arXiv:2006.05914v2 [cs.CR] 6 Nov 2020

Mind the GAP: Security & Privacy Risks of
Contact Tracing Apps

Lars Baumgirtner*, Alexandra Dmitrienko?, Bernd Freisleben®, Alexander Gruler*, Jonas Hochst*T,
Joshua Kiihlberg*, Mira Mezini*, Richard Mitev*, Markus Miettinen*, Anel Muhamedagic*, Thien Duc Nguyen*,
Alvar PenningT, Dermot Pustelnik*, Filipp Roos, Ahmad-Reza Sadeghi*, Michael Schwarz!, Christian Uhlt
* Technische Universitdt Darmstadt, Germany
E-mail: {baumgaertner, mezini, markus.miettinen, ducthien.nguyen, ahmad.sadeghi} @cs.tu-darmstadt.de
t Philipps-Universitdt Marburg, Germany
E-mail: {hoechst, freisleb, penning, schwarzx, uhlc} @informatik.uni-marburg.de
! Julius-Maximilians-Universitit Wiirzburg, Germany
E-mail: {alexandra.dmitrienko, filipp.roos}@uni-wuerzburg.de

Abstract—Google and Apple have jointly provided an API
for exposure notification in order to implement decentralized
contract tracing apps using Bluetooth Low Energy, the so-called
"Google/Apple Proposal", which we abbreviate by "GAP''. We
demonstrate that in real-world scenarios the current GAP design
is vulnerable to (i) profiling and possibly de-anonymizing infected
persons, and (ii) relay-based wormhole attacks that basically can
generate fake contacts with the potential of affecting the accuracy
of an app-based contact tracing system. For both types of attack,
we have built tools that can easily be used on mobile phones or
Raspberry Pis (e.g., Bluetooth sniffers). The goal of our work is
to perform a reality check towards possibly providing empirical
real-world evidence for these two privacy and security risks. We
hope that our findings provide valuable input for developing
secure and privacy-preserving digital contact tracing systems.

Index Terms—contact tracing apps, exposure notification API

I. INTRODUCTION

Caused by coronavirus SARS-CoV-2, the COVID-19 dis-
ease spreads particularly through direct contact between peo-
ple. Health authorities face the challenge of identifying and
isolating infection chains to prevent the pandemic from spread-
ing further. This task usually involves manual effort and relies
on contact information that is voluntarily provided by infected
people. Hence, infection chains have to be reconstructed by the
health authorities with an enormous amount of work for each
individual case, but nevertheless they are not always accurate
or complete.

Using digital contact tracing apps on mobile devices can
help to reduce the manual effort and increase the tracing accu-
racy. This has already been demonstrated in several countries.
Even if - for understandable reasons - there is still a lack of
empirical evidence about the effectiveness of contract tracing
apps in fighting the pandemic [1]] compared to other measures,
such as massive testing and manual tracing, contact tracing
apps became urgent in the rest of the world that was hit by
the pandemic later.

The recent "arms race" on providing contact tracing apps
has created various mobile contact tracing approaches and

corresponding apps, published in GitHub repositories, or de-
ployed in countries such as China, South Korea, Singapore,
Taiwan, Austria, Australia, France, Italy, Switzerland, UK, and
Germany. For an overview and a comparison of contact tracing
apps, we refer to Miettinen et al. [2].

Basically, contact tracing apps differ in (a) the technology
used to measure proximity, and (b) the approach of where and
how contacts are stored and processed. For example, some
approaches are based on tracking the GPS location of partic-
ipating users [3], [4], while other proposals rely on recording
proximity identifiers exchanged by Bluetooth Low Energy
(BLE) technology. Location information, e.g., GPS in an urban
environment, is often inaccurate [5] and mostly useless in
indoor situations where BLE contact tracing is supposed to
show its value: examples are department stores, restaurants,
trade fairs, conference venues, concert halls, indoor sports
events, airports, and airplanes. However, Leith and Farrell
[6]-[8] indicate that BLE received signal strength can vary
substantially depending on the relative orientation of handsets,
on absorption by the human body, reflection/absorption of
radio signals in buildings, busses, and trams. In particular, the
authors demonstrate that BLE signal strength in a bus can be
higher between phones that are far apart than phones close
together, making reliable proximity detection based on signal
strength difficult.

Furthermore, there are centralized and decentralized con-
tact tracing approaches. Centralized approaches, such as the
TraceTogether app used in Singapore [9] or the CovidSafe
app used in Australia [10], as well as the PEPP-PT model
originally planned to be deployed in Germany [11]], and the
StopCovid app in France [12], are based on the principle
that a centralized back-end server system assigns a unique
identifier (a pseudonym) to each user’s mobile app, from which
frequently-changing pseudonymous proximity identifiers are
derived and broadcast over BLE to other nearby devices. The
weakness of this approach is that the back-end server system
can associate all proximity identifiers of all users with the
unique pseudonym of each user. This in turn allows operators

of the back-end server system to perform comprehensive
monitoring of all users of the system.

Due to these severe weaknesses, contact tracing apps should
be based on decentralized identification of contacts. In the
decentralized approach, the back-end server system does not
have information about proximity identifiers of users and
therefore cannot associate them with individual users. Indeed,
due to the fundamental problems associated with the cen-
tralized approach and the huge resistance of the scientific
communityﬂ the Federal Government of Germany decided to
abandon the centralized approach of the PEPP-PT consortium
that it initially highly supported, and decided to switch to a
decentralized approach.

Apart from proposals made by academia, IT enterprises
such as Microsoft, Apple, and Google work on contact tracing
apps. In an unprecedented joint effort, Google and Apple
have provided an Application Programming Interface (API)
for exposure notification at the mobile operating system level
in order to implement decentralized contract tracing apps using
BLE. We call this the Google/Apple Proposal [13]], abbreviated
by GAP in the rest of the paper.

Several researchers have pointed out the possibility of
profiling infected persons in the GAP approach [14], [15]], as
well as the possibility to perform relay attacks [[14], [16]-[19].
The goal of our work is to perform a reality check towards
possibly providing empirical real-world evidence for these two
privacy and security risks discussed in the literature.

We selected the GAP approach for the following reasons.
First, GAP will be broadly adopted, since several European
contact tracing apps, such as the Swiss SwissCOVID, the
Italian /mmuni, and the German Corona-Warn-App, are based
on the GAP API. Second, the GAP API is already opt-in for
i0S and Android devices, hence, it will potentially stay with
us for a long time.

We demonstrate that in real-world scenarios the current
GAP design is vulnerable to (i) profiling and possibly de-
anonymizing infected persons, and (ii) relay-based wormhole
attacks that can generate fake contacts with the potential
of affecting the accuracy of an app-based contact tracing
system. For both types of attack, we have built tools that
can be easily used on mobile phones or Raspberry Pis (e.g.,
Bluetooth sniffers). We hope that our findings provide valuable
input in the process of testing and certifying contact tracing
apps, ultimately guiding improvements for secure and privacy-
preserving design and implementation of digital contact trac-
ing systems.

