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Abstract To ensure that a software system meets its performance requirements
during system operation, the ability to predict its performance under different con-
figurations and workloads is highly valuable. For performance prediction, we need
performance models. However, building predictive performance models manually re-
quires a lot of time and effort. Current performance analysis tools used in industry
mostly focus on profiling and monitoring transaction response times and resource
consumption. Such tools often provide large amounts of low level data which is irrel-
evant to the models while important information about, e.g, the resource demands
of individual components is missing.

In this thesis we develop a method for semi-automated extraction of Palladio Com-
ponent Model (PCM) instances of Java EE applications based on monitoring data
collected during operation. PCM is a domain-specific modelling language to de-
scribe performance-relevant information of a component-based architecture. We
implement the developed method in a tool prototype. To obtain monitoring data
we use state-of-the-art, industrial monitoring tools available for the current version
of the Oracle WebLogic Server Platform. We evaluated the approach in the con-
text of a case study with a real-world enterprise application (a beta version of the
successor of the SPECjAppServer2004 benchmark). Even though the extraction of
PCM instances require some intervention, the prototype we implemented provides
a proof-of-concept showing how the existing gap between low level monitoring data
and high level performance models can be closed.

Zusammenfassung Um die Einhaltung von Leistungsanforderungen während der
System-Laufzeit sicherzustellen, ist die Fähigkeit, die Leistung eines Software-Sys-
tems unter verschiedenen Konfigurationen und Auslastungsgraden vorherzusagen,
sehr wichtig. Für die Leistungsvorhersage werden Modelle (Leistungsmodelle) benö-
tigt, die relevante Leistungseigenschaften des betrachteten Systems abbilden. Manu-
elles Erstellen solcher Modelle ist sehr zeit- und arbeitsaufwändig. Die meisten
derzeitig in der Industrie verwendeten Werkzeuge zur Leistungsanalyse zielen auf
das Messen von Ressourcenverbräuchen sowie Ausführungszeiten einzelner System-
Funktionen ab. Viele Werkzeuge ermöglichen zwar die Erfassung von großen Mengen
maschinennaher Daten, diese Daten sind jedoch nicht hilfreich bei der Erstellung der
Leistungsmodelle. Wichtige Informationen über zum Beispiel den Ressourcenbedarf
einzelner Komponenten werden nicht geliefert.

In dieser Diplomarbeit entwickeln wir eine Methode für eine semi-automatische, auf
Messdaten basierende Extraktion von Palladio Component Model (PCM) Instanzen.
Das PCM ist eine Modellierungssprache, die insbesondere auf Leistungsvorhersagen
abzielt. Die entwickelte Methode implementieren wir als Prototyp. Die Mess-
daten erheben wir während der Laufzeit. Dafür nutzen wir aktuelle, in der Indus-
trie verwendete Werkzeuge, die für die jetzige Version der Oracle WebLogic Server
Plattform verfügbar sind. Der Ansatz wurde anhand einer Fallstudie mit einer re-
alistischen Geschäftsanwendung evaluiert (mit einer Vorversion des Nachfolgers des
SPECjAppServer2004 Benchmarks). Obgleich die Extraktion von PCM Instanzen
Benutzereingriffe erfordert, liefert der Prototyp einen Machbarkeitsnachweis, wie die
Lücke zwischen maschinennahen Messdaten und abstrahierenden Leistungsmodellen
geschlossen werden kann.
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1. Introduction

Performance is a critical factor for successful software projects [?]. Although hard-
ware speed is continuously increasing, software performance problems are com-
mon since software system complexity and size are growing at a fast pace [?]. A
widespread misconception is that performance problems can be addressed by simply
throwing enough hardware at the system [?].

To avoid performance problems, it is important to analyze the expected performance
characteristics of systems during all phases of their life cycle. The methods used to
do this are part of the discipline called Software Performance Engineering (SPE).
SPE is described as a “systematic, quantitative approach to the cost-effective devel-
opment of software systems to meet performance requirements” [?]. At each stage
of the software development process, SPE helps to estimate the level of performance
a system can achieve and provides recommendations to realize the optimal perfor-
mance level [?].

In this diploma thesis, the term performance is understood as the degree to which
a software system meets its objectives for timeliness and the efficiency with which
it achieves this [?]. Timeliness is measured in terms of meeting response time or
throughput requirements and scalability goals. Thus, performance involves both
timing behavior and resource efficiency. Request throughput and response times are
not the only properties of interest. As part of SPE, resource consumption has to be
considered as well. Especially with reference to green computing [?], minimizing the
application’s resource demands while keeping the application’s time behavior at the
required level is of increasing importance.

1.1 Motivation

To ensure that a software system meets its performance requirements, the ability
to predict its performance under different configurations and workloads is highly
valuable throughout the system life cycle. During the design phase, performance
prediction helps to evaluate different design alternatives. At deployment time, it fa-
cilitates system sizing and capacity planning. During operation, predicting the effect
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of changes in the workload or in the system configuration is beneficial. The alterna-
tive to performance prediction is to deploy the system in an environment reflecting
the configuration of interest and conduct experiments measuring the system perfor-
mance under the respective workload. Such experiments, however, are normally very
expensive and time-consuming and therefore often considered not to be economically
viable. Furthermore, experiments obviously require an implementation of the system
or at least a running prototype to be available. To enable performance prediction
we need an abstraction of the real system that incorporates performance-relevant
data, i.e., a performance model. Based on such a model, performance analysis can
be carried out.

Building predictive performance models manually requires a lot of time and effort [?].
The model has to represent performance-relevant parts of the system by reflecting
the abstract system structure. In addition, model parameters like resource demands
or system configuration parameters have to be determined.

Hence, an automated performance model extraction from a running system under
consideration would be useful. During the development phase this would ease the
evaluation of a prototype’s performance behavior. During operation, an automati-
cally extracted performance model can be applied for run-time performance manage-
ment. If one observes an increased user workload and assumes a constant workload
growth rate, performance predictions help answering when the system would reach
its saturation point. For instance, for specific workloads one can predict resource uti-
lization and service response times. In this way, the system operator can react before
application performance fails to meet objectives like, e.g., service level agreements.

Current performance analysis tools used in industry mostly focus on profiling and
monitoring transaction response times and resource consumption. Such tools often
provide large amounts of low level data (e.g., physical memory utilization) that is ir-
relevant to the models while important information about, e.g, the resource demands
of individual components is missing. The tools do not extract a performance model
that can be used for further analysis. They normally do not help until a bottleneck
actually effects the performance behavior. Currently, the monitoring data has to be
aggregated and analyzed manually when deriving performance models. This is even
complicated due to the inability of most tools to be configured to collect data only
in selected parts of the application with an appropriate level of granularity.

1.2 Aim of the Thesis

The aim of this thesis is to develop a method for automated extraction of perfor-
mance models of enterprise systems based on monitoring data collected during oper-
ation. We use state-of-the art industrial monitoring tools and attempt to provide an
end-to-end solution for the extraction. We focus on the Java Platform, Enterprise
Edition (Java EE) infrastructure and examine Java EE applications deployed under
different application server configurations.

As performance model, the Palladio Component Model (PCM) is chosen. The PCM
is an established “meta-model allowing the specification of performance-relevant in-
formation of a component-based architecture” [?]. For the specification and analysis
of PCM instances an integrated modelling environment is provided. The tool PCM
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Bench [?] enables the creation of PCM model instances and allows for deriving per-
formance metrics from the models using analytical techniques or simulation.

In this thesis the following specific goals are pursued:

• Develop a tool that generates a PCM instance from a running enterprise Java
application by means of data obtained through available monitoring tools.
The generation will be conducted semi-automatically, i.e., it will require some
limited intervention. We aim at a semi-automatic approach since the currently
available monitoring tools do not provide all data needed for PCM instance
generation. The idea is to provide a proof-of-concept showing how the existing
gap between low level monitoring data and high level performance models can
be closed.

• Conduct a case study with a real-world enterprise application in order to eval-
uate the applicability of the approach.

• Identify the issues that need to be addressed in order to enable complete au-
tomation of the model generation process.

Requirements for the tool prototype are: i) the accuracy of the performance pre-
dictions should be in a range of ≈ 20%, ii) given that the considered application
is assumed to run, the monitoring overhead has to be taken into account. The
performance of the tool prototype itself is of secondary importance.

1.3 Outline

Starting with a short description of the foundations in Chapter 2, we then explain
our approach to extract PCM instances (Chapter 3) and give an overview of related
work in Chapter 4. A detailed description of the developed extraction method is
provided in Chapter 5. Chapter 6 describes the implementation of the tool prototype
and is followed by Chapter 7 that contains a case study to evaluate the concept’s
applicability to real-world enterprise systems.
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2. Foundations

We provide an overview of technologies, products and tools used in the thesis. Start-
ing with a short description of Java EE, Oracle WebLogic Server (WLS) and its
monitoring tools are introduced. Additionally, we provide information on the Win-
dows 2008 performance monitoring tool. For performance modelling we use PCM.
We evaluate our results on the basis of a benchmark application.

2.1 Java Platform, Enterprise Edition (Java EE)

Java EE is a standard for distributed, multi-tier enterprise Java software. It con-
sists of several Java Community Process specifications concerning technologies for
an “enterprise-class server-side development and deployment platform” [?]. It aims
at reducing the cost and complexity of developing portable and scalable Java ap-
plications providing multi-tier services [?]. The current version is Java EE 5 [?],
previous versions are denoted as J2EE.

A significant part of Java EE is the Enterprise JavaBeans (EJB) Architecture. It is
a server-side framework for component-based Java applications. In order to enable
development with focus on the business logic, the Java EE platform provides an
infrastructure that takes care of technical issues like transactions, security, persis-
tence, clustering and much more [?]. The EJB 3.0 specification supports three types
of beans: i) session beans that encapsulate business logic in the form of services
executed through synchronous invocation, ii) message-driven beans (MDBs) that
encapsulate business logic executed to process asynchronous messages sent through
a message-oriented middleware, iii) entity beans that model persistent data. For
session beans, there are two subtypes: stateless session beans and stateful session
beans. Stateless session beans have no conversational state. This means that the
conversational context between a client and a bean spans only a single method call.
The consequence is that, from the client point of view, “all instances of the same
stateless session bean class are equivalent” [?]. For a stateful session bean, the con-
versational context between a client and a bean may span multiple method calls.
Thus, an instance of a stateful session bean has a state which can represent the
history of the current conversation with the currently active client.
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In EJB 3.0, from the bean developer’s perspective, a session bean is a designated
Java class implementing methods of a designated Java interface. Such an interface
is denoted as business interface, the methods it contains are called business meth-
ods. The bundle of Java interface and implementation class is deployed in an EJB
container. The EJB container is responsible for managing the EJBs, addressing the
technical issues mentioned above.

In the following, we describe how the encapsulation is realized. Note that the given
description is only a simplified one, for a detailed description, see [?]. When a
client application calls a session bean’s business method, the client never calls this
method directly. Instead, the client always refers to the corresponding business
interface. Internally in the EJB container, the client call invokes a method of a
wrapper class. The wrapper class is generated by the container when the EJB is
deployed. It implements the bean’s business interface and wraps the actual bean
class. This adapter pattern allows the container to perform middleware tasks, e.g.,
EJB lifecycle management or transaction management, when business methods are
called.

Implementations of the Java EE specification are also denoted as Java EE application
servers. The implementation we consider in this thesis is provided by the Oracle
Corporation.

2.2 Oracle WebLogic Server (WLS)

The Oracle WebLogic Server (WLS) 10.3 is an application server compliant with
the Java EE 5 specification [?]. It comes with the Oracle JRockit Java Virtual
Machine (JVM). The WebLogic version 10.3 is the first version after the acquisition
of BEA Systems by Oracle in 2008. A Gartner Research Note [?] judges BEA
Systems to be one of the leaders in the market of enterprise application servers in
the second quarter of the year 2008. The WebLogic product family would show a
“strong presence in mission-critical business software” [?]. Additionally, the list of
published results of the SPECjAppServer2004 benchmark shows a strong presence
of WebLogic Server among Java EE server systems [?].

A WebLogic Server setup is organized in WLS domains. A WLS domain is a group
of WebLogic Server resources. For example, a WLS domain may comprise eight
WLS instances on eight machines but it may also comprise only two WLS instances
on one machine. In our context it is sufficient to understand a WLS domain as a
group of WLS instances.

2.2.1 WebLogic Diagnostics Framework (WLDF)

WLS 10.3 provides a monitoring and diagnostics framework called WebLogic Diag-
nostics Framework (WLDF) [?]. WLDF enables monitoring of WLS instances and
application-specific resources providing diagnostic data.

The two main features we make use of are the data harvester and the instrumentation
engine. The data harvester can be configured to collect detailed diagnostic informa-
tion about a running WLS and applications deployed within its containers like, e.g.,
the amount of free Java heap memory or the number of pooled bean instances of a



2.2. Oracle WebLogic Server (WLS) 7

Figure 2.1: Simplified Overview of the WLDF Architecture [?]

specific stateless session bean. The instrumentation engine allows injecting diagnos-
tic actions into server or application code at defined locations. In short, a location
can be the beginning or end of a method, or before or after a method call. Depend-
ing on the diagnostic actions, event data creation is triggered each time the specific
location is reached during processing. Both data harvester data as well as event data
are persisted by an archiver that can be accessed later for further analysis.

2.2.1.1 WLDF Architecture

The WLDF architecture is depicted in Figure 2.1. There are two data generators for
WLDF: the instrumentation engine and the data harvester. The instrumentation
engine gathers information through monitors instrumenting server or application
code. The data harvester gathers information by reading data from Runtime Man-
aged Beans (MBeans) at a specified sampling rate. Runtime MBeans are objects
that expose the state of the server’s resources. These objects are registered at an
MBean server. The MBeans can also be read via the Java Management Extensions
(JMX) API. The latter “is a standard [...] for managing and monitoring applications
and services” [?].

The diagnostic data is sent to the archiver that persists the data coming from the
instrumentation engine in the events data archive and the data coming from the
harvester in the harvested data archive. The diagnostic data store can be accessed
by the accessor component.

2.2.1.2 Instrumentation Engine

The instrumentation engine weaves new code into existing Java byte code fragments
to monitor run-time behavior. The injected code triggers a specific action when it is
reached during execution. In WLDF, monitors are used to specify the actions to be
performed and at which locations the actions should be injected. There are system-
level monitors and application-level monitors, depending on whether the locations
at which actions are injected reside in server code or in application code.
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Monitors

WLDF distinguishes three types of monitors:

• Standard monitor: Both the actions and the locations are predefined and fixed.

