Julius-Maximilians-
UNIVERSITAT
I WURZBURG L escartes

research

How we built a scalable
micro-service application

- lessons learned & tooling -

Nikolas Herbst,
Joakim von Kistowski, Simon Eismann, André Bauer,
Norbert Schmitt, Johannes Grohmann, Marwin Zufle,
Samuel Kounev

_____/
\ ﬁ ScrumScale Workshop, Oslo, Norway
& - June 5, 2018

P Slides available: descartes.tools

Chair of Software Engineering (a.k.a. Descartes Research Group)
at the University of Wurzburg, Germany, Franconia (part of Bavaria)

= Performance Modeling and Benchmarking,
Data Center Resource Management,
Self-Aware Computing, Data Analytics

= New: loT, CPS, 4.0, Block chain, Ethical hacking, ...

UNI How we built a scalable micro-service application
Nikolas Herbst

On my research

= Started research after diploma in 2012
at Karlsruhe Institute of Technology (KIT)

= Research Interests:

» Cloud Computing

= Elasticity and Scalability s\ |
= Auto-Scaler Benchmarking
= Forecasting % .
Cloud Elasticity Benchmar hameleo D/
;‘: Telescope BUNGEE Q
UNI How we built a scalable micro-service application

wi

Nikolas Herbst

SPEC Research '

—

Mission Statement

= Provide a platform for collaborative Specm
research efforts in the area of quantitative
system evaluation and analysis

Researchl - Fosterinteractions and collaborations between
g iIndustry and academia

Scope: computer benchmarking, performance
evaluation, and experimental system analysis

Focus on standard scenarios, metrics,
benchmarks, analysis methodologies and tools

Working groups:
Cloud, DevOps Perf., Power, IDS & Security, Big Data

Find more information on: http://research.spec.org

4

Nikolas Herbst

Why TeaStore ? Our Motivation

Auto-Scaling and Performance Modeling

Placement = An approach for the

« Placement at auto-scaling +
run-time placement problem

Build or extract model

Use Model for
placement decision

UNI How we built a scalable micro-service application
Nikolas Herbst

Requirements for a Reference Application

= Highly scalable

= Deployment flexibility at run-time
= Reproducible performance results
= Complex performance behavior

= Failover and reliable

= Online monitoring

= Load Profiles for realistic stress
= Simple setup

= Modern technology stack

UNI How we built a scalable micro-service application
Nikolas Herbst

The Descartes TeaStore

Micro-Service test application

= Five Services + Registry

= Uses Netflix “Ribbon”
client-side load balancer

= Swarm/Kubernetes supported,
not required

= Pre-instrumented version with

Recom- i
mender tence
Kieker application monitoring
= Docker Images
Database
= Alternatively:

manual deployment in application
server (documentation available)

Nikolas Herbst

Services |

Registry RegistryClient 2@

= Simplified Eureka = Dependency for every service

= Service location repository = Netflix “Ribbon”
= Heartbeat = Load balances for each client
WebUI ==, Authentication
]
= Servlets/Bootstrap = Session + PW validation

Integrates other services into Ul = SHA512 + Berypt

CPU + Memory + Network 1/O - CPU

How we built a scalable micro-service application
Nikolas Herbst

Services |l

PersistenceProvider ImageProvider a
= Encapsulates DB = Loads images from HDD -
= Caching + cache coherence = 6 cache implementations

= Memory = Memory + Storage

Recommender [é TraceRepository
= Recommends = AMQP Server ?}ﬂ@k@f

products based on history
= Collects traces from

= 4 different algorithms all services

= Memory or CPU

UNI How we built a scalable micro-service application
Nikolas Herbst

TeaStore Demo

TeaStore

Categories Black Tea

Black Tea Earl Grey (loose) Assam (loose)
Pure black tea and | Price: $ 75,82 Price: $ 21,87
(=
blends o Great Black Tea: E Great Black Tea: A.
Green Tea
Add to Cart Add to Cart
From China and Japan
Herbal Tea
\\ ___/ Helps when you feel Anatolian Assam ... Earl Grey (20 bags)

Price: $ 106,01 Price: $ 97,00
sick
Rooibos Great Black Tea: A. Great Black Tea: E...
In many variations Add to Cart Add to Cart
White Tea
If green tea doesn't

Ceylon (loose) Ceylon (20 bags)
agree with you

Price: $ 98,17 Price: $ 94,16

_ Great Black Tea: C Great Black Tea: C
Add to Cart Add to Cart

Earl Grey (loose), ...
Price: $ 48,42
[@] | Great Black Tea: E

Assam (loose), vi
Price: $ 106,55
Great Black Tea: A..

