
Evaluating Approaches to Resource Demand
Estimation

Simon Spinnera,∗, Giuliano Casaleb, Fabian Brosiga, Samuel Kouneva

aUniversity of Würzburg, Am Hubland, Würzburg, Germany
bImperial College London, Department of Computing, SW7 2AZ, UK

Abstract

Resource demands are a key parameter of stochastic performance models that
needs to be determined when performing a quantitative performance analy-
sis of a system. However, the direct measurement of resource demands is not
feasible in most realistic systems. Therefore, statistical approaches that esti-
mate resource demands based on coarse-grained monitoring data (e.g., CPU
utilization, and response times) have been proposed in the literature. These
approaches have different assumptions and characteristics that need to be con-
sidered when estimating resource demands. This paper surveys the state-of-
the-art in resource demand estimation and proposes a classification scheme for
estimation approaches. Furthermore, it contains an experimental evaluation
comparing the impact of different factors (monitoring window size, number of
workload classes, load level, collinearity, and model mismatch) on the estima-
tion accuracy of seven different approaches. The classification scheme and the
experimental comparison helps performance engineers to select an approach to
resource demand estimation that fulfills the requirements of a given analysis
scenario.

Keywords: Resource demand estimation, workload characterization,
quantitative performance analysis, performance modeling

1. Introduction

Performance models can be used to answer performance-related questions
for a software system during system design, capacity planning and sizing, or
system operation. There are different performance modeling formalisms, e.g.
stochastic performance models (Queueing Networks (QN) [1], Queueing Petri
Nets (QPN) [2]), or architecture-level performance models (e.g., Palladio Com-
ponent Model (PCM) [3]. The performance models can be analyzed using ana-

∗Corresponding author
Email addresses: simon.spinner@uni-wuerzburg.de (Simon Spinner),

g.casale@imperial.ac.uk (Giuliano Casale), fabian.brosig@uni-wuerzburg.de (Fabian
Brosig), samuel.kounev@uni-wuerzburg.de (Samuel Kounev)

Preprint submitted to Performance Evaluation March 2, 2015



lytic methods or simulation to predict the performance of a system. However,
the creation of model instances for a given system can be a complex and time-
consuming task. During model creation, various model parameters need to be
quantified. This usually requires experimentation with the system under study
to obtain the measurement data required for model parameterization. It is
of paramount importance to find representative parameter values in order to
ensure accurate and reliable performance predictions.

A key parameter of stochastic performance models are resource demands
(a.k.a. service demands). A resource demand is the average time a unit of work
(e.g., request or transaction) spends obtaining service from a resource (e.g., CPU
or hard disk) in a system over all visits excluding any waiting times [4, 5]. The
resource demand for processing a request is influenced by different factors, for
example, the application logic specifies the sequence of instructions to process a
request, and the hardware platform determines how fast individual instructions
are executed. The definition of a resource demand implies that the value of a
resource demand is platform-specific (i.e., only valid for a specific combination
of application, operating system, hardware platform, etc.).

In order to quantify resource demands, a dynamic analysis of the system of
interest is required. Resource demands are difficult to measure directly with
state-of-the-art monitoring tools. Modern operating systems can only provide
resource usage statistics on a per-process level. However, the mapping between
operating system processes and application requests is non-trivial. Many ap-
plications serve different requests with one or more operating system processes
(e.g., HTTP web servers). Standard profiling tools for performance debug-
ging [6, 7] can be used to obtain execution times of individual application func-
tions when processing an individual request. However, the resulting execution
times are not broken down to the processing times at individual resources and
profiling tools typically introduce high overheads significantly influencing the
performance of a system. Furthermore, advanced instrumentation techniques
have been proposed in the literature to measure resource demands on the op-
erating system layer [8], or the application layer [9, 10, 11]. These techniques
build upon specific capabilities of the underlying platform and are not generally
applicable.

This survey focuses on statistical approaches to resource demand estimation.
The advantage of resource demand estimation compared to direct measurement
techniques is their general applicability and low overheads. These estimation
approaches rely on coarse-grained measurements from the system (e.g., CPU uti-
lization, and end-to-end response times), which can be easily and cheaply mon-
itored with state-of-the-art tools without the need for fine-grained code instru-
mentation. These measurements are routinely collected for many applications
(e.g., in data centers). Therefore, approaches to resource demand estimation
are also applicable on systems serving production workloads. Over the years, a
number of approaches to resource demand estimation have been proposed using
different statistical estimation techniques (e.g., linear regression, Kalman filter,
etc.) and based on different laws from queueing theory. When selecting an ap-
propriate approach to resource demand estimation, one has to consider different

2



characteristics of the estimation approach, such as the expected input param-
eters, its accuracy and its robustness to measurement anomalies. Depending
on the constraints of the application context, only a subset of the estimation
approaches may be applicable.

The target audience of this paper are performance engineers who want to
apply resource demand estimation techniques to build a performance model of
a system as well as researchers working on improved estimation approaches.
This paper makes the following contributions: i) a survey of the state-of-the-
art in resource demand estimation, ii) a classification scheme for approaches to
resource demand estimation, and iii) an experimental comparison of a subset of
the estimation approaches.

The remainder of the paper is organized as follows. Section 2 summarizes
the state-of-the-art and introduces the different approaches to resource demand
estimation. Section 3 describes the classification scheme including a catego-
rization of existing estimation approaches. Section 4 presents the experimental
comparison of the estimation approaches and discusses the results. Section 5
concludes the paper.

2. Approaches to Resource Demand Estimation

In this section, we survey the state-of-the-art in resource demand estimation
and introduce the different approaches that have been proposed in the literature.

2.1. Methodology

In order to obtain the estimation approaches listed in Table 2, we started the
literature search by reading the titles and abstract of articles in the proceedings
of 12 established conferences and workshops in the performance engineering
community in the last 10 years. Relevant articles were analyzed further re-
garding references to other articles on resource demand estimation. Based on
the found articles found we compiled a list of keywords to use for a broader
search in common scientific search engines (scholar.google.com, portal.acm.org
and citeseerx.ist.psu.edu) The keywords used for search were resource demand
(estimation), including synonyms service demand, service time, service require-
ment. Furthermore, we also considered the more general terms workload char-
acterization, parameter estimation and model calibration. The list of articles
resulting from this search was then filtered based on the titles and abstracts.
After filtering, we got the list of 37 papers on resource demand estimation shown
in Table 2.

2.2. Notation and Assumptions

In the following, we use a consistent notation for the description of the
different approaches to resource demand estimation. We denote resources with
the index i = 1 . . . I and workload classes with the index c = 1 . . . C. The
variables used in the description are listed in Table 1. We assume the Flow
Equilibrium Assumption [12] to hold, i.e., that over a sufficiently long period of

3



time the number of completions is approximately equal to the number of arrivals.
As a result, the arrival rate λc is assumed to be equal to the throughput Xc.
Furthermore, we use the term resource demand as a synonym for service demand
and for simplicity of exposition we assume Vi,c = 1, i.e., no distinction is made
between service demand and service time.

Di,c average resource demand of requests of workload class c at resource i
Ui,c average utilization of resource i due to requests of workload class c
Ui average total utilization of resource i
λi,c average arrival rate of workload class c at resource i
Xi,c average throughput of workload class c at resource i
Ri,c average residence time of workload class c at resource i
Rc average end-to-end response time of workload class c
Ai,c average queue length of requests of workload class c seen on arrival

at resource i, excluding the arriving job
Vi,c average number of visits of a request of workload class c at resource i
I total number of resources
C total number of workload classes

Table 1: Explanation of variables.

2.3. Description of Approaches

In this section, we describe the different approaches to resource demand esti-
mation that exist in the literature. Table 2 gives an overview of all approaches.

2.3.1. Approximation with Response Times

The response time of a request at a queue is the sum of the queueing delay
and the resource demands. If we assume that there are no queueing delays and
the response times do not include time spent at other resources, the response
time is equal to the resource demand. Thus, if queueing delays are significantly
smaller than the resource demand, the resource demands can be approximated
with measured response times [14, 13, 15].

2.3.2. Service Demand Law

The utilization at resource i due to requests of workload class c can be
derived using the Utilization Law [5]. Solving for the resource demand leads to
the Service Demand Law [5]:

Di,c =
Ui,c
Xi,c

. (1)

We can use this relationship to determine resource demands based on measured
utilization and throughput data. In cases where a mix of requests of different
workload classes arrive at the system of interest, the measured total utilization
Ui needs to be apportioned appropriately among the different workload classes.
This can be done by ratios obtained from additional per-class metrics provided
by the operating system [4, 5] or from workload class response times [15].

4



Table 2: Overview of estimation approaches categorized according to statistical techniques.

Technique Variant References

Approximation with
response times

Urgaonkar et al. [13]
Nou et al. [14]
Brosig et al. [15]

Service Demand Law Lazowksa [4]
Brosig et al. [15]

Linear regression Least squares Bard and Shatzoff [16]
Rolia et al. [17, 18]
Pacifici et al. [19]
Kraft et al. [20, 21]

Least absolute differences Zhang et al. [22, 23, 24]

Least trimmed squares Casale et al. [25, 26]

Kalman filter Zheng et al. [27, 28]
Kumar et al. [29]
Wang et al. [30, 31]

Optimization Non-linear constrained
optimization

Zhang et al. [32]
Menascé [33]

Quadratic programming Liu et al. [34, 35, 36]
Kumar et al. [37]

Machine learning Clusterwise linear regression Cremonesi et al. [38]

Independent component analysis Sharma et al. [39]

Support vector machine Kalbasi et al. [40]

Pattern matching Cremonesi et al. [41, 42]

Maximum likelihood
estimation

Kraft et al. [20]
Perez et al. [21]

Gibbs sampling Sutton and Jordan [43]
Wang et al. [44]

Demand Estimation with Confidence (DEC) Kalbasi et al. [45, 46]

2.3.3. Linear Regression

A common way to infer resource demands is based on linear regression [16,
17, 20, 19, 25, 23, 22, 24]. Given a workload consisting of multiple workload
classes, the linear model is usually defined based on the Utilization Law:

U
(j)
i =

C∑
c=1

λ
(j)
i,cDi,c + U

(j)
i,0 , (2)

where index (j) denotes measurement samples obtained in time window j. For
the regression to be meaningful, we need to obtain at least M simultaneous
measurement samples, where M is the number of resource demands to estimate.

Commonly, non-negative Least Squares (LSQ) regression is used to solve the
model [16, 17, 18, 19, 20]. However, the following issues can arise: i) resource
demands are random variables with a certain distribution, thus focusing only on

5



the mean resource demands Di,c may lead to significant estimation errors [17],
and ii) close correlations between the control variables (multicollinearity) may
cause non-unique and unstable solutions [19]. Ad-hoc techniques to reduce the
influence of multicollinearity are presented in [19]. Further techniques increas-
ing the robustness of the regression to cope with multicollinearity, outliers and
discontinuities due to software or hardware upgrades include Least Absolute
Differences (LAD) regression [22, 23, 24] or Least Trimmed Squares (LTS) re-
gression [25, 26].