The paper is organized as follows. Section [briefly explains
the GAP approach. In Section we present our (profiling)
attack on the privacy of the GAP scheme. Section [[V]describes
our (relay-based wormhole) attack on the security of GAP.
Section [V| concludes the paper and outlines areas for future
work.

!Joint Statement on Contact Tracing: Date 19th April 2020, https:/drive.
google.com/file/d/10Qg2dxPu-x-RZzETIpV31Fa259Nrpk1J/view

Tracing Server
Temporary

Exposure Key of
infected users

i Temporary Exposure Key

]
:
i
i
:
i
:
| Bluetooth LE
——
T
i
i
i

Temporary '
Exposure Key of !
infected users

|

RPIs of all
contacts

Rolling Proximity
Identifiers (RPIs)
compare

e mmm e] " ee-e----------RPIsofinfecteduser _____

Infected User Other Users

Fig. 1: Overview of the GAP contact tracing approach

II. GAP OVERVIEW

The GAP contact tracing approach [13] is based on
frequently-changing random pseudonyms, so-called Rolling
Proximity Identifiers (RPI). An overview of the approach is
shown in Fig. [I] Each app generates these RPIs from a
Temporary Exposure Key (TEK) (formerly known as Daily
Tracing Key (DTK) in version 1.0 of the GAP specification)
and beacons them into their surroundings using BLE. Apps on
other devices in close proximity can observe these RPIs and
store them locally as a record of contact with the device bea-
coning the RPI. This dataset also includes additional metadata
like the received signal strength.

Should a user be tested positive for SARS-CoV-2, a user
can decide to upload TEKs of the last « days using an app
to a central server (currently x = 14). The server accumulates
the received TEKs of infected persons and offers them to
be downloaded by other users’ apps. Apps in devices of
participating users regularly check the server for updates and
download any new TEKs. Each app then uses the downloaded
TEKs to calculate the corresponding RPI pseudonyms used
by the infected persons’ apps in the recent past. The operating
system / corresponding system service then compares these
infected persons’ RPIs to the RPIs stored locally on the device.
If matching RPIs are found, the metadata, e.g., signal strength
or duration of the encounters, related to these matching RPIs
are used to calculate a risk score that is used to determine
whether a warning should be displayed to the user or not.

III. MIND THE PrRIVvACY GAP

In this section, we present our real-world attack on the
privacy of the GAP scheme based on its specification [|13].
The possibility of profiling infected persons in the GAP has
already been pointed out by other researchers [14]], [[15]. The
main problem is that the GAP requires infected individuals to
publish all BLE proximity identifiers they have used during the
days they may have been infectious to all devices participating

https://drive.google.com/file/d/1OQg2dxPu-x-RZzETlpV3lFa259Nrpk1J/view
https://drive.google.com/file/d/1OQg2dxPu-x-RZzETlpV3lFa259Nrpk1J/view

in the system. Thus, this information essentially becomes
public, and we argue that it is possible for all app users and
other entities involved in the system to potentially track the
movements of (and possibly de-anonymize [20], [21]]) infected
persons during these days.

A. Privacy Attack: Profiling Infected Persons

1) Goal and System Setup: The goal of our experiment is to
show that it is practically possible to profile the movement and
activities of infected users after they upload their TEKs. Based
on TEKS, other participating apps can derive the corresponding
RPIs that the infected user’s app has beaconed out in the recent
past. Note that since all TEKs uploaded by infected persons
can be downloaded by anyone, the RPIs are essentially public
information.

To conduct the attack, we deployed BLE sniffers to capture
RPIs at six selected sensitive places downtown the city of
Darmstadt, Germany, as listed in Table m The locations of
these places in Darmstadt are shown in Fig. 2] We used
commodity smartphones as the sniffers that can capture BLE
signals at a distance of up to 6 meters. However, with a special
Bluetooth antenna it was possible to capture signals at a much
higher distance. The BLE sniffers would capture RPIs of any
users moving through or spending time at the places mentioned
above. In our experiment, two tracing app users simulate two
particular paths.

TABLE I: List of locations with deployed BLE sniffers

Location Description

A residential area
City hall

Police station

Clinic and pharmacy
Outside a pub

TmHg QW >

Outside a head shop and a sports gambling bookmaker

<
5]

:

Fig. 2: An example of observation points

Since the official GAP API can currently only be used by
governmental health institutions [22]], we implemented a GAP

tracing app simulator, following the RPI generation procedure
laid out in the GAP cryptography API specification [13]].

2) Experimental Results: A sample of our results of RPI
measurements captured at different observation points (marked
from A to F) is shown in Fig. 3] The captured data looks
entirely random, and it is not obvious which RPIs could be
associated with individual users. However, when we simulate
the case that any one of the users is tested positive for SARS-
CoV-2 and these users upload their TEKs that were used to
derive the corresponding RPIs, a completely different picture
emerges, as shown in Fig. [It is evident that by matching the
RPIs of User 1 with the RPIs captured in different locations,
e.g., location B and location E, we know exactly which
locations User 1 has visited and when User 1 arrived and left
each location.

Location B Location E
04-06-2020 15:40:18 || 37172RZN 04-06-2020 15:52:23 || 60118JSB
04-06-2020 15:40:39 || 37172RZN 04-06-2020 15:52:31 || 22876WON
04-06-2020 15:41:11 || 37172RZN 04-06-2020 15:52:36 || 298050YF
04-06-2020 15:41:40 || 37172RZN 04-06-2020 15:52:56 || 298050YF
04-06-2020 154238 || 42026/WJ 04-06-2020 15:53:00 || 22876WON
04-06-2020 15:43:10 || 420261WJ 0406:2020 15:53:24 || 22876WON

04-06-2020 15:53:25 || 298050YF
04-06-2020 15:43:39 || 42026IWJ 04062020 155357 || 298050VF
04-06-2020 15:44:21 || 59043DZP 04-06-2020 15:53:57 || 22876WON
04-06-2020 15:44:40 || 39420WCL 04-06-2020 15:54:26 || 63067FVA
04-06-2020 15:44:57 || 59043DZP 04-06-2020 15:54:26 || 298050YF
04-06-2020 15:45:13 || 59043DZP 04-06-2020 15:54:42 || 10580QUN
04-06-2020 15:45:41 || 59043DZP 04-06-2020 15:54:56 || 10580QVN
04-06-2020 15:45:46 || 39420WCL 04-06-2020 15:54:59 || 63067FVA
04-06-2020 15:46:11 || 11466LCF
04-06-2020 15:46:23 || 39420WCL

04-06-2020 15:46:34 || 35578PFE

Fig. 3: RPI measurements captured at location B and E

Location B Location E

Fig. 4: Profiling User 1 movements

Moreover, if we sort the locations that the users have visited
in chronological order, we see that we can track the movements
of each of the test users, as shown in Fig. El Let (User i, X)
denote the presence of User 7 at location X. The sequence
of observations of User 1 was as follows: (User 1, A), in a
residential area, then (User 1, D) near a clinic and a pharmacy,
(User 1, C') near the police station, (User 1, B) (Darmstadt city
hall), (User 1, E) (near to a pub) before concluding the round
at the starting point with (User 1, A), corresponding again as
mentioned, to a residential area. This may potentially indicate
that the user may be living in this area. A similar tracing

& User 1

(<) ‘ / ; & User 2

Fig. 5: Movement profile of two infected users (User 1 in blue
and User 2 in green) based on the observation points.

of locations is possible for User 2 who was first observed at
(User 2, B), the city hall, after which the next observation
(User 2, E) happened near the pub, after which the final
observation (User 2, F'), was near a head shop and a sports
gambling bookmaker. With these observations about users and
the associated timestamps, a significant amount of information
can be gathered. Since we know where users are, at which
time, and how long they spend at each observed place, it is
possible to aggregate relevant information from the users to
potentially de-anonymize them.

