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How we built a scalable micro-service application

We are

Chair of Software Engineering (a.k.a. Descartes Research Group)
at the University of Würzburg, Germany, Franconia (part of Bavaria)

§ Performance Modeling and Benchmarking,
Data Center Resource Management,
Self-Aware Computing, Data Analytics

§ New: IoT, CPS, I4.0, Block chain, Ethical hacking, …
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On my research

§ Started research after diploma in 2012 
at Karlsruhe Institute of Technology (KIT)

§ Research Interests: 

§ Cloud Computing 

§ Elasticity and Scalability

§ Auto-Scaler Benchmarking

§ Forecasting

§ …

BUNGEE
Cloud Elasticity Benchmark

���������

LIMBO
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SPEC Research

§ Provide a platform for collaborative 
research efforts in the area of quantitative 
system evaluation and analysis

§ Foster interactions and collaborations between 
industry and academia

§ Scope: computer benchmarking, performance 
evaluation, and experimental system analysis 

§ Focus on standard scenarios, metrics, 
benchmarks, analysis methodologies and tools

Mission Statement

Find more information on: http://research.spec.org

Working groups: 
Cloud, DevOps Perf., Power, IDS & Security, Big Data 
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Why TeaStore ? Our Motivation

Auto-Scaling and 
Placement

§ Placement at 
run-time

Performance Modeling

§ An approach for the 
auto-scaling + 
placement problem

§ Build or extract model

§ Use Model for 
placement decision

Service

A
Service

B
Service

C

A, B, C?

?

Ordinary 
Place

Queueing 
Place

Queue Depository

Waiting Line Server

Queue

DeparturesArrivals
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Requirements for a Reference Application

§ Highly scalable

§ Deployment flexibility at run-time

§ Reproducible performance results

§ Complex performance behavior

§ Failover and reliable

§ Online monitoring

§ Load Profiles for realistic stress

§ Simple setup

§ Modern technology stack
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The Descartes TeaStore

Micro-Service test application

§ Five Services + Registry

§ Uses Netflix “Ribbon” 
client-side load balancer

§ Swarm/Kubernetes supported, 
not required

§ Pre-instrumented version with 
Kieker application monitoring

§ Docker Images
§ Alternatively: 

manual deployment in application 
server (documentation available)

WebUI

Auth Image Recom-
mender

Reg-
istry

Database

Persis-
tence
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Services I

Registry
§ Simplified Eureka

§ Service location repository

§ Heartbeat

RegistryClient
§ Dependency for every service

§ Netflix “Ribbon”  

§ Load balances for each client

WebUI
§ Servlets/Bootstrap

§ Integrates other services into UI

§ CPU + Memory + Network I/O

Authentication
§ Session + PW validation

§ SHA512 + Bcrypt

§ CPU
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Services II

ImageProvider
§ Loads images from HDD 

§ 6 cache implementations

§ Memory + Storage

PersistenceProvider
§ Encapsulates DB

§ Caching + cache coherence

§ Memory

Recommender
§ Recommends 

products based on history

§ 4 different algorithms

§ Memory or CPU

TraceRepository
§ AMQP Server

§ Collects traces from  
all services
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TeaStore Demo

Open Source – Apache License v2

https://github.com/DescartesResearch/TeaStore
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Performance: Characteristics & Configurations

Two types of caches

§ Black-box persistence cache

§ White-box image provider cache

Different load types

§ CPU

§ I/O

§ Network

Internal state

§ Database size influences 
resource demands

Load independent tasks

§ Periodic recommender retraining 
(optional) 

Startup behavior

§ Auth and WebUI start “instantly”

§ Recommender needs 
training on startup

§ Image Provider creates 
images on startup

Configuration options

§ Recommender algorithms

§ Recommender retraining interval

§ Image Provider cache 
implementations

§ Database size
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Load and Usage Profile

HTTP load generator

Supports load intensity profiles

§ Can be created manually

§ Or using LIMBO 
(more later)

Scriptable user behavior
§ Uses LUA scripting 

language

§ e.g. “Browse” Profile on 
Github

Example load intensity profile:

“Browse” user profile:
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Does it scale?

First stress tests: 
§ Very limited scalability due to 

communication overhead !