• Delegating monitor: The locations are predefined and fixed, the actions are
configurable. Examples: The predefined locations of monitor EJB_After_Ses-
sionEjbBusinessMethods are method exits of EJB business methods which
are part of the application code. The predefined locations of the monitors
JDBC_Before_Statement_Internal and JDBC_After_Statement_Internal

are method entries and method exits in the WLS JDBC driver wrapper which
is part of the server code.

• Custom monitor: Both locations and actions are configurable. It is not possible
to define locations in server code, locations can only be defined in application
code.

Locations

Locations, where WLDF diagnostic actions can be injected, are specified by a point-
cut and a location type. In WLDF, a pointcut specifies a set of method call or
method execution joinpoints. A method call joinpoint refers to a point where a
specific method is called. A method execution joinpoint refers to a point where a
specific method is implemented. Thus, a joinpoint is always attached to a method.
A location type determines “the position relative to a joinpoint where the diagnos-
tic action will take place” [?]. A joinpoint together with a location type defines a
location.

The concept of pointcuts and joinpoints stems from the aspect-oriented programming
(AOP) paradigm. In fact, the WLDF instrumentation engine internally uses AOP.
AspectJ [?] enables AOP for Java. In terms of AspectJ, a WLDF location type
corresponds to an AspectJ advice.

Figure 2.2 illustrates how locations can be specified. With a pointcut specification
the user selects a set of methods and specifies whether the points where the methods
are invoked (call) or the method bodies (execution) are of interest. The location
types before, after, and around determine the location to be before the joinpoints,
after the joinpoints or both before and after the joinpoints. Example: The pointcut
specification execution(void B methodA()) together with location type before

would specify the location innerbefore in method B#methodA.

When specifying pointcuts, the user can select the set of methods not only by full-
qualified method name specifications but also by sophisticated qualifying expres-
sions. For example, the following pointcut

• execution(public * com.foo.bar.* initialize(...))

matches method executions of all public initialize methods in all classes in pack-
age com.foo.bar and its subpackages. The initialize methods may return values
of any type, including void, and may have any number of arguments of any types [?].
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Pointcut type
Locations for location type

before after around

execution innerbefore innerafter innerbefore, innerafter

call outerbefore outerafter outerbefore, outerafter

Figure 2.2: Schema for specifying instrumentation locations in WLDF.

Actions

Opposed to pure aspect oriented approaches, within WLDF of WLS 10.3, actions
that are subject to insertion are pre-defined. The following list presents four diag-
nostic actions that are most relevant in the context of this thesis.

• TraceAction: Used with location types before and after. “Generates a trace
event [record] at the affected location in the program execution” [?].

• DisplayArgumentsAction: Like TraceAction, but captures also method ar-
guments respectively method return values (depending on the monitor location
type).

• TraceElapsedTimeAction: Used with location type around. Generates two
event records: “one before and one after the location in the program execu-
tion. When executed, this action captures the timestamps before and after the
execution of an associated joinpoint” [?] and computes the elapsed time with
nanosecond granularity.

• MethodInvocationStatisticsAction: Used with location type around. When
executed, this action computes the elapsed time of the associated joinpoint
and aggregates the measurement with previous measurements of the same
joinpoint. The aggregated data is used to calculate statistics of, e.g., count
of invocations, average elapsed time, and standard deviation of elapsed time.
The statistics are kept in memory, i.e., this action does not generate any event
records.

Event Records

Besides the action MethodInvocationStatisticsAction, all available diagnostic
actions generate event records. The event records are described by a single data
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Field Description
Record id The numeric identifier that unambiguously identifies an

event data record.
Timestamp The timestamp when the event data record has been cre-

ated, in milliseconds.
Context id The diagnostic context identifier which uniquely identifies

a request.
Transaction id The transaction identifier (if available).
Action type The diagnostic action.
Server name The name of the server where the event record has been

created.
Monitor name The monitor that triggered the event record.
Class name The name of the class where the action has been executed.
Method name The name of the method where the action has been exe-

cuted.
Method description The parameter signature of the method where the

action has been executed. The parameter sig-
nature comprises input parameter types as well
as the return type in Java bytecode notation.
Example: The parameter signature of method
void mymethod(int[] p1, boolean p2, String p3)

is ([IZLjava/lang/String;)V

Table 2.1: WLDF event record fields [?].

structure. Table 2.1 shows the fields that are considered most relevant for the model
extraction discussed in this thesis.

When instrumentation is enabled, WLDF attaches a context id to a request entering
the system. This context id, which is unique in a WLS domain, travels along with
the request, even as the request crosses thread boundaries and JVM boundaries.
The context id lives for the whole life cycle of the request.

Additionally, the event record data structure contains fields that are only filled by a
specific diagnostic action. Table 2.2 shows both how elapsed time and how method
arguments are stored in an event record.

Deployment

System-level monitors can be added and removed dynamically during run-time. The
adding and removing of monitors concerning the application-level requires a rede-
ployment of the application, i.e., an interruption of the running application. This
interruption can be avoided, if the hot-swap feature is enabled. However, for produc-
tive systems it is unusual that this feature is enabled. Note that WLDF monitors can
be enabled and disabled. While in both cases diagnostic actions are injected, only
those actions that belong to an enabled monitor are active. Enabling and disabling
application-level monitors do not require a redeployment of the application.
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Field
Description

TraceElapsedTimeAction DisplayArgumentsAction

Payload Elapsed time processing
the associated joinpoint, in
nanoseconds.

-

Arguments - Method input arguments,
when the action is attached
to a monitor with location
type before. The method
arguments are given as a
comma-separated list of the
actual parameters’s String
representations.

Return value - The method’s return value,
when the action is attached to
a monitor with location type
after. The return value is
given as String.

Table 2.2: Action-specific event record fields [?].

2.2.1.3 Data Harvester

The data harvester gathers attribute values of MBean instances. The values are
sampled, the information is read at a configurable sampling rate. The harvester
can be configured to track the system state and performance because it supports
harvesting of Runtime MBean instances. For instance, it can be configured to observe
the amount of free Java heap memory, or the number of pooled bean instances of a
specific stateless session bean.

Field Description
Record id The numeric identifier that unambiguously identifies a har-

vested data record.
Timestamp The timestamp when the harvested data record has been cre-

ated, in milliseconds.
Server name The name of the server where the harvested data record has

been created.
MBean type The type of the harvested MBean as String.
MBean name The name of the harvested MBean instance.
Attribute name The name of the harvested attribute of the harvested MBean

instance.
Attribute value The value of the harvested attribute of the harvested MBean

instance as String.

Table 2.3: WLDF harvested data record fields [?].

The data harvester is configured by specifying a sampling period (in seconds) and a
set of MBean attributes to observe. Then, at each sampling point in time, for each
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gathered attribute value, a harvested data record is created and sent to the archiver.
Table 2.3 shows an excerpt of the fields of a harvested data record: Similar to an
event data record, there are fields for the record id, the timestamp and the server
name. The remaining fields describe the MBean instance where the attribute value
is taken from.

2.2.1.4 Archiver and Accessor

Both the event data and the harvested data are persisted in a diagnostic data store.
WLDF allows to configure a file-based store or to attach a database as storage
location. Generally, file stores offer better throughput than a database store and
generate no network traffic [?]. For diagnostic data of one single WLS instance,
the archiver guarantees to store the diagnostic records in the correct order, i.e.,
chronological order with ascending record ids.

The data accessor offers access to the diagnostic data by an interface that abstracts
from the concrete storage configuration. This interface provides a query language to
select particular data. The query language supports filtering of diagnostic records
on field values, but does not allow for customized ordering [?].

2.2.2 JRockit Mission Control

For monitoring at the JVM level, Oracle JRockit Mission Control comprises a set of
tools running on the Oracle JRockit JVM [?]. The tool JRockit Runtime Analyzer
(JRA) can be triggered on one or more Java processes. JRA produces recordings
about the JVM, the application it is running and generates a report for offline
analysis. Among other things, the recorded data includes information about method
sampling (synonym for method profiling).

The JRA method sampling feature, that we apply to extract resource demands
(see Section 5.6), is described in the following. The user can specify a sampling
rate: the length of the time interval between the samples can be configured down
to 1 millisecond. At one sampling point in time, JRA logs the methods currently
executed by active threads that are running in the Java process JRA was invoked on.
If the user configures JRA to consider stack traces, the tool logs the method stack
according to a user-specified trace depth. The JRA recording contains a sample
count for each logged method, and allows to visualize call traces depending on the
configured stack trace depth.

The example in Figure 2.3 depicts how JRA considers method stacks during method
sampling. The UML sequence diagram shows an execution path of the method
compress of a simple archiver. The points t1, . . . , t3 indicate when JRA collects
method samples. The table describes which method samples, depending on the trace
depth, are collected (methods surrounding Archiver#compress are omitted in this
example). At t2 for instance, with a trace depth of 3 the method Archiver#compress

is sampled. With a trace depth of 2 the method Archiver#compress would not be
sampled at t2. This leads to the conclusion that with a sufficient trace depth, a
method is always sampled at a sample time point when the considered method itself
or one of its successors are executed. Obviously, this only holds if the execution
takes place in a thread that is actually considered at the sample time point.

It is claimed that JRA method profiling has “typically less than 2 percent over-
head” [?]. To reduce the overhead, at a sampling point in time JRA does not
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:Archiver :Folder :File

compress()

compressFolder()

compressFile()

:File

compressFile()

t1

t2

t3

Sample time points

Sample Collected method samples
time points trace depth=2 trace depth=3

t1 Archiver#compress

Folder#compressFolder

Archiver#compress

Folder#compressFolder

t2 Folder#compressFolder

File#compressFile

Archiver#compress

Folder#compressFolder

File#compressFile

t3 Archiver#compress Archiver#compress

Figure 2.3: Example: Method sampling with different trace depths.

consider each active thread but selects the threads to monitor at random. However,
we expect the overhead to increase if the user configures a high sampling rate and a
high stack trace depth.

2.3 Windows Performance Monitor (perfmon)

The Windows Performance Monitor (perfmon) [?] is a monitoring tool that allows
observation of resource utilization. We use the version 6.0.6001 shipped with Win-
dows Server 2008. The feature we make use of is the observation of specific system
resources during a specified time interval. The observations are performed via sam-
pling. The minimal supported overall sampling rate is limited to one sample per
second. We measure CPU utilization, disk utilization, network utilization and mem-
ory utilization.

The CPU utilization is represented by the fraction of time the processor is non-idle.
If the CPU has multiple cores, the utilization is given as the average utilization of all
cores. In perfmon, we use the performance counter % Processor Time. According
to the description provided by the tool, the “calculation of whether the processor is
idle is performed at an internal sampling interval of the system clock (10ms)”. Note
that this rate is independent of the overall sampling rate mentioned above.

For the disk, there are performance counters % Disk Read Time, % Disk Write

Time and % Disk Time. However, these metrics are problematic because the per-
centage may exceed 100 percent [?] and therefore we only use them as indicator for
disk load. A valid quantification of disk utilization is obtained with the perfmon
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Figure 2.4: Performance-influencing factors of a component.
Performance-influencing factors of a component [?].

performance counter for the disk idle time [?]. With this measure, we quantify the
busy time percentage by 100 minus the value of % Idle Time.

In order to monitor if the network or the memory are saturated we refer to the
resource overview perfmon provides. There, the network as well as the memory uti-
lization are provided. Note that we do not use these values for further computation,
we only use them to check if the network or memory are bottlenecks.

2.4 Palladio Component Model (PCM)

The Palladio Component Model (PCM) is a modelling language for Quality-of-
Service (QoS) predictions, in particular performance predictions. It is a“meta-model
allowing the specification of performance-relevant information of a component-based
architecture” [?] to build predictive performance models.

The PCM is aligned to the Component-Based Software Engineering (CBSE) pro-
cess (see [?]) by providing a domain-specific modelling language for each developer
role. Four developer roles, namely component developer, system architect, system
deployer and business domain expert are distinguished [?].

The components are specified and implemented by the component developer. A
Palladio component specification mainly comprises a specification of required and
provided interfaces as well as performance-relevant implementation details of pro-
vided services. System architects assemble components to build architecture models
of applications, whereas system deployers create a resource model representing the
system environment and allocate components of the architecture model to resources.
Business domain experts finally develop PCM usage models describing the expected
system usage by means of different usage scenarios.

Enabling performance predictions requires the consideration of performance influ-
encing factors. As illustrated in Figure 2.4, in order to capture the time behavior and
resource consumption of components, four factors have to be taken into account. Ob-
viously, the component’s implementation affects the performance. Additionally, the
component may depend on external services whose performance has to be considered
as well. Furthermore, the deployment context has an impact on the component’s
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Figure 2.5: Example: PCM repository.

performance: Both the way how the component is used and the execution environ-
ment have to be taken into account for the prediction. The PCM allows for these
factors by supporting parameter dependent specifications [?, ?, ?]. Thus, different
hardware resources, assembly contexts and usage contexts can be considered when
conducting performance analysis.

The PCM Bench tool [?] facilitates the development and analysis of PCM instances.
Once a PCM instance is built, different performance solvers can be triggered. For ex-
ample, PCM offers an analytical queueing network solver as well as a pure simulation-
based approach named SimuCom. In this thesis we use the SimuCom since “it sup-
ports all features of the PCM models” [?] whereas other solvers do currently not
cover the entire set of PCM constructs.

Nevertheless, if the PCM instance is not developed during the software development
process, obtaining a PCM instance afterwards is a complex task. Besides manual
modelling [?], automatically extracting PCM instances from existing software sys-
tems remains a challenge (see Chapter 4). In the remainder of this section, we
present the sub-models representing the domain-specific modelling languages for the
different developer roles.

2.4.1 Repository

The repository contains the components, the interfaces the components require or
provide, and data types required to specify the services the interfaces comprise.
Relations between components are not expressed directly, they are only connected
through interfaces respectively through roles that refer to interfaces.

The repository shown in Figure 2.5 consists of three components whereas each com-
ponent provides one interface. Component WorkOrderSession requires the inter-
faces IMfgSession and IMessagerSenderSession, the other two components do
not require any interface.