An approach based on measurements of response times and queue length
on arrival is proposed in [20]. The authors assume a closed Queueing Net-
work (QN), where the system is represented by a queue with exponential ser-
vice times and FCFS scheduling. For a single workload class, the mean response
time of requests can then be described by Ri = Di(1 + Ai). Ai is the queue
length seen by a newly arriving job, not including the job currently in service.
Generalized to multiple workload classes, they define a linear model expecting
response times and the average queue length on arrival as input. The model
is solved with LSQ regression. In [21], the authors extend this approach to PS
scheduling.

2.3.4. Kalman Filter

A Kalman filter estimates the hidden state of a dynamic system [47]. The
authors in [28, 29, 31] apply it to resource demand estimation. The following
filter description is based on [29]. The system state vector is defined as:

x =
(
Di,1 · · · Di,C

)T
. (3)

Without any a-priori knowledge about the system state dynamics, the system
state model that describes how the system state evolves over time is reduced to

xk = xk−1 + wk, (4)

where index k denotes discrete time steps. A process noise term wk is assumed
to be normally distributed with zero mean.

The vector zk contains the measurements obtained from the system at time
step k. The relationship between system state xk and measurements zk is
denoted as measurement model. For a M/M/1 queue, the measurement equation
can be described by:

z = h(x) =


Ri,1
· · ·
Ri,C
Ui

 =


Di,1

1−Ui

. . .
Di,C

1−Ui

ΣCc=1λi,cDi,c

 . (5)

The measurement equation is of non-linear nature. To derive a linear measure-
ment model for the measurements zk, the extended Kalman filter design [47, 29]
can be used:

zk = Hxk + vk,where H =
∂h

∂x
, (6)

6



where vk is the observation noise, which is assumed to be white Gaussian noise
with zero mean. In [27, 28], the authors give recommendations on how to choose
filter configurations such as initial state vectors or covariance matrices of process
and observation noise. In [30, 31], Wang et al. propose an alternative Kalman
filter based on the Utilization Law, which they use to estimate resource demands
for multi-tenant applications.

2.3.5. Optimization

In this section, we describe estimation approaches that are defined as op-
timization problems and solved with mathematical programming methods. In
contrast to the linear regression approaches in Section 2.3.3, the estimation
approaches described here are based on more general objective functions.

In [34, 35, 36, 37], the objective function aims at reducing the prediction
error of response times and utilizations:

min

C∑
c=1

pc(Rc − R̃c)2 +

I∑
i=1

(Ui − Ũi)2, (7)

where R̃c denotes the measured response time of workload class c and Ũi the
measured utilization of resource i. Expressions of Rc respectively Ui are derived
from standard queueing formulas. The factor pc weights the response time errors
with the proportion of the number of requests of workload class c, pc = λc∑C

d=1 λd
.

The resulting optimization problems can be solved using quadratic programming
techniques. The authors in [37] extends this optimization approach to estimate
load-dependent resource demands. Their approach requires a-priori knowledge
of the type of function, e.g., polynomial, exponential or logarithmic, that best
describes the relation between workloads and resource demands.

The work in [33] formulates an alternative optimization problem that de-
pends only on response time and arrival rate measurements:

min

C∑
c=1

(Rc − R̃c)2 with Rc =

I∑
i=1

Di,c

1−
∑C
d=1 λi,dDi,d

(8)

subject to Di,c ≥ 0 ∀i, c and

C∑
c=1

λi,cDi,c < 1 ∀i.

The resulting optimization requires a non-linear constrained optimization solver.

2.3.6. Machine Learning

In [38], the authors use cluster-wise regression techniques to improve the
robustness to discontinuities in the resource demands due to system configu-
ration changes. The observations are clustered into groups where the resource
demands can be assumed constant, and the demands are then estimated for
each cluster separately. In [41, 42], the authors propose a novel algorithm based
on a combination of change-point regression methods and pattern matching to
address the same challenge.

7



Independent Component Analysis (ICA) is a method to solve the blind source
separation problem, i.e., to estimate the individual signals from a number of ag-
gregate measurements. [39] describes a way to use ICA for resource demand
estimation, using a linear model based on the Utilization Law. ICA can provide
estimates solely based on utilization measurements, when the following con-
straints hold [39]: i) the number of workload classes is limited by the number
of observed resources; ii) the arrival rate measurements are statistically inde-
pendent; iii) the inter-arrival times have a non-Gaussian distribution while the
measurement noise is assumed zero-mean Gaussian. ICA not only provides es-
timates of resource demands, but also automatically categorizes requests into
workload classes.

In [40], Kalbasi et al. consider the use of Support Vector Machines (SVM) [48]
for estimating resource demands. They compare it with results from LSQ and
LAD regression and show that it can provide better resource demand estimates
depending on the characteristics of the workload.

2.3.7. Maximum Likelihood Estimation (MLE)

MLE allows the inference of the statistics of a random variable by determin-
ing the probability of observing a certain sample path. For resource demand
estimation, the authors of [20, 21] use MLE with measured response times and
queue lengths seen upon arrival of requests. The authors obtain N response
time measurements R1

i , . . . , R
N
i of individual requests and then search for the

resource demands Di,1, . . . , Di,C so that the probability of observing the mea-
sured response times is maximized. The maximization problem is defined as:

maxL(Di,1, . . . , Di,C) =

N∑
k=1

logP[Rki | Di,1, . . . , Di,C ]. (9)

The actual representation of the likelihood function is obtained using phase-
type distributions. With the likelihood function we can determine the global
maximum of the likelihood function and thus get values for the resource demands
Di,1, . . . , Di,C that explain the measured response times best.

2.3.8. Gibbs sampling

Bayesian inference methods based on Markov-Chain Monte Carlo techniques
are used in [43, 44] to estimate the resource demands of a queueing network.
Both authors propose to use Gibbs sampling techniques [49] to construct a
Markov Chain that simulates the density f(Di,c). Through Gibbs sampling
techniques one can infer the Di,c based on the observed posterior distribution
of f(Di,c). Sutton and Jordan [43] provide an estimator that is applicable to
single-class, open queueing networks. Wang et al. [44] extend the estimator to
multi-class, closed queueing networks.

2.3.9. Other Approaches

In [45, 46], Rolia et al. propose a technique for estimating the aggregate
resource demand of a given workload mix, called Demand Estimation with Con-
fidence (DEC). This technique assumes that a set of benchmarks is available for

8



a system under study. Each benchmark utilizes a subset of the different func-
tions of an application. DEC expects the measured demands of the individual
benchmarks as input and then derives the aggregate resource demand of a given
workload mix as a linear combination of the demands of the individual bench-
marks. DEC is able to provide confidence intervals of the aggregate resource
demand [45, 46].

3. Classification Scheme

In this section, we describe our classification scheme for categorizing the
approaches described in Section 2. The goal of the classification scheme is
to help performance engineers to select an estimation approach that best fits
their specific requirements. We distinguish between three dimensions: input
parameters, output metrics and robustness to anomalies in the input data. For
each dimension, we first describe its features and then categorize the estimation
approaches accordingly.

3.1. Input Parameters

Approaches to resource demand estimation often differ in terms of the set
of input data they require. We do no consider parameters of the underlying
statistical techniques (e.g., parameters controlling the optimization algorithm)
because these are specific to the concrete implementation of an estimation ap-
proach.

Input Parameters

Measurements

Aggregate

. . .Utilization

Per-request

. . .Response Time

Model Parameters

Resources

Number
of Servers

Scheduling
Strategy

Workload

Think
times

Known Resource
Demands

Workload
Classes

Figure 1: Types of input parameters.

Figure 1 depicts the main types of input parameters for demand estimation
algorithms. The parameters are categorized into model parameters and mea-
surements. In general, parameters of both types are required. Model param-
eters capture information about the performance model for which we estimate
resource demands. Measurements consist of samples of relevant performance
metrics obtained from a running system, either a live production system or a
test system.

Before estimating resource demands, it is necessary to decide on certain
modeling assumptions. As a first step, resources and workload classes need to

9



be identified. This is typically done as part of the workload characterization
activity when modeling a system. It is important to note, that the observability
of performance metrics may influence the selection of resources and workload
classes for a system under study. In order to be able to distinguish between
individual resources or workload classes, observations of certain per-resource or
per-class performance metrics are necessary. At a minimum, information about
the number of workload classes and the resources for which the demands should
be determined is required as input to the estimation. Depending on the esti-
mation approach, more detailed information on resources and workload classes
may be expected as an input (e.g., scheduling strategies, number of servers, or
think times).

Measurements can be further grouped into per-request or aggregate. Com-
mon per-request measurements used in the literature include response times,
arrival rates, visit counts, and queue length seen upon arrival. Aggregate mea-
surements can be further distinguished in class-aggregate and time-aggregate
measurements. Class-aggregate measurements are collected as totals over all
workload classes processed at a resource. For instance, utilization is usually
reported as an aggregate value because the operating system is agnostic of the
application internal logic and is not aware of different request types in the appli-
cation. Time-aggregate measurements, e.g., average response times or average
throughput, are aggregated over a sampling period. The sampling period can
be evenly or unevenly spaced.

Categorization of Existing Approaches

We considered the approaches to resource demand estimation listed in Ta-
ble 2 and examined their input parameters. Table 3 contains an overview of
the input parameters of each estimation approach. Parameters common to all
estimation approaches, such as the number of workload classes and the number
of resources, are not included in this table. The required input parameters vary
widely between different estimation approaches. Depending on the system under
study and the available performance metrics, one can choose a suitable estima-
tion approach from Table 3. Furthermore, approaches based on optimization
can be adapted by incorporating additional constraints into the mathematical
model capturing the knowledge about the system under study. For example, the
optimization approach by Menascé [33] allows one to specify additional known
resource demand values as input parameters. These a-priori resource demands
may be obtained from the results of other estimation approaches or from direct
measurements.

Another approach that requires resource demand data is described by La-
zowska [4, Chapter 12]. Lazowska assumes that the resource demands are ap-
proximated based on measurements provided by an accounting monitor. Such
an accounting monitor, however, does not include the system overhead caused
by each workload class. The system overhead is defined as the work done by the
operating system for processing a request. Lazowska [4, Chapter 12] describes
a way to distribute unattributed computing time among the different workload
classes providing more realistic estimates of the actual resource demands.

10



Table 3: Input parameters of estimation approaches (utilization Ui, response timeRc, through-
put Xc, arrival rate λc, queue length Ai,c, visit counts Vi,c, demands Di,c, think time Z,
scheduling policy P ).