For example, our experiment indicates that User 1 lives in
the residential area near location A, and may have health and
legal problems due to visiting the clinic and the police station.
User 2 might be involved with the municipal administration
and seems to like products available in a head shop or at a
sports bookmaker. Moreover, since both users left location B
at about the same time, and even arrived at the pub (location
F) at the same time, spent time there, and also left the pub
at the same time, it is likely that these two users may have a
social relationship.

We have conducted a series of experiments of different
complexity. Our experiments demonstrate the power that the
adversary gains by having access to RPI data of individual
users. Since the TEKs change every 24 hours, traceability
across longer time frames would initially not seem to be
possible. However, since infected users upload TEKs of 14
days and since typical travel patterns of individual users show
marked similarities even between different days (e.g., the
typical commute pattern between home and workplace), it
is possible to link and track at least some infected users for
time periods significantly longer than the validity periods of
individual TEKSs (up to 14 days). This clearly will reveal even
more personal information and activities of the targeted users
and provide ample opportunities for using potentially available
additional public information to de-anonymize the users in
question. Moreover, de-anonymization becomes easier if the
adversary has access to additional information about social

relationships of users, e.g., the social graph of an online social
network (OSN). This graph can be used to identify the infected
users and their social contacts by comparing the social graph
of the infected users obtained by the profiling attack to the
OSN social graph [20], [21]f]

Experiments with the Corona-Warn-App: We also conducted
an experiment to confirm that the profiling attack is also
applicable to the official German Corona-Warn-App released
on June 16, 2020. We captured RPIs from the Corona-Warn-
App without problems. We could also re-beacon these RPIs in
our wormhole attack (cf. Section [[V-A).

B. Case Study

We consider a case in which an attacker seeks to identify
persons infected with SARS-CoV-2 in Darmstadt, Germany.
The attack would work best when useful side information is
available, e.g., information about addresses of persons working
in a particular place. For example, office addresses of the
employees of the City of Darmstadt are available through the
www.darmstadt.de website.

To capture coarse-grained movements of persons in Darm-
stadt, strategically-placed sensing stations need to be posi-
tioned in the city area. However, it is not necessary to place
sensing stations over the full 122 km? of the city area. This
would require the ridiculous amount of 122x10%10 = 12,200
sensing stations, even if one would place only one sensing
station every 100 meters in 1 km?2. However, useful profiles
can be produced even with less sensing stations.

1) Persons Using Public Transport: There are 42 km of
tram lines in Darmstadt servicing 75 tram stops, depicted in
Fig[6a] Out of these, 54 stops are in the city area of Darmstadt.
The tram tracks run in a star shape around Luisenplatz on
approximately six distinct axes. By placing 3 — 4 sensing
stations along these axes, one would be able to observe all tram
passengers, from which direction they approach the Darmstadt
city center or in which direction they leave. This would require
around 25 sensing stations.

There are approximately 150 bus stops in the city area of
Darmstadt. Bus lines move along approximately 20 major bus
routes. The bus routes are laid out such that they feed traffic
to one of the major traffic centers. By placing 3 — 4 sensing
stations on each of these major bus routes, one could monitor
the movements of the majority of passengers approaching
these traffic centers. This would require 60 — 80 strategically-
placed sensing stations.

There are 9 railway stops in Darmstadt servicing commuters
arriving from farther away, shown as the blue railway icon
in Fig. [6a Sensing stations needed to monitor movements
of persons at railway stations will probably vary a lot, since
the size of the stations is quite different; the main railway
station is by far the largest. Sensing all persons entering and
leaving the main railway station would require about 10 — 20
sensing stations. Other train stations would require probably

%Interestingly, a similar weakness was observed and criticized [23] for the
centralized tracing app, called PEPP-PT [24], that enables the central server
to build the social graph of infected individuals!

(b) Main roads (cars & railways)

(a) Train, tram, and bus lines

Fig. 6: Maps of Darmstadt showing main transport routes

less, 2 — 5 stations would be sufficient. Therefore, about 60
sensing stations would be required to monitor persons entering
or leaving Darmstadt by rail.

2) Persons Using Private Transport: There are five major
and seven minor streets that persons typically use to enter
Darmstadt by car. The streets are ordered in a star shape
around the city center, as shown in Fig. @} In addition,
there are 12 other streets inside the city for cross-connections
between the major streets and individual city blocks. All
of these streets are regulated using traffic lights forcing car
drivers to stop several times while crossing the city area.
By placing 4 — 5 sensing stations (per direction) along the
major streets, it would be possible to monitor persons entering
Darmstadt by car. A similar number of sensing stations would
be necessary to cover movements inside the city on the major
streets. Thus, by using 200—250 sensing stations, an adversary
could have coarse-grained monitoring capability over all major
street connections in Darmstadt.

There are a few places in Darmstadt that are heavily
frequented and used by persons for changing connections of
public transport. These places include Luisenplatz, Schlof,
Hauptbahnhof, Nordbahnhof, Willy-Brandt-Platz, and Eber-
stadt Wartehalle; the busiest place is Luisenplatz. To have
meaningful coverage over Luisenplatz, one would need to
place 2 — 3 sensing stations near all of the 6 public transport
stops on Luisenplatz, i.e., around 15 sensing stations. Simi-
larly, monitoring the area around Hauptbahnhof would require
placement of 1 — 2 sensing stations at the 10 public transport
stops in its vicinity, requiring around 20 sensing stations in
total. Other of the aforementioned connection points would
likely require around 5 sensing stations per location. All in
all, around 50 sensing stations would be required.

3) Summary: To generate coarse-grained movement pro-
files of persons moving in and out of Darmstadt, an adversary
would roughly require the sensing capabilities shown in Ta-
ble[[l] This shows that by strategically placing a fairly modest
(< 500) number of sensing stations, an adversary would be
able to monitor a large fraction of all traffic inside a major
city of about 160, 000 inhabitants.

