires the RegistrationService and the ExaminationResult-

Service provided by the EMS and an additional TaskManagementService supporting

user interactions. As the different operations offered by the ExaminationMgmt-

Composition are used via a web-based portal, the response time (RT) of each operation,

particularly the registration, must not exceed 2 sec. All included WS are offered by the

central administration in two variants, which represents a simplified setting. All variants

guarantee a RT of less than 1 sec, but with different workload limits, expressed in

requests per minute (req/min). Variant B handles 500 req/min and A tolerates up to 1000

req/min. The offered WS variants are provided through different service endpoints.

Figure 1. ExamMgmtService - Composition Definition

We focus on the looped activity for processing registrations. This activity is started after

the examination terms have been assessed. Registrations submitted by students are first

received using the WSC’s operation register, then validated and stored by invoking the

respective operations offered by the RegistrationService. Depending on the validation

result, a confirmation or denial message is returned to the caller, again through the

operation register. As a result, the response time of this operation is mainly determined

by this sub-process. Using QoS composition patterns as presented in [XXXJRGM05 XXX], the

following response time for the whole operation can be estimated.:

RT WSC.register = RTRegistrationService.check +P(prereq == true) RTRestrationService.register

For the sake of simplification, we neglect the constant time factor required by the BPEL

engine itself. Given the available offerings, in the worst case (P = 1) this would lead to

an aggregated RT of less than 2 sec, which in any case complies with the given

requirement. As for the workload (WL), we need to know how it is distributed to the

included service operations:

WLRegistrationService.check = WL WSC.register (1)

WLRestrationService.register = P(prereq == true) WL WSC.register (2)

In this scenario, a feasible self-manageability policy would be to switch to Variant A of

the RegistrationService as soon as an average workload greater than 500 req/min has

been detected during the last hour. Otherwise, Variant B is used. With regard to the

instrumentation this implies that on the one hand it is necessary to monitor the workload.

On the other hand, a mechanism for changing the actually employed service variant at

runtime is required, even for already running WSC instances. In our case, for each

examination one long-running instance of the WSC is created.

Note that this is a very simple scenario intended to demonstrate self-manageability

requirements. Within the service selection, we particularly neglect the costs of each

service variant and present a very limited, static service offering. A larger variety of

dynamically changing offerings as well as the inclusion of cost would result in a

complex optimization problem, as presented in [XXXGJ05 XXX]. Solving this problem would then

be part of the intelligent control loop (plan function) implemented by an autonomic

manager. However, this aspect is part of our future work.

4 3B3B3BControlling Instrumentation Design

To provide self-manageability a controlling instrumentation of the WSC is required in

the first place. More precisely, extensions of the WSC implementation are needed that

allow a dynamic reconfiguration of the actually employed service variants at runtime.

We already pointed out two major requirements this instrumentation must meet:

 Support for reconfiguration of running WSC instances

 Applicability for all kinds of BPEL engines

Taking these requirements into account we identified two feasible approaches. The first

one represents the employment of proxy WS. In this case, a proxy is generated for each

included service which offers the same WS interface as the original WS. The WSC

includes only the proxy WS. When calling it, the proxy determines the service endpoint

of the actual WS variant, invokes it and returns the result to the WSC. The endpoint may

either be retrieved from a configuration services or from a local properties file or

database. In the latter case, the proxy has to offer an interface for updating this

information.

This approach has some advantages. First, the proxy can easily be generated as

interfaces are identical to the original WSDL and internal logic is straight forward.

Second, configuration changes directly affect all running instances as well as instances

that will be newly created without having to explicitly change/reconfigure them. As a

major drawback, this solution in either case requires at least one additional call of the

proxy. If the configuration service is asked for the endpoint, another additional call is

needed. This is why – after implementing this approach – we looked for a less resource

demanding alternative.

The constraint of being platform-independent led us to the employment of dynamic

endpoint references, as proposed by the BPEL 1.1 standard [XXXACD+03 XXX]. This mechanism

allows a dynamic reconfiguration of the service endpoint for a given partnerLink at

runtime by using a standard <assign> activity. However, the WSC has to be provided

with the information on which endpoint it has to use for a particular partnerLink.

Moreover, it has to be possible to change this configuration information within a running

WSC instance. This calls for extensions of the BPEL-based composition definition as

well as the provided WSC interface in terms of the corresponding WSDL. Figure 2

shows an instrumentation pattern for extending arbitrary BPEL definitions with

controlling capabilities.