Estimation approach Measurements Parameters
Ui Rc Xc/λc Ai,c Vi,c Di,c Z P

Approximation with response times
Urgaonkar et al. [13] 71 7
Nou et al. [14] 7 7
Brosig et al. [15] 7

Service Demand Law
Lazowska [4] 7 72

Brosig et al. [15] 7 7 7

Linear regression
Bard and Shatzoff [16],
Rolia et al. [17, 18],
Pacifici et al. [19] 7 7
Zhang et al. [22, 23, 24] 7 7
Kraft et al. [20, 21] 7 7 7
Casale et al. [25, 26] 7 7

Kalman filter
Zheng et al. [27, 28] 7 7 7
Kumar et al. [29] 7 7 7
Wang et al. [30, 31] 7 7

Optimization
Zhang et al. [32] 7 7 7 (7)5 7
Liu et al. [34, 35, 36] 7 7 7 7 7
Menascé [33] 7 7 73

Kumar et al. [37] 7 7 7 7

Machine learning
Cremonesi et al. [38] 7 7
Sharma et al. [39] 7
Kalbasi et al. [40] 7 7
Cremonesi et al. [41, 42] 7 7

Maximum likelihood estimation
Kraft et al. [20] 74 74 7 7
Perez et al. [21] 74 74 7 7

Gibbs sampling
Sutton and Jordan [43] 74 74 7
Wang et al. [44] 74 7

Kalbasi et al. [45, 46] (DEC) 7 7

1 Response time per resource.
2 Measured with accounting monitor. System overhead is not included.
3 A selected set of resource demands is known a priori.
4 Non-aggregated measurements of individual requests.
5 Requires coefficient of variation of resource demands in case of FCFS scheduling.

Approaches based on response time measurements, such as those proposed by
Zhang et al. [32], Liu et al. [34, 35, 36] and Kumar et al. [37], require information
about the scheduling strategies of the involved resources abstracted as queueing
stations. This information is used to construct the correct problem definition

11



for the optimization technique. The estimation approaches proposed by Kraft et
al. [20], Perez et al. [21], and Wang et al. [44] assume a closed queueing network.
Therefore, they also require the average think time and the number of users as
input.

In addition to requiring a set of specific input parameters, some approaches
also provide a rule of thumb regarding the number of required measurement sam-
ples. Approaches based on linear regression [17, 20, 19] need at least K+1 linear
independent equations to estimate K resource demands. When using robust re-
gression methods, significantly more measurements might be necessary [25]. In
[37], Kumar et al. provide a formula to calculate the number of measurements
required by their optimization-based approach. The formula only provides a
minimum bound on the number of measurements and more measurements are
normally required to obtain good estimates [24].

3.2. Output Metrics

Approaches to resource demand estimation are typically used to determine
the mean resource demand of requests of a given workload class at a given
resource. However, in many situations the estimated mean value may not be
sufficient. Often, more information about the confidence of estimates and the
distribution of the resource demands is required. The set of output metrics
an estimation approach provides can influence the decision to adopt a specific
method.

Generally, resource demands cannot be assumed to be deterministic [45]; for
example, they might depend on the data processed by an application or on the
current state of the system [17]. Therefore, resource demands are described as
random variables. Estimates of the mean resource demand should be provided
by every estimation approach. If the distribution of the resource demands is not
known beforehand, estimates of higher moments of the resource demands may
be useful to determine the shape of their distribution.

We distinguish between point and interval estimators of the real resource
demands. Confidence intervals would be generally preferable, however, it is often
a challenge to ensure that the statistical assumptions underlying a confidence
interval calculation hold for a system under study (e.g., distribution of the
regression errors).

In certain scenarios, e.g., if Dynamic Voltage and Frequency Scaling (DVFS)
or hyperthreading techniques are used [37], the resource demands are load-
dependent. In such cases, the resource demands are not constant, but a function
that may depend, e.g., on the arrival rates of the workload classes [37].

Categorization of Existing Approaches

Table 4 provides an overview of the output metrics of the considered esti-
mation approaches. Point estimates of the mean resource demand are provided
by all approaches. Confidence intervals can be determined for linear regression
using standard statistical techniques, as mentioned by the authors in [17, 20].
These techniques are based on the central limit theorem assuming an error

12



Table 4: Output metrics of estimation approaches.

Estimation approach Resource demands
Point Confidence Higher Load-

estimates interval moments dependent

Response time approximation
Urgaonkar et al. [13] 7
Nou et al. [14] 7
Brosig et al. [15] 7

Service Demand Law
Lazowska [4] 7
Brosig et al. [15] 7

Linear regression
Rolia et al. [17, 18],
Pacifici et al. [19] 7 72

Zhang et al. [23] 7 72

Kraft et al. [20, 21] 7 72

Casale et al. [25, 26] 7 72

Kalman filter
Zheng et al. [27, 28] 7
Kumar et al. [29] 7
Wang et al. [30, 31] 7

Optimization
Zhang et al. [32] 7 71

Liu et al. [34, 35, 36] 7
Menascé [33] 7
Kumar et al. [37] 7 7

Machine learning
Cremonesi et al. [38] 7
Sharma et al. [39] 7
Kalbasi et al. [40] 7
Cremonesi et al. [41, 42] 7

Maximum likelihood estimation
Kraft et al. [20] 7 7
Perez et al. [21] 7 7

Gibbs sampling
Sutton and Jordan [43] 7
Wang et al. [44] 7

Kalbasi et al. [45, 46] (DEC) 7 7

1 Only feasible if a-priori knowledge of the resource demand variance is available.
2 The accuracy of the confidence intervals is not evaluated.

term with a normal distribution. Resource demands are typically not deter-
ministic violating the assumptions underlying linear regression. The influence
of the distribution of the resource demands on the accuracy of the confidence
intervals is not evaluated for any of the approaches based based on linear re-
gression. DEC [45, 46] is the only approach for which the confidence intervals
have been evaluated in the literature [45, 46]. The Maximum Likelihood Esti-
mation (MLE) [20] approach and the optimization approach described by Zhang

13



et al. [32] are capable of providing estimates of higher moments. This additional
information comes at the cost of a higher amount of required measurements.

All of the estimation approaches in Table 2 can estimate load-independent
mean resource demands. Additionally, the Enhanced Inferencing approach [37]
also supports the estimation of load-dependent resource demands, assuming a
given type of function.

3.3. Robustness

It is usually not possible to control every aspect of a system while collect-
ing measurements. This can lead to anomalous behavior in the measurements
[25]. The authors in [25, 26] and [19] identified the following issues with real
measurement data:

• presence of outliers,

• background noise,

• non-stationary resource demands,

• collinear workload,

• and insignificant flows.

Background activities can have two effects on measurements: the presence
of outliers and background noise [25]. Background noise is created by secondary
activities that utilize a resource only lightly over a long period of time. Outliers
result from secondary activities that stress a resource at high utilization levels for
a short period of time. Outliers can have a significant impact on the parameter
estimation resulting in biased estimates [25]. Different strategies are possible
to cope with outliers. It is possible to use special filtering techniques in an
upstream processing step or to use parameter estimation techniques that are
inherently robust to outliers. However, tails in measurement data from real
systems might belong to bursts, e.g., resulting from rare, but computationally
complex requests. The trade-off decision as to when an observation is to be
considered as an outlier has to made on a case-by-case basis taking into account
the characteristics of the specific scenario and application.

The resource demands of a system may be non-stationary over time (i.e.,
not only the arrival process changes over time, but also the resource demands,
which for example can be described by a Mt/Mt/1 queue). Different types of
changes are observed in production systems. Discontinuous changes in the re-
source demands can be caused by software and hardware reconfigurations, e.g.,
the installation of an operating system update [25]. Continuous changes in the
resource demands may happen over different time scales. Short-term variations
can often be observed in cloud computing environments where different work-
loads experience mutual influences due to the underlying shared infrastructure.
Changes in the application state (e.g., database size) or the user behavior (e.g.,
increased number of items in a shopping cart in an online shop during Christ-
mas season) may result in long-term (over days, weeks, and months) trends

14



and seasonal patterns. When using the estimated resource demands to forecast
the required resources of an application over a longer time period, these non-
stationary effects need to be considered in order to obtain accurate predictions.
In order to detect such trends and seasonal patterns, it is possible to apply fore-
casting techniques on a time series resulting from the repeated execution of one
the considered estimation approach over a certain time period. An overview of
such forecasting approaches based on time series analysis can be found in [50].

Another challenge for estimation approaches is the existence of collinearities
in the arrival rates of different workload classes. There are two possible reasons
for collinearities in the workload: low variation in the throughput of a workload
class or dependencies between workload classes [19]. For example, if we model
login and logout requests each with a separate workload class, the resulting
classes would normally be correlated [19]. The number of logins usually ap-
proximately matches the number of logouts [19]. Collinearities in the workload
may have negative effects on resource demand estimates. A way to avoid these
problems is to detect and combine workload classes that are correlated [19].

Insignificant flows are caused by workload classes with very small arrival
rates in relation to the arrival rates of the other classes. Pacifici et al. [19]
experience numerical stability problems with their linear regression approach
when insignificant flows exist. However, it is noteworthy, that there might be
a dependency between insignificant flows and the length of the sampling time
intervals. If the sampling time interval is too short, the variance in arrival rates
might be high.

Categorization of Existing Approaches

Ordinary Least Squares (LSQ) regression are often sensitive to outliers.
Stewart et al. [24] come to the conclusion that Least Absolute Differences (LAD)
regression is more robust to outliers than LSQ regression. Robust regression
techniques as described by Casale et al. [25, 26] try to detect outliers and ignore
measurement samples that cannot be explained by the regression model. Liu et
al. [36] also include an outlier detection mechanism in their estimation approach
based on optimization.

In general, sliding window or data aging techniques can be applied to the in-
put data to improve the robustness to non-stationary resource demands [19]. In
order to detect software and hardware configuration discontinuities, robust and
cluster-wise regression approaches are proposed in [25, 26, 38]. If such disconti-
nuities are detected, the resource demands are estimated separately before and
after the configuration change. Approaches based on Kalman filters [27, 28, 29]
are designed to estimate time-varying parameters. Therefore, they automati-
cally adapt to changes in the resource demands after a software or hardware
discontinuity. None of the considered estimation approaches are able to learn
long-term trends or seasonal patterns (over days, weeks, or months).

Collinearities are one of the major issues when using linear regression [51].
A common method to cope with this issue is to check the workload classes
for collinear dependencies before applying linear regression. If collinearities
are detected, the involved workload classes are merged into one class. This is

15



proposed in [19, 25]. The DEC approach in [45] mitigates collinear dependencies,
since it only estimates the resource demands for mixes of workload classes.