To abstractly describe the internal behavior of a service that is provided by a com-
ponent, PCM introduces the concept of a service effect specification (SEFF). For
the purpose of performance modelling, there is a specialization of a SEFF, denoted
as resource demanding SEFF (RDSEFF). A RDSEFF abstractly depicts the com-
ponent service’s control and data flow by mapping the relationship between the
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Figure 2.6: Example: RDSEFF of component WorkOrderSession (see Figure 2.5).

provided service and the required services. The notation of a RDSEFF resembles
the notation of UML activity diagrams: There are activities, in PCM notation called
actions, that can be assembled to characterize the service effect. The capability i) to
enrich actions by annotations specifying resource demands and ii) to specify transi-
tion probabilities and resource demands depending on the service’s formal parameter
is a distinctive feature of a RDSEFF.

The RDSEFF in Figure 2.6 describes the service IWorkOrderSession# schedule-

WorkOrder as implemented in component WorkOrderSession. Starting with an ex-
ternal call of service IMfgSession#findAssembly and an internal action requiring
CPU resources, there is a loop whose loop iteration number is specified as probability
function. The loop body contains an external call to IMfgSession#getInventory

and a further internal action that is enriched by a CPU resource demand annotation.
For simplicity, this example does not make use of parameter-dependent constructs.
As shown in the repository in Figure 2.5, service IMfgSession#findAssembly de-
mands a parameter of type string as input, but the presented RDSEFF model does
not specify this parameter, i.e., the input parameter is not considered to influence
the performance of the described service implementation.

2.4.2 System

The system architect uses components from the repository and assembles them to
build a system model. In fact, the architect creates so-called assembly contexts that
reference components. Without the indirection via assembly contexts it would, e.g.,
not be possible to model components that are deployed on multiple resources. In
PCM, a system is understood as a composed structure like a component that consists
of other components. The PCM system model therefore contains not only connec-
tors between assembly contexts, but also connectors between assembly contexts and
the system boundary in order to determine the interfaces the system provides re-
spectively requires.
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Figure 2.7: Example: PCM System (see also Figure 2.5).

Figure 2.7 illustrates the system model ExampleSystem that provides the interface
IWorkOrderSession. Internally, the system consists of three assembly contexts that
are connected according to their specification in the repository in Figure 2.5. In our
context, it is sufficient to understand an assembly context as a component instance.
Nevertheless, note that this is a simplification.

2.4.3 Resource Environment and Allocation

In PCM, the execution environment of a component instance is represented by a
resource environment on the one hand and a mapping of component instances to
resources by means of an allocation model on the other hand. The resource envi-
ronment consisting of resource containers has to be specified at an abstract level.
Palladio distinguishes two types of resources. There is a passive resource type with
semaphore semantics (e.g., connection pools) and a processing resource type that is
characterized by a processing rate (e.g., CPUs). For the connection of two resource
containers, PCM offers a linking resource type represented as specialization of the
processing resource type.

Note that in the current PCM version passive resource types are not modelled in
the PCM resource environment model but in the components.

2.5 Benchmark SPECjAppServer2004 Next

The benchmark we consider for evaluation is a beta version of the successor of
SPECjAppServer2004 1. We denote that version as SPECjAppServer2004 Next.
Note that it is a synonym specific to this thesis.

1SPECjAppServer is a trademark of the Standard Performance Evaluation Corp. (SPEC). The
SPECjAppServer2004 results or findings in this publication have not been reviewed or accepted
by SPEC, therefore no comparison nor performance inference can be made against any published
SPEC result. The official web site for SPECjAppServer2004 is located at http://www.spec.org/
osg/jAppServer2004.

http://www.spec.org/osg/jAppServer2004
http://www.spec.org/osg/jAppServer2004
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SPECjAppServer2004 Next is a Java EE benchmark developed by SPEC’s Java
subcommittee for measuring the scalability and end-to-end performance of Java EE-
based application servers. The benchmark’s workload is generated by an application
that is modelled after an automobile manufacturer. The application represents a
real-world e-business system comprising customer relationship management (CRM),
manufacturing and supply chain management (SCM) as business scenarios.

Figure 2.8 shows the architecture of the benchmark as it is described in the bench-
mark documentation. The actual benchmark application consists of an orders do-
main, a manufacturing domain and a supplier domain. The domains are deployed on
the considered Java EE application server, they are implemented with EJBs accord-
ing to the EJB 3.0 specification. The domains interact with a database server via
Java Database Connectivity (JDBC), or more precisely, via the persistence frame-
work Java Persistence API (JPA). The point-to-point communication between the
domains is implemented using the Java Message Service (JMS) queues, i.e., it is
asynchronous. The workload for the orders domain is triggered by dealerships, the
workload for the manufacturing domain is triggered by manufacturing sites. In the
context of the benchmark, both dealerships and manufacturing sites are simulated
by the benchmark driver. The supplier domain in turn is triggered by the ma-
nufacturing domain. Connected suppliers are simulated by the supplier emulator.
Whereas suppliers and the supplier domain communicate only via Web services, the
orders domain is accessed by Java Servlets. The manufacturing domain is accessed
either thorugh Web services or EJB calls, i.e., Remote Method Invocation (RMI).
As illustrated, the system under test spans both the Java application server and the
database server. The emulator and the benchmark driver are required to run outside
the system under test to not affect benchmarking results.

The benchmark driver knows five benchmark operations. A dealer may browse
through the catalog of cars, purchase cars or manage his dealership inventory, i.e.,
sell cars or cancel orders. A manufacturer may create vehicles (via Web service or
RMI).

Internally, the following business logic is implemented: Whenever a dealer creates
an order that is considered a large order, the large order is sent to the manufacturing
domain. A large order is an order with more than 20 vehicles. The manufacturing
domain processes large orders by scheduling work orders. New work orders can also
be scheduled without outstanding large orders. To process a work order, compo-
nents are required. If the manufacturing site’s inventory does not contain enough
components, purchase requests for new components are sent to the supplier domain.
There, purchase orders are sent to selected suppliers. The suppliers in turn inform
the supplier domain when the components are delivered. This delivery information
is then routed to the manufacturing domain. When a work order is completed, the
orders domain is informed about the fulfilled order. Note that, in fact, work order
processing is implemented to be independent from the availability of components.
A work order can also be completed without any notification from the supplier do-
main. For the benchmark, it is important to create some work, it is not required to
implement an accurate business process.

We use the SPECjAppServer2004 Next application to evaluate our approach to per-
formance modelling in the context of a case study (see Section 7.4). We consider the
benchmark representative since it is based on a real-world, complex and state-of-
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Figure 2.8: SPECjAppServer2004 Next architecture.

the-art system. Previous versions of that benchmark have already been successfully
applied for research purposes [?, ?, ?, ?]. The fact that SPECjAppServer2004 Next
is the fourth version in the line of SPEC benchmarks targeting at Java EE applica-
tion servers shows that this benchmark line is well adopted by the industry.
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3. Approach

In order to enable performance prediction for Java EE applications, we extract PCM
instances during run-time. This chapter briefly describes how we intend to achieve
this goal, a detailed description of our method is given in Chapter 5. In the following
we provide an overview of how we extract the application’s architecture and resource
demands (Sections 3.1 and 3.2).

3.1 Extract the Application’s Architecture

Given a software application, extracting its architecture requires identifying its build-
ing blocks and the connections between them.

3.1.1 Componentization

In our context, componentization is the process of breaking down the considered
software application into components. Thus, componentization is a part of software
architecture reconstruction. Reverse engineering of software architectures is a large
research field [?] which is outside the focus of this thesis. This thesis does not pursue
automatic detection of components and component boundaries, it is assumed that
information about the component boundaries is available. Such information can
be obtained in different ways, e.g., specified manually by the system architect or
extracted automatically through static code analysis (see Section 4.1.2).

The component definition underlying the PCM is: “A software component is a unit
of composition with contractually specified interfaces and explicit context dependen-
cies only. A software component can be deployed independently and is subject to
composition by third parties” [?].

Considering the notion of components in Java EE it is evident that the relationship
between components in terms of the software architecture and EJBs is not necessar-
ily required to have a one-to-one cardinality [?]. We consider EJBs as components
or elements of components. From an architectural point of view, one basic compo-
nent can also consist of more than one EJB (without being modelled as composite
component). Hence, when using the term “component”, the component boundaries
have to be explicitly.
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3.1.2 Extract Control Flow

The control flow between the identified components and the control flow inside the
components is extracted by call path tracing. Therefore, we analyze monitoring
data consisting of event records obtained through instrumentation. In order to
trace single requests, the event records have to be grouped and ordered. The set of
groups represents the set of equivalence classes according to the following equivalence
relation. Let a, b be event records obtained through instrumentation. Then a relates
to b (a ∼ b) if and only if a and b were triggered by the same system request. This is
well-defined because an event record is triggered by exactly one system request. In
the following, equivalence classes are denoted as call path event record sets. Ordering
the elements of a call path event record set in chronological order results in a call
path event record list. From this list a call path can be obtained.

For event record grouping, the WLDF instrumentation engine provides the concept
of a diagnostic context id. For event record ordering, the WLDF instrumentation
engine provides an event record id and event record timestamps (see Table 2.1).

Dynamic control flow analysis by call path tracing requires a representative work-
load during instrumentation. Only paths that are exercised can be captured. If
the workload is not representative, e.g., does not cover all relevant components and
service calls of the application under consideration the resulting model will be in-
complete. This is a disadvantage compared to an analysis approach that is based on
static information, e.g., on the application’s code base. If there is a representative
workload, the proposed analysis approach has the advantage to expose the “effective
architecture” [?].

3.2 Extract the Application’s Resource Demands

We estimate the application’s resource demands from measurements we conduct
during run-time. Measured values are, e.g., sampling counts in a fixed time interval,
utilization of resources or response times. The measurement overhead has to be
considered, since measuring itself may affect the system performance. This is often
referred to as Heisenberg Effect.

Determining the resource demands of a transaction involves identification of de-
manded resources and quantification of resource-specific demands. In the example
in Figure 3.1, we assume transaction tx1 to use two processing resources P1 and P2

(e.g., CPU and I/O).

Figure 3.2 illustrates the processing resources demanded by tx1. First resource P1,
then resource P2 is used. For both processing resources, there are waiting queues.
When a resource is busy (for example due to previous concurrent requests), incoming
requests are put in the waiting queue. The more a resource is utilized, the longer
the average waiting time in the corresponding queue is.

The timeline in Figure 3.3 depicts an exemplary execution of transaction tx1. The
example shows that the transaction’s response time t4 − t0 consists of the waiting
times for P1 and P2 and the resource demands at P1 and P2 we are interested in. In
order to extract a transaction’s resource demand for a given resource, we follow two
approaches: i) estimate the resource demand using the response time or ii) estimate
the resource demand based on the measured resource utilization and transaction
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transaction tx1 {

// use resource P1

. . .
// use resource P2

. . .

}

Figure 3.1: Example: Resource demanding transaction tx1.

Figure 3.2: Example: Resources P1, P2 as demanded by transaction tx1.

Figure 3.3: Example: Processing transaction tx1.
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throughput by means of the Service Demand Law [?]. The two approaches are
explained in more detail below:

• Response time.

– Approach. Estimate the resource demand using the response time.

– Assumptions. The considered resource dominates the overall response
time. The waiting time in the queue is insignificant compared to the
actual processing time we are interested in.

– Applied on example from Figure 3.3. Let the transaction of interest
be tx1 and the resource of interest be P1. The response time t4− t0 would
include both waiting times and the usage of other resources. The time
interval t2−t0 would include the waiting time for P1. The desired resource
demand is t2− t1, but normally this interval cannot be measured directly.

• Service Demand Law.

– Approach. Compute the resource demand by the Service Demand Law.
We introduce the notation:

T Length of observation period.

#tx Number of completed transactions during T.

U Mean resource utilization during T as a frac-
tion between 0.0 and 1.0.

X Throughput describing the number of com-
pleted transactions per time unit.

D The transaction’s resource demand.

If T , #tx and U are available, then the throughput X can be computed by
X = #tx

T
. Finally, the resource demand D is estimated using the Service

Demand Law [?]. The law states that the average resource utilization U
divided by the transaction’s throughput X is the resource demand of the
transaction:

D =
U
X

Note that this law refers to a single transaction and a single resource.

– Assumptions. In the entire observation period, the entire utilization of
the considered resource is produced by the considered transaction.

– Applied on example from Figure 3.3. Let the transaction of interest
be tx1 and the resource of interest be P1. If it could be guaranteed that
only tx1 is running during the observed time interval, this approach would
be applicable.

Both approaches for resource demand extraction have strong assumptions. Since we
observe the application under consideration during run-time, changing the execution
environment to fulfill those prerequisites is not practicable. Hence, the challenge is
to investigate how the approaches described above can be applied under weaker
conditions.
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• Response time. The challenge is to obtain the response time in a way, that
the measured time intervals correspond to the actual resource demand. In
order to minimize the error injected by resource waiting times, the resource’s
contention has to be low. In order to minimize the error that is injected by the
usage of resources that are not under consideration, the measurement points
have to be defined accordingly.

• Service Demand Law. Even if it is assumed that metrics like transaction
throughput and resource utilization are easy to measure (with negligible er-
rors), the application of the Service Demand Law is challenging. In order to
ensure that the resource utilization only stems from the considered transaction,
there are two options: i) It is assured that only the transaction of interest runs
during the observation period. ii) The total resource utilization can be appor-
tioned between the workload produced by the considered transaction and the
workload produced by other transactions in a way that there is a fraction which
maps to the workload as it is produced by the considered transaction. System
monitors normally provide only total resource utilization statistics. We follow
the approach of partitioning the resource utilization since we cannot assume
to have the system’s workload under control. We expect many transactions to
run at the same time (a transaction mix). Hence, the total resource utilization
has to be partitioned between the running transactions. However, in practice
there is some resource usage (sometimes called system overhead), that cannot
be assigned to only one specific transaction. “It is usually hard to find a way to
distribute the unattributed resource usage” [?] among the transactions. Thus,
the system overhead introduces an error when determining resource demands.
Normally, the system overhead is almost constant, it does not scale with in-
creased system load. That is why the resources should be “reasonably utilized”
when measuring, e.g., 50%. The higher the resource utilization the lower is
typically the relative error introduced by the system overhead.

Menascé provides some methods for apportioning the total resource utilization
in [?, ?]. System workload is partitioned in so-called workload classes since real
workloads are“viewed as a collection of heterogeneous components” [?]. There,
the workload is partitioned among, e.g., different applications or workload
classes that are derived based on resource consumption characteristics. We
aim at a more fine-grained workload partitioning.