Figure 2. Controlling Instrumentation - BPEL Alternative

An additional invocation activity, that is inserted after the first receive activity, retrieves

the service variant configuration from a configuration service. This information is stored

in a newly added BPEL variable. An AND split divides the execution path into two

branches executed in parallel. The first branch holds the original composition definition

as an embedded sub process. Additionally, an <assign> that initializes the dynamic

partnerLinks has to be added before each <invoke> activity. The second branch enables

the asynchronous receiving of configuration updates. Once a new configuration has been

received, the local configuration variable is updated. To continuously provide the

possibility of reconfiguration, these activities are placed within an endless loop. The

composition terminates as soon as the original composition situated in the first branch

terminates, as these branches are joined by means of an OR join. Unfortunately, the

combination of AND split and OR join is not explicitly supported by BPEL yet. Thus, in

the BPEL-based implementation, a standard <flow> activity is used, which corresponds

to an AND split with an AND join. To terminate the second branch, a custom fault event

is thrown after the original composition has completed. The fault event is caught in an

empty exception handler added to the outmost <scope>. In this way, the whole

composition is terminated.

It is obvious that the BPEL-based instrumentation is a more efficient approach than the

proxy alternative in terms of management-related overhead at runtime. Additional

service invocation activities are only required once at the beginning and as soon as a

reconfiguration is actually desired by the manager. Nevertheless, at design time this

approach causes a higher complexity. This problem is addressed in the following section.

5 4B4B4BAutomated Generation of a Bpel-Based Controlling

Instrumentation

In this section we present an XSLT for the automated transformation of a given BPEL

composition definition into an instrumented composition definition. The following code

snippet displays the structure of a typical BPEL definition.

<process name=“SomeWSC” […]>

<variables>[…]</variables>

<partnerLinks>[…]</partnerLinks>

<correlationSets>[…]</correlationSets>

<faultHandlers>[…]</faultHandlers>

activity+

</process>

Such BPEL definitions represent the typical source XML for the transformation. The

XSLT fragment given below operates on this XML and produces the instrumented WSC.

[…]<process name=“SomeInstrumentedWSC” […]/>

<variables>

<variable name=“ConfigData” […]/>

<variable name=“ProcessID” […] />[…]

<xsl:call-template name =“SourceWSC_GlobalVars”/>

</variables>

<partnerLinks>

<partnerLink name=“ConfigurationService” […] />

<partnerLink name="ManagementConsumer“ […]/>

<xsl:call-template name=“SourceWSC_PartnerLinks”/>

</partnerLinks>

<xsl:call-template name=“SourceWSC_CorrSets”/>

<xsl:call-template name=“SourceWSC_FaultHandlers”/>

<sequence>

<xsl:call-template name=“SourceWSC_FirstReceive”/>

<scope name=“InitializeGlobalVariables”>[…]

<invoke name=“GetConfigurationData” […]/>[…]

</scope>

<scope name=“instrumentedActivities”>

<faultHandlers>

<catch faultName="bpws:forcedTermination“[…]/>[…]

</faultHandlers>

<flow>

<sequence>

<xsl:call-template name=“SourceWSC_Activities”/>

<throw name="SignalEndOfProcess" […]/>

</sequence>

<sequence>

<while condition=“true()”>

<sequence>

<receive name="ReceiveConfigurationData“[…]/>

<assign name="UpdateConfigurationData">[…]

</assign>

</sequence>

</while>

</sequence>

</flow>

</scope>

</sequence>[…]

The transformation complies with the previously introduced instrumentation approach.

So we omit detailed explanations at this point and rather focus on particular challenges.

Using XSLT represents a very comfortable way for realizing XML-to-XML

transformations. However, we encountered serious problems while trying to implement

one particular transformation rule, namely the initialization of the dynamic partnerLinks

prior to each service invocation. This requires a recursive traversing of the XML tree

where each <invoke> activity is extended by the additional <assign> activity. The

implementation of this rule on basis of XSLT turned out to be very intricate. So we

decided to use an additional, simple Java program in order to apply this particular

modification to the source BPEL definition. Here, a Document Object Model (DOM) is

created of the source XML and modified in the previously described way.

Source

BPEL.xml
XSLT

Processor

Instrument.xslt

Pre-

Instrumented

BPEL.xml

Instrumented

BPEL.xml
Java

Runtime

Instrumentation

Generator.java

Figure 3. Complete BPEL-Instrumentation Procedure

To finalize the instrumentation, the corresponding WSDL has to be modified as well.