TABLE II: Estimate of how many sensing stations are needed
to track persons using different kinds of transportation

Location Sensing stations
Trams 25
Buses 60 - 80
Railways 60
Cars 200 - 250
Pedestrians 50
Total 395 - 465

The impact of the attack on a population level primarily
depends on two factors: (i) the prevalence of the disease in
the targeted area in the form of new daily infections, and
(ii) the number of persons uploading their infection status
via a contact tracing app. Consequently, in untargeted attacks,
the adversary will focus the attack to areas where the daily
infection rates are high to ensure maximal impact for the
attack, assuming that many people in this area will upload their
infection status via a contact tracing app. For targeted attacks,
in which the adversary is targeting a particular organization
like a business corporation, the population-level incidence
plays a lesser role, since the target setting of the adversary
is different. In targeted attacks, the adversary’s focus is on
obtaining detailed reconnaissance about any target persons in
the targeted organization and therefore the overall number of
persons affected by the attack plays a lesser role.

IV. MIND THE SECURITY GAP

In this section, we present our real-world attack on the secu-
rity of the GAP. The GAP design is vulnerable to relay-based
wormbhole attacks that can generate fake contacts resulting in
a potentially large number of false alarms about contacts with
infected persons, eventually leading to a high pressure on
the public healthcare system administering COVID-19 tests.
Relay attacks in the context of contact tracing apps have been
discussed in a recent EU e-Health Network whitepaper [16],
as well as in the context of PACT [14]] and DP-3T [17]-
[19]. Gvili [15]] proposes countermeasures, such as time- and
(geographical) cell-based verification of received messages or
the need for bidirectional communication. Beskorovajnov et
al. [25]] argue that every contact tracing protocol that does not
incorporate a handshake mechanism or validation of time or
location is vulnerable to relay attacks.

A. Security Attack: Infection Alarms Going Viral

A wormhole attack is a particular type of relay attack. Here,
an attacker records messages at one physical location of a
network, forwards them through a network tunnel to another
physical location, and re-transmits them there as if they had
been sent at this location in the first place [26].

1) Goal and System Setup: The goal of the attack is that
two or more physical locations are combined into one large
logical location. If highly frequented physical locations, such
as train stations, shopping malls etc., are logically linked to
each other, an infected person can (falsely) be observed to have
been in contact with other persons at remote locations. This

i‘
Infected i
/ User

Beacon #1'

Internet Wormhole —

N
= =)
/

Relaying Beacon #1 ——————> \ -
Attacker i

E User

User

User

Attacker

Fig. 7: Wormhole attack setup to relay BLE beacons

can lead to a significant number of false alarms for people who
might not have been in contact with anyone who is infected.
Furthermore, people might refuse to use the app, since the false
positive rate seems to be too high, i.e., not helpful in contact
tracing, but rather causing unnecessary work and confusion.

Fig. [7] shows the basic setting to perform a wormhole
attack. The attacker uses (at least) two BLE enabled wormhole
devices in different locations, each of them in physical prox-
imity to mobile devices of potential victims, and records the
BLE messages broadcast by the users’ mobile devices at each
location. The recorded BLE messages are then transferred,
e.g., via an Internet link, in both directions between the
wormhole devices of the attacker and are then re-broadcast to
all mobile devices of users in the near vicinity of both locations
of the wormhole devices. Thus, these BLE messages seem to
come from a local 1-hop neighbor.

GAP RPIs are only valid for a limited time interval. An
attacker performing a wormhole attack can add an expiration
date to each received BLE beacon message before transfer-
ring it through the Internet link to other wormhole devices.
These wormhole devices can then re-broadcast the same BLE
message over and over again until the expiration date is met.
While the used bandwidth of the Internet wormhole is kept
to a minimum, the efficiency of the wormhole devices is
maximized, since a single BLE message from a wormhole
device can be resent multiple times to victims’ devices for
as long as the BLE beacon is valid. While RPIs are valid
by design for about 10 minutes, the specification grants a +/-
two-hour tolerance time window between when RPIs should
have been broadcast and when they are actually observed. This
means that an attacker can replay each captured RPI for at
least two hours in order to generate potential false positives.
Since BLE beacons are relatively small in size and the Internet
provides fast communication, relaying is achieved in a matter
of milliseconds.

2) Experimental Results: The GAP API is only permitted
to be used by developers or testers that are authorized by
governmental health institutions, since a special permission of
either Google or Apple is required to use their GAP (Exposure
Notification) APIL. To validate that a wormhole attack was
successful, we need to verify that the BLE beacons sent by a
smartphone A to a wormhole device and transmitted over the
network to another wormhole device are finally accepted by
another smartphone B.

1
\
) Attacker i a g
@ ..
- Person i 5 'Y
W olpp @
) Replayed .l B‘
Person 3 6o
el N \\
& Infected \
(= Replayed \\ ®
Infected \ - - o
\ - 0
BLE - -
\
Range \f Marburg | | @C
= Wormhole | e

2

== |
(& — We \

a '\ o {
8 o

7

g

Fig. 8: Wormhole attack in the city of Marburg

a) Experiment 1: DP-3T: Since the GAP approach is
heavily inspired by the DP-3T group and their approach, DP-
3T can be considered as a substitute for GAP to show the
success of a wormhole attack. The original DP-3T imple-
mentation (later named prestandard DP-3TF) was available
before the GAP API made it into Android and iOS. In this
prestandard version, DP-3T generates TEKSs as well as handles
and stores RPIs as part of the app. The operating system (iOS
or Android) is in charge of handling the lower-level BLE
communication, and the app provides the payloads required
for BLE communication.

We built a multi-location wormhole for forwarding and re-
broadcasting BLE messages based on off-the-shelf Raspberry
Pis with integrated BLE and an Internet uplink, using our
PIMOD tool [27]]. These Raspberry Pis were connected using
a central MQTT server as a back-end system for distributing
the received BLE messages between each wormhole device.
One of these Raspberry Pis functioned as a mobile node by
using a battery pack and a mobile phone network uplink. Our
evaluation wormhole connects several physical locations in
the cities of Marburg, Gielen, and Darmstadt, Germany. Part
of this setup within the city of Marburg is shown in Fig. [§]
Each Raspberry Pi receives and records all BLE messages
sent by surrounding users’ iOS and Android smartphones and
sends them to the MQTT wormbhole server. All other connected
wormhole Raspberry Pis receive a copy of these BLE beacons
from the MQTT wormbhole server and rebroadcast them using
their integrated BLE hardware. Each wormhole device is
sender and receiver at the same time. Thus, this setup works
in a bi- or multi-directional fashion.

In our tests, we used several iOS and Android smart-
phones with the corresponding implementation of the DP-
3T prestandard SampleApp at multiple physical locations in
the three German cities mentioned above. Our tests showed
that the DP-3T prestandard SampleApp is vulnerable to our
wormhole attack. For example, we successfully established a
logical contact between smartphones that were 40 kilometers
apart in two cities without a real-world contact between
the users of these smartphones. The logical contact between

3https://github.com/DP-3T/dp3t-sdk-ios/releases/tag/prestandard

https://github.com/DP-3T/dp3t-sdk-ios/releases/tag/prestandard

)

the smartphones was generated without any actions by the
users required on their smartphones and without any physical
interaction between the two individuals.