Since the measurements obviously depend on the execution environment, the ex-
tracted resource demands are platform-specific. That means, each time the execution
environment changes, resource demands have to be extracted again. Nevertheless,
platform-specific measurements result in a calibrated model that promises better
predictions than a model with estimated platform-independent resource demands.
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4. Related Work

For the purpose of performance prediction we extract performance models, more
precisely PCM instances, from running enterprise Java applications using monitor-
ing data. The monitoring data is obtained through WLDF. The following sections
present related work concerning the automated extraction of performance models
and general application monitoring (particularly run-time monitoring of Java appli-
cations).

4.1 Automated Extraction of

Performance Models

In this section we show existing approaches for the automated extraction of perfor-
mance models. As performance models, mainly LQN models and PCM instances
are considered. Furher approaches to performance prediction are presented in sub-
section 4.1.3.

4.1.1 Layered Queueing Network (LQN) Models

Hrischuk et al. [?] and Israr et al. [?] both reverse engineer performance models using
traces obtained via instrumentation. The approach is not restricted to Java systems,
it is intended for general distributed systems that can simultaneously execute several
distributed operations. In [?], angio traces are recorded. They are considered as
special traces since each distributed operation gets assigned with a unique angio dye
id. For message ordering, trace event timestamps are used. Once such traces are
recorded, a graph representing the message flow is generated. Using a rule-based
graph analysis approach the graph is then transformed into a LQN model whereas
different interaction types such as synchronous and asynchronous messaging are
detected and represented accordingly.

Since Israr et al. claim that such “traces are difficult to obtain in practice” [?], an
approach based on a less restricted trace data format is proposed. It “uses conven-
tional trace data which is available from many tracing tools” [?] and does not rely
on angio traces containing an angio dye id that is propagated through the system.
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Instead, so-called eventInfo properties of message traces are used to achieve message
correlation. Here, eventInfo is not required to uniquely identify messages. However,
it should provide information that, together with observed timestamps, makes a ro-
bust message correlation possible. Furthermore, Israr et al. generate LQN models
considering different interaction types using an “algorithm which scales up linearly
for very large traces” [?] in contrast to the algorithm presented in [?].

The injection of the diagnostic context id in WLDF resembles the concept of the
angio dye id. Thus, our tracing approach corresponds to [?]. The target model of
[?] and [?] is a LQN model and therefore not component-based in contrast to our
performance model. Furthermore, we collect resource utilization information that
goes beyond call path tracing whereas the LQN models extracted by Hrischuk and
Israr still need to be enriched by resource demands.

4.1.2 PCM Instances

The reverse engineering approach presented in [?] is based on static analysis. The
prototype called ArchiRec extracts information about EJBs by examining their code
and their deployment descriptors [?]. The focus is placed on identifying the compo-
nents the system is made of and using this information to automatically derive the
system architecture. To evaluate component candidates, code coupling metrics are
iteratively applied.

Inspired by [?], Java2PCM [?] aims at automatically retrieving RDSEFFs including
parametric dependencies by means of source code analysis. The analysis “recon-
structs an abstraction of the control and data flow” [?] of a service by identifying
relevant actions. In order to obtain explicit parametric dependencies, a data flow
analysis is applied. The dependencies are made explicit by “creating boolean expres-
sions for branch conditions and arithmetic expressions for loop iteration numbers,
which [...] reference [...] only parameters” [?].

Our approach uses run-time data for PCM instance generation. However, the above
two approaches can be used to identify the component boundaries and obtain the in-
formation needed in order to automatically refactor the code according to the schema
we propose in 5.4. Thus, these approaches can be considered as complementary to
our approach.

In an ongoing project, Krogmann intends to reverse engineer PCM instances for
Java applications using both static analysis and dynamic analysis. The component
architecture is obtained via ArchiRec and RDSEFFs are obtained by applying ma-
chine learning algorithms on run-time monitoring data [?]. By monitoring service
call frequencies and parameter values at the interface level, the black-box property
of components is preserved. The monitoring data then serve as input for genetic
programming that aims at recovering intra-method control flow and explicit para-
metric dependencies [?]. With regard to the resource demands, ByCounter [?] and
microbenchmarks are used to abstract from concrete timing values [?]. ByCounter
instruments the application bytecode for “dynamic counting of executed Java byte-
code instructions” [?] and method invocations. Combined with benchmarking target
execution platforms on bytecode instruction level whereas parameter influences are
taken into account, performance predictions are then made possible. In [?], the ap-
proach is successfully applied in a case study. Particularly in view of the machine
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learning algorithms’s outputs and the determination of abstract resource demands
further studies are of great interest.

While our approach uses WLS and WLDF, Krogmann’s approach is execution plat-
form independent. Both approaches assume a representative workload can be pro-
vided for the dynamic analysis. We extract the effective architecture and provide
statistics about method arguments related to the control flow but do not obtain ex-
plicit parametric dependencies. Krogmann resolves explicit parametric dependencies
using genetic programming. Since we collect timing values, we are able to obtain
performance models that are calibrated for one execution environment and therefore
the models can be expected to allow us predictions of higher accuracy. Furthermore,
we profit from using WLDF as it allows us to obtain resource utilization information
both at the system level and application level.

Another ongoing project concerning the generation of PCM instances is called Q-
ImPrESS [?]. For the purpose of reverse engineering performance models, both
static and dynamic analysis will be applied. “Static analysis is used to extract the
static structure from the source code. The gathered information is then enhanced
with measurements taken on existing and running systems using dynamic analy-
sis.” [?]. Furthermore, the usage profile will be derived from run-time monitoring
data. However, Q-ImPrESS focuses on performance prediction at design time.

4.1.3 Other Measurement-Based Approaches
to Performance Prediction

Denaro et al. [?] and Chen et al. [?] identify that the middleware functionality,
such as transaction and persistence services, dominates distributed system perfor-
mance. The middleware is considered as a key factor for performance problems in
component-based applications.

For distributed software applications Denaro proposes performance testing instead
of performance modelling. To allow performance prediction, application-specific per-
formance test cases are developed to be executed on available middleware platforms.
It is emphasized that the test case generation is also possible in the early stages of
the software development process. Therefore, Denaro introduces an approach where
performance test cases are derived from architecture designs.

While Denaro at al. propose the observation of application-specific test cases, Chen
et al. propose an application-independent approach to benchmark middleware: A
simple benchmark processing typical transaction operations is used to extract a per-
formance profile of the underlying component-based middleware and to construct a
generic performance model. This allows software architects to experimentally dis-
cover acceptable application configurations. However, application-specific behavior
is not modelled explicitly.

Eskenazi et al. [?] describe another approach: A component operation’s prediction
model is described as a function over the operation’s signature type to the resource
demand whereas the signature type consists of performance relevant parameters.
Via regression methods, the function is derived from resource demand measure-
ments conducted while the specific component operation is executed in a testbed
under performance-relevant use cases. The performance of a system request is then
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computed by composing single operations’s performance functions with regard to the
control flow. Due to the required testbed, “factors affecting the perceived perfor-
mance of a software component like influences by external services” [?] are neglected
in this approach. In addition, to ensure the measurements’s validity, the testbed
must be stable during the development process.

Compared to our approach, the approach presented by Eskenazi et al. can be applied
also at early architectural phases. However, while we extract the PCM instance
during run-time of an application, that approach requires separate measurements
in a stable testbed. Furthermore, the performance model proposed in [?] is less
comprehensive than the PCM.

In [?], Zheng et al. proposes filters for performance model estimation. The use of
performance models is considered limited, since “unknown and time-varying model
parameters, such as CPU demands” [?] are difficult to be directly measured. To
overcome this issue, the Extended Kalman Filter is applied to estimate hidden pa-
rameters indirectly from easily available metrics, such as response time and resource
utilization. Therefore, the relation between hidden parameter values and available
measurements is modelled as a nonlinear dynamic system. Further on, a systematic
methodology for defining a filter estimator is provided. The proposed estimation
approach is explored through experiments and considered feasible.

However, parameter values that do not underly Gaussian distributions but, e.g.,
multi-modal distributions cannot be captured with the proposed approach. This
might be critical due to the observations made by Rohr et al.: “Software response
time distributions can be of high variance and multi-modal” [?]. Anyhow, developing
estimators for performance model parameters is a considerably different approach
which requires more studies to answer the question if or under which conditions
estimators allow reasonable predictions.

4.2 Application Monitoring at Run-time

Approaches aiming at performance prediction are presented in the previous section.
Here in this section, we present existing work concerning general application moni-
toring at run-time.

4.2.1 Java Applications

In [?, ?] an automatic monitoring framework providing information among different
levels involved in the execution is proposed. More specifically, it covers the opera-
tion system-, JVM-, middleware- and application-level. It enables tracing the exe-
cution and detects poor performance periods according to user-defined performance
objectives. Once those objective are defined, “the framework can operate automat-
ically” [?]. The analysis of monitoring data about resource consumption combined
with execution behavior primarily aims at hotspot and bottleneck detection.

Systä presents techniques for reverse engineering behavioral models of Java appli-
cations [?]. Using static and dynamic analysis, models similar to UML sequence
diagrams and UML statechart diagrams are created. Here, event trace information
is generated by running the Java application under control of a debugger. Break-
points allow the extraction of the intra-method control flow. However, running an
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application in debugging mode “slows down the execution [...] considerably” [?] and
is not feasible for systems in operation. Compared to our target model, the proposed
tool set called Shimba does not create any component model and does not consider
data flow or data dependencies. UML sequence diagrams are also extracted by [?]
and [?] which both use tracing data obtained by instrumentation.

Dynatrace Diagnostics is a tool for performance management that is developed in
industry [?]. It traces transactions for applications deployed in distributed, hetero-
geneous .NET and Java environments. Besides providing a call tree, it also monitors
method argument values and provides information about the system’s resource uti-
lization [?]. An explicite architecture model is not extracted.

An adaptive monitoring and performance management framework called Compas
is proposed in [?, ?]. Performance data is extracted in real-time from a running
application and used to generate interaction models describing the system behavior.
Contrary to PCM there is no explicit context model defined. “In order to reduce
the total overhead of monitoring” [?], an adaptive monitoring concept is proposed
that keeps the amount of monitoring small while detecting performance anomalies.
It “addresses performance issues related to the EJB layer in J2EE applications” [?].
Components are instrumented by placing a proxy layer around each component.
The implementation assumes synchronous invocation style, i.e., it considers session
beans and entity beans but no message-driven beans.

In [?, ?], a framework called TestEJB for analyzing J2EE applications is presented.
It allows “the measurement of response times, call dependencies inside an assembly,
memory consumption of components or single invocations” [?]. Components are
instrumented using the interceptor stack provided by the JBoss application server.
It remains unclear if the collected response times and memory consumptions could be
used for performance prediction. Furthermore, in contrast to our extraction method,
the tool does not consider dependencies between parameter values and the control
flow.

Kieker [?, ?] is framework to monitor, analyze, and visualize the run-time behavior
of Java applications. It does not depend on a special Java execution environment.
It can be used to monitor call paths data and response times, and aims at reengi-
neering of, e.g., UML sequence diagrams, Markov chains or timing diagrams. The
instrumentation component allows to specify the methods to monitor with Java an-
notations. In contrast to the WLS-specific WLDF, Kieker does not monitor method
arguments. Moreover, WLDF provides information about resource utilization and
WLS-specific data which is not possible to obtain with Kieker.

4.2.2 Other Applications

Of course, there are monitoring tools for software other than Java applications.
For instance, Tracealyzer is “a viewer and analysis tool for recordings of embedded
systems” [?]. Recordings are obtained using separate software recorder that have
to be integrated in the base platform of the considered system. It focuses on task
scheduling and communication. The system behavior can be presented “at a higher
level of abstraction compared to debuggers” [?]. However, the abstraction level is
low compared to the architecture model we extract.
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4.3 Summary

The related work presented in the previous sections shares several aspects of our
approach. Call path tracing using run-time monitoring data, extraction of PCM
instances and monitoring resource utilization are not required to be developed from
scratch. The novelty is to provide an end-to-end solution for the automated extrac-
tion of PCM instances from a running application using state-of-the-art industrial
tools.



5. The Extraction Method

In this chapter we describe the method to extract PCM instances from running
Java EE applications. Starting with a refinement of the scope in Section 5.1 we
present how we intend to build the PCM sub-models. Section 5.8 concludes this
chapter by summarizing the method’s assumptions and limitations.

5.1 Refining the Scope

In this thesis, we focus on the EJB 3.0 Component Model and do not consider the
web tier including Servlets or user interface technologies like Java Server Faces or
Java Server Pages. We consider session beans and message-driven beans because they
normally encapsulate reusable business logic of Java EE applications. As persistence
framework, we use JPA. Traditional entity beans are out of the scope of this thesis
and the term “entity” is hereafter used to refer to a JPA entity. As components
or elements of components we consider EJBs. JPA entities are not considered as
components, since they act as simple data access objects.

We monitor a single WLS instance, clusters of application servers are not in the
scope of this thesis. This eases chronological ordering of event records which is
needed for call path tracing as presented in Section 3.1.2. For a single WLS instance,
the event records are automatically stored in chronological order (see 2.2.1.4). For
multiple WLS instances, the server-specific event records would have to be merged
and sorted to ensure correct ordering. Sorting the event records in chronological
order then would need to handle the issue of clock synchronization in a distributed
environment.

The PCM instance extraction of the application under consideration is done semi-
automatically. This means that some manual intervention is required. For example,
to allow componentization, the component boundaries have to be specified. Ad-
ditionally, the component code has to be structured in a form that makes intra-
component control flow explicit. This information can be provided by the developer
or derived from a preceding analysis (see related work in Chapter 4).

We focus on the extraction of the PCM repository and system model. The PCM
model of the resource environment is assumed to be specified manually. This is
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because the Java EE application server, which is the extractor’s main source of
information, can not provide complete information on the resource environment by
design. For instance, the application server can not know about the properties of
the machine the database server is running on. However, the framework presented
in [?] can extract static information on the resource environment and can therefore
be used to provide a PCM resource environment model instance. Furthermore, the
PCM allocation model, which depends on the resource environment, is assumed to
be manually created. The role of the business domain expert and therefore the PCM
usage model is also not considered since end users normally interact with the system
through the web tier which, as mentioned earlier, is outside the scope. However,
we do consider extracting usage profiles at the component level and at the system
boundaries.

5.2 Identifying Component Boundaries and

System Boundaries

In our context, a component can be a session bean, a message-driven bean or a set
of these EJBs. As stated in Section 3.1.1, we assume information on component
boundaries to be available. In order to control the model’s granularity, the following
options are considered for specifying component boundaries:

• Every EJB is considered as a separate component.

• EJBs contained in the same package are considered as a single component.

• The grouping of EJBs into components is specified explicitly.