Pacifici et al. also consider insignificant flows in [19]. They call a workload
class insignificant if the ratio between the throughput of the workload class
and the throughput of all workload classes is below a given threshold. They
completely exclude insignificant workload classes from the regression in order
to avoid numerical instabilities [19].

4. Experimental Evaluation

The goal of the experiments presented in this section is to compare the
accuracy of different estimation approaches. A set of experiments was conducted
to evaluate the impact of the following factors on the estimation accuracy of the
considered estimation approaches: (RQ1) length of sampling interval, (RQ2)
number of samples, (RQ3) number of workload classes, (RQ4) load level, (RQ5)
collinear workload classes, (RQ6) missing jobs in workload model, and (RQ7)
delays during processing. (RQ8) analyses the execution time of the considered
estimation approaches. We describe the conducted experiments in detail and
discuss the results. Section 4.1 describes the experiment setup used to obtain
the measurement traces. Section 4.2 explains the selection and comparison of
the estimation approaches. Finally, Section 4.3 discusses the experiment results.

4.1. Experiment Setup

In the experimental evaluation, we used two different sources to obtain the
measurement traces for the comparison: a queueing simulator and a set of
micro-benchmarks executed on a real system. The simulator and the micro-
benchmarks each produce traces of observations of the performance metrics
required for resource demand estimation. These traces are provided as input
to the estimation approaches and the resulting resource demands are used to
evaluate the estimation accuracy.

4.1.1. Dataset D1: Queueing Simulator

Dataset D1 consists of traces of arrival times and response times of indi-
vidual requests from experiments with different number of workload classes
C = {1, 2, 5} and different load levels U = {10%, 50%, 90%}. Each experi-
ment was repeated 100 times resulting in a total of 900 different traces. We
used a queueing simulator based on a M/M/1 queue with FCFS scheduling and
an open workload that logs detailed statistics of each simulated request. Each
experiment run simulated 3600 requests with exponential inter-arrival times.
This corresponds to one hour of simulated time. Inter-arrival times and re-
source demands are both generated from exponential distributions. For each
experiment run, the mean resource demand of each workload class is randomly
drawn from a uniform distribution between 0 and 1 seconds, and scaled to yield
the expected load level.

16



4.1.2. Dataset D2: Micro-Benchmarks

In order to obtain dataset D2, we performed a series of experiments running
micro-benchmarks with a known CPU resource demand on a real system. The
micro-benchmarks generate a closed workload with exponentially distributed
think times and resource demands. As mean values for the resource demands,
we selected 14 different subsets of the base set [0.02s, 0.25s, 0.5s, 0.125s, 0.13s]
with number of workload classes C = {1, 2, 3}. The subsets were arbitrarily
chosen from the base set so that the resource demands are not linearly growing
across workload classes. The subsets intentionally also contained cases where
two or three workload classes had the same mean value as resource demand.
The mean think times were determined according to the desired load level of an
experiment. We again varied the number of workload classes C = {1, 2, 3} the
load level U = {20%, 50%, 80%} between experiments.

Each experiment run has a length of approximately one hour. Dataset D2
contains measurement traces from a total of 210 experiment runs. The mean
think time was calculated according to the required load level. We also used the
micro-benchmarks to generate specialized traces for the scenarios evaluating a
high number of workload classes (up to 20 classes) in Section 4.3.3, collinear
workload classes in Section 4.3.5, background jobs in Section 4.3.6, and delayed
processing in Section 4.3.7.

The micro-benchmarks were implemented with the Ginpex experiment frame-
work [52]. The CPU load of the micro-benchmarks consists of the calculation
of Fibonacci numbers, the number of iterations is calibrated by Ginpex before
an experiment run to match the desired resource demand. We used a pool of
machines with similar hardware configurations for the experiments. Each ma-
chine had an Intel Core 2 Quad Q6600 4 x 2.4 GHz CPU, 8 GB RAM, and 2
x 500 GB SATA2 disks, running a Ubuntu 10.04 64-bit operating system. We
deactivated CPU cores in the operating system to prevent the parallel execution
of the resource demands and to simulate a single-core machine.

During each experiment run we collected observations of the arrival times
and execution times of individual requests, and the average CPU utilization.
The execution times were measured by Ginpex (using the System.nanoTime()

method provided by Java). The utilization was measured with the sar tool
from the sysstat package [53], which is part of most Linux distributions. Av-
erage statistics for the throughput and response times were derived from the
measurements afterwards.

4.2. Comparison of Estimation Approaches

Table 5 lists the approaches considered in the experimental evaluation. For
reasons of conciseness, we use the abbreviations listed in the table to refer to
estimation approaches in the following description. All estimation approaches
were considered in the experimental evaluation with exception of response time
approximation, Independent Component Analysis (ICA) [39] and Maximum
Likelihood Estimation (MLE) [20, 44]. Response time approximation is a rather
trivial approach where the assumptions are well-known, i.e., the observed re-
sponse time must be close to the considered resource demand. In most practical

17



scenarios this assumption does not hold, resulting in high estimation errors.
ICA automatically groups the requests into workload classes besides estimating
resource demands. However, the interpretation of the resulting classes is diffi-
cult and the resulting resource demands cannot be directly compared to other
approaches. MLE has high computational requirements (both with respect to
CPU and memory) and can take a long time to provide estimates compared to
the other approaches (factor 10 to 100). The computational overhead made an
application of MLE to our extensive datasets infeasible.

Given that there are no publicly available implementations of the considered
estimation approaches, we developed our own implementations. Most of the
approaches were implemented in MATLAB using its functions for non-negative
least-squares regression (lsqnonneg) and constrained non-linear optimization
(fmincon). The optimization approaches MO and LO were checked to be con-
vex, so that a single run of fmincon is sufficient. KF is implemented in C++
using the Covariance scheme class provided by the bayes++ library [54].

We used the following configuration for the experimental comparison: SDL
uses the average utilization and throughput of the complete experiment length
as input and apportions the aggregate utilization between workload classes us-
ing the observed average response time as described in [15]. UR uses a standard
non-negative least-squares regression algorithm (see lsqnoneg). The parame-
terization of KF follows the guidelines suggested by Zheng et al. [28] (D1: state
covariance Q=0.0025, observation covariance R=0.1; D2: Q=0.0001 R=0.0001).
We also applied a moving average filter to the resulting demands with a window
size of 10 minutes. MO uses the recursive optimization algorithm proposed by
Menascé [33]. In contrast, LO executes the optimization algorithm once with
the complete observation traces as input. RR comes in two different versions:
one for FCFS [20] and one for PS scheduling [21]. We used the FCFS variant
for dataset D1 and the PS variant for dataset D2.

Abbreviation Estimation Approach

SDL Service Demand Law (Brosig et al. [15])
UR Utilization regression (Rolia et al. [17])
KF Kalman filter (Kumar et al. [37])
MO Menascé optimization [33]
LO Liu optimization (Liu et al. [36])
RR Response time regression (Kraft et al. [20])
GS Gibbs Sampling (Wang et al. [31])

Table 5: Estimation approaches considered in the experimental evaluation.

To assess the accuracy of the estimation approaches, we rely on the mean
relative demand error Ed as error metric. Equation 10 shows the definition of
Ed. C is the number workload classes, Dest

c the estimated resource demand of
class c and Dact

c the actual resource demand of class c.

Ed =
1

C

C∑
c=1

∣∣∣∣Dest
c −Dact

c

Dact
c

∣∣∣∣ (10)

18



In some of the experiments we also use the relative utilization error Eu and
relative response time error Er to show the effect of incorrect demand estimates
on the predicted utilization and response time. Equation 11 shows the definition
of the utilization error

Eu =

∣∣∣∣∣
∑C
c=1 λc ∗Dest

c − U
U

∣∣∣∣∣ . (11)

C is the number workload classes, λc the observed throughput of class c, Dest
c

the estimated resource demand of class c and U is the observed utilization.
Equation 12 shows the definition of the response time error

Er =
1

C

C∑
c=1

∣∣∣∣Rcalc −Ractc

Ractc

∣∣∣∣ . (12)

C is the number of workload classes, Ractc is the average observed response time
of class c, and Rcalc is the predicted average response time of class c obtained
with Mean Value Analysis (MVA) [55].

4.3. Results

4.3.1. RQ1: Length of Sampling Interval

The sampling interval defines the time period for which average statistics,
e.g., of utilization or response times, are calculated. The total experiment length
is divided into fixed-length sampling intervals. In this experiment, we used
observation traces from datasets D1 and D2 with medium load (U = 50%) and
one workload class. The average statistics are calculated for different sampling
intervals, varying between one second and and two minutes. A sampling interval
of one second is usually the lowest resolution for operating system monitoring
tools (e.g., the sar utility for obtaining resource usage statistics). The maximum
sampling interval of two minutes is chosen so that there are at least 30 samples
per experiment run.

From the considered estimation approaches, only UR, KF, MO, and LO
rely on average statistics. To be concise, we leave out the results for RR and
GS, which are based non-aggregated measurements of individual requests, and
SDL, which always takes the average over the complete observation period. As
expected, the latter estimation approaches are not influenced by the length of
the sampling interval.

Figure 2 shows the relative demand errors Ed for dataset D1 under medium
load (U = 50%) and one workload class. All four estimation approaches are
negatively influenced by small sampling intervals. Under small sampling inter-
vals with one second, estimation accuracy of LO suffers the most and the error
decreases only slowly with longer sampling intervals. However, the relative error
is comparable to the other approaches in case of 60 and 120 seconds sampling
intervals (below 5%).

In addition to dataset D1, Table 6 shows the results for dataset D2. This
table includes an additional column containing the mean number of requests

19



1 5 10 30 60 120 1 5 10 30 60 120 1 5 10 30 60 120 1 5 10 30 60 120
0

0.25

0.5

0.75

1

UR KF MO LO

Approach and sampling interval (in sec)

E
d

Figure 2: Boxplot of demand estimation error Ed for different sampling intervals (dataset D1,
load level U = 50%, number of workload classes C = 1).

mean[Ed] (std[Ed])
N UR KF MO LO

D1

1s 1.00 34.54 (0.74) 24.35 (4.89) 58.67 (0.79) 95.82 (4.80)
5s 4.99 5.43 (0.66) 8.44 (5.03) 14.91 (1.16) 77.20 (17.35)

10s 9.99 1.74 (0.55) 7.00 (4.01) 11.03 (1.18) 46.55 (17.11)
30s 29.97 0.31 (0.20) 4.80 (3.17) 6.37 (1.06) 10.42 (4.38)
60s 59.95 0.23 (0.17) 4.20 (2.91) 4.04 (1.26) 4.31 (2.31)

120s 119.90 0.19 (0.17) 3.61 (2.38) 2.57 (1.23) 2.68 (1.82)

D2

1s 11.58 8.60 (6.97) 13.41 (15.89) 15.04 (3.36) 27.31 (26.32)
5s 57.89 0.59 (0.32) 5.66 (4.05) 9.79 (1.19) 3.42 (3.31)

10s 115.79 0.60 (0.59) 3.51 (2.10) 8.78 (0.82) 2.01 (1.72)
30s 347.36 0.77 (0.66) 1.41 (0.74) 8.03 (0.79) 1.41 (1.13)
60s 694.40 0.80 (0.56) 1.73 (1.24) 7.82 (0.83) 1.38 (1.09)

120s 1387.79 0.91 (0.81) 1.38 (1.50) 7.87 (0.79) 1.30 (1.04)

Table 6: Mean and standard deviation of demand estimation error Ed for different sampling
intervals (dataset D1 and D2, load level U = 50%, number of workload classes C = 1). N
denotes the average number of requests observed in one sampling interval.