§ Image provider service was network bound 
(no caching)

§ All services: running out of ports and connections 
due to standard Java networking (connections, sockets)

à Okay, let us reuse connections via connection pooling

à Introduce image caching (service instance & client side)
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Does it scale? (II)

Second version stress test: 
§ Somewhat better scalability, 

still not sufficient

§ Performance variability

§ Connection pool size configuration important, 
but specific for service type, platform and load 

à not a good idea to set a default in a service container image

à Okay, think and re-implement one more time…
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Does it scale? (III)

Third version towards scalability:

§ Asynchronous communication

§ Based on Java NIO APIs 
(multi-plexed, non-blocking I/O)
§ Leverages network card HW features

§ Managed buffers, worker and thread pools

§ Channel listener concept for Java servelets

Frameworks: Undertow (JBoss) or Grizzly NIO (Glassfish)
https://javaee.github.io/grizzly/
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Does it scale? (IV)

Up to 9 Servers a 8 physical cores 
(16 with HT) 

à almost 7 000 req/s – linear 
(8th server had old OS version)
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Example: Energy Efficiency of Placements

Placement 1 Placement 2

16 cores

Web
UI

Per-
sist.

Auth

Img

8 cores

Web
UI

Rec-
omm.

Per-
sist.

Auth

Img

16 cores

Web
UI

Per-
sist.

Auth

Img

8 cores

Web
UI

Per-
sist.

Auth

Img

Rec-
omm.

Max 1011.9 Tr/s

Max 179.6 W

Geo 4.4 Tr/J

Max 1067.7 Tr/s

Max 187.0 W

Geo 4.3 Tr/J
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Auto-Scaling TeaStore

0 50 100 150 200 250 300 350 400
0

10

20

30

# 
Vi

rtu
al

 M
ac

hi
ne

s Presentation Tier

demand supply

0 50 100 150 200 250 300 350 400
Minutes

0

100

200

Re
q.

 / 
Se

co
nd Sent Requests SLO conformance SLO violations

Slow provisioning

SLO violations



Nikolas Herbst
19

How we built a scalable micro-service application

Auto-Scaling TeaStore
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LIMBO
Load Profile Models

http://descartes.tools/limbo

LIMBO
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Load Profile Description
W
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d 

U
ni

ts

Time

 + / ×  + / ×  + / ×  + / ×

 + / ×

Seasonal

Trends & 
Breaks

Overlaying
Seasonal

BurstNoise

 + / ×
 + / ×



Nikolas Herbst
22

How we built a scalable micro-service application

Descartes Load Intensity Model
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LIMBO toolkit

wizard

EMF editor

time series generation

http://descartes.tools/limbo

extractors

plotter
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TELESCOPE
Forecasting the future workload

���������
http://descartes.tools/telescope

à Released in May 2018 as R package on Github ß
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Telescope Approach

Remainder
Forecasting & 
Composition

5

Decomposition
Task

Season & Trend 
Forecasting

Learning of
Categorical
Information

Preprocessing
Removal of Anomalies
- AnomalyDetection -

Time Series 
Decomposition

- STL -

Season 
Forecasting

- STL based -

Boosted Random 
Trees with Covariates

- XGBoost -

Raw Input Values

Forecast 
Output

Trend RemainderSeason

Trend 
Forecasting

- ARIMA -

Clustering of
Single Periods

- k-Means -

Centroid
Forecasting

- ANN -

Frequency
Determination

- FFT - 1

3

4

2
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Preprocessing

Frequency Estimation:

§ Periodograms for rough
estimation

§ List of common frequencies

Anomaly Detection:
§ Generalized extreme 

studentized deviate 
test (ESD) on the
remainder

§ Replace anomaly by 
mean of non-anomaly 
neighbors

1
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Learning Categorical Information

Calculate Characteristics

Create Feature Space K-Means Clustering

Cluster Labels

ANN Forecast of Cluster 
Labels

1 1 1 1 1 2 2 1 1

2
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Decomposition & Forecasting

Learning of Categorical 
Information Cluster Label Forecast

STL Decomposition

Time Series History

Season
Trend

R
em

ainde
r

Input
4

3 5
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Estimating Decomposition Type

STL once on original and once on logarithmized time series

Calculate:

§ Sum of squares of the auto-correlation on remainder

§ Range between first and third quantile of the remainder

§ Sum of squares of the remainder 

Majority decision

3
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Learning of Categorical 
Information Cluster Label Forecast