Add to Cart Add to Cart
Anatolian Assam ... Earl Grey (20 bag...
Price: $ 40,73 Price: $ 23,10
Great Black Tea: A. Great Black Tea: E...
Add to Cart Add to Cart

Open Source — Apache License v2

https://github.com/DescartesResearch/TeaStore

How we built a scalable micro-service application
Nikolas Herbst

Darjeeling (loose)
Price: $ 55,69
Great Black Tea: D.

Add to Cart

Assam (20 bags)
Price: $ 119,49
Great Black Tea: A...

Add to Cart

(77 | House blend (20 b...
@ |[price: s 50.26

£ Great Black Tea: H
Add to Cart
Darjeeling (loose)...

Price: $ 35,23
Great Black Tea: D,

Add to Cart

Assam (20 bags), vi

._ Price: $ 61,12
fci .
1| Great Black Tea: A.
Add to Cart

Signin

Frisian Black Tee ...
Price: $ 15,19
Great Black Tea: Fr.

Add to Cart
Darjeeling (20 bags)

Price: $ 107,86
Great Black Tea: D..

Add to Cart
Assam with Ging...

Price: $ 93,98
Great Black Tea: A.

Add to Cart
Frisian Black Tee ...
(28 | Price: $ 101,85
Great Black Tea: Fr.
Add to Cart

Darjeeling (20 bag...
Price: $ 41,12
Great Black Tea: D...

Add to Cart

10

Performance: Characteristics & Configurations

Two types of caches
= Black-box persistence cache

= White-box image provider cache

Different load types
= CPU
= |/O

= Network

Internal state

= Database size influences
resource demands

Load independent tasks

= Periodic recommender retraining
(optional)

Startup behavior
= Auth and WebUI start “instantly”

= Recommender needs
training on startup

= |mage Provider creates
images on startup

Configuration options
= Recommender algorithms
= Recommender retraining interval

= Image Provider cache
implementations

= Database size

How we built a scalable micro-service application
Nikolas Herbst

11

Load and Usage Profile

HTTP load generator Example load intensity profile:

457.90

Supports load intensity profiles

= Can be created manually

= Orusing LIMBO
(more later)

0

0 time 3840

Scriptable user behavior “Browse” user profile:

= Uses LUA scripting
language

. GET Start Page
. GET Signin
. POST Send login data for random user

o‘/’;

<3
° 9
a
g2

1

2

3

4. GET Category View for random category

and 30 items per page

5. GET Product View for random product
6.

7

8

:V._;J = 5
-
11 " -
= e.g. “Browse” Profile on |
Github @ 1 “ &j&
@ Start/End tllz Start _’6 —0

Genera tor . GET Category View with previous
— 1

category
of User Profile) Shopping 8. GET Category View with random page
Page Sign In Cart number
O Webpage Send. 9. GET Shopping Cart; add random product
from Web-Service il from current category view
1 Profile 10 10. GET Profile
N 11. GET Start Page and Logout
O« 12. Start Over
UNI How we built a scalable micro-service application
.o

12
Nikolas Herbst

Does it scale?

First stress tests:

= Very limited scalability due to
communication overhead !

= |mage provider service was network bound
(no caching)

= All services: running out of ports and connections
due to standard Java networking (connections, sockets)

> Okay, let us reuse connections via connection pooling

-> Introduce image caching (service instance & client side)

UNI How we built a scalable micro-service application
Nikolas Herbst

13

Does it scale? (ll)

Second version stress test:

= Somewhat better scalability,
still not sufficient

= Performance variability

= Connection pool size configuration important,
but specific for service type, platform and load

- not a good idea to set a default in a service container image

- Okay, think and re-implement one more time...