N observed during each sampling interval. The average resource demands in
dataset D2 were by a magnitude smaller than in dataset D1. Therefore, more
requests are observed during each sampling interval and the peaks at the one
second sampling interval are smaller in D2. However, we can again observe that
LO shows the highest relative error for the one second sampling interval.

The influence of the length of the sampling interval can be explained by
end-effects due to requests which are fully attributed to one sampling period,
although they start and end in different intervals. For linear regression this has
been identified before by Rolia and Lin [17, 56] as one source of inaccuracy.
In [23], Zhang et al. come to the conclusion that longer sampling intervals
improve the accuracy of regression-based approaches. However, in practice, the
maximum length of the sampling interval is usually limited because it increases
the required experiment length and may hinder the ability of the estimator to
adapt to changes in the resource demands. Given that a good choice for the
sampling interval always depends on the length of the resource demands, one
should ensure that sufficient requests are observed in each sampling interval.
The results in Table 6 suggest that a sampling interval length where on average

20



N > 60 requests are observed yields acceptable estimates for all approaches.

4.3.2. RQ2: Number of Samples

In this experiment, we employed dataset D1 and reduced the number of sam-
ples used for resource demand estimation from 3600 to 600. This corresponds
to an experiment length of ten minutes. Dynamic, self-adaptive systems re-
quire an estimator to keep up with frequent changes. Therefore, we argue that
an estimator should also be able to converge to a stable value in shorter time
frames.

N SDL UR KF MO LO RR GS

mean[Ed]
600 0.13 0.79 7.3 4.1 6.6 2.5 4.9

3600 0.023 0.23 4.2 4 4.3 1.4 4.8
stat. sig. (95%) X X X X X
p-value 1.2e-24 4.2e-15 4.8e-129 0.81 1.3e-05 5.3e-05 0.75

Table 7: Mean demand estimation error Ed for different number of samples N (dataset D1,
load level U = 50%, number of workload classes C = 1).

Table 7 shows the results for dataset D1. Differences in the mean rela-
tive resource demand errors from the experiment runs are tested for statistical
significance using a non-paired T-test with a 95% confidence level. The esti-
mation approaches SDL, UR, KF and LO exhibit a significant dependency on
the number of available samples. With N = 600 they show a decreased accu-
racy compared to N = 3600. However, all approaches still yield results with
acceptable accuracy (below 10%).

4.3.3. RQ3: Number of Workload Classes

A higher number of workload classes makes the estimation problem more
complex since more variables need to be estimated. In RQ3, we analyze the
sensitivity of the considered estimation approaches to the number of workload
classes. The analysis is structured into three subquestions: RQ3.1 compares
the relative demand errors of experiments with different number of workload
classes, RQ3.2 explores properties of the dataset that influence the estimation
accuracy in case of several classes, and RQ3.3 tests the behavior of the estima-
tion approaches if the number of classes is scaled out.

RQ3.1: Comparison of relative demand errors. We now compare the relative
demand errors from runs with three different number of workload classes. We
used a subset of dataset D1 containing samples for 1, 2 and 5 classes at a load
level of 50% (in total 300 repetitions) and D2 for 1, 2, and 3 also at 50% (in
total 70 repetitions).

Table 8 shows the results for datasets D1 and D2. We used a single factor
Analysis of Variance (ANOVA) with a confidence level of 95% to test for signifi-
cant differences in Ed with different number of workload classes. The hypothesis
that Ed is influenced by the number of workload classes cannot be rejected for
any of the considered approaches. However, there are clear differences in the

21



C SDL UR KF MO LO RR GS

mean[Ed]
1 0.023 0.231 4.2 4.04 4.31 1.44 4.76
2 127 27.7 88.3 83.4 98.8 8.56 93.4
5 153 59.8 110 97.2 120 18.2 111

stat. sig. (95%) X X X X X X X
p-value 2.52e-04 6.53e-17 7.59e-04 1.12e-03 8.62e-04 1.34e-04 1.61e-03

(a) Dataset D1

C SDL UR KF MO LO RR GS

mean[Ed]
1 0.833 0.8 1.73 7.82 1.38 1.11 2.87
2 1.02 12.8 3.84 5.23 4.33 1.85 3.56
3 2.07 24.1 4.01 5.56 4.94 3.44 4.9

stat. sig. (95%) X X X X X X X
p-value 5.96e-06 1.02e-05 0.0368 5.05e-05 0.033 5.56e-05 0.0081

(b) Dataset D2

Table 8: Mean relative demand error Ed for number of workload classes C = {1, 2, 5} (load
level U = 50%).

quantitative effect on Ed between both datasets. While most estimation ap-
proaches yield relatively accurate results for dataset D2 (Ed mostly below 10%
except for UR), we consider the results for dataset D1 insufficient for most use
cases. With 2 or 5 workload classes, the estimated resource demand largely
deviates from the actual one by more than 50% in most cases on dataset D1.
We analyze the reasons for these high deviations in RQ3.2.

UR shows a degraded accuracy for multiple workload classes on both datasets.
A deeper analysis of the resulting estimates show that the estimates converge
very slowly compared to the other estimation approaches. The linear regression
is done based on measurements from approximately 60 measurement intervals,
which is assumed to be sufficient for the considered number of workload classes.
However, the performance of UR heavily depends on the workload [24]. We
explain the poor accuracy of UR in our experiments with too few variations
in the workload. Given that the utilization is kept at a fixed level during the
experiments, UR can only explore a limited region of the complete space.

RQ3.2: Correlation Analysis. The comparison in RQ3.1 shows a largely de-
graded accuracy of most estimation approaches on D1 with multiple workload
classes. Given that high variances in Ed were observed between experiment runs,
we performed a correlation analysis testing the influence of different properties
of a sample set on Ed.

The property mean[Q] stands for the mean queue length Q observed during
an experiment run. min[X ∗ D] takes the minimum of the mean throughput
X and the average resource demand D over all workload classes. A low value
of min[X ∗ D] is an indicator that the workload includes classes with a small
contribution in relation to the other classes. These are also called insignificant
flows. std[D] is the standard variance of the service demands. If this value is
high, the mean service demands of workload classes are very diverse.

Table 9 shows the results of the correlation analysis. We used the Spearman’s
rank correlation coefficient (denoted with ρ) in order to be able to identify non-

22



C SDL UR KF MO LO RR GS

mean[Q]

1
ρ -0.042 -0.14 0.065 -0.42 -0.5 0.27 0.65
p-value 0.68 0.16 0.52 1.3e-05 2.1e-07 0.0062 0

2
ρ 0.71 0.27 0.67 0.68 0.73 0.46 0.75
p-value 0 0.0073 0 0 0 1.8e-06 0

5
ρ 0.52 0.25 0.65 0.63 0.66 0.39 0.63
p-value 5.6e-08 0.013 0 0 0 5.8e-05 0

min[X ∗D]

1
ρ - - - - - - -
p-value - - - - - - -

2
ρ -0.46 -0.54 -0.55 -0.56 -0.44 -0.52 -0.45
p-value 2.2e-06 1.2e-08 5.2e-09 2.6e-09 7.7e-06 6.9e-08 4.5e-06

5
ρ -0.45 -0.44 -0.48 -0.47 -0.49 -0.61 -0.5
p-value 4e-06 6.9e-06 5.7e-07 1.4e-06 3.6e-07 0 1.9e-07

std[D]

1
ρ - - - - - - -
p-value - - - - - - -

2
ρ 0.91 0.35 0.88 0.89 0.88 0.52 0.9
p-value 0 0.0004 0 0 0 5.1e-08 0

5
ρ 0.72 0.37 0.78 0.8 0.8 0.44 0.79
p-value 0 0.0002 0 0 0 4.8e-06 0

Table 9: Correlation analysis results (dataset D1, load level U = 50%). Entries with ρ > 0.7
are in bold letters.

linear correlations. Table 9 summarizes the correlations of three properties of
the sample set which were identified to influence Ed.

We identified the highest correlations (ρ > 0.7) for SDL, KF, MO, LO, RR,
GS with std[D], i.e., if the differences between the resource demand of workload
classes is higher, the relative demand error Ed is also higher. In these cases, the
underlying model is based on the response time equation R = D/(1 − U). As-
suming an open workload, this equation is only applicable to multi-class queues
with FCFS scheduling if the service time of each workload class is equal [57].
This requirement does not hold for dataset D1. The higher the variation of the
resource demands between workload classes is the more it lessens the estimation
accuracy of the estimation approaches. The impact of this violated assumption
increases if the mean queue length mean[Q] in an experiment run is higher. The
high correlations show that when using response times for resource demand es-
timation, it is important to ensure that the estimator is based on the correct
scheduling strategy assumptions.

Furthermore, we could observe moderate negative correlations for min[X∗D]
for all estimation approaches. That mean if in an experiment run, there exists
a workload class with a low the total resource demand X ∗D compared to the
other workload classes, the relative demand error increases. We conclude that
all considered estimation approaches are sensitive to workload classes with a
low total resource demand (sometimes also called insignificant flows [19].

RQ3.3: High number of workload classes. In Section 4.3.3, the results indicate
an influence of the number of workload classes on the accuracy of certain estima-
tion approaches. In the following experiment we consider scenarios with a higher
number of workload classes than before. We employed the micro-benchmarks
used to obtain dataset D2 and varied the number of workload classes between
5 and 20. In total, we performed 40 experiment runs.

Table 10 shows the results from this experiment. We used a single factor

23



C SDL UR KF MO LO RR GS

mean[Ed]

5 1.24 20.5 2.89 3.51 2.44 1.78 5.17
10 2.53 36.2 3.99 3.36 2.39 3 8.55
15 2.86 56.9 4.32 3.44 3.11 3.52 12.5
20 2.99 57.8 5.33 4.04 3.28 3.58 13.6

stat. sig. (95%) X X X X X X
p-value 6.59e-09 3.58e-09 5.02e-05 0.303 0.00151 6.61e-06 9.76e-10

Table 10: Mean relative demand error Ed for high numbers of workload classes C =
{5, 10, 15, 20} (dataset D2, load level U = 50%).