Note that we only consider basic components, i.e., we do not consider composite
components. A component consisting of more than one EJB is also treated as basic
component.

System boundaries are not explicitly declared. The system boundaries are extracted
during inter-component control flow extraction. Services that are called from outside,
i.e., that are not called from another component and not invoked by a JMS message
are marked as system service call. An interface containing marked services is then
attached to a system provided role. This method implies that exactly one system is
extracted. Furthermore, the extracted system is modelled to only provide and never
require services.

The described boundaries allow us to monitor requests both at the system boundary
and at the component boundaries. We then can construct probabilistic workload
models discussed in detail in Section 5.7.

Table 5.1 shows an exemplary mapping of EJBs to components. Component1 consists
of two EJBs whereas Component2 and Component3 each consist of one EJB. We use
this as an ongoing example in the following section.
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Component name EJB name

Component1
EJB_A

EJB_B

Component2 EJB_C

Component3 EJB_D

Table 5.1: Example: EJBs mapped to Components.

5.3 Extracting Inter-Component Control Flow

Extracting the inter-component control flow means obtaining the components and
the connections between them. In terms of PCM, parts of the repository model in-
stance and the system model instance are extracted. We use call path tracing in this
step to extract the required information. We explain the control flow extraction only
for session beans. For message-driven beans listening to messages from JMS queues
(asynchronous point-to-point communication) the extraction is similar but requires
monitoring of queue-specific message sending and receiving. Publish-subscribe mes-
saging is not considered here.

In order to enable call path tracing, WLDF is configured to instrument the EJB
business methods. Each time a business method is reached during processing, we
assume two event records to be raised by the injected code: one at the begin of the
method and one at the end of the method. Every system request then is represented
by a list of event records. According to Section 3.1.2, the list is a call path event
record list, i.e., its elements are chronologically ordered.

The example in Figure 5.1 shows a system request’s UML sequence diagram. To
process a call to method ClassA#methodA1, there are four classes involved. At each
method entry and method exit, an event record is generated. In the diagram, it is
the event record id that is shown. Table 5.2 shows the call path event record list in
more detail. The event record ids of the diagram and the table correspond. Each
method call is represented by a pair of event records that encloses the event records
of inner method calls. The list represents the same behavioral information as the
sequence diagram does.

For such a list of event records, inter-component control flow extraction necessitates
that the instrumented methods have to be mapped to the components they belong
to. This additional information then allows for extraction of the control flow between
components.

As presented in Table 2.1, an event record provides fully qualified names about the
instrumented method and its surrounding class. First we have to figure out which
EJB’s business method the instrumented method implements. In other words, the
instrumented method has to be mapped to an EJB. Normally, an EJB is implemented
by exactly one implementation class, but this is not a requirement. An EJB may
be implemented by more than one class, and one class may implement more than
one EJB. In our context, we assume that we can unambiguously map a method
together with its surrounding class to an EJB. Once the EJB is determined, it can
be mapped to its containing component as described in the preceding section. The
instrumented business method is then interpreted as a service in terms of PCM.
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Figure 5.1: Example: UML sequence diagram showing a request.

Id Class name Method name Location (method entry/exit)
1 Class_A methodA1 entry
2 Class_B methodB1 entry
3 Class_B methodB1 exit
4 Class_C methodC1 entry
5 Class_D methodD1 entry
6 Class_D methodD1 exit
7 Class_D methodD1 entry
8 Class_D methodD1 exit
9 Class_C methodC1 exit

10 Class_C methodC2 entry
11 Class_C methodC2 exit
12 Class_A methodA1 exit

Table 5.2: Example: Call path event record list.
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EJB name Implementation class
EJB_A ClassA

EJB_B ClassB

EJB_C ClassC

EJB_D ClassD

Table 5.3: Example: Mapping of EJBs and implementation classes.

Figure 5.2: Example: UML sequence diagram showing a request (to components).

In the ongoing example, for reasons of clarity we assume a simple mapping of EJBs
to their implementation classes, i.e., each EJB is implemented by exactly one class.
In Table 5.3, the mapping is depicted. Figure 5.2 shows the same system request as
Figure 5.1 but relates the request to the corresponding components. More precisely,
the sequence diagram shows component instances. The main difference between the
two UML sequence diagrams is that classes ClassA and ClassB are embraced by
component Component1.

The inter-component control flow is then used to build a PCM repository model and
a PCM system model.

• PCM repository model. Whereas the set of components is already fixed
by the mapping of EJBs to components, the interfaces and provided/required
roles are inferred from the observed service calls between the components.
Considering a service call from ComponentX to ComponentY, the service call
is registered as a provided service of ComponentY and a required service of
ComponentX. The provided services of one component are summarized in one
interface that is then attached to the component via provided role. This in-
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Figure 5.3: Example: Repository model.

terface is also attached to those components that require a service contained
in the interface, but then via required role. Thus, a component’s provided i
nterface consists only of those provided services that are obtained during the
dynamic analysis. The same applies for the component’s required interface.
Hence, the provided interface does not necessarily correspond to the set of Java
interfaces implemented by the component’s EJBs.

• PCM system model. The observed connections between the components
are directly used to build a system model. For each invoked component, an
assembly context is created. A service call between two components results
in an assembly connector whereas a service call from “outside”, i.e., a call to
a component without a successor in the call path event record list, results in
a delegation connector and a corresponding system provided interface. This
does not apply for calls to MDBs. A call to an MDB has no successors in
the call path event record list, but it should not result in a system provided
service.

Figures 5.3 and 5.4 show the repository model respectively the system model based
on the information given in Table 5.2. Further system requests result in extending
the models if not already captured methods are called or if methods are called from
a not already registered caller.

For reasons of simplicity, method arguments are omitted in the example. However,
modelling interfaces and their services requires modelling of method parameters.
Therefore, data types have to be mapped to PCM entities as well.

The inter-component control flow extraction produces a PCM system model and a
PCM repository model. While the latter already contains components and interfaces,
the internal structure of components has to be extracted in a further step.

5.4 Extracting Intra-Component Control Flow and

Parametric Dependencies

A Palladio component specification includes information on the component-internals.
To capture the performance-relevant behavior of provided services using RDSEFFs,
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Figure 5.4: Example: System model.

the intra-component control flow must be modelled. In the following we examine the
extraction of the control flow in detail. In the following we examine the extraction
of the control flow in detail.

In order to abstractly describe the control flow of a component service, it is as-
sumed that performance-relevant code fragments are labeled. To make monitoring
of those fragments possible, the component code has to be structured in a form
that makes performance-relevant intra-component control flow information explicit.
This requirement arises from the lack of tool support for in-method instrumenta-
tion. Current tools do not support instrumentation at defined locations other than
method entries/exits or method calls [?].

We use a schema for organizing component code in such a way that RDSEFF in-
formation about sequences of PCM AbstractActions is encoded in the structure.
In other words, we refactor component implementations by moving performance-
relevant actions to separate methods named according to a defined naming schema.
This enables WLDF measurements regarding, e.g., parameter dependencies or CPU
resource demands.

We first present general information about the extract method refactoring. Then in
Sections 5.4.1 and 5.4.2 we introduce the naming schema and describe how it is used
to help extracting intra-component control flow and parametric dependencies.

Refactoring: Extract Method.

Code refactoring means changing code structure without modifying the code’s func-
tional behavior. The aim is to improve extra-functional properties of the code like,
e.g., maintainability or extensibility [?, ?]. In our context, refactoring is employed
to allow the monitoring of method internals. The refactoring we use is the extract
method refactoring. Figure 5.5 shows a basic example: The code fragment doing
some heavy computation inside method computeSomething is moved into a separate
method.

If the extracted code fragment contains references to local variables that are defined
outside the extracted code fragment, these references have to be passed as method
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long computeSomething ( int va l ) {
/∗ do some computation ∗/

/∗ do some heavy computation ∗/
long r e s u l t = /∗ . . . ∗/ ;

return r e s u l t ;
}

→

long computeSomething ( int va l ) {
/∗ do some computation ∗/ ;

long r e s u l t = heavyComputation ( va l ) ;

return r e s u l t ;
}

/∗ the e x t r a c t ed method ∗/
long heavyComputation ( long p1 ) {
/∗ do some heavy computation ∗/
return /∗ . . . ∗/ ;
}

Figure 5.5: Refactoring: Extract method.

<methodname> = <pname> ‘_’ <idA> ‘_’ <action> ‘_’ <idZ>

<pname> = The name of the parent method.
<action> = ‘internalaction’ | ‘externalcallaction’ |

‘loopaction’ | ‘loopbody’ |

‘branchaction’ | ‘branchtransition’

<idA> = A number that, together with <pname>, uniquely identi-
fies the parent method. In case of method overloading,
the parent method’s name alone could not be used as
identifier.

<idZ> = A number that uniquely identifies the extracted method
amongst those extracted methods with the same parent
method. Note that the number only serves as identifier,
it is not an index of a sequence.

Figure 5.6: Naming of extracted methods representing performance-relevant actions.

arguments. If the extracted code fragment contains assignments to local variables
that are referred after the extracted code fragment, the assigned values have to
be returned by the method. Given that Java supports only one return value per
method, a helper class encapsulating the return values has to be introduced in case
there are multiple values to return.

5.4.1 Intra-Component Control Flow

We first present the naming schema for the relevant PCM actions and then describe
how we extract the intra-component control flow from monitoring data.

Naming Schema

In order to make monitoring of performance-relevant control flow possible, a method
implementing a service that is provided by a component has to be refactored.
Performance-relevant actions are extracted to separate, newly created methods. We
refer to the method from which the newly created methods are extracted as the
parent method. The names of the extracted methods are used to encode informa-
tion about the parent method’s control flow. The naming schema is introduced in
Figure 5.6.



5.4. Extracting Intra-Component Control Flow & Parametric Dependencies 41

The schema is intended for the PCM actions internal action, external service call
action, loop action and branch action. PCM fork actions are not considered in
our context, since we refactor only EJB implementations which are required to be
single-threaded and cannot spawn new threads. Figures 5.7, 5.8 and 5.9 illustrate
the respective refactorings for internal actions, external call actions, loop actions
and branch actions. As method to refactor, we consider method mymethod. The
expressions <FormalParameterList>, <ActualParameterList> and <ReturnType>

are obtained as described in the preceding section. The listings depict how the
respective actions have to be moved to separate methods. The listings are not
intended to explain how performance-relevant actions could be identified. As already
mentioned, we assume this information to be available. It can be provided by the
developer or derived from a preceding analysis (see related work in Chapter 4).

In our context, refactoring the code of a method of interest might require method
inlining. Method inlining means to replace a method call by the code of the method
being called. More precisely, a method that is called by the method of interest needs
to be inlined i) if it is not an external service and ii) if the method itself or one of
its successors contains a call to an external service. Once the performance-relevant
actions have been identified and the process of method inlining has been finished,
the refactoring can be carried out. Note that the identification of performance-
relevant actions depends on the component boundaries. The component boundaries
determine whether a service call is an external service call or not.

Control Flow Extraction

From now on, we assume that the component services have been refactored according
to the described naming schema. The intra-component control flow is extracted by
means of call path tracing similar to the process described in Section 5.3: WLDF
is configured to instrument, in addition to the EJB business methods, the newly
created methods. Each time such a method is reached during processing, one event
record at the method entry and one event record at the method exit is generated by
the injected code. Thus, for a single system request we can obtain a call path event
record list containing in addition to the event records for EJB business methods also
event records for the newly introduced methods representing performance-relevant
actions. Using the information encoded in the method names, intra-component
control flow can be extracted. The RDSEFF in Figure 2.6 shows a control flow that
has been extracted using such monitoring data.

In addition to the control flow, we can also extract branching probabilities and proba-
bility mass functions (PMFs) for loop iteration numbers. By dividing a performance-
relevant loop into a loop action method and a loop body method, for each service
execution the loop iteration number can be obtained. Aggregating data from mul-
tiple executions then leads to a PMF for the loop iteration number. This way, the
loop iteration number as shown in loop action loopAct3 in Figure 2.6 can be esti-
mated. Similar to loop iteration numbers, because of the separation of branch action
methods and branch transition methods, branch transition probabilities can be esti-
mated. A loop iteration number specification becomes lengthy if the set of different
observations is large. In this case, the PMF can be made more coarse-grained by
merging the probabilities for loop iteration number intervals.

Furthermore, since the internal actions now reside in separate methods, measuring
the response times of internal actions is possible.
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5.4.2 Parametric Dependencies

Using the procedure described in the previous section, branching probabilities and
statistics for loop iteration numbers can be collected. However, one of PCM’s out-
standing strengths is the support for extensive parameterization. In PCM, one “can
specify the dependencies between input parameters and resource demands, branch
probabilities, or loop iteration numbers in RDSEFFs” [?].

In contrast to techniques using static code analysis we cannot extract explicit para-
metric dependencies from monitoring data. Instead, we can monitor method pa-
rameter and relate observed parameter values to the observed method control flow.
As an example, for each observed parameter value we can monitor which branch
of an if-statement is taken or how often a loop body is executed. Thus, based on
monitoring data probabilistic models of parametric dependencies can be extracted.
This way, it is even possible to observe parametric dependencies that would not be
covered by static code analysis.

Automatically detecting relevant parametric dependencies using only monitoring
data requires, e.g., an analysis of correlations or a machine learning technique (see
[?]). If no previous knowledge is available, an automatic detection method has to
cope with a high degree of freedom: For each action the method has to figure out to
what extent the action depends on available parameters. Furthermore, parametric
dependencies are not restricted to parameter values, PCM supports parameterization
for multiple characterization types like, e.g., a parameter’s byte size. We assume that
potential performance-relevant parametric dependencies are already indicated. Such
information might stem from the developer, from an automatic detection method
as described above, from static code analysis, or other analysis methods. With
the knowledge of which parametric dependency to observe we then use monitoring
data to probabilistically quantify that dependency. Thus, we only consider those
dependencies that already marked as performance-relevant.

In analogy to the previous section, performance-relevant parametric dependencies
are encoded in method names using a specific naming schema for the extracted
methods.

Extended Naming Schema

The naming schema we introduce to encode performance-relevant parametric depen-
dencies is an extension of the schema presented in Figure 5.6. This means, the param-
eter dependency annotations are attached to the methods where the performance-
relevant actions are moved to (see Section 5.4.1). Figure 5.10 shows the syntax of
the extended schema. For the definition of the gray-colored non-terminal symbols
see Figure 5.6. Parameter dependency declarations (<pddeclaration>) are only al-
lowed for methods representing branch actions or loop actions. We do not consider
dependencies between input parameters and resource demands of internal actions.
We discuss the extraction of resource demands in Section 5.6.