Final Forecast

STL Decomposition

Trend Forecast

Season Forecast

Time Series History

Decomposition & Forecasting4
3 5
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Example: IBM Trace

Start of the horizon
Original values
Telescope forecast
tBATS forecast

Forecaster MASE Time

Telescope 0.842 6.248

tBATS 4.547 33.360

SVM 6.557 2.344

XGBoost 7.683 0.172

ARIMA 7.828 87.016

ANN 18.678 10.938

ETS 23.389 0.984
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Example: Airline Passengers Trace

Start of the horizon
Original values
Telescope forecast
tBATS forecast

Forecaster MASE Time

Telescope 0.353 1.671

tBATS 0.520 11.641

ARIMA 0.638 3.248

ETS 0.652 2.266

ANN 0.711 0.375

XGBoost 1.261 0.102

SVM 6.758 0.094
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Measures for 56 Time Series

§ High and stable accuracy for multi-step forecasting

§ Comparably short time-to-result

Forecaster Ø MASE 𝝈 MASE Ø MAPE Ø Time
Telescope 1.503 1.619 25.217 9.032
tBATS 1.791 3.112 25.107 56.334
ARIMA 2.022 2.405 43.194 177.288
ANN 2.072 3.206 67.176 77.948
XGBoost 2.251 2.017 47.779 0.167
ETS 2.638 4.288 81.816 2.184
SVM 5.334 6.254 64.306 24.608
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LIBREDE
Estimating Resource Demands

http://descartes.tools/LibReDE

“A resource demand is the time a unit of work 
(e.g., request or internal action) spends obtaining service from a 
resource (e.g., CPU or hard disk) in a system.” S. Spinner 2015  
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How to quantify resource demands?

Direct Measurement

Requires specialized infrastructure 
to monitor low-level statistics.

Examples:

• TimerMeter [Kuperberg09] 
+ ByCounter [Kuperberg08]

• Brunnert et al. [Brunnert13]

• Magpie [Barham04]

Statistical Estimation

Use of statistical techniques on 
high-level monitoring statistics.

Examples:

• Linear regression [Kraft09]

• Kalman filtering [Wang12]

• Nonlinear optimization [Kumar09]

• Maximum likelihood estimation 
[Kraft09]
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Why should I use statistical estimation?

Direct measurements infeasible

• Only aggregate resource usage statistics available

• Unaccounted work in system or background threads

Direct measurements too expensive
• Monitoring of production system

• Heterogeneous software stacks

Coarse-grained models
• Trade-off analysis speed vs. prediction accuracy

• Usage of performance models at system runtime
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Challenges

Approximation Techniques

Linear Regression

Kalman Filter

Nonlinear Optimization

Maximum Likelihood Estimtion
and many more approaches…

Different 
Preconditions

Varying 
Robustness

Computational
Complexity

Implementations
not available

What is the best approach for a given scenario?
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LibReDE Usage

Standalone version for offline analysis

Java library for online analysis 

.csv.csv.csv

or

Measurement traces Estimated Demands

.csv.csv.csv

Monitoring tools

Custom application
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Estimation Process

Create estimation 
model

Setup estimation 
approaches

Load monitoring data

Output results

Run estimation 
approach(es)

Cross-Validation

Validation Sets

Training Sets

• EMF-based model
• Graphical eclipse editor

• Derive estimation problem(s)
• Check pre-conditions

Evaluate 
accuracy
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Estimation

• 6 estimation approaches
• Extension point

• Parameters of 
underlying statistical 
techniques

Time interval settings
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Key take away points

If you can, build you application from
micro-services with restful interfaces

§ Flexibility, portability of containers

§ Maintainability, reusability

Netflix offers a state of the art software stack
§ Netflix Eureka service registry

§ Netflix Ribbon service load-balancer with reliability features

Asynchronous communication frameworks in high demand
§ E.g. Java NIO implementations: 

JBoss Undertow or Glassfish Grizzly



Nikolas Herbst
42

How we built a scalable micro-service application

Contact: 

nikolas.herbst@uni-wuerzburg.de

https://go.uni-wuerzburg.de/herbst

Thank You!
https://github.com/DescartesResearch/TeaStore