This transformation is very similar to the BPEL transformation. Therefore, we do not

provide detailed explanations in this case. Basically, an operation

updateConfigurationData along with the necessary message and type definitions is

added to the first portType. The input type definition of this operation is defined as

follows.

<complexType name="ConfigurationDataType">

<sequence>

<element name=“SelectedWSVariant" maxOccurs="unbounded">

<complexType>

<sequence>

<element name="address" type="string"/>

<element name="defaultAddress" type="string"/>

</sequence>

<attribute name=“ID" type="string"/>

<attribute name=“AssociatedServiceID" type="string"/>

</complexType>

</element>

</sequence>

</complexType>

Moreover, the type definitions required for the previously introduced BPEL extensions

are added. Within the partnerLinkType for the BPEL process itself; a further role,

ManagementProvider, is inserted. Finally, a correlation property alias for the

configuration update message is appended.

6 5B5B5BWSC Manageability Design

In this section we now focus on the actual manageability design. This includes the

specification of a basic self-manageability model and a corresponding management

information model. The approach is demonstrated by means of the motivating example

presented in section 3.

The self-manageability model defines the autonomic behavior, namely the control loop,

which is implemented by an autonomic manager. We decided to use a finite state

machine to specify this aspect. This basically follows the health models presented in

[XXXKap05XXX], but in an adapted and simplified way. Figure 4 shows the self-manageability

model for the processing of registrations. That is a basic control loop for adjusting the

procured response time by dynamically selecting a suitable service variant of the

employed RegistrationService.

Figure 4. Self-Manageability Model for ProcessRegistrations

Accordingly, the states reflect the current registration workload situation. Note that both

states are healthy. We omitted the unhealthy states for each workload level, because they

would be too ephemeral. Each transition comprises two parts: First a condition that leads

to its triggering and second an action that is executed. A state transition is triggered in

case certain conditions for relevant metrics are met. The observation of the metrics and

the evaluation of the conditions are realized by the monitoring function. In our case, the

transition from state “variant b selected” is triggered as soon as the monitor detects a

threshold exceedance for the registration workload. This results in an action, namely the

selection of service variant A, as part of the execute function.

The required metrics, actions as well as necessary monitoring and configuration

information have to be specified in terms of a management information model. In the

following, we present a corresponding WSC information model based on the Common

Information Model (CIM) [XXXDMT99XXX]. This model basically represents an extension of the

CIM metrics model, comprises particular WSC management information and reflects the

specific structure of WSC. The model elements required for the monitoring of WSC

have already been presented in [XXXMMRA07 XXX, XXXRat07 XXX]. Here, managed elements (ME) for

the WSC as a whole, the different internal WSC elements and the included WS are

specified. For each ME, information about each executed WSC instance and information

related to the general definition of the WSC, like configuration settings, is distinguished.

The UnitOfWork concept serves as the basis for all execution-related WSC ME. The

definitional ME on the other hand are modeled by means of a corresponding

UnitOfWorkDefiniton. In the following, we present excerpts of the WSC information

model that are most relevant to enabling the desired self-manageability. First, we focus

on the definition of the required metric (see Figure 5).

CM_WSCElementDefinition

CM_ReceiveTaskDefinition

SampleInterval:datetime

CM_AvgReceiveWorkload

CM_AvgRegistrationWorkload:

CM_WSCMetricDefFor

CIM_BaseMetricValue

*

1
CIM_MetricInstance

1

CIM_MetricForME *
*

CIM_UnitOfWorkDefinition

*

CM_WSCElementExecution

StartTime:datetime

CM_ReceiveTaskExecution

CIM_UnitOfWork

1*

CIM_BaseMetricDefinition

Figure 5. WSC Information Model – Metric Definition

By extending a CIM_BaseMetricDefintion, we first define a metric for the average

receive workload. This generic metric definition reflects the average number of received

requests per minute within a specified sample interval. In the case of the required

registration workload, the sample interval is set to 3 hours. Furthermore, this metric is

associated with a CM_ReceiveTaskDefinition for the activity “Receive Examination

Registration” (see Figure 1). This allows for navigating all executed instances, each

represented as an instance of ReceiveTaskExecution. As these elements contain a

parameter StartTime, the number of created instances within the specified sample

interval is rendered possible. This is how the metric is calculated.

In addition, the WSC information model has to store information about the available

service variants and offer means for assigning the actually selected variant. The

following model (Figure 6) fragment shows the proposed solution to this problem.