Jun 09 20:45:13 wormpi-mr wormhole[472]:
INFO] [in] [7E:09:47:A6:EE:7F]
£d68

Jun 09 20:45:13 wormpi-mr wormhole[472]: [wormhole-out] [
INFO] [7E:09:47:A6:EE:7F] [Dp3t_ScanRequest]
£d68

Jun 09 20:45:13 wormpi-mr wormhole[472]: [wormhole-in] [
INFO] [5A:A2:81:40:7A:B3] [Dp3t_ScanResponse]
£d68 6d:72:34:32:30:80:1d:62:d7:c9:£f£:d0:71:a3:37:0b0

Jun 09 20:45:13 wormpi-mr wormhole[472]: [provider 1 1
INFO] [out] [5A:A2:81:40:7A:B3] [Dp3t_ScanResponse]
£d68 6d:72:34:32:30:80:1d:62:d7:¢c9:££:d0:71:a3:37:b0

[provider 1 I
[Dp3t_ScanRequest]

Listing 1: Raspberry Pi with our wormhole implementation

In Listing [T} an excerpt of the log of a running wormhole
device, here called wormpi-mr, is shown. The software on the
wormhole device consists of a BLE controller and a beacon
distribution task, called "provider". The DP-3T prestandard
SampleApp used the BLE UUID £d68, which is correctly
identified as Dp3t_ScanRequest in the case of an empty
payload and Dp3t_ScanResponse when the RPI is in-
cluded. In Lines 1-2, another wormhole device has submitted a
ScanRequest beacon to the provider, indicated by "in", that
is then broadcast by wormpi-mr’s BLE controller ("wormhole-
out"). In Lines 3-4, a response is received by wormpi-mr’s
BLE controller as "wormhole-in", which is then sent over the
provider ("out") to all other wormhole devices.

9:46 % @ *0

all Telekom.de &

info v

[1.0(1)10.1.12] p isement: mr42)
from C11DADY AA: at
2020-06-09 1

10 [Receiver]

service data 6d 0 1d 62 d7 c9

10 [Receiver]
[1.0(1)]0.1.12] found T rin Advertisment data: 12.0

heral <CBPeripheral
7AE267A81B, name = wormpi,
10 [Receiver]

] didDisconnectPeripheral (.

09.06 21:46:10 [Receiver]
[1.0(1)]0.1.12] No service found found: -> (1)

servicedata payload]

ifier = 72022D4C-CE53-

(a) Android phone in Marburg (b) i0OS phone in Gieflen

Fig. 9: DP-3T prestandard SampleApp instances with con-
firmed beacons transmitted through the wormhole "wormpi"

In Fig. 0] two screenshots of running DP-3T prestandard
SampleApp instances on Android (Fig. [9a) and iOS (Fig. Ob)
are shown. The experiments indicate that the execution of a
wormbhole attack was successful. The Android implementation

on a smartphone located in Marburg (Fig. Qa) displays a
handshake with the MAC address of the wormhole device
(indicated by the rectangles in red), which in this experiment
is the hardware MAC address of the used Raspberry Pi
(abbreviated due to privacy reasons). The iOS implementation
on a smartphone located in GieBen (Fig. [0b) is less verbose,
but also confirms receiving a beacon with the manually set
ephemeral ID of "mr42" (i.e., the smartphone in Marburg;
indicated by the rectangle in red), even though the smartphone
is not in physical proximity of another smartphone running the
DP-3T prestandard SampleApp.

I/ExposureNotification: Scan device 6B:12:D2:1B:13:B5,
type=1, i1id=31680EBB671454E1D7B03B2E96B98328, raw_rssi
=-79, calibrated_rssi=-77, meta=919BAEAl, minutes_sin
ce_last_scan=1594815319 [CONTEXT service_id=236]

I/ExposureNotification: BleDatabaseWriter.writeBleSighting
, 1d=31680EBB671454E1D7B03B2E96B98328 [CONTEXT
service_1d=236]

Listing 2: Exposure notification confirming a received RPI

b) Experiment 2: German Corona-Warn-App: We also
validated our results using the Android version of the official
German Corona-Warn-App released on June 16, 2020. As
shown in Listing [2} the GAP of the Corona-Warn-App stores
RPIs transmitted using the wormhole. Since we could not get
permission to access the GAP API, we used a TEK from the
official server of the Corona-Warn-App, derived multiple RPIs
and injected these into the wormhole. Since the derived RPIs
do not contain the Associated Encrypted Metadata (AEM) that
would normally be broadcast with an RPI, we had to derive
the AEM, too.

To validate that our RPI derivation is correct, we used
Fridﬂ on a rooted Google Pixel 3 smartphone to extract all
TEKSs stored on this device. Using a known TEK together with
numerous RPIs and their corresponding time slots, we could
validate that our RPI derivation works correctly. Additionally,
this approach allowed us to decrypt the AEM for the RPIs.
This non-encrypted metadata was then used to generate valid
AEM for the derived RPI. These RPIs are only valid for the
time of the initial creation, therefore we had to change the
system time of the receiving device. Otherwise, the device
would not be able to match the keys against the uploaded TEK.
Changing the system time is only necessary for our validation
purposes.

The payload for an exposure notification (e.g., see Listing
was then injected into the wormhole. On the receiving side,
the official Corona-Warn-App was installed on a device, and its
system time was set to the corresponding interval of the RPL
During the approximately 15 minutes this experiment took, the
GAP API received and stored exposures several times (similar
to Listing . Afterwards, the receiving device was set back to
the correct time and communication with the server containing
the TEKs of known infected app users was re-enabled. Since
the Corona-Warn-App does not submit the TEK for the same

Ahttps://frida.re/

https://frida.re/

D/BackendManager: [TEK: £d3dflbl25a21a28f1d7746£d5a46538
] encrypted Metadata for 9386
bead6a0212d6205c665db64ccfed = ad4edd489c @ Time/Date (
Tue Jul 07 00:00:00 GMT+02:00 2020 | 2656788) - Full
BLE-Payload: 93:86:be:ad:6a:02:12:d6:20:5c:66:5d:06:4
c:cf:ed:ad4:e4:48:9c

D/BackendManager: [TEK: f£d3dflbl25a21a28f1d7746fd5a46538
] encrypted Metadata for 3
b65333a5383d8c4d6344672a14963de = 3d167031 @ Time/
Date (Tue Jul 07 00:10:00 GMT+02:00 2020 | 2656789) -
Full BLE-Payload: 3b:65:33:3a:53:83:d8:c4:d6
:34:46:72:21:49:63:de:3d:16:70:31

Listing 3: Automated generation of valid RPIs

day to the GAP API twice and the list of keys is signed, we
had to ensure that the app could not receive the TEKs for
the specific date before the experiment finished. Since the app
checks for an existing Internet connection, we used a proxy
to block requests to the server during our test. In this way, the
test for an existing Internet connection succeeded, but the app
could not retrieve TEKSs.

6:08 & P v
CORONA

& WaRN-APP <

EXPOSURE LOGGING ACTIVE o

Low Risk

1 exposure

-

2 of 14 days active

@ Updated: Today, 6:07 PM

Updated daily

Have you been
tested?