UNI How we built a scalable micro-service application
Nikolas Herbst

14

Does it scale? (lll)

Third version towards scalability:

= Asynchronous communication

= Based on Java NIO APIs
(multi-plexed, non-blocking I/O)

= |Leverages network card HW features
= Managed buffers, worker and thread pools

= Channel listener concept for Java servelets

Frameworks: Undertow (JBoss) or Grizzly NIO (Glassfish)
https://javaee.qgithub.io/grizzly/

UNI How we built a scalable micro-service application
Nikolas Herbst

15

Does it scale? (IV)

Throughput

2000 3000 4000 5000 6000

1000

Up to 9 Servers a 8 physical cores
(16 with HT)

P 6\.\,

- almost 7 000 req/s — linear
(8™ server had old OS version)

| T T | | T T
16/1 3212 48173 64/4 80/5 96/6 1217

Number of cores / Physical Servers

How we built a scalable micro-service application
Nikolas Herbst

|
128178

|
14479

16

Example: Energy Efficiency of Placements

Placement 1 Placement 2

4 N[N 4
16 cores 8 cores 16 cores 8 cores

_ J N\) _ J N\
Max @ 1011.9 Tris Max @ 1067.7 Trls
Max 0 179.6 W Max Q 187.0 W
Geo % 4.4Trld Geo % 4.3Trld

How we built a scalable micro-service application
Nikolas Herbst

UN|

Auto-Scaling TeaStore

n

m 30 [} [[l

= Slow provisioning

c | demand supply

(&)

© 20—

=

S 10+

£

% 0 | | | | | | | |

0 50 100 150 200 250 300 350 400

- . .

g 200 SLO VIOIatIO”rb—Sent Requests SLO conformance SLO violations

o
(dp)
~

. 100 [~

O

Q
o

0 | | A | | | | | |
0 50 100 150 200 250 300 350 400
Minutes
UNI How we built a scalable micro-service application

Nikolas Herbst

18

Auto-Scaling TeaStore

B30
c
= demand supply
20
=
S 101
S
% 0 | | | | | | | |
0 50 100 150 200 250 300 350 400
8 30
c
< demand supply
&)
© 20 — -
=
S 101
> [Proactive provisioning | | | | |
¥ 0 50 100 150 200 250 300 350 400
e
S 200 - | Sent Requests SLO conformance SLO violations
3
w
~
o 100 . .
3 ew SLO violations
| | | | L | | |
0
0 50 100 150 200 250 300 350 400
Minutes

How we built a scalable micro-service application
Nikolas Herbst

19

LIMB0

http://descartes.tools/limbo

Load Profile Models

LIMBO i, »u\ , ,w[‘

UNI How we built a scalable micro-service application
Nikolas Herbst

20

Load Profile Description

A

A A A A Seasonal
12
= Trends &
- Breaks
O
Q]
O
X :
o Overlaying
= Seasonal

v/ x +/x
JMWWWWW Noise Burst
: >
Time
UNI How we built a scalable micro-service application

Nikolas Herbst

Descartes Load Intensity Model

<<enumeration>>
o
H Sequence H ReferenceClockObiject = ClockType
- referenceClock - = RootClock
= name : EString - > = name : EString - ContainerClock
O terminateAfterTime : EDouble 0.1
. e e e [= SequenceClock

referenceClock 0.1,/ eferenceClockObject
- RootClock B Sequence E] ReferenceClockObject
Do = oAt ——
= SequenceClock = terminateAfterTime : EDouble
- LoopClock = terminateAfterLoops : EInt

po intOIRefe;e nceClockObject

< <enumeration> 3|
2 Operator

sequenceFunctionContainers

1.*

= add 0.

- mult H TimeDependentFunctionContainer ’—J{function function o
© name : EString 0.1 P combine
= duration : EDouble

B Function

= pointOfReferenceClockType : ClockType

1

P

I T I]
e ‘f B rrend [ArrivalRatesFromFile| [H Polynomial | [UnivariateFunctior
= = functionOutputAtStart : EDouble| | = filePath :EString | | I ‘
I— — - :93“@5““:"5 = functionOutputAtEnd : EDouble |
FANAN ase : EDouble
= peakTime : EDouble

0 ?—1?..‘5““
1 5og F‘F‘ (1]