In PCM, actions can depend on multiple parameters and on multiple characterization
types. The extended naming schema also allows the declaration of action-specific
parametric dependencies. A parameter dependency declaration consists of a param-
eter reference and a characterization type. In PCM, a parameter can be a method
input parameter or a local variable. A local variable may be initialized as return
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<methodname> = <pname> ‘_’ <idA> ‘_’ <action> <ext> ‘_’ <idZ>

<ext> = <pddeclaration> | <pddeclaration> <ext> |

<pddeclaration> = ‘_pardep_’ <parref> ‘_’ <varchartype>

<parref> = <paramindex>

<paramindex> = The index of the parent method’s input parameter list.
<varchartype> = A PCM variable characterization type represented as

String, e.g., ‘VALUE’ or ‘NUMBER_OF_ELEMENTS’.

Figure 5.10: Extended naming schema to annotate parameter dependencies.

value of a preceding external service call. The extended naming schema allows ref-
erencing only input parameters. The input parameter is identified by its index in
the parent method’s parameter list. This is because WLDF does not work with
parameter names but with parameter lists.

Figure 5.11 illustrates exemplary refactorings to encode identified performance-
relevant parametric dependencies into the extracted method names. The extracted
methods stem from refactorings conducted in the previous step as described in Sec-
tion 5.4.1. The branch action of method mymethod is considered to depend on the
value of the method’s input parameter a. The loop action is considered to depend
on the value of the method’s input parameter b.

We do not model data flow, i.e., explicit propagation of parameter characterizations.
Hence, encoding performance-relevant parametric dependencies is only appropriate
for implementations of services that are exposed to the system boundary (for the
same reason we do not model the setting of return variables in a RDSEFF). Let us
assume we would extract a parametric dependency for a service that is not exposed to
the system boundary, e.g., a dependency between the value of an input parameter x
and a loop iteration number. To conduct simulations the value of x would then have
to be set. However, we do not model how the input parameters of an external service
call are set. Therefore, we would have to extract how parameters characterizations
are propagated. An automated extraction based on monitoring data would require,
e.g., an analysis of correlation between input parameters and passed parameters or an
application of a machine learning technique [?]. Given that we do not provide such
techniques we can extract parametric dependencies only at the system boundary.
Only those parameters that occur at the system boundary can be explicitly specified,
namely via PCM usage models.

Nevertheless, note that the extraction of parametric dependencies also works for
components that are not directly accessed through a system interface. We just
cannot simulate the respective RDSEFFs in the context of the models we extract,
but in a (manually) adapted model the extracted parametric dependencies might be
useful.

Dependency Extraction

The inner control flow of a component service can be extracted as proposed in Sec-
tion 5.4.1. WLDF is configured to instrument, in addition to EJB business meth-
ods, extracted methods representing performance-relevant actions. More precisely,
method entries and method exits are instrumented. If WLDF is configured to inject
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a DisplayArgumentsAction at the EJB business method’s entry, the corresponding
event records contain information about the method’s input parameter. This way,
parameters can be monitored and related to the actual control flow.

In its current version, WLDF provides only String representations of the monitored
parameters. The String representation is derived from the toString method of class
java.lang.Object. For parameters of primitive type, their String representations
are derived from the toString method of the corresponding Java primitive wrapper
classes. This is why we cannot monitor all parameter types and all PCM variable
characterization types. For instance, the value of a parameter of type int can be
observed while the byte size of the parameter cannot be observed.

To discuss how specified parameter dependencies can be quantified, in the following
we observe a single component service. Thanks to the annotated parameter depen-
dencies it is known which parameter variable characterization should be related to
which performance-relevant actions. For reasons of simplicity, we assume that the
actions depend on at most one input parameter and at most one PCM variable char-
acterization type. Then for each service execution and for each parameter dependent
action a tuple can be obtained that consists of a parameter characterization and an
information about which control flow path has been taken.

• For a branch action with bt1, . . . , btm branch transitions, the monitored control
flow path is characterized by an index i, 1 ≤ i ≤ m.

• For a loop action, the monitored control flow path is characterized by the
observed loop iteration number i, i ≥ 0.

Let v be an observed parameter characterization, then t = (v, i) is such an observed
tuple for one parameter dependent action. Considering multiple service executions,
then for each parameter dependent action a there is a list La = (ta,1, . . . , ta,k). In
the following, let the action a be fixed so that the index a can be omitted, i.e.,
La = L = (t1, . . . , tk). From the observed tuple list, PMFs can be derived. Let
V = {vk|tk = (vk, ik) ∈ L} be the set of observed parameter characterizations. Let
C = {ik|tk = (vk, ik) ∈ L} be the set of observed control flow paths. Then for each
v ∈ V , there is a PMF fv : C → [0, 1]. The PMF fv is defined as

fv : C → [0, 1], fv(i) =
#{tk|tk = (vk, ik) ∈ L ∧ vk = v ∧ ik = i}

#{tk|tk = (vk, ik) ∈ L ∧ vk = v}
.

Informally, fv(i) is the number of observed tuples (v, i) divided by the number of
observed tuples where v is involved. Notice that the PMF evaluates to zero, i.e.,
fv(i) = 0, if i /∈ Cv = {ik|tk = (vk, ik) ∈ L ∧ vk = v} where Cv is the set of observed
control flow paths for v.

Thus, we quantify parametric dependencies by PMFs. The question now is how
these PMFs can be integrated in the PCM model.

• For a branch action, there are PMFs fv : Cv → [0, 1] with Cv the observed
subset of 1, . . . ,m (m is the number of possible branch transitions). Figure 5.12
sketches an example of how these PMFs can be represented in PCM. There is a
branch action that depends on the parameter characterization x.VALUE. There
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Figure 5.12: Example: Exemplary branch action depending on x.VALUE.

Figure 5.13: Example: Exemplary loop action depending on x.VALUE.

are three probabilistic branch transitions for the branch actions, i.e., m = 3.
Instead of providing a single probability for a branch transition the transition
probabilities depend on x.VALUE. A surrounding branch action is added. For
each v ∈ V = {v1, . . . , vn}, a guarded branch transition is introduced.

• For a loop action, there are PMFs fv : Cv → [0, 1] with Cv a subset of the
observed loop iteration numbers. Figure 5.13 shows an example of how the
PMFs can be represented in PCM. There is a loop action that depends on
the parameter characterization x.VALUE. There is no single PMF for the loop
iteration number, the loop iteration number depends on x.VALUE. A surround-
ing branch action is added. For each v ∈ V = {v1, . . . , vn}, a guarded branch
transition is introduced.

Note that the parameter characterization dependent branch transition probabilities
or loop iteration numbers can be also modelled using the conditional operator “? : “.
In Figures 5.12 and 5.13, for reasons of clarity, we chose a surrounding branch action
to model the different cases.

If the set V = {v1, . . . , vn} is large, distinguishing the branch transition probabil-
ities respectively loop iteration numbers for each vi is impractical. In this case,
we propose to partition the set V and work with partitions instead of individual
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values. The branch transition probabilities respectively loop iteration numbers can
be specified partition-wise. The PMF representing one partition can be computed
by aggregation: Let Pr = {vr,1, . . . , vr,l} ⊆ V be such a partition. Then the PMF
fr : C → [0, 1] representing the partition Pr is defined as the normalized weighted
sum of the PMFs fvr,1 , . . . , fvr,l :

fr : C → [0, 1], fr(i) =

∑l
j=1 p(vr,j)fvr,j(i)∑l

j=1 p(vr,j)

with

p : C → [0, 1], p(v) =
#{tk|tk = (vk, ik) ∈ L ∧ vk = v}

#V

responsible for weighting and normalization.

5.5 Obtaining Information on the

Resource Environment

The PCM distinguishes two types of resources. There is a passive resource type
with semaphore semantics and a processing resource type that is characterized by
a processing rate. A specialization of the latter, a linking resource type, is used to
represent network resources.

We assume a PCM resource environment model to be available. A PCM resource
environment consists of resource containers and possibly linking resources connect-
ing them. A resource container then contains processing resources. The execution
environment of an application server including a database tier is complex. Due to
the reasons given in 5.1, we consider a single WLS instance. In addition, a model of
the database server (DBS) has to be provided.

Passive resources are not modelled within a PCM resource environment model. They
are modelled within the PCM repository model, attached to components. The com-
ponents we introduced in Section 5.2 group EJBs in an architectural sense. At the
component level, EJB instance pools can be modelled as passive resources. In order
to model passive resources that belong to the Java EE container level, a separate
component has to be introduced. Database connection pools and the WLS global
thread pool are such resources. They reside at the container level and can be mod-
elled as passive resources. Respective pool sizes can be obtained by reading the WLS
settings from Runtime MBeans.

5.6 Extracting Resource Demands

Resource demands include demands for passive resources and demands for processing
resources as they are modelled in the PCM repository respectively resource environ-
ment model. Obviously, modelling resources and extracting resource demands have
to be aligned. Thus, this section builds on the previous section.
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5.6.1 Demands for Passive Resources

In PCM, a demand for a passive resource consists of two actions: acquire resource
action and release resource action. Passive resources considered in Section 5.5 model,
e.g., EJB instance pools, JDBC connection pools or the WLS global thread pool.

The usage of an EJB instance pool is implicitly given when a request calls a service
that is provided by an EJB. Within a WLS instance, a typical request is processed
by one thread. Since we consider only one WLS instance, one request then would
trigger two WLS global thread pool accesses. At the beginning of the request, the
pool is asked for thread acquisition. At the end of the request, the acquired thread is
released. One possibility to model this behavior is to provide a wrapper component
for all system requests. Such a component then has to provide all interfaces that are
provided by the system, the RDSEFFs have to delegate the services with surrounding
acquire and release actions. However, in general, a request is not pinned to one
specific thread, the processing thread may vary. Thus, an exact modelling of acquire
and release actions is not possible.

Additional information is required to find out when the JDBC connection pool is
accessed. At first, one has to find out which services make use of JDBC connections.
However, even if this information is available, exact modelling of acquire and release
actions is difficult. This is because a request normally comprises multiple service
calls and instead of acquiring and releasing a JDBC connection each time the DBS
is used, WLS makes optimizations. Within a WLS instance, the WLS may pin the
JDBC connection to a request the first time the connection is used. Further service
calls then make use of the same JDBC connection. This means that the position of
the acquire action is not fixed. It depends on the concrete sequence of service calls.
Again, an exact modelling of acquire and release actions is impractical.

5.6.2 Demands for Processing Resources

Unlike single demands for passive resources, demands for processing resources have
to be quantified. It is not sufficient to model which action requires specific resources,
one also has to provide information to what extent the resources are stressed. In
PCM, resource demands for processing resources are attached to internal actions.

With reference to Section 5.5, we have to extract the Java EE application’s demands
for resources underlying the WLS instance, the DBS and the connections between
them. Demands for memory resources like physical memory or Java heap memory
are outside the scope of the thesis. Furthermore, we do not consider disk usage or
data transfer over the network. We do consider CPU resources on the application
server and CPU resources on the DBS.

In the subsequent sections we discuss how total resource demands can be distributed
between the application server CPU and DBS CPU and how demands for the specific
resources can be quantified.

5.6.2.1 Apportioning Demands among Different Resources

We assume a typical EJB business method to perform the following activities in
arbitrary order in the context of a transaction: Reading some data from a database,
computing something and writing some data to a database. Note that database
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class LargeOrderSess ion {
. . .
public LargeOrder createLargeOrder ( S t r ing assemblyId , . . . ) {

// ex t r a c t ed e x t e rna l c a l l
Assembly assembly = c r e a t e L a r g e O r d e r 1 e x t e r n a l c a l l a c t i o n 1 ( assemblyId ) ;
// ex t r a c t ed i n t e r na l ac t ion
LargeOrder largeOrder = c r e a t e L a r g e O r d e r 1 i n t e r n a l a c t i o n 2 ( assembly , . . . ) ;
return l a rgeOrder ;

}

private LargeOrder c r e a t e L a r g e O r d e r 1 i n t e r n a l a c t i o n 2 ( Assembly assembly , . . . )
{

/∗ compute something ∗/
LargeOrder largeOrder = new LargeOrder ( assembly , . . . ) ;
entityManager . p e r s i s t ( largeOrder ) ;
return l a rgeOrder ;

}

private Assembly c r e a t e L a r g e O r d e r 1 e x t e r n a l c a l l a c t i o n 1 ( St r ing assemblyId ) {
Assembly assembly = mfgSess ion . f indAssembly ( assemblyId ) ;
return assembly ;

}
}

class MfgSess ion {
. . .
public Assembly f indAssembly ( S t r ing assemblyId ) {

// ex t r a c t ed i n t e r na l ac t ion
return f i n d A s s e m b l y 1 i n t e r n a l a c t i o n 1 ( assemblyId ) ;

}

private Assembly f i n d A s s e m b l y 1 i n t e r n a l a c t i o n 1 ( St r ing assemblyId ) {
return entityManager . f i n d ( Assembly . class , assemblyId ) ;

}
}

Figure 5.14: Example: EJB business method createLargeOrder.

accesses are typically not directly performed by EJB business method code, they
are encapsulated in JPA entity accesses. This information hiding is helpful for EJB
developers, but complicates the resource demand extraction.

WLDF provides system-level monitors that can be configured to record database ac-
tivities. Diagnostic actions attached to monitors JDBC_Before_Statement_Inter-

nal and JDBC_After_Statement_Internal are triggered whenever a JDBC state-
ment is executed. With the help of the diagnostic context id, the JDBC statements
can be related to a specific request. Figure 5.14 shows an EJB business method
implementation. The method createLargeOrder in class LargeOrderSession is
refactored according to the schema proposed in Section 5.4.1. It consists of an ex-
ternal service call and an internal action. The called external service is the business
method findAssembly of another EJB, the method’s implementation consists of a
single internal action. Focusing on JPA usage, the internal action of method cre-

ateLargeOrder persists a new instance of entity LargeOrder whereas the internal
action of called service findAssembly tries to find an instance of entity Assembly.