ANOVA with a confidence level of 95% to test for significant differences in Ed
with a different number of workload classes. Several estimation approaches
(SDL, KF, MO, LO, RRPS) do not show a clear dependence on the number of
workload classes in the considered range. In these cases, we could not observe a
statistically significant difference in the estimation errors regarding the utiliza-
tion and response times. The results for UR support the findings with multiple
workload classes in Section 4.3.3.

4.3.4. RQ4: Load Level

We now explore the sensitivity of the estimation approaches under different
system load levels using measurement traces with low, middle and high load.
Dataset D1 contains data of runs with an average utilization of 10%, 50% and
90% (in total 300 repetitions), dataset D2 has runs with an average utilization
of 20%, 50% and 80% (in total 30 repetitions). Only the workload intensity
changed between the experiments runs, other factors were kept fixed.

U SDL UR KF MO LO RR GS

mean[Ed]
10% 0.0232 0.219 2.36 0.81 0.427 0.434 3.39
50% 0.023 0.231 4.2 4.04 4.31 1.44 4.76
90% 0.0279 0.843 33.1 5.33 90.5 1.75 24.2

stat. sig. (95%) X X X X X X
p-value 0.167 6.86e-67 1.41e-22 3.53e-95 5e-273 3.13e-16 1.93e-13

(a) Dataset D1

U SDL UR KF MO LO RR GS

mean[Ed]
20% 2.85 2.71 2.37 2.98 1.8 1.05 3.17
50% 0.833 0.8 1.73 7.82 1.38 1.11 2.87
80% 0.461 0.515 4.55 12.4 5.39 0.825 7.12

stat. sig. (95%) X X X X X
p-value 9.38e-08 2.55e-07 0.0606 5.49e-19 0.0146 0.505 0.000554

(b) Dataset D2

Table 11: Mean demand estimation error Ed for different load levels U and number of workload
classes C = 1).

Table 11 shows the mean relative demand error Ed for dataset D1 and D2
with sample sets from low, middle and high load. We used a single factor Anal-
ysis of Variance (ANOVA) with a confidence level of 95% to test for statistically
significant differences in Ed between the load levels.

The results for dataset D1 suggest an influence of the load level on all esti-
mation approaches except SDL. Apart from SDL, all approaches have a higher

24



mean Ed at 90% utilization compared to 50% and 10%. Most conspicuous are
the high relative errors (above 20%) for KF, LO and GS at high load. We
explain these inaccuracies with underlying model assumptions of these estima-
tion approaches, which are violated at high load levels. GS is based on a closed
queueing model while the queueing simulator used to obtain dataset D1 executed
an open workload. KF and LO use the response time equation R = D/(1− U)
which is highly non-linear above 90% CPU utilization. We explain the observed
inaccuracies of KF and LO with deficiencies of the underlying estimation al-
gorithms which results in a reduced estimation accuracy in highly non-linear
regions. While MO is similar to LO regarding the underlying model, MO uses
an iterative optimization algorithm which seems to be more stable in high load
scenarios.

On dataset D2 the differences between the estimation approaches at high
loads are smaller in comparison to D1. KF, MO, LO and GS are again nega-
tively influenced by the high utilization. However, with 80% the utilization is
further away from the critical region close to 100% utilization. In summary, we
conclude that it may be beneficial to avoid high-load situations (above 80%)
during resource demand estimation, or best use one of the SDL, UR or RR
approaches.

4.3.5. RQ5: Collinear Workload Classes

In the following experiments, the influence of collinear workload classes is
evaluated. For determining the level of collinearity, we use the Variance Infla-
tion Factor (VIF) which is defined as V IFi = 1

1−R2
i
. R2

i is the coefficient of

determination if we calculate the regression of Xi =
∑j≤N,j 6=i
j=1 βXj . Based on

the rule of thumb proposed by Kutner et al. [58], we assume a strong collinearity
between workload classes if V IFi > 10 for the observed throughput.

The traces in datasets D1 and D2 both do not contain clearly collinear work-
load classes. The maximum V IF observed are 1.1772 and 3.1602. Therefore,
we adapted the workload used for generating D2 so that one job of one workload
class is followed by a job from another workload class with a certain probabil-
ity pc (including a certain think time between the two workload classes). The
experiment is executed with pc = 0.33) and pc = 1.0. The observed V IF is on
average 1.1624 and 26.2972, respectively. So for the case of pc = 1.0 we can
safely assume a strong collinearity between workload classes.

Collinearity SDL UR KF MO LO RR GS

mean[Ed]
Low 2.68 39.7 3.86 5.63 5.39 3.26 4.81
High 2.75 111 3.64 6.83 5.21 3.43 5.47

stat. sig. (95%) X X
p-value 0.854 0.00234 0.675 0.00447 0.787 0.627 0.54

mean[Eu]
Low 0.0045 0.0457 1.94 4.72 0.735 0.704 2.12
High 0.00123 0.0534 1.76 5.15 0.792 1.02 2.3

mean[Ert]
Low 4.63 43.3 7.42 4 8.95 2.7 4.62
High 5.47 120 7.33 3.99 9.9 3.22 4.66

Table 12: Sensitivity to collinearity in throughput observations.

Table 12 shows the results from experiments with low and high levels of

25



multicollinearity. We used a non-paired T-test with a confidence level of 95% to
test for statistically significant differences in Ed. The only estimation approach
that is clearly influenced by high levels of multicollinearity in the workload is
the UR approach. This issue has also been discussed in [19] proposing different
approaches to improve the robustness of UR in case of collinear workload classes.

4.3.6. RQ6: Missing Jobs in Workload Model

On real systems, it can be difficult to capture all tasks executed by the
application, middleware system, or operating system in a workload model. Per-
formance engineers are often not aware of background processes that cannot
be directly attributed to the processing of user requests and that may hap-
pen at points in time difficult to foresee. In order to evaluate the sensitivity
of estimation approaches to missing workload classes, we adapted the micro-
benchmarks used to obtain dataset D2. We implemented a workload consisting
of 3 workload classes representing the user requests and one class representing
the background process. The user requests incurred an average CPU utiliza-
tion of U = 50%. The intensity of the background job was varied between
U = 5%, 10%, 20%, 30%. We executed a total of 40 experiment runs. The es-
timation approaches were only provided observations from the three workload
classes processing user requests as input.

Ub SDL UR KF MO LO RR GS

mean[Ed]

5% 9.32 34.5 9.33 2.28 16.7 4.61 4.82
10% 18.2 40 15.8 3.03 29.3 6.34 6.57
20% 34.4 64.5 27.6 9.15 49.4 13.5 12
30% 49.6 88.3 35.9 15.3 61.3 20.1 17.7

stat. sig. (95%) X X X X X X X
p-value 8.16e-50 6.17e-08 2.23e-21 7.6e-32 1.57e-48 6.15e-33 1.1e-15

mean[Eu]

5% 0.00104 0.0517 5.25 9.23 1.83 5.28 8.11
10% 0.00369 0.0685 7.75 13.1 3.24 9.1 10.2
20% 0.00404 0.0898 12.9 18.8 7.12 14.7 16.7
30% 0.00413 0.123 17.1 22.9 13.5 18.8 21.1

mean[Ert]

5% 15.1 38 11 4.14 21.6 2.77 5.46
10% 26.6 50.1 15.4 4.08 35.3 3.34 3.9
20% 48.7 87 21.7 4.82 54 3.79 4.13
30% 72.5 124 22.8 5.3 56.3 4.33 4.64

Table 13: Demand error Ed, utilization error Eu and response time error Er when system
executes background job with intensity Ub.

Table 13 contains the results for this experiment. We used a single factor
ANOVA with a confidence level of 95% to test for significant differences in Ed
when the intensity of the background job is varied. All estimation approaches
are significantly influenced by the hidden workload class. However, the influence
seems to be stronger on approaches based on the CPU utilization (SDL, UR,
KF, LO) compared to the other methods using response times. The direct
influence on the utilization measurements seem to have a stronger influence on
the estimation accuracy than the indirect effects of the background job on the
observed response times. Table 13 also contains the relative errors Eu and Ert to
show the influence on predictions when using the estimated resource demands.

26



4.3.7. RQ7: Delays during Processing

Experiment RQ7 simulates the situation when the processing of one request
may consist of several visits to the CPU resource with a certain delay between
the visits. The delay may be caused, e.g., by waiting for software resources (e.g.,
thread or connection pool), or for data from other hardware resources (e.g., hard
disk or network). We adapted the micro-benchmarks used to generate dataset
D2, by splitting up the Fibonacci calculation into two parts with equal length
and inserting a delay period. We varied the delay period between 25ms, 75ms,
and 125ms. In total we have 30 experiment runs.

Delay SDL UR KF MO LO RR GS

mean[Ed]
25ms 5.82 19.5 5.27 6.19 3.56 6.52 6.28
75ms 14.8 19.8 18.2 14.2 21.2 14.8 15.4
125ms 22.3 12 29.6 21.3 38.9 22.4 21.9

stat. sig. (95%) X X X X X X
p-value 8.7e-30 0.0771 1.31e-23 9.35e-29 1.06e-31 2.95e-27 5.19e-13

mean[Eu]
25ms 0.00374 0.0283 1.35 1.55 0.252 2.24 1.44
75ms 0.00156 0.0227 2.07 4.12 0.669 8.14 6.12
125ms 0.00214 0.0254 4.88 9.17 1.59 13.7 12

mean[Ert]
25ms 1.33 21.7 3.93 3.9 3.65 2.07 4.04
75ms 11.1 26.1 10.6 4.3 15.1 1.81 6.02
125ms 19.1 25.5 18.2 4.66 30.3 1.99 4.28

Table 14: Demand error Ed, utilization error Eu, and response time error Er when the jobs
are interrupted by wait periods.

Table 14 shows the result for the experiment. We used a single factor
ANOVA with a confidence level of 95% to test for significant differences in
Ed when varying the length of the delays. The relative error Ed of all estima-
tion approaches except UR is negatively influenced by the additional delay. UR
is the only considered approach that is not relying on response time measure-
ments. While in the case of SDL, KF, and LO Ert are mainly impacted, it is
Eu for MO, RR, and GS.

4.3.8. RQ8: Execution Time

We measured the execution times of the estimation approaches on dataset
D1 to compare the computational effort associated with each approach. Dataset
D1 consists of 900 measurement traces each containing observations of 3600
individual requests observed over a simulation time of one hour.