CM_ServiceTaskDefinition
Provider:string

EndPointReference: string

CM_WSDefinition

CM_SelectedWSVariant:

CIM_SubUoWDef

*

1

CIM_UnitOfWorkDefinition

CM_WSCElementDefinition

CM_AvailableWSVariants
*

*

Figure 6. WSC information model –Serivce Variant Configuration

External WS are generally invoked within the scope of service tasks, as part of a WSC

composition definition. A CM_WSDefinition is created for each available service variant

and associated with the corresponding CM_ServiceTaskDefintion through the custom

association CM_AvailableWSVariants. This association implies that all linked WS

definitions are compatible with the service task, meaning their offered interfaces

thoroughly match. This is indicated by equivalent ServiceIDs. The actually used WS

variant is specified by means of the custom association CM_SelectedWSVariant. This

selected WS variant has to be contained in the set of available WS variants. The

responsible CIM provider supports a modification of this association. Thus, the required

action of reconfiguring the service selection corresponds to a modification of this

association. The provider then uses the WSC instrumentation to effectively change the

selection. A detailed explanation of the selection procedure is provided in the following

section.

7 6B6B6BWSC Manageabilitiy Infrastructure Implementation

In this section, we present the implementation of a WSC manageability infrastructure

which is based on our preliminary work [XXXMMRA07 XXX, XXXRat07 XXX]. Accordingly, a

manageability infrastructure for the monitoring of WSC was already available. In this

case, the monitored WSC is implemented on basis of the Oracle BPEL Process Manager.

The manageability infrastructure is built on the management architecture proposed by

WBEM [XXXEck03 XXX]. As a CIMOM we employed the Java-based WBEMServicesFFF

2
FFF.

As the interface between the CIMOM and associated CIM provider is not standardized,

provider implementations for a specific CIMOM cannot typically be used with other

CIMOMs without modification [XXXDKG04 XXX]. Therefore, we draw a distinction between a

CIMOM-specific and CIMOM-independent part (see Figure 7). The CIMOM-specific

part comprises different CIM provider responsible for the managed WSC elements. Each

provider implements the specific interfaces defined by the WBEMServices framework

and performs the necessary data mapping between the CIMOM-independent part and the

specific CIMOM, where we placed the actual processing logic.

2 http://wbemservices.sourceforge.net/

CIMOM

specificCIMOM independent

OracleSensorAdapter

<<WSC>>

ExamMgmtWSC

CIMFacade

<<SBean>>
Association-

Provider

<<SBean>>
Metric-

Aggregation-

Provider

<<SBean>>
Managed-
Element-

Provider

Management-
Repository

CIMOM

WSCControlBPELAdapter

<<SBean>>
WSSelection

EffectorAdapter

<<SBean>>
WSSelection

Controller

<<Autonomic

Manager>>

ExamMgmtAgent

<<WS>>

WSCService

Configuration

Figure 7. WSC Manageability Infrastructure Implementation

Since the employed execution environment is based on a Java application server, we

decided to build the CIMOM independent part using Enterprise Java Beans (EJB3).

Here, the component CIMFacade contains generic provider implementations for

handling association, managed elements and aggregated metrics. The interfaces of these

session beans match the standardized interfaces supported by a CIMOM. This allows an

easy migration to another CIMOM implementation [XXXDKG04XXX]. Entity beans are used to

persistently store the management information. These are subsumed under the

component ManagementRepository. The required monitoring instrumentation of the

WSC on the other hand is based on Oracle-specific sensors added to the WSC definition.

The communication with this active instrumentation is handled by the

OracleSensorAdapter, which is comprised of a message-driven bean and specific session

beans that account for updating the managed elements and generating respective CIM

indications.

These components so far allow a very fine-grained monitoring of WSC, down to the

level of single instances and internal WSC elements such as service tasks or gateways.

To support self-manageability through dynamic selection of WS variants at runtime

further components and modifications are required. First, we introduce a simple

AutonomicManager component implementing the state machine defining the control

loop presented in section XXX6 XXX. The agent’s monitor function polls the metric provider for

detecting a threshold exceedance for the average registration workload. The control

function on the other hand uses the association provider to change the selected WS

variant by modifying the association SelectedWSVariant. This configuration is provided

to the WSC by the WS WSCServiceConfiguration, which basically maps the information

to an XML-based configuration specification the WSC understands. With a proxy-based

instrumentation these extensions would already be sufficient. But when using the BPEL-

based instrumentation, all currently running WSC instances additionally have to be

updated with the modified configuration. This particular requirement is tackled by the