For the exemplary call path event record list shown in Table 5.4, we assume WLDF
to be configured to instrument EJB business methods with the predefined monitors
EJB_Before_SessionEjbBusinessMethods and EJB_After_SessionEjbBusiness-

Methods, to instrument methods representing performance-relevant actions with cus-
tom monitors CustomMonitor_Before_Action and CustomMonitor_After_Action
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and to instrument execution of JDBC statements with the predefined monitors
JDBC_Before_Statement_Internal and JDBC_After_Statement_Internal. Let
the event record list be triggered by a request for createLargeOrder. The example
is intended to illustrate the issues involved in separating demands for the application
server and the DBS. Note that the search for an instance of entity Assembly leads
to a JDBC access performed within the surrounding internal action (Id 5 and 6). In
contrast, writing of an instance of entity LargeOrder does not take place within the
surrounding internal action. The JDBC access is performed after method create-

LargeOrder is processed (Id 13 and 14). This is because the request is processed
inside a transaction. The database write is conducted during the commit phase of
the transaction. In this case, the commit phase follows the processing of method
createLargeOrder. Hence, we can distinguish between database read and write if
we observe when a JDBC statement is processed.

Measuring response times of JDBC statements is not possible with the current
WLDF version. There is no JDBC statement monitor that is compatible with
the time measuring diagnostic actions TraceElapsedTimeAction or MethodInvo-

cationStatisticsAction. The latter action cannot be applied for another reason:
That action does not create event records, but aggregates measurement data to pro-
vide statistics. Thus, there is no context id and the measurements cannot be related
to a specific service call.

In order to apportion resource demands among the application server and the DBS,
we propose an approximation. With regard to a transaction, we split the resource
demands at the boundary between working phase and commit phase. The working
phase is assumed to stress the application server, the commit phase is assumed to
stress the DBS. This approximation introduces several errors: i) The resource de-
mands of database writes are overestimated. Database writes are part of the commit
phase, but the commit phase also produces overhead on the application server, e.g.,
overhead for managing the transaction which is different for a one-phase or a two-
phase commit. ii) The resource demands of database reads are ignored. iii) The
resource demands of the application server are either over- or underestimated, de-
pending on whether the database access including reads and writes is under- or
overestimated. The accuracy of the approximation depends on the characteristics
of the transaction. If the transaction performs only database reads and no writes,
the error will be higher than for a transaction whose database reads and writes are
balanced. Note that a read on a JPA entity does not always entail a database read
because JPA implementations provide data caching. Furthermore, the approxima-
tion abstracts from the location where database accesses take place. Database writes
cannot be assigned to the methods where they are actually triggered. Resource de-
mands for the application server we encode in the respective internal actions. The
resource demands for the DBS we delegate to a specific database access interface
we introduce together with a providing component. Later, in the case study in
Section 7.4, the approximation is tested for adequacy.

Applying the approximation requires knowledge about the transaction boundaries.
An EJB business method may run inside a transaction, outside a transaction or
partly inside a transaction. The EJB 3.0 standard supports bean-managed trans-
actions and container-managed transactions. The former concept allows the EJB
developer to designate transaction boundaries. In the latter concept, it is the EJB
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container that decides when a transaction is to be started, suspended, aborted or
committed. The mechanism can be configured using transaction attributes. This
way, the EJB container is advised when and how an EJB business method should be
enlisted in transaction processing. Attributes highly impacting the performance of
transactions are the isolation levels of participating resources [?]. We do not model
the isolation level explicitly, it is implicitly taken into account when measuring the
resource demands of a transaction’s commit.

5.6.2.2 Quantifying Demands

In Section 3.2, general considerations concerning the extraction of resource demands
are presented. There we already explained our two approaches to resource demand
quantification. In this section, we explain these approaches in more detail and relate
them to the PCM performance model extracted as described in this chapter. The two
approaches are: i) use measured response times to estimate CPU resource demand
or ii) estimate the CPU resource demand using the Service Demand Law. Given
that we aim at an automated extraction during operation, we have to handle a
transaction mix.

Response Time

Using measured response times as approximation of the resource demand is simple.
Whether the workload consists of one request class or a transaction mix makes
no difference for the application of this approach. A severe requirement is, that the
resource utilization of the system under consideration has to be low when measuring.
Otherwise, waiting times would have a significant impact on the measured response
times. For example for CPU resources, if the scheduling mechanism is preemptive,
a job under processing might be suspended and put back in the waiting queue.
The job is not guaranteed to be processed at once. Coming back to response time
measurements, the activities we measure should not be interrupted. The longer the
activity is, the higher is the probability that it is not processed in one piece.

For measuring response times we use WLDF. Given that the performance-relevant
actions are extracted in separate methods (see Section 5.4.1), monitors observing the
internal actions can be configured. Hence, we observe a service’s response time on
the granularity of internal actions. With reference to the previous section this means
that we observe the resource demand at the application server CPU. The resource
demand at the DBS CPU can be obtained by measuring the time of the transaction’s
commit phase. There are two diagnostic actions to measure response times: Action
TraceElapsedTimeAction generates event records containing the measurement as
payload, action MethodInvocationStatisticsAction aggregates the measured re-
sponse time to method-specific statistics that are kept in memory. The latter has
the advantage that it has lower overhead than the event record triggering action.
The advantage of event records is that each measurement is archived with its context
id. The measurements can then be used to derive a realistic distribution function
for the response time. Furthermore, the single time measurements can be related
to the actual control flow path or related to actual method parameter characteriza-
tions. The aggregating action provides only the first two moments of the observed
response time distribution. Since there are no context ids available, i.e., the context
information of the individual measurements is lost, the obtained time values cannot
be related to, e.g., the control flow.
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Measurements:

Internal actions: intAct1, intAct2

Observed time interval: t = 10 min = 600 sec

Mean CPU utilization: UCPU = 0.5 (i.e., 50%)

Invocation count of intAct1: ic(intAct1) = 100

Invocation count of intAct2: ic(intAct2) = 200

Figure 5.15: Example: Measurements for resource demand estimation.

When discussing time measurements, one has to also consider the timer accuracy
and resolution. The timer WLDF internally make use of is the Java API method
java.lang.System#nanoTime. For our purpose, both accuracy and resolution are
considered sufficient. For a detailed analysis of the Java API timer we refer the
reader to [?].

Service Demand Law

In order to apply the service demand law, we need to measure CPU utilization
and method count. The application server CPU utilization is partitioned among
the processed internal actions, the DBS CPU utilization is partitioned among the
transaction commit phases. To determine appropriate fractions, we apportion the
CPU utilization using response time ratios or using profiling information. Note that
both alternatives entail an increased system overhead, either by measuring response
times or profiling the application.

Figure 5.15 shows some exemplary measurements that are necessary for the applica-
tion of the service demand law. During a time interval of length t, the CPU processes
two internal actions whose resource demands are of interest. The mean CPU uti-
lization is UCPU. The invocations counts of internal actions are given, ic(x) denotes
the invocation count of an internal action x during the observed time interval. If we
would know the run-time portion pn(x) of an internal action x, we could compute
the corresponding resource demand by

UCPU · pn(x)

ic(x)
.

For a specific resource and a specific time interval, we define an action’s run-time
portion as the fraction of the total resource utilization that is caused by that ac-
tion. In order to obtain the run-time portion for each internal action of interest, we
investigate different options.

To obtain profiling information we use JRA (see Section 2.2.2). We use method
sample counts to determine the run-time portion of each method during a fixed time
interval. The sample count of a method states how often the method is sampled
during the observation period. We would like JRA to sample a method whenever
the method or one of its successors is executed at a sampling point. A method’s
successor is understood as a method that is synchronously invoked by the considered
method itself or by one its successors. To achieve this, JRA’s stack trace depth would



5.6. Extracting Resource Demands 57

Sample counts obtained with JRA:

Sample count of intAct1: sc(intAct1) = 350

Sample count of intAct2: sc(intAct2) = 150

Total sample count: total sc = 600

Computing run-time portions with absolute sample counts:

Run-time portion of intAct1: pn(intAct1) = sc(intAct1)
total sc

= 350
600

= 0.58

Run-time portion of intAct2: pn(intAct2) = sc(intAct2)
total sc

= 150
600

= 0.25

Computing run-time portions with relative sample counts:

Run-time portion of intAct1: pn(intAct1) = sc(intAct1)
sc(intAct1)+sc(intAct2)

= 350
350+150

= 0.7

Run-time portion of intAct2: pn(intAct2) = sc(intAct2)
sc(intAct1)+sc(intAct2)

= 150
350+150

= 0.3

Figure 5.16: Example: Estimating run-time portions based on sample counts.

have to be configured to be greater than or equal to the greatest method stack depth
that can occur during profiling. However, even in this case JRA would still miss a
method executed at a sampling point if the method is executed in a thread that is not
considered as part of the examined threads. This is because JRA does not consider
all threads that are active at a sampling point in time but a randomly selected
subset. In summary, for a representative JRA recording the sample rate and the
stack trace depth have to be high. The downside of such a configuration is, that
the sampling overhead increases. Especially because we monitor in the context of
EJB applications, the method stack trace is big. It comprises many calls to methods
provided by the middleware.

To estimate run-time portions with sampling information, we either use absolute
sample counts or relative sample counts. Figure 5.16 illustrates the two alternatives.
There are sample counts for the two internal actions introduced in Figure 5.15,
where also the observed time interval is specified. The total sample count does not
equal the sum of the internal action sample counts. This means that there are some
samples that did not include the methods that represent the internal actions.

Using absolute sample counts, the run-time portion of a method is estimated as
the fraction of the total sample count attributed to the method. This alternative
assumes that samples not containing the respective internal action’s method do
not contribute to the internal action’s resource demand. This might lead to an
underestimation of the internal action’s run-time portion. Using relative sample
counts, the run-time portion of an internal action is estimated as the ratio of the
respective internal action’s sample count to the sum of the sample counts of all
internal actions of interest. This alternative assumes that samples not containing
a method of any internal action still do contribute to the resource demand of the
considered internal actions. Those samples are apportioned among all considered
internal actions. Thus, in contrast to the absolute sample count alternative, this
option requires profiling of all running internal actions.
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Average response times:

Response time of intAct1: R(intAct1) = 1.8 sec

Response time of intAct2: R(intAct2) = 0.4 sec

Computing run-time portions with weighted response time ratios:

Run-time pn. of intAct1: pn(intAct1) = ic(intAct1)·R(intAct1)
ic(intAct1)·R(intAct1)+ic(intAct2)·R(intAct2)

= 100·1.8
100·1.8+200·0.4 = 0.69

Run-time pn. of intAct2: pn(intAct2) = ic(intAct2)·R(intAct2)
ic(intAct1)·R(intAct1)+ic(intAct2)·R(intAct2)

= 200·0.4
100·1.8+200·0.4 = 0.31

Figure 5.17: Example: Estimating run-time portions based on response times.

Another option to estimate run-time portions is illustrated in Figure 5.17. Here, we
use the internal action’s response time weighted by their invocation counts to deter-
mine the run-time portion. Given that we monitor during a fixed time interval, the
weighting by invocation counts can also be understood as weighting by throughputs.
Similar to the relative sample count alternative, this option requires instrumenting
of all running internal actions. In the example, it is assumed that only the two
internal actions are causing load. Partitioning the workload based on the response
times implicitly assumes that a method with an x times greater response time than
another method also has an x times greater resource demand. Since we claim an
internal action to only use the application server CPU, this assumption is considered
appropriate.

5.7 Obtaining Workload and

Resource Utilization Data

Given that the observation takes place during run-time, monitoring workload data
is possible. WLDF provides access to system load information as well as data about
resource utilization. We distinguish between workload at the system level and work-
load at the individual component level. For both levels we also distinguish between
workload in terms of user requests and workload in terms of resource consumption.

At the system level for instance, the utilization of physical memory, Java heap
memory, JDBC connection pools, WLS thread pools and CPUs can be monitored.
There are MBeans like the JRockitRuntimeMBean providing information about the
run-time state of the system. Such MBeans can be accessed using the data harvester
or directly through JMX. User requests at the system boundary can be tracked to
compute service request arrival rates and provide information about the service input
parameters. Therefore, the WLDF instrumentation engine has to be configured to
instrument at the system boundaries and monitor the input parameters using the
diagnostic action DisplayArgumentsAction.

The above also applies to individual components. Considering the component bound-
aries, request tracking to compute component-specific request arrival rates and mon-
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itor the input parameters is possible. Furthermore, at the component level, the EJB
instance pool utilization can be monitored. This is done by accessing the Runtime
MBean EJBPoolRuntimeMBean representing the pool of a stateless session bean or a
message-driven bean, or by accessing EJBCacheRuntimeMBean representing the cache
of a stateful session bean.

The workload and resource utilization data does not serve as input data for our
performance model. Besides the PCM usage model, PCM does not explicitly allow
incorporating workload information. In PCM, workload information is made avail-
able by means of simulation. Obtaining workload information is not our primary
focus but nevertheless, such information can be used to detect performance hot spots
or bottlenecks.

5.8 Limitations

In this section, we describe the limitations of the presented approach to model
extraction.

We extract components, inter-component control flow and intra-component control
flow using call path tracing. In order to obtain representative call paths, a repre-
sentative workload has to be available. Only those parts of the application that
are actually running during observation are considered in the extraction. However,
given that monitoring is intended to be performed during operation, the proposed
approach will result in extracting the “effective architecture”. Parts of the applica-
tion that are not called during operation are also not modelled.

For the extraction, we assume performance-relevant information about component
boundaries and intra-component control flow to be available. Note that this informa-
tion could be provided automatically by a static analysis. Furthermore, due to the
lack of tools supporting in-method instrumentation, we extract performance-relevant
fragments in separate methods as a workaround. The code refactoring can be auto-
mated. For instance, a chaining of ArchiRec [?] and an adapted Java2PCM [?] could
be employed not only to detect performance-relevant information but also to refactor
according to the schema proposed in Section 5.4. See Chapter 4 for more informa-
tion on ArchiRec and Java2PCM. Additionally, our approach does not allow for the
extraction of explicit parametric dependencies. Instead, dependencies between input
parameter characterizations and the control flow can be observed. The consideration
of parametric dependencies is limited to statistical reports describing the relation
between observed parameter tuples and the monitored control flow. However, since
we use PCM as performance model, manual adaptations are easily possible.

The resource demands we extract from measurements conducted in a specific system
environment. Thus, the resource demands are environment-specific. On the other
hand, given that the estimated resource demands stem from actual measurements,
we expect the performance predictions to be realistic. The system environment is
currently limited to one WLS instance. However, this limitation can be relaxed if
event records from multiple servers can be chronologically ordered.

The PCM resource environment model as well as the PCM allocation model have
to be provided manually by the user. However, these models have a much lower
complexity than the PCM repository model and PCM system model which we ex-
tract. Furthermore, we do not model memory consumption. Instead, monitoring
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data about resource utilization can be obtained. However, even though we monitor
only the WLS instance we estimate the utilization of both the application server
CPU and the DBS CPU.