Help to break the infection
chain by notifying others

NOTIFY AND HELP

Fig. 10: Official German Corona-Warn-App with a positive
exposure transmitted through the wormhole

As shown in Figure [T0] the Corona-Warn-App reports a
single exposure. The low risk level shown is due to the low
Transmission Risk Level of the chosen TEK and the metadata
of the transmitted RPI. Although the transmitted RPI should
not have been valid for regular devices at the time of the
broadcast, these values were chosen on purpose to reduce
the impact for people who might have been present in the
surrounding area.

It should be noted that the described steps are only necessary
to validate that the Corona-Warn-App is indeed vulnerable to
our wormhole attack. The attack itself does not require any
modification of software running on the device.

B. Technical Limitations

The GAP distributes beacons using the newer BLE stan-
dard [28], allowing physical transmission speeds of up to 1
Mbps. To allow more robust transmissions, the physical layer
also offers representations with 2 and 8 symbols, resulting in
transmission speeds of 500 kbps and 125 kbps, respectively,
which are not discussed here for the sake of simplicity.

The payload of the GAP Exposure Notification service has a
combined size of 26 bytes [29]. A GAP beacon with a size of
26 bytes is sent via an undirected advertising event, resulting
in an advertisement size of 39 bytes and a packet data unit size
of 47 bytes [28]. With 1 Mbps, a single advertisement with
a size of 47 bytes (= 376 bits) results in an on-air time of
376us. In addition, an inter-frame space of 150us is required
after each advertisement. Hence, a theoretical maximum rate
of 106;;5/%%“3) = 1,901 packets/s can be sent using
BLE 4.0 advertisements according to the GAP specification.

In a real world setting, there are several factors that signif-
icantly reduce the theoretical maximum rate, such as:

o BLE advertisements are sent using three BLE channels;
receivers need to hop between these channels;

« connection intervals forced by the device vendor;

o distance between receiver and sender; BLE has a trans-
mission power of 10 mW (i.e., a distance of up to 40
meters), and Class 1 BLE devices have up to 100 mW
(i.e., a distance of up to 100 meters);

« interferences and collisions.

To evaluate the impact of these factors, we set up a test en-
vironment consisting of: HackRF (sender, repeater), Raspberry
Pi (receiver), Eve PowerPlug (BLE interference, distance about
2 meters), Ubiquity AP nanoHD (WiFi interference on 2.4
Ghz, distance less than 2 meters, 100% load and transmission
power). In this test environment, we received only about
4.3% of the theoretical maximum of BLE advertisements per
second (i.e., 82 BLE advertisements/s) using a consumer grade
BLE receiver with factory default settings while sending on
a single BLE advertisement channel. We also discovered that
most of our tested devices submit BLE advertisement packets
once every two seconds. Furthermore, most BLE devices only
accept packets for a short period of time every few minutes.

In an indoor test with an active interfering WiFi hotspot and
several interfering BLE devices, the maximum distance was
reduced to below 10 meters with direct line of sight between
sender and receiver. However, using a signal repeater, we were
able to increase the distance up to 50 meters.

C. Attack Scenario: Opportunistic Linking

To increase the probability of a successful wormhole attack,
an attacker can

1) increase the number of collected BLE advertisements
by selecting a highly frequented area with a high accep-
tance rate of the particular contact tracing app, and by
increasing the number of deployed wormhole devices;

2) increase the probability that one of the relayed RPIs
belongs to a person who will be tested positive for

COVID-19 and uploads his or her TEKs by selecting
an area with a high probability of infected persons.

1) Selecting a highly frequented area for RPI collection:
We conducted experiments at the central train station in Frank-
furt (Main), Germany, on the 1st of August 2020. We moved
around the train station with a OnePlus 7 Pro smartphone while
changing trains, and waited in the main hall while collecting
GAP BLE advertisements using the RaMBLEE] app. Since
the people moved around at the distinct locations where we
collected GAP BLE advertisements, we argue that the number
of unique RPIs is roughly identical to the number of distinct
users. During the first run, 549 unique RPIs were collected
in 00:25:49 h, i.e., 21.26 collected BLE advertisements per
minute. During the second run, 142 unique RPIs were col-
lected in 00:04:40 h, i.e., 30.43 collected BLE advertisements
per minute.

In less populated environments, (a) inside an isolated ex-
amination room of the pulmology ward of the University
Hospital of Heidelberg (only open to emergency patients and
medical staff) and (b) while driving in a car on the German
highway A5 from Gieflen to Mannheim, we collected 95 (300)
unique RPIs in 01:32:00 h (01:51:00 h) (i.e., 1.02 (2.70) BLE
advertisements per minute).

To estimate the impact of our wormhole attack, we assume
that there are (i) 5.1 reported infections among 100,000 per-
sons per week (i.e., the average value for Germany published
on August 1, 2020) and (ii) 30.43 collected unique BLE
advertisements from distinct smartphones per minute by each
wormhole receiver (according to our tests in the Frankfurt
central train station).

First, we address the question of how many RPIs would be
required to receive an average of one positive RPI. Since in-
fected users upload their TEKs of the last 14 days, the doubled
weekly incidence value is a suitable estimator. Hence, with
assumption (i) one out of 1/(5.1/100,000/7 * 14) ~ 9,804
received RPIs will be positive. The average validity period of a
received RPI can be estimated by halving the general validity
period of 10 minutes, since some RPIs will be received just
after creation, while others will have almost expired. To get
access to one valid RPI at any given point in time, 9,804
RPIs / 30.43 RPIs per minute per device / 5 minutes ~ 65
wormhole devices would be required.

By changing assumption (i) to 45.4 reported infections
among 100,000 persons per week (i.e., the average value for
Germany published for week 42 of 2020), the corresponding
number of required wormhole devices at distinct locations
drops down to about 1/(45.4/100,000/7 % 14)/30.43/5 = 8.

The relatively low numbers of wormhole devices required
for an attacker suggests that the attack can be carried out
without much effort. However, in the case of the German
Corona-Warn-App, the calculated risk score is set to zero, if
the encounter period with an infected person is shorter than 10
minutes. Hence, a successful attack would require an attacker

Shttps://play.google.com/store/apps/details?id=com.contextis.android.
BLEScanner

to observe potentially infected people for a period of at least
10 minutes.

2) Selecting an area with a high probability of infected
persons: We assume that a location with a high probability of
infected persons can be used by the attacker, e.g., the COVID-
19 Testing Center near Frankfurt (Main), Germany, performing
a current maximum of 300 tests per hour. Let us further assume
that 3.62% of the tests are positive (i.e., valid for Germany in
week 42 of 2020), and 9.84% of the infected persons share
their infection status (based on the calculations of submitted
TEKSs in relation to the overall reported infections in Germany
(6.473 of 65.410 in week 41 and 42 of 2020)).

Based on these assumptions, an attacker would be able to
observe an average of 10.86 infected people per hour, of which
1.07 upload their infection status through the app. To generate
a high risk warning, an attacker would select a test center
where an individual can be observed for more than 10 minutes.