[[‘ E PolynomialFactor
| (B ExponentialincreaseAndDeciing [LinearincreaseAndDecling B ExponentialincreaseLogarithmicecling| | B LinearTrend | [B ExponentialTrend] [l LogarithmicTrend]| B SinTrend | | = factor: EDouble
© min : EDouble = constant : EDouble | | 1 || = logarithmicOrder : EDouble I i I
= max : EDouble L

= ‘ L [} © order : EDouble || = offset : EDouble
J \:
period : EDouble

i
= phase : EDouble

[\
H AbsoluteSin
1

H uniformNoise H NormalNoise H sin [
= min : EDouble | | = mean : EDouble
= max : EDouble

= standardDeviation : EDouble

| | | | |
H Noise H Seasonal H Burst

E Trend H UnivariateFunction
= peak : EDouble = functionOutputAtStart : EDouble
= peakTime : EDouble

= functionOutputAtEnd : EDouble ?
= base : EDouble

UNI How we built a scalable micro-service application
Wi

22
Nikolas Herbst

LIMBO toolkit

http://descartes.tools/limbo

Seasonal Pattern \ Overarching Trends
Choose the overarching trendsfo the model
Choose a seasonal pattem for the model ad

Recurring Bursts and Noise
Set bursts and noise for the model

*

Number of Seasonal Periods within one Trend: |2

Period: 240 | Number of Pesks: 2| e Rocuctieg Bucsts
Base Arival Rate Level: | 2 Base Arrival Rate Level between Peaks: 6 | 120 First Burst Offset: | 18 Inter Burst Period: | 48.0
Fist Pesk Arvl Rate: | 14 Lest Peak Artval Rate: 2| b Burst Peak Arival Rate: & BustWidth: 4
Intesval containing Peaks: | 11
Select Seasonal Shape: | SinTrend v
Noise:
140 el peak to terget arivel rste: | 16 Add Minimum Noise Arrival Rate: | 0.0 Maximum Noise Arrival Rate: 0.0
Select Trend Shape:| STrend v Other Noises (such a5 Gaussian Noise) can essily be added in the EMF editor. ext r a ct o rs
Select Opesator, | MULT v ¥} Explictly show Trend, Burst, and Noise Contributions in Plot
@ plcity show Trend Contibution n Plot
arival -
rates

200

Noise Extraction]

wizard

nates

0+

0 time 70

. e) ; - apply filter
-
= Java - example_project/example.dlim - Eclipse [no Noise Extraction]
File Edit Navigate Search Project Dlim Editor Run Window Help (fitered)
@ |uEans Y & i = = SEIHCNGOEE 9y <Back Nex Fiish | | Cancel
K= O BO U H SIS S Arival Rafos
iplpypx = O B¢ example.dlim 22 = 8
&2 @ BS| 5 | B Resourcese 5 exampleModeldim [e tamps 1 32 .
~ 4 B platform:/resource/example_project. 30 T 0.0; r\?;:: gae&
LIMBO_DEMO 4 ¢ Sequence example 7o Seasonal Part
4 1= example_project > 4 Combinator ADD 1_5;
58 example.dlim 4 4 Time Dependent Function Cc 2.0;
. b |4 Constant10.0 | 2.25;
EMF editor 25 extract
R T Lg Selection ’ Parent| List’ Tree’ Table| Tree wi :2&7 Trend Part
Oz A =L = 5 arrival 3233’
o= Pr.. @ Ja. [De.. [ElCo. 3k rates 3:655'
#ZE)2 8= Y 3.75; extract
Property Value 3.875; Burst Part
4.0;
Constant 1110.0 117.28 4.1;
arrival :g:
rates 4'4;
0+ 4.5;
0 time 4.6; v
0 1
< Ul g example 0 time 480

Selected Object: Constant 10.0 U time series generation

UNI How we built a scalable micro-service application
wu Nikolas Herbst

23

UN|

PABAL

Telescope

http://descartes.tools/telescope

Forecasting the future workload

TELESCOPE

- Released in May 2018 as R package on Github <

How we built a scalable micro-service application
Nikolas Herbst

24

UN|

Telescope Approach

Preprocessing

Frequency

Raw Input Values Determination el o s e

“FFT- - AnomalyDetection - @

Learning of Decomposition
Categorical Time Series Task
Information

Decomposition
- STL -

Clustering of
Single Periods
- k-Means -

Season Remainder

Season & Trend
Forecasting

Centroid

Forecasting
- ANN - Season

Forecasting
- STL based -

Trend
Forecasting

- ARIMA - @

Remainder
Forecasting & Boosted Random ESICEaS
Composition Trees with Covariates

- XGBoost - @ Output

How we built a scalable micro-service application
Nikolas Herbst

25

@ Preprocessing

Frequency Estimation:

= Periodograms for rough
estimation

= List of common frequencies

spectrum
1e+06 1e+08 1e+10
|

I | I [I I

Anomaly Detection: 0.0 0.1 0.2 0.3 0.4 05

frequency

= Generalized extreme
studentized deviate

o
test (!ESD) on the 2 g
remainder e 8
o ~—
= Replace anomaly by § —
mean of non-anomaly l‘_E o — | | | |
neighbor
eighbors 0 100 200 300 400 500
Observation
UNJ How we built a scalable micro-service application

26
Nikolas Herbst

@ Learning Categorical Information

Create Feature Space ‘ K-Means Clustering

Calculate Characteristics Cluster Labels

\ \ \ \ \ \ \

ANN Forecast of Cluster

VRVRVRVANENEN

1 1 1 1 1 2 2 1 1

UNI How we built a scalable micro-service application
Nikolas Herbst

020

Decomposition & Forecasting

Learning of Categorical
Information

\ 4

Cluster Label Forecast

Indu

v

uoseag

Time Series History

puail

STL Decomposition

How we built a scalable micro-service application

Nikolas Herbst

apuleway

28

@ Estimating Decomposition Type

STL once on original and once on logarithmized time series

Calculate:
= Sum of squares of the auto-correlation on remainder
= Range between first and third quantile of the remainder

= Sum of squares of the remainder

Majority decision

UN|

How we built a scalable micro-service application
Nikolas Herbst

29

Decomposition & Forecasting

Learning of Categorical ol Label F
Information > uster Label Forecast
Season Forecast
A O I
NN R
= LU
| ‘Ir»" 'l.fJ "r\‘l i I“.-\' \‘»\" "/\ ||I«\' I\‘/\I T 'ml 11 ‘|f1‘ {."Jl I ‘”“ I
BRI N O O O O O
- _
> e . -
>) // > ///
Trend Forecast I
Time Series History Final Forecast
=>4l a
L i [A O Nl Wi L
I'l]‘I LI‘IJ" ul‘ ll‘l‘ ‘ “\f ‘IN'
STL Decomposition
How we built a scalable micro-service application -

UN|

Nikolas Herbst

Example: IBM Trace

Forecaster m Time

Telescope 0.842 6.248

Transactions
30000
| O |

_ {BATS 4.547 33.360
[[I I [[
0 500 1000 1500 2000 2500 S\M 6.557 2.344
Observation
S XGBoost 7.683 0172
2 ARIMA 7.828 87.016
2 ANN 18.678 10.938
g ° ETS 23.389 0.984
=

Start of the horizon
L N — Oiriginal values
. | — | I | — Telescope forecast
0 100 200 300 400 500 --== tBATS forecast

10000
|

0
I

Horizon

How we built a scalable micro-service application
Nikolas Herbst

31

Example: Airline Passengers Trace

Telescope 0.353 1.671

Passengers
100 300 500
I I S |

| | , , | | | | tBATS 0520 11.641

0 20 40 60 80 100 120 140 ARIMA 0638 3248
Observation

ETS 0.652 2.266

| ANN 0.711 0.375

XGBoost 1.261 0.102
SVM 6.758 0.094

Passengers

Start of the horizon
— Original values
B | I | I i i —— Telescope forecast
0 5 10 15 20 25 30 | -—-- tBATS forecast

Horizon

300 350 400 450 500 550 600
I

How we built a scalable micro-service application
Nikolas Herbst

32

Measures for 56 Time Series

= High and stable accuracy for multi-step forecasting

= Comparably short time-to-result

Forecaster | @ MASE |_o MASE | @ MAPE @ Time _

Telescope 1.503 1.619 25.217 9.032
tBATS 1.791 3.112 25107 56.334
ARIMA 2.022 2405 43.194 177.288
ANN 2.072 3.206 67.176 77.948
XGBoost 2.251 2.017 47.779 0.167
ETS 2.638 4.288 81.816 2.184

SVM 5.334 6.254 ©64.306 24.608

UN|

Nikolas Herbst

LibReDE

http://descartes.tools/LibReDE

Estimating Resource Demands

LIBREDE

“A resource demand is the time a unit of work

(e.g., request or internal action) spends obtaining service from a
resource (e.g., CPU or hard disk) in a system.” S. Spinner 2015

How we built a scalable micro-service application
Nikolas Herbst

34

How to quantify resource demands?