C U SDL UR KF MO LO RR GS

mean[T ]

1
10% 1.1 1.0 0.3 671.6 20.9 77.1 19413.7
50% 0.5 0.4 0.2 873.1 22.9 75.9 19619.7
90% 0.5 0.4 0.2 2288.0 21.5 78.8 20266.9

2
10% 0.6 0.6 0.4 1028.8 23.1 80.0 42910.0
50% 0.6 0.5 0.2 1221.5 30.0 80.5 42685.1
90% 0.6 0.5 0.2 3418.2 38.8 83.7 45921.4

5
10% 0.8 0.7 0.6 2073.5 41.9 89.4 251675.4
50% 0.8 0.7 0.5 2213.8 42.3 92.5 138163.4
90% 0.8 0.7 0.5 6389.0 88.0 96.9 138735.7

Table 15: Mean execution time T (in milliseconds) partitioned by number of workload classes
C and load level U .

27



Table 15 contains the average execution times T for each estimation ap-
proach. SDL, UR, and KF have a low computational effort, the execution times
for a single measurement trace is on average below 1 millisecond. LO and RR
have a moderate computational effort, on average between 20 and 100 millisec-
onds. The higher effort of RR compared to UR can be explained with the lack
of measurement traces for the queue length seen on arrival in dataset D1. RR
first needs to calculate this metric based on response times and arrival times.
MO and GS show a significantly higher computational effort, on average be-
tween 0.5 seconds and 4 minutes. Although based on the same optimization
algorithm, MO is slower compared to LO because it executes the optimization
recursively for each new sample, while LO runs the optimization once for the
complete measurement trace. GS has a high execution time compared to the
other approaches because it needs to approximate the normalising constant of
state probabilities, which is very costly operation [44].

4.4. Results Summary

In this section, we summarize the results of our experiments. We identified
the following sensitivities:

RQ1. When using estimation approaches based on time-aggregated observa-
tions (e.g., UR, KF, MO, LO), the length of the sampling interval is an
important parameter that needs to be adjusted to the system under study.
A good sampling interval length depends on the response times of requests
and the number of requests observed in one interval. The sampling inter-
val should be significantly larger than the response times of requests to
avoid end-effects and it should be long enough to be able to calculate the
aggregate value based on the observations of a significant number of re-
quests (more than 60 requests per sampling interval provided good results
in our experiments).

RQ2. Most estimation approaches (except MO and LO) were negatively influ-
enced when reducing the experiment length to 10 minutes (i.e., 10 sam-
ples). However, they still yielded results with acceptable accuracy (relative
demand error below 8%).

RQ3. All estimation approaches are sensitive to the number of workload classes.
The linear regression method UR that only uses utilization and through-
put observations generally yielded a degraded accuracy in our experiments
with several workload classes. Observations of the response times of re-
quests can help to improve the estimation accuracy significantly (RQ3.1)
even in situations with a very high number of workload classes (RQ3.3).
However, it is crucial to ensure that the modeling assumptions of the esti-
mation approaches using response times are fulfilled as they are highly sen-
sitive to violated assumptions, e.g. wrong scheduling strategies (RQ3.2).
Furthermore, insignificant flows can impair resource demand estimation
(RQ3.2). Workload classes with a small contribution to the total resource

28



demand of a system should therefore be excluded from resource demand
estimation.

RQ4. When a system operates at a high utilization level (80% or higher), the
estimation approaches KF, MO, LO and GS may yield inaccurate results.

RQ5. Collinearities in throughput observations of different workload classes
impairs the estimation accuracy of UR. While it correctly estimates the to-
tal resource demand, the apportioning between workload classes is wrong.
The other evaluated estimation approaches did not show a sensitivity to
collinearities in throughput observations.

RQ6. Estimation approaches relying on response time observations (e.g., MO,
RR and GS) are more robust to missing workload classes than approaches
using utilization observations.

RQ7. Delays due to non-captured software or hardware resources has a strong
influence on the estimation accuracy of estimation approaches based on
observed response times. While some estimation approaches (e.g., [32, 36,
33]) consider the scenarios where multiple resources contribute to the ob-
served end-to-end response time, only the authors of [21] have considered
contention due to software resources in their estimation approach.

RQ8. There are significant differences in the computational complexity of the
different estimation approaches. On our datasets, the estimation took
between under 1 millisecond and up to 20 seconds depending on the esti-
mation approach. When using resource demand estimation techniques on
a production system (e.g., for online performance and resource manage-
ment), the computational effort needs to be taken into account (especially
in data centers with a large number of systems).

In summary, our evaluation shows that using response times can improve the
accuracy of the estimated resource demands significantly compared to the tradi-
tional approach based on the Utilization Law using linear regression, especially
in cases with multiple workload classes (see Section 4.3.3). However, approaches
employing response time measurements are very sensitive if assumptions of the
underlying mathematical model are violated (e.g., wrong scheduling strategy in
Section 4.3.3, or delayed processing in Section 4.3.7).

5. Conclusion

We have surveyed the state-of-the-art in research of resource demand esti-
mation. The estimation approaches are categorized according to their required
input parameters, their provided output metrics, and their measures to im-
prove their robustness to anomalies in the measurement data. Furthermore,
we have evaluated the influence of different factors (sampling interval, number
of samples, number of workload classes, load level, collinear workload classes,

29



background jobs, and delayed processing) on the estimation accuracy of different
estimation approaches.

The results show, that using response times can improve the accuracy of
the estimated resource demands significantly compared to a linear regression
based on the Utilization Law, especially in cases with multiple workload classes.
However, approaches employing response time measurements are very sensi-
tive if assumptions of the underlying mathematical model are violated (e.g.,
wrong scheduling strategy, or delays due to other resources). In order to fully
leverage the benefits of using response time measurements in resource demand
estimation, it is therefore necessary to find appropriate abstractions that suf-
ficiently represent the relationship between observed response times and the
hidden resource demands of a system of interest. When using resource demand
estimation techniques at system run-time, the computational overhead of solv-
ing such models need to be taken into account as well. We see the following
future research directions to better reflect system properties during resource
demand estimation:

Multiple resources. The observed end-to-end response times includes signif-
icant processing time at different resources (i.e., software as well as hard-
ware resources). While in a distributed system it is often possible to obtain
response time statistics for each tier, the residence times at different re-
sources on the same physical machine are usually infeasible to monitor.
Approaches based on response times, such as [29, 20], estimate demands
only for a single bottleneck resource. The approaches in [36, 32, 44] are
applicable to cases with several processing resources, however, software re-
sources cannot be represented. Initial work considering thread pool sizes
in the estimation can be found in [21].

Layered architectures. Today’s systems typically consists of different lay-
ers. Each layer has its own resources contributing the overall end-to-end
response time. For example in virtualized environments, the schedul-
ing of physical resources at the hypervisor is more complex, especially
in over-committed scenarios. The observed response times include ad-
ditional scheduling delays if several VMs contend for the same physical
resources. None of the considered approaches using response times can
cope with such additional delays (see Section 4.3.7). One possible way is
to adapt existing estimation approaches to explicitly exploit knowledge of
the layered architecture (e.g., using layered queueing models as a basis for
resource demand estimation). Another way is to develop methods to filter
out noise from underlying layers prior to resource demand estimation.

Parallel processing. Given that modern CPUs typically have multiple cores,
an individual request may be processed in parallel by different threads.
While the queueing models underlying most estimation approaches can
be usually extended to multi-server queues, it still assumes that a request
is processed by only one thread at a time. The parallel processing of
individual requests is still an open research question.

30



Load-dependent resource demands. Load-dependent resources demands are
only considered in [37]. Given that modern CPUs typically come with a
dynamic frequency scaling scheme to reduce power consumption, the load-
dependent performance behavior of these CPUs need to be reflected in the
resource demand estimation techniques.

Furthermore, we see the need for a systematic methodology to resource de-
mand estimation. Especially, if using observed response times for resource de-
mand estimation, a performance engineer needs first decide on certain modeling
assumptions (e.g., service time distributions, scheduling strategies). That means
he must already define certain parts of his performance model before resource
demands and the resource demands are no longer only input parameters to
the performance model, that can be estimated independently. Thus the un-
parameterized performance model constitutes a input to the resource demand
estimation and depending on it and also the available measurements, a math-
ematical model for the estimation needs to be derived. A methodology would
help performance engineers by providing guidelines.

Acknowledgment

The work of Giuliano Casale has been supported by the European Union Sev-
enth Framework Programme FP7/2007-2013 under grant agreement no. 318484
(MODAClouds). The work of Fabian Brosig and Samuel Kounev has been
partly funded by the German Research Foundation (DFG) under grant no. KO
34456-1.

References

[1] G. Bolch, S. Greiner, H. de Meer, K. S. Trivedi, Queueing networks and
Markov chains: modeling and performance evaluation with computer sci-
ence applications, John Wiley & Sons, 2006.

[2] F. Bause, Queueing petri nets-a formalism for the combined qualitative and
quantitative analysis of systems, in: Petri Nets and Performance Models,
1993. Proceedings., 5th International Workshop on, 1993, pp. 14–23.

[3] S. Becker, H. Koziolek, R. Reussner, The palladio component model for
model-driven performance prediction, Journal of Systems and Software
82 (1) (2009) 3 – 22, special Issue: Software Performance - Modeling and
Analysis.

[4] E. D. Lazowska, J. Zahorjan, G. S. Graham, K. C. Sevcik, Quantitative
system performance: computer system analysis using queueing network
models, Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1984.

[5] D. A. Menascé, L. W. Dowdy, V. A. F. Almeida, Performance by Design:
Computer Capacity Planning By Example, Prentice Hall PTR, Upper Sad-
dle River, NJ, USA, 2004.

31



[6] S. L. Graham, P. B. Kessler, M. K. Mckusick, Gprof: A call graph execution
profiler, SIGPLAN Not. 17 (6) (1982) 120–126.

[7] R. J. Hall, Call path profiling, in: Proceedings of the 14th International
Conference on Software Engineering, ICSE ’92, ACM, New York, NY, USA,
1992, pp. 296–306.

[8] P. Barham, A. Donnelly, R. Isaacs, R. Mortier, Using magpie for request
extraction and workload modelling, in: Proceedings of the 6th conference
on Symposium on Opearting Systems Design & Implementation - Volume
6, OSDI’04, USENIX Association, Berkeley, CA, USA, 2004, pp. 18–18.

[9] M. Kuperberg, M. Krogmann, R. Reussner, ByCounter: Portable Runtime
Counting of Bytecode Instructions and Method Invocations, in: Proceed-
ings of the 3rd International Workshop on Bytecode Semantics, Verifica-
tion, Analysis and Transformation , Budapest, Hungary, 5th April 2008
(ETAPS 2008, 11th European Joint Conferences on Theory and Practice
of Software), 2008.

[10] M. Kuperberg, M. Krogmann, R. Reussner, TimerMeter: Quantifying Ac-
curacy of Software Times for System Analysis, in: Proceedings of the 6th
International Conference on Quantitative Evaluation of SysTems (QEST)
2009, 2009.