In the middle of October 2020, Germany was a relatively
low risk country, but in other countries with a higher test-
positive rate, these calculations look differently. For example,
in Mexico in the middle of October 2020, 41.0% of the
tests were positivdﬂ Using this rate (hypothetically) in the
calculation for the test center in Germany, 123 infected persons
could be observed per hour, of which 12.10 persons would
upload their infection status, i.e., a positive RPI roughly every
5 minutes is obtained.

Since each RPI remains valid for a period of 120 minutes,
an attacker can repeat RPIs even when the infected person
is not within reach of the wormhole anymore. If an attacked
smartphone receives these RPIs over 10 minutes, the GAP
would register 1.07/60 x 120 = 2.14 infected persons in
Germany and 12.10/60 % 120 = 24.20 infected persons in
Mexico in close proximity and would probably trigger high
risk warnings. Apparently, the impact of the attack can be
limited by shrinking the 2-hour validity period of RPIs.

D. Attack Scenario: Targeted Attack

In this scenario, an attacker has the possibility to submit his
or her own TEKs at will. Depending on the local implemen-
tation of the GAP, this can require the acquisition of a valid
TAN for uploading TEKSs to the central governmental back-
end server. The wormhole will solely be used as a publishing
device.

We will focus on the German Corona-Warn-App as an
example, for which a TAN can be obtained in different
ways. Our team had contact with a supplier of TANs in a
dark web underground community, therefore we assume that
there is a "market" for TAN keys in exchange for money.
It is also possible to request a valid TAN by uploading a
(forged) diagnostic report directly in the Corona-Warn-App
itself, which will be issued after a manual check by the hotline
phone support team of the app.

Based on our collected real world data (see Section [[V-C)),
we can broadcast a positive BLE advertisement to about 30.43

Shttps://ourworldindata.org/coronavirus/country/mexico?country=~MEX
October 14, 2020)

https://play.google.com/store/apps/details?id=com.contextis.android.BLEScanner
https://play.google.com/store/apps/details?id=com.contextis.android.BLEScanner
https://ourworldindata.org/coronavirus/country/mexico?country=~MEX

mobile devices per minute X 60 minute ~ 825 mobile user
devices per hour per wormhole device.

Currently, the last 14 days of exposure are considered for a
warning by the GAP. In this case, a single wormhole device
would be able to submit 1,825 14 %12 = 306, 600 registered,
positive RPIs to other mobile user devices during daytime (12
hours) for 14 days. In the case of the German Corona-Warn-
App, RPIs over a period of 10 minutes are required to trigger a
high risk warning. Thus, only the subset of people successfully
attacked for more than 10 minutes and within a low distance
and during the days of high infectiousness will get a high risk
warning.

V. CONCLUSION

We demonstrated that in real-world scenarios the current
GAP design is vulnerable to (i) profiling and possibly de-
anonymizing infected persons, and (ii) relay-based wormhole
attacks to generate fake contacts that may affect the accuracy
of GAP-based contact tracing apps.

Since the fundamental vulnerabilities are based on the GAP
itself, all GAP-based apps face the same issues. In fact, we
demonstrated that the official German Corona-Warn-App in its
current version is vulnerable to our wormhole attack.

In the future, a revision of the GAP might be required
to implement countermeasures against our attacks, such as
reducing the 2 hour RPI and 24 hour TEK validity period
[29]. However, more sophisticated countermeasures, such as
handshake mechanisms or validation of time and/or location
[15], [25]], would probably pose additional threats to privacy
and security of GAP-based apps and could lead to increased
resource demands, particularly in terms of battery consump-
tion.

ACKNOWLEDGMENT

This research work has been funded by the Deutsche
Forschungsgemeinschaft (DFG) — SFB 1119 — 236615297.

REFERENCES

[1] 1. Braithwaite, T. Callender, M. Bullock, and R. W. Aldridge,
“Automated and Partly Automated Contact Tracing: A Systematic
Review to Inform the Control of COVID-19,” The Lancet Digital Health,
2020. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S2589750020301849

[2] M. Miettinen, T. D. Nguyen, and A.-R.
parison of Tracing Approaches,”
comparison-of-tracing-approaches/,

[3] R. Raskar, I. Schunemann, R. Barbar, K. Vilcans, J. Gray,
P. Vepakomma, S. Kapa, A. Nuzzo, R. Gupta, A. Berke, D. Greenwood,
C. Keegan, S. Kanaparti, R. Beaudry, D. Stansbury, B. B. Arcila,
R. Kanaparti, V. Pamplona, F. B. andl Alina Clough, R. Das, K. J. K.
Louisy, G. Nadeau, S. Penrod, Y. Rajaee, A. Singh, G. Storm, and
J. Werner, “Apps Gone Rogue: Maintaining Personal Privacy in an
Epidemic,” https://arxiv.org/pdf/2003.08567.pdf.

[4] Government of India, “Aarogya Setu Mobile App,” https://www.mygov.
in/aarogya-setu-app/.

[5] K. Merry and P. Bettinger, “Smartphone GPS Accuracy Study in an
Urban Environment,” PLOS ONE, vol. 14, no. 7, pp. 1-19, 07 2019.
[Online]. Available: https://doi.org/10.1371/journal.pone.0219890

[6] D. J. Leith and S. Farrell, “Coronavirus Contact Tracing: Evaluating
The Potential Of Using Bluetooth Received Signal Strength For
Proximity Detection,” CoRR, vol. abs/2006.06822, 2020. [Online].
Available: https://arxiv.org/abs/2006.06822

Sadeghi, “Com-
https://tracecorona.net/

[7]

[8]

[9]

(10]

(11]

[12]

[13]

[14]

[15]

(16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

, “Measurement-Based Evaluation Of Google/Apple Exposure
Notification API For Proximity Detection in a Commuter Bus,” CoRR,
vol. abs/2006.08543, 2020. [Online]. Available: https://arxiv.org/abs/
2006.08543

“Measurement-based Evaluation of Google/Apple Exposure
Notification API for Proximity Detection in a Light-rail Tram,”
PLOS ONE, vol. 15, no. 9, pp. 1-16, 09 2020. [Online]. Available:
https://doi.org/10.1371/journal.pone.0239943

Government of Singapore, Ministry of Health, “TraceTogether Contact
Tracing App,” https://www.tracetogether.gov.sg/.

Australian Government, Department of Health, “CovidSafe Con-
tact Tracing App,” https://www.health.gov.au/resources/apps-and-tools/
covidsafe-app.

Pan-European Privacy-Preserving Proximity Tracing Consortium, “Doc-
umentation for Pan-European Privacy-Preserving Proximity Tracing
(PEPP-PT),” https://github.com/pepp- pt/pepp- pt-documentation,
Government of France, “StopCovid France,” https://www.economie.
gouv.fr/stopcovid#.