WSCControlBPELAdpater. Here, the session bean WSSelectionEffectorAdapter provides

a unified interface to the respective management operation offered by the WSC. The

WSSelectionController on the other hand assures that the configuration update is

propagated to all relevant WSC instances. The currently active instances are identified

by querying the ManagementRepository for all WSCExecution objects for the respective

WSCDefinition where the status equals “active”. Then for each retrieved WSCExecution

object, the operation updateConfigurationData is invoked through the

ServiceSelectionEffectorAdapter. In this context, the WSC instance identifier as part of

the WSCExecution object and the WSC endpoint reference along with the current

configuration as available from the respective WSCDefinition object are particularly

required. The complete interaction for changing a WS variant selection is summarized

on Figure 8. Note that this model is simplified for the sake of clarity. The CIMOM-

specific providers are left out and meaningful method names are used.

AM: AutonomicManager

AP: AssociationProvider

WSSC: WSSelectionController

WSSA: WSSelectionAdapter

MR: Management Repository

Figure 8. Sequence for Changing selected WS Variant

8 7B7B7BDiscussion and Outlook

In this paper, a pragmatic approach to the conceptual design and implementation of a

WSC manageability infrastructure with support for self-manageability has been

presented. To this end, different techniques for realizing the required controlling

instrumentation have been introduced. In addition, we showed how the BPEL-based

instrumentation can be generated automatically. So far, however, the solution is limited

to semi-dynamic WSC. Yet, by incorporating approaches to parameterized WSC

[XXXKLB05 XXX], it could be further enhanced to offer support for fully dynamic WSC.

As to the self-manageability design, the scope is so far limited to very simple scenarios.

Here, further research on the modeling of autonomic behavior for more complex

scenarios is required. In this case, the employment of finite state machines could result in

an unacceptable amount of states. An alternative to this would, for instance, be the

employment of Event-Condition-Action (ECA) rules or management policies [XXXJJSC03 XXX].

As mentioned earlier, an optimization of the selection that works on a larger variety of

service variants and also takes into consideration cost aspects is not yet supported either.

The related work has so far neglected the usage profile as an additional constraint for the

optimization problem. This is because linear programming approaches are not sufficient

in this context.

As to the scenario, the general question arises whether the employment of load balancing

on the WS level would be a superior approach for automatically adjusting to a given

workload. This research question has not been addressed in this paper. However, one

argument against load balancing is that it causes more complexity for the WS provider

with regard to accounting and billing as well as the provisioning of the services. As far

as the optimization of the employed hardware is concerned, there might also be a

disadvantage. Knowledge about the business processes is not included in the

optimization process. In contrast to the WSC provider, the WS provider does not know

about workload peaks implied by the business process. Consequently, it is harder for the

provider to anticipate workload peaks and react to them. In the case of semi-dynamic

service selection, the WSC provider may specify policies for service selection derived

from business process knowledge.

Our current research particularly focuses on a methodology for an automated generation

of the WSC manageability infrastructure along with the required WSC instrumentation.

On the one hand, this comprises the design of domain-specific meta models that allow

for the modeling of manageability aspects as part of an integrated development process

of WSC. On the other hand, transformations to a fully functional manageability

infrastructure are of special concern. This way, modifications to the specific target

platform, like the employment of a different BPEL engine or the support for different

management protocols, can be achieved by defining specific transformations.

9 8B8B8BLiteraturverzeichnis

[ACD+03] T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Leymann, K. Liu,

D. Roller, D. Smith, and S. Thatte. Business Process Execution Language for Web

Services Version 1.1, 2003.

[DDK+04] A. Dan, D. Davis, R. Kearney, A. Keller, R. King, D. Kuebler, H. Ludwig, M. Polan,

M. Spreitzer, and A. Youssef. Web services on demand: WSLA-driven automated

management. IBM Systems Journal, 43(1):136–158, 2004. 1014728.

[DK03] Markus Debusmann and Alexander Keller. SLA-Driven Management of Distributed

Systems Using the Common Information Model. In 8th IFIP/IEEE International

Symposium on Integrated Network Management (IM 2003), 2003.

[DKG04] M. Debusmann, R. Kroger, and K. Geihs. Unifying service level management using

an MDA-based approach. In IEEE/IFIP Symposium on Network Operations and

Management (NOMS 2004), volume 1, pages 801–814 Vol.1, 2004.

[DMT99] DMTF. CIM Specification, Version 2.2.

http://www.dmtf.org/standards/cim/cim_spec_v22, 1999.