[11] A. Brunnert, C. Vögele, H. Krcmar, Automatic performance model gen-
eration for java enterprise edition (ee) applications, in: EPEW, 2013, pp.
74–88.

[12] D. A. Menascé, H. Gomaa, A Method for Design and Performance Modeling
of Client/Server Systems, IEEE Trans. Softw. Eng. 26 (11) (2000) 1066–
1085.

[13] B. Urgaonkar, G. Pacifici, P. Shenoy, M. Spreitzer, A. Tantawi, Analytic
modeling of multitier Internet applications, ACM Trans. Web 1.

[14] R. Nou, S. Kounev, F. Julíı, J. Torres, Autonomic QoS control in enterprise
Grid environments using online simulation, J. Syst. Softw. 82 (2009) 486–
502.

[15] F. Brosig, S. Kounev, K. Krogmann, Automated Extraction of Palladio
Component Models from Running Enterprise Java Applications, in: VAL-
UETOOLS ’09: Proceedings of the Fourth International ICST Conference
on Performance Evaluation Methodologies and Tools, 2009, pp. 1–10.

[16] Y. Bard, M. Shatzoff, Statistical Methods in Computer Performance Anal-
ysis, Current Trends in Programming Methodology III.

[17] J. Rolia, V. Vetland, Parameter estimation for performance models of dis-
tributed application systems, in: CASCON ’95: Proceedings of the 1995
conference of the Centre for Advanced Studies on Collaborative research,
IBM Press, 1995, p. 54.

32



[18] J. Rolia, V. Vetland, Correlating resource demand information with ARM
data for application services, in: Proceedings of the 1st international work-
shop on Software and performance, ACM, 1998, pp. 219–230.

[19] G. Pacifici, W. Segmuller, M. Spreitzer, A. Tantawi, CPU demand for
web serving: Measurement analysis and dynamic estimation, Performance
Evaluation 65 (6-7) (2008) 531–553.

[20] S. Kraft, S. Pacheco-Sanchez, G. Casale, S. Dawson, Estimating service re-
source consumption from response time measurements, in: VALUETOOLS
’09: Proceedings of the Fourth International ICST Conference on Perfor-
mance Evaluation Methodologies and Tools, 2009, pp. 1–10.

[21] J. F. Perez, S. Pacheco-Sanchez, G. Casale, An offline demand estima-
tion method for multi-threaded applications, in: Proceedings of the 2012
IEEE 20th International Symposium on Modeling, Analysis & Simulation
of Computer and Telecommunication Systems (MASCOTS), 2013.

[22] T. Kelly, A. Zhang, Predicting performance in distributed enterprise appli-
cations, Tech. rep., HP Labs Tech Report (2006).

[23] Q. Zhang, L. Cherkasova, E. Smirni, A Regression-Based Analytic Model
for Dynamic Resource Provisioning of Multi-Tier Applications, in: Pro-
ceedings of the Fourth International Conference on Autonomic Computing,
2007, p. 27ff.

[24] C. Stewart, T. Kelly, A. Zhang, Exploiting nonstationarity for performance
prediction, SIGOPS Oper. Syst. Rev. 41 (2007) 31–44.

[25] G. Casale, P. Cremonesi, R. Turrin, How to Select Significant Workloads
in Performance Models, in: CMG Conference Proceedings, 2007.

[26] G. Casale, P. Cremonesi, R. Turrin, Robust Workload Estimation in Queue-
ing Network Performance Models, in: 16th Euromicro Conference on Paral-
lel, Distributed and Network-Based Processing (PDP), 2008, pp. 183–187.

[27] T. Zheng, J. Yang, M. Woodside, M. Litoiu, G. Iszlai, Tracking time-
varying parameters in software systems with extended Kalman filters, in:
CASCON ’05: Proceedings of the 2005 conference of the Centre for Ad-
vanced Studies on Collaborative research, IBM Press, 2005, pp. 334–345.

[28] T. Zheng, C. Woodside, M. Litoiu, Performance Model Estimation and
Tracking Using Optimal Filters, Software Engineering, IEEE Transactions
on 34 (3) (2008) 391–406.

[29] D. Kumar, A. Tantawi, L. Zhang, Real-time performance modeling for
adaptive software systems, in: VALUETOOLS ’09: Proceedings of the
Fourth International ICST Conference on Performance Evaluation Method-
ologies and Tools, 2009, pp. 1–10.

33



[30] W. Wang, X. Huang, Y. Song, W. Zhang, J. Wei, H. Zhong, T. Huang, A
statistical approach for estimating cpu consumption in shared java middle-
ware server, in: Computer Software and Applications Conference (COMP-
SAC), 2011 IEEE 35th Annual, IEEE, 2011, pp. 541–546.

[31] W. Wang, X. Huang, X. Qin, W. Zhang, J. Wei, H. Zhong, Application-
Level CPU Consumption Estimation: Towards Performance Isolation of
Multi-tenancy Web Applications, in: Proceedings of the 2012 IEEE Fifth
International Conference on Cloud Computing, 2012, pp. 439 –446.

[32] L. Zhang, C. H. Xia, M. S. Squillante, W. N. M. Iii, Workload Service
Requirements Analysis: A Queueing Network Optimization Approach, in:
Proceedings of the 10th IEEE International Symposium on Modeling, Anal-
ysis, and Simulation of Computer and Telecommunications Systems, 2002,
p. 23ff.

[33] D. Menascé, Computing missing service demand parameters for perfor-
mance models, in: CMG Conference Proceedings, 2008, pp. 241–248.

[34] Z. Liu, C. H. Xia, P. Momcilovic, L. Zhang, AMBIENCE: Automatic Model
Building using IferENCE, Tech. rep., IBM Research (2003).

[35] L. Wynter, C. H. Xia, F. Zhang, Parameter inference of queueing mod-
els for IT systems using end-to-end measurements, in: Proceedings of the
joint international conference on Measurement and modeling of computer
systems, 2004, pp. 408–409.

[36] Z. Liu, L. Wynter, C. H. Xia, F. Zhang, Parameter inference of queue-
ing models for IT systems using end-to-end measurements, Performance
Evaluation 63 (1) (2006) 36–60.

[37] D. Kumar, L. Zhang, A. Tantawi, Enhanced inferencing: estimation of a
workload dependent performance model, in: VALUETOOLS ’09: Proceed-
ings of the Fourth International ICST Conference on Performance Evalua-
tion Methodologies and Tools, 2009, pp. 1–10.

[38] P. Cremonesi, K. Dhyani, A. Sansottera, Service Time Estimation with
a Refinement Enhanced Hybrid Clustering Algorithm, in: Analytical and
Stochastic Modeling Techniques and Applications, Vol. 6148 of Lecture
Notes in Computer Science, Springer Berlin / Heidelberg, 2010, pp. 291–
305.

[39] A. B. Sharma, R. Bhagwan, M. Choudhury, L. Golubchik, R. Govindan,
G. M. Voelker, Automatic request categorization in internet services, SIG-
METRICS Perform. Eval. Rev. 36 (2008) 16–25.

[40] A. Kalbasi, D. Krishnamurthy, J. Rolia, M. Richter, MODE: Mix Driven
On-line Resource Demand Estimation, in: Proceedings of the 7th Interna-
tional Conference on Network and Services Management, 2011, pp. 1–9.

34



[41] P. Cremonesi, A. Sansottera, Indirect estimation of service demands in
the presence of structural changes, in: Quantitative Evaluation of Systems
(QEST), 2012 Ninth International Conference on, 2012, pp. 249–259.

[42] P. Cremonesi, A. Sansottera, Indirect estimation of service demands in the
presence of structural changes, Performance Evaluation 73 (0) (2014) 18
– 40, special Issue on the 9th International Conference on Quantitative
Evaluation of Systems.

[43] C. Sutton, M. I. Jordan, Bayesian inference for queueing networks and
modeling of internet services, The Annals of Applied Statistics 5 (1) (2011)
254–282.

[44] W. Wang, G. Casale, Bayesian service demand estimation using gibbs sam-
pling, in: Proceedings of the 2012 IEEE 20th International Symposium
on Modeling, Analysis & Simulation of Computer and Telecommunication
Systems (MASCOTS), 2013.

[45] J. Rolia, A. Kalbasi, D. Krishnamurthy, S. Dawson, Resource demand mod-
eling for multi-tier services, in: WOSP/SIPEW ’10: Proceedings of the first
joint WOSP/SIPEW international conference on Performance engineering,
ACM, 2010, pp. 207–216.

[46] A. Kalbasi, D. Krishnamurthy, J. Rolia, S. Dawson, DEC: Service demand
estimation with confidence, IEEE Transactions on Software Engineering
38 (3) (2012) 561–578.

[47] D. Simon, Optimal state estimation : Kalman, H. [infinity] and nonlinear
approaches, Wiley-Interscience, Hoboken, NJ, 2006.

[48] A. J. Smola, B. Schölkopf, A tutorial on support vector regression, Statistics
and Computing 14 (3) (2004) 199–222.

[49] S. Geman, D. Geman, Stochastic relaxation, gibbs distributions, and the
bayesian restoration of images, Pattern Analysis and Machine Intelligence,
IEEE Transactions on PAMI-6 (6) (1984) 721–741.

[50] G. Box, G. Jenkins, G. Reinsel, Time Series Analysis : Forecasting and
Control, 4th Edition, Wiley, 2008.

[51] S. Chatterjee, B. Price, Praxis der Regressionsanalyse, Oldenbourg, 1995.

[52] M. Hauck, M. Kuperberg, N. Huber, R. Reussner, Deriving performance-
relevant infrastructure properties through model-based experiments with
ginpex, Software & Systems Modeling (2013) 1–21.

[53] Sysstat utilities, last accessed: 07-07-2014 11:11.
URL http://sebastien.godard.pagesperso-orange.fr/

[54] Bayes++, last accessed: 07-07-2014 13:08.
URL http://bayesclasses.sourceforge.net/Bayes++.html

35



[55] G. Bolch, S. Greiner, H. de Meer, K. S. Trivedi, Queueing Networks and
Markov Chains: Modeling and Performance Evaluation with Computer
Science Applications, Wiley-Interscience, New York, 1998.

[56] J. Rolia, B. Lin, Consistency issues in distributed application performance
metrics, in: Proceedings of the 1994 conference of the Centre for Advanced
Studies on Collaborative research, CASCON ’94, IBM Press, 1994, pp. 62–.

[57] M. Harchol-Balter, Performance Modeling and Design of Computer Sys-
tems: Queueing Theory in Action, Cambridge University Press, 2013.

[58] M. Kutner, C. Nachtsheim, J. Neter, Applied Linear Regression Models,
The McGraw-Hill/Irwin Series Operations and Decision Sciences, McGraw-
Hill Higher Education, 2003.

36