Direct Measurement Statistical Estimation

Requires specialized infrastructure Use of statistical techniques on

to monitor low-level statistics. high-level monitoring statistics.
Examples: Examples:
TimerMeter [Kuperberg09] - Linear regression [Kraft09]

+ ByCounter [Kuperberg08] Kalman filtering [Wang12]

Brunnert et al. [Brunnert13]

Magpie [BarhamO04]

Nonlinear optimization [Kumar09]

Maximum likelihood estimation
[Kraft09]

UNI How we built a scalable micro-service application
Nikolas Herbst

35

UN|

Why should | use statistical estimation?

Direct measurements infeasible
* Only aggregate resource usage statistics available

« Unaccounted work in system or background threads

Direct measurements too expensive
* Monitoring of production system

* Heterogeneous software stacks

Coarse-grained models
» Trade-off analysis speed vs. prediction accuracy

» Usage of performance models at system runtime

How we built a scalable micro-service application
Nikolas Herbst

36

Challenges

Varying Computational
Robustness Complexity

Implementations
Kalman Filte| not available

Approximation Techniques

Different
Preconditions

Linear Regression Nonlinear Optimization

~—

Maximum Likelihood Estimtion \

— and many more approaches...
\

What is the best approach for a given scenario?

37

Nikolas Herbst

LibReDE Usage

Standalone version for offline analysis

Measurement traces Estimated Demands

S £

o

=) =)

Java library for online analysis

Custom application

O—| LibReDE

UNI How we built a scalable micro-service application
Nikolas Herbst

Monitoring tools

38

Estimation Process

« EMF-based model
» Graphical eclipse editor

Create estimation
model

Derive estimation problem(s)

Setup estimation

approaches Check pre-conditions

Evaluate

Validation Sets

accuracy

Load monitoring data

Run estimation Cross-Validation
approach(es)

N
¥ |

Output results]

s19g buluied |

UNI How we built a scalable micro-service application
Nikolas Herbst

39

Estimation

File

|

Edit Navigate

> & WO Q/-HFCE-® P~

Search Project Librede Estimation Model Editor

Run Window Help

v | w X v

Quick Access I w

[

(&

Q estimation.librede 72

= Estimation

v Activated Estimation Approaches

[Service Demand Law

= Approximation with Response Times
= Kalman Filter using Utilization Law
= Least-sg

g Regression using Utilization Law
Zl _ . -

* 6 estimation approaches
« Extension point

All Estimation Algorithms

“« Parameters of
underlying statistical
techniques

(==}

v Interval Settings

Step Size: 120 > | Seconds

Start Date: 01,06.2013 [F~ | 04:52:3012 Read fron

In Unix Time: 1370087550000

End Date:

01.06.2013 [E~ | |05:48:59 -3

In Unix Time: 1370090933000

[TRecursive

State Noise Covariance™ 1.0

oise Coupling™ 1.0

Observe Noise Covariance®: | 0.0001

~

Workload Description | Data Sources | Traces | Estimation | Validation | Output

How we built a scalable micro-service application
Nikolas Herbst

Java
=

[

40

Key take away points

If you can, build you application from
micro-services with restful interfaces

= Flexibility, portability of containers

= Maintainability, reusability

Netflix offers a state of the art software stack

= Netflix Eureka service registry

= Netflix Ribbon service load-balancer with reliability features

Asynchronous communication frameworks in high demand

= E.g. Java NIO implementations:
JBoss Undertow or Glassfish Grizzly

UNI How we built a scalable micro-service application
Nikolas Herbst

41

UN|

Thank You!

https://qgithub.com/DescartesResearch/TeaStore

Contact:

nikolas.herbst@uni-wuerzburg.de

https://go.uni-wuerzburg.de/herbst

How we built a scalable micro-service application
Nikolas Herbst

42