[Eck03] D. Eckstein. WBEM Infrastructure Introduction. Global Management Conference,

2003. http://www.dmtf.org/events/past/2003/gmc/presentations/

GMC03_315pm_BasicconceptsWBEM.pdf.

[FJL+06] P. Freudenstein, W. Juling, L. Liu, F. Majer, A. Maurer, C. Momm, and D. Ried.

Architektur für ein universitätsweit integriertes Informations- und

Dienstmanagement. In INFORMATIK 2006, volume P-93 of Lecture Notes in

Informatics, pages 50–54, Dresden, 2006. Springer.

[GJ05] R. Grønmo and M.C. Jaeger. Model-Driven Methodology for Building QoS-

Optimised Web Service Compositions. In 5th IFIP International Conference on

Distributed Applications and Interoperable Systems (DAIS’05), page 68–82, 2005.

[IBM04] IBM. An architectural blueprint for autonomic computing, 2004.

[JJSC03] J. Jun-Jang, J. Schiefer, and H. Chang. An agent-based architecture for analyzing

business processes of real-time enterprises. In Seventh IEEE International Enterprise

Distributed Object Computing Conference (EDOC 2003), pages 86–97, 2003.

[JRGM05] M.C. Jaeger, G. Rojec-Goldmann, and G. Muhl. QoS aggregation in Web service

compositions. In The 2005 IEEE International Conference on e-Technology, e-

Commerce and e-Service (EEE'05), pages 181–185, 2005.

[Kap05] V. Kapoor. Services and autonomic computing: a practical approach for designing

manageability. In 2005 IEEE International Conference on Services Computing,

volume 2, 2005.

[KLB05] D. Karastoyanova, F. Leymann, and A. Buchmann. An approach to parameterizing

web service flows. In 2005 International Conference on Service-oriented Computing

(ICSOC'05), pages 533–538, 2005.

[LRS02] F. Leymann, D. Roller, and M.-T. Schmidt. Web services and business process

management. IBM Systems Journal, 41(2), 2002.

[MMRA07] Christof Momm, Christian Mayerl, Christoph Rathfelder, and Sebastian Abeck. A

Manageability Infrastructure for the Monitoring of Web Service Compositions. In

14th HP-SUA Workshop, Munich, Germany, 2007.

[Rat07] Christoph Rathfelder. Management in serviceorientierten Architekturen: Eine

Managementinfrastruktur für die Überwachung komponierter Webservices. VDM

Verlag Dr. Müller, Saarbrücken, November 2007.

[SMS+02] A. Sahai, V. Machiraju, M. Sayal, A. van Moorsel, and F. Casati. Automated SLA

Monitoring for Web Services. In 13th IFIP/IEEE International Workshop on

Distributed Systems: Operations and Management (DSOM 2002), volume 2506 of

Lecture Notes in Computer Science, pages 28–41, Montreal, Canada, 2002. Springer.

[TMPE04] V. Tosic, W. Ma, B. Pagurek, and B. Esfandiari. Web Service Offerings

Infrastructure (WSOI) - a management infrastructure for XML Web services. In

IEEE/IFIP Network Operations and Management Symposium (NOMS 2004),

volume 1, pages 817–830 Vol.1, 2004.

[TP05] V. Tosic and B. Pagurek. On comprehensive contractual descriptions of Web

services. In IEEE International Conference on e-Technology, e-Commerce and e-

Service (EEE '05), pages 444–449, 2005.

[TPP03] V. Tosic, B. Pagurek, and K: Patel. WSOL - A Language for the Formal

Specification of Classes of Service for Web Services. In The 2003 International

Conference on Web Services (ICWS'03), Las Vegas, 2003.

[vdAtHW03] Wil M. P. van der Aalst, Arthur H. M. ter Hofstede, and Mathias Weske. Business

Process Management: A Survey. In International Conference on Business Process

Management (BPM 2003), volume 2678 of Lecture Notes in Computer Science,

pages 1–12, Eindhoven, The Netherlands, 2003. Springer.

[ZK06] O. K. Zein and Y. Kermarrec. Static/Semi-Dynamic and Dynamic Composition of

Services in Distributed Systems. In International Conference on Internet and Web

Applications and Services, pages 144–144, Brest Cedex, France, 2006.

[ZLD+05] L. Zeng, H. Lei, M. Dikun, H. Chang, K. Bhaskaran, and J. Frank. Model-driven

business performance management. In IEEE International Conference on e-Business

Engineering (ICEBE 2005), pages 295–304, 2005.