Apple and Google, “Exposure Notification: Cryptography Specification,
v1.2,” April 2020, https://www.apple.com/covid19/contacttracing,

J. Chan, S. Gollakota, E. Horvitz, J. Jaeger, S. Kakade, T. Kohno,
J. Langford, J. Larson, S. Singanamalla, J. Sunshine et al., “PACT:
Privacy-Sensitive Protocols And Mechanisms for Mobile Contact Trac-
ing,” arXiv preprint arXiv:2004.03544, April 2020.

Y. Gvili, “Security Analysis of the COVID-19 Contact Tracing Spec-
ifications by Apple Inc. and Google Inc.” Cryptology ePrint Archive,
Report 2020/428, April 2020, https://eprint.iacr.org/2020/428.

e-Health Network, “Mobile Applications to Support Contact Tracing in
the EU’s Fight Against COVID-19,” 2020. [Online]. Available: https://
ec.europa.eu/health/sites/health/files/ehealth/docs/covid-19_apps_en.pdf
S. Vaudenay, “Analysis of DP-3T,” Cryptology ePrint Archive, Report
2020/399, April 2020, https://eprint.iacr.org/2020/399.

——, “Centralized or Decentralized? The Contact Tracing Dilemma,”
Cryptology ePrint Archive, Report 2020/531, May 2020, |https://eprint.
iacr.org/2020/531,

K. Pietrzak, “Delayed Authentication: Preventing Replay and Relay
Attacks in Private Contact Tracing,” Cryptology ePrint Archive, Report
2020/418, April 2020, https://eprint.iacr.org/2020/418,

S. Ji, W. Li, P. Mittal, X. Hu, and R. Beyah, “SecGraph: A Uniform
and Open-source Evaluation System for Graph Data Anonymization and
De-anonymization,” in 24th USENIX Security Symposium, Washington,
D.C., 2015, pp. 303-318.

L. Radaelli, P. Sapiezynski, F. Houssiau, E. Shmueli, and Y. de Mon-
tjoye, “Quantifying Surveillance in the Networked Age: Node-based
Intrusions and Group Privacy,” CoRR abs/1803.09007, August 2018,
http://arxiv.org/abs/1803.09007.

Apple Inc, “Exposure Notification Addendum,” https://developer.apple.
com/contact/request/download/Exposure_Notification_Addendum.pdf.
Decentralized Privacy-Preserving Proximity Tracing (DP-3T), “Security
and Privacy Analysis of the Document "PEPP-PT: Data Protection
and Information Security Architecture",” 2020, https://github.com/DP-
3T/documents.

Pan-European Privacy-Preserving Proximity Tracing (PEPP-PT), “Data
Protection and Security Architecture: Illustrated on the German Imple-
mentation,” 2020, https://github.com/pepp-pt/pepp-pt-documentation.
'W. Beskorovajnov, F. Dorre, G. Hartung, A. Koch, J. Miiller-Quade, and
T. Strufe, “ConTra Corona: Contact Tracing against the Coronavirus by
Bridging the Centralized—Decentralized Divide for Stronger Privacy,”
Cryptology ePrint Archive, Report 2020/505, April 2020, jhttps://eprint.
iacr.org/2020/505!

Y.-C. Hu, A. Perrig, and D. B. Johnson, “Wormhole Attacks in Wireless
Networks,” IEEE Journal on Selected Areas in Communications, vol. 24,
no. 2, pp. 370-380, 2006.

J. Hochst, A. Penning, P. Lampe, and B. Freisleben, “PIMOD: A Tool for
Configuring Single-Board Computer Operating System Images,” in 2020
IEEE Global Humanitarian Technology Conference (GHTC) (GHTC
2020), Seattle, USA, Oct. 2020.

Bluetooth Special Interest Group (SIG), “Bluetooth Core Speci-
fication 5.2, https://www.bluetooth.com/specifications/bluetooth-core-
specification/.

Apple Inc, “Exposure Notification Bluetooth Specification v1.2,”
https://covid19-static.cdn-apple.com/applications/covid19/current/static/
contact-tracing/pdf/ExposureNotification- BluetoothSpecificationv1.2.
pdfl

http://www.sciencedirect.com/science/article/pii/S2589750020301849
http://www.sciencedirect.com/science/article/pii/S2589750020301849
https://tracecorona.net/comparison-of-tracing-approaches/
https://tracecorona.net/comparison-of-tracing-approaches/
https://arxiv.org/pdf/2003.08567.pdf
https://www.mygov.in/aarogya-setu-app/
https://www.mygov.in/aarogya-setu-app/
https://doi.org/10.1371/journal.pone.0219890
https://arxiv.org/abs/2006.06822
https://arxiv.org/abs/2006.08543
https://arxiv.org/abs/2006.08543
https://doi.org/10.1371/journal.pone.0239943
https://www.tracetogether.gov.sg/
https://www.health.gov.au/resources/apps-and-tools/covidsafe-app
https://www.health.gov.au/resources/apps-and-tools/covidsafe-app
https://github.com/pepp-pt/pepp-pt-documentation
https://www.economie.gouv.fr/stopcovid#
https://www.economie.gouv.fr/stopcovid#
https://www.apple.com/covid19/contacttracing
https://eprint.iacr.org/2020/428
https://ec.europa.eu/health/sites/health/files/ehealth/docs/covid-19_apps_en.pdf
https://ec.europa.eu/health/sites/health/files/ehealth/docs/covid-19_apps_en.pdf
https://eprint.iacr.org/2020/399
https://eprint.iacr.org/2020/531
https://eprint.iacr.org/2020/531
https://eprint.iacr.org/2020/418
http://arxiv.org/abs/1803.09007
https://developer.apple.com/contact/request/download/Exposure_Notification_Addendum.pdf
https://developer.apple.com/contact/request/download/Exposure_Notification_Addendum.pdf
https://eprint.iacr.org/2020/505
https://eprint.iacr.org/2020/505
https://covid19-static.cdn-apple.com/applications/covid19/current/static/contact-tracing/pdf/ExposureNotification-BluetoothSpecificationv1.2.pdf
https://covid19-static.cdn-apple.com/applications/covid19/current/static/contact-tracing/pdf/ExposureNotification-BluetoothSpecificationv1.2.pdf
https://covid19-static.cdn-apple.com/applications/covid19/current/static/contact-tracing/pdf/ExposureNotification-BluetoothSpecificationv1.2.pdf

	I Introduction
	II GAP Overview
	III Mind the Privacy GAP
	III-A Privacy Attack: Profiling Infected Persons
	III-A1 Goal and System Setup
	III-A2 Experimental Results

	III-B Case Study
	III-B1 Persons Using Public Transport
	III-B2 Persons Using Private Transport
	III-B3 Summary

	IV Mind the Security GAP
	IV-A Security Attack: Infection Alarms Going Viral
	IV-A1 Goal and System Setup
	IV-A2 Experimental Results

	IV-B Technical Limitations
	IV-C Attack Scenario: Opportunistic Linking
	IV-C1 Selecting a highly frequented area for RPI collection
	IV-C2 Selecting an area with a high probability of infected persons

	IV-D Attack Scenario: Targeted Attack

	V Conclusion
	References