6. Tool Prototype

This chapter presents how the extraction method described in Chapter 5 is imple-
mented as a tool prototype. Starting with an overview on the prototype’s archi-
tecture, we describe the implemented extraction steps. A section on limitations
concludes this chapter.

6.1 Architecture

The architecture of the extraction tool is illustrated in Figure 6.1. The Java EE ap-
plication of interest is deployed on a WLS instance that is running in a JRockit JVM.
The application, which may access a database, is monitored by WLDF, monitoring
data is sent to the diagnostic data store. The application’s workload is generated
outside WLS. The tool prototype accesses both WLS run-time information and diag-
nostic data through a Runtime MBean server and may additionally access profiling
data from the JRockit Runtime Analyzer (JRA). The prototype then processes the
information and extracts a PCM 3.0 instance.

The illustration shows that the diagnostic data store is running inside the WLS
instance, i.e., it is configured as file-based store. We prefer the file-based store over
the JDBC-based store because it typically has lower overhead.

6.2 Extraction Steps

The extraction during operation is organized in several steps. “At a high level”,
a fully-functioning extraction tool implementing the method of Chapter 5 should
operate according to the following steps:

• A WLS instance in which the application of interest is deployed is assumed to
be running.

• The system developer specifies which parts of the application he wants to
extract models for.
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Figure 6.1: Architecture of the extraction tool.

• The tool automatically configures monitoring and instrumentation tools, e.g.,
WLDF.

• The application is monitored during operation.

• Based on the monitoring data, the tool extracts a PCM instance.

Obviously, this is only a rough concept. The following two sections present the steps
in more detail. The model extraction process is related to structural extraction
respectively resource demand extraction. The PCM generation is conducted semi-
automatically, it will require some intervention by the user (the system developer).

6.2.1 Extracting Structure

In this section we describe the steps in which the tool prototype extracts the PCM
performance model. The output is a PCM repository model and a PCM system
model. The extraction of the resource demands is discussed in the next section.
Building a PCM resource environment model, a PCM allocation model and a PCM
usage model is not considered here.

0. We assume the application of interest to be refactored according to the schema
proposed in Section 5.4 and running on a single WLS instance.

1. At first, the prototype’s user has to specify to which WLS instance to connect.
Since we connect via JMX, a location consisting of a URL and a port, a
protocol and user credentials have to be configured.

2. The extraction then begins with a specification of the component boundaries
by the user as described in Section 5.2. The specification has to be provided as
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<?xml version=”1 .0 ” encoding=”UTF−8”?>

< !−− This i s a sample system de s c r i p t i on a user has to prov ide .
I t d e s c r i b e s the SPECjAppServer2004 Next benchmark app l i c a t i on . −−>

<fb : sy s tem xmlns : fb=”h t tp : // sdq . ipd . uni−ka r l s ruhe . de/ fabro ”
xmlns :x s i=”ht tp : //www. w3 . org /2001/XMLSchema−i n s t ance ”>

< !−− Choose app l i c a t i on with name spec j . −−>
< f b : a p p l i c a t i o n>s p e c j</ f b : a p p l i c a t i o n>

< !−− Choose to map each EJB to i t s own component . −−>
<fb : con f igmode>ejbtocomponent</ fb : con f igmode>

</ fb : sys t em>

Figure 6.2: Example: System description provided as XML document.

XML document conforming to an XML schema. We show an exemplary XML
document in Figure 6.2. In terms of the tool prototype, such an XML doc-
ument is denoted as “system description”. The example describes the SPEC-
jAppServer2004 Next benchmark application. The user provides the name
under which the application is deployed on the WLS instance and selects how
the EJBs are grouped to components. In the given example, each component
consists of exactly one EJB. The XML schema allows to choose between the
three modes ejbtocomponent, packagetocomponent and manual. In the latter
case, the components can be each specified by a name and a set of containing
EJBs. The corresponding XML schema is presented in Appendix A.1.

3. In the next step, a connection to the WLS instance is established. For the
application with the given application name the prototype reads all EJBs and
groups them to components as previously specified by the user. Furthermore,
the fully-qualified names of the classes implementing the EJBs have to be
obtained.

4. Thereafter, according to Section 5.3 and Section 5.4, WLDF has to be con-
figured both for i) the inter-component control flow extraction and ii) the
intra-component control flow extraction.

i) The EJB business methods have to be instrumented. Thus, the application-
scope delegating monitors EJB_Before_SessionEjbBusinessMethods and
EJB_Before_SessionEjbBusinessMethods with diagnostic action Dis-

playArgumentsAction have to be configured. Only those classes that
have been identified in the previous step as EJB implementation classes
have to be instrumented.

ii) Those methods, that have been extracted according to the naming schema
of Section 5.4, have to be instrumented. Therefore, we instrument all
methods contained in a class that implements an EJB. This is done
by two custom monitors with action TraceActon. One monitor cap-
tures the method entries and one monitor captures the method exits.
Figure 6.3 shows an XML fragment defining the monitor CustomMoni-

tor_IntraCCF_Before to instrument the entries of those methods that
are contained in, e.g., class WorkOrderSession or class OrderSession.
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< !−−## intra−component con t ro l f l ow ex t r a c t i on monitor ##−−>
<wldf−instrumentat ion−monitor>

<name>CustomMonitor IntraCCF Before</name>
<enabled>t rue</ enabled>
<ac t i on>TraceAction</ ac t i on>
<l o ca t i on−type>be f o r e</ l o ca t i on−type>
<po intcut>

execut ion (∗ org . spec . j apps e rve r . e jb . mfg . s e s s i o n . WorkOrderSession ∗ ( . . . ) )
OR
execut ion (∗ org . spec . j apps e rve r . e jb . mfg . s e s s i o n . MessageSenderSess ion ∗ ( . . . ) )
< !−− . . . −−>
OR
execut ion (∗ org . spec . j apps e rve r . e jb . o rde r s . s e s s i o n . OrderSess ion ∗ ( . . . ) )

</ po intcut>
</ wldf−instrumentat ion−monitor>

Figure 6.3: Example: Custom monitor for intra-component control flow extraction.

If the diagnostic monitors are already woven into the application code but
disabled, the monitors only have to be enabled. If the monitors have to be
newly woven into the code, the application has to be redeployed. This is
because we assume the hot swap feature to be disabled (see Section 2.2.1.2).

5. The application of interest is now monitored. The application may be moni-
tored during operation or workload may be injected manually. The workload
should be representative in terms of the kind of system requests. The workload
is not required to be representative in terms of request arrival rates.

6. The prototype’s actual extraction method has to be triggered now. It extracts
a PCM repository model and a PCM system model as described in Chapter 5.
The WLDF archive is accessed via the WLDF data access Runtime MBean. A
still pending issue is the question of how to map data types to PCM data types.
We implemented the following procedure: Java primitive types as well as their
Java wrapper classes are mapped to the PCM primitive types. This applies
also for the Java String type. Java array types are mapped to a PCM collection
type with an element type according to the array types’s element type. Java
classes or interfaces inheriting the java.util.Collection interface are also
mapped to a PCM collection type. Here, the element type always refers to
the PCM type representing java.lang.Object. This is because the event
record field describing the method parameters (see Table 2.1) does not provide
information about the element type of the generic collection interface. Not only
java.lang.Object but all other types that are not covered yet are mapped to
a PCM composite type without any inner types.

6.2.2 Extracting Resource Demands

In this section, the necessary steps to extract the resource demands are presented.
We assume the preceding steps of the previous section to be already processed. Thus,
the steps are numbered consecutively.

7. Here, WLDF has to be configured to extract resource demands (see Sec-
tion 5.6). Therefore, we configure WLDF to inject a time sensor at the internal
actions. This is done by a custom monitor we define according to the example
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< !−−## resource demand ex t r a c t i on monitor ##−−>
<wldf−instrumentat ion−monitor>

<name>CustomMonitor MeasureResourceDemand Around</name>
<enabled>t rue</ enabled>
<ac t i on>MethodInvocat i onSta t i s t i c sAct i on</ ac t i on>
<l o ca t i on−type>around</ l o ca t i on−type>
<po intcut>

execut ion (∗ org . spec . j apps e rve r . e jb . mfg . s e s s i o n
. WorkOrderSession ∗ i n t e r n a l a c t i o n ∗ ( . . . ) )

OR
execut ion (∗ org . spec . j apps e rve r . e jb . mfg . s e s s i o n

. MessageSenderSess ion ∗ i n t e r n a l a c t i o n ∗ ( . . . ) )
< !−− . . . −−>
OR
execut ion (∗ org . spec . j apps e rve r . e jb . o rde r s . s e s s i o n

. OrderSess ion ∗ i n t e r n a l a c t i o n ∗ ( . . . ) )
</ po intcut>

</ wldf−instrumentat ion−monitor>

Figure 6.4: Example: Custom monitor for resource demand extraction.

given in Figure 6.4. The XML fragment defines a monitor with location type
around and diagnostic action MethodInvocationStatisticsAction. This ac-
tion does not generate event records. Instead, to minimize the monitoring
overhead, statistics about the response times are aggregated at run-time. We
evaluate the monitoring overhead in Section 7.3.1. In the example, the inter-
nal actions of, e.g., class WorkOrderSession are measured. More precisely,
we measure the internal actions of the component comprising an EJB that is
implemented by class WorkOrderSession.

The monitors introduced in step 4 now are to be disabled. When monitoring
resource demands, the monitoring overhead should be as small as possible.
To avoid a redeployment of the application, we propose the following: The
resource demand extraction monitor should be configured within step 4, but
first as a disabled monitor. When this step, i.e., step 7 is reached, that monitor
is enabled while the other event record generating monitors are disabled. This
way, the reconfiguration can be carried out without an interruption of the
application.

8. The application of interest is now monitored. The application may be moni-
tored during operation or workload may be injected manually.

9. Finally, the resource demand is estimated. We implemented two approaches
that are presented in Section 5.6.2.2: i) We use response times to approximate
resource demands or ii) we use the Service Demand Law and partition with
weighted response time ratios.

i) The measured average response times are accessed via the WLDF instru-
mentation Runtime MBean. Then the method-specific response times are
attached to those internal actions the methods represent. Note that this
approach is only applicable for low system load.

ii) In order to apply the Service Demand Law, we need the length of the
observed time interval and the utilization of the application server CPU.
The observed time interval is the monitoring time of step 8. If the data
is provided, we partition the resource utilization by weighted response
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time ratios. The method-specific response times and invocation counts
are accessed via the WLDF instrumentation Runtime MBean. Note that
this approach is only applicable for medium to heavy system load.

This way, we only extract resource demands for the application server CPU. In Sec-
tion 5.6.2 we also described how to derive resource demands for the DBS CPU by
measuring commit phases of transactions. Time measurements of commit phases
cannot be conducted directly because in general, transaction boundaries are not
externalized. Bean-managed transactions have to be measured differently than
container-managed transactions which themselves have to be differentiated by com-
binations of transaction attributes.

Thus, solutions to capture resource demands on the DBS have to be tailored for
each application. For bean-managed transactions, the delegating, application-scope
monitor JTA_Around_Commit can be used. With a time-measuring diagnostic action,
the time of a transaction’s commit phase then can be measured. Container-managed
transactions necessitate a different proceeding. In the following, we describe a com-
mon case. Assuming there is a session bean with a business method meth that
enforces the EJB container to always start a new transaction whenever meth is pro-
cessed. Hence, the transaction always ends after the method exits. In order to
measure the transaction’s commit phase, a method meth′ delegating to meth is in-
troduced. All calls to meth have to be redirected to meth′. The method meth′ has to
be annotated with transaction attribute NOT_SUPPORTED. The transaction’s commit
phase can then be measured as the difference between the response times of meth′

and meth. Note that a detection of a rollback instead of a commit is not discussed
here.

We did not implement the JRA alternatives to quantify resource demands as they
are presented in Section 5.6.2.2. Nevertheless, we evaluate the alternatives in Sec-
tion 7.3.3.

6.3 Implementation
The prototype developed in the context of this diploma thesis is intended as a proof-
of-concept implementation and focuses on the main issues. The tool prototype does
not provide a GUI and it does not support automated configuration of WLDF.
Referring to the steps presented in the previous section, the steps 3, 6 and 9 are
automated. In fact, the actually extracting steps 6 and 9 are processed both at the
end directly one after another. In the previous section they are separated only for
reasons of clarity.

In this section, we provide some information on the prototype’s implementation. It
is not intended to provide details but to give an overview.

The tool is implemented as a Eclipse plug-in in Java. In order to get an overview on
how the implementation is organized, Figure 6.5 shows the package structure. Only
the main packages and their dependencies are shown. The following list provides a
short documentation for each package. Subpackages are not considered here.

• de.uka.ipd.sdq.fabro.pcm This package contains adapters to the PCM repos-
itory factories and PCM system factories. These adapters are used to create
PCM instances.
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de.uka.ipd.sdq.fabro.systemdescription

de.uka.ipd.sdq.fabro.wlsconnection

de.uka.sdq.ipd.fabro.systemdeployment

«uses»

«uses»

de.uka.ipd.sdq.fabro.dataaccess

«uses»

de.uka.ipd.sdq.fabro.dataextraction

de.uka.ipd.sdq.fabro.pcm

«uses»

«uses»

«uses»

Figure 6.5: Package overview of the tool prototype.

• de.uka.ipd.sdq.fabro.wlsconnection This package provides functionality
to establish connections to WLS instances. The connections are JMX connec-
tions to the Domain Runtime MBean server.

• de.uka.ipd.sdq.fabro.dataaccess With this package, monitoring data, i.e.,
WLDF diagnostics data can be accessed. That requires WLS connections.

• de.uka.ipd.sdq.fabro.systemdeployment This package provides read-only
access to deployment information about Java enterprise applications and their
EJBs running on a WLS instance. For instance, with the help of this package,
questions like “Which EJBs are currently deployed?” can be answered. Note
that the term “systemdeployment” here refers to the deployment configuration
of a WLS instance. It does not deal with the PCM system model.

• de.uka.ipd.sdq.fabro.systemdescription Descriptive, this package acts as
a mediator between the system specification as it is provided by the user and
the current deployments on the considered WLS instance. Classes implemented
in this package read the system specification, adjust the specification with
the current deployment information and finally provide a data structure that
describes the system to analyze.

• de.uka.ipd.sdq.fabro.dataextraction The logic of the extraction is con-
tained in this package. It accesses monitoring data and extracts a PCM in-
stance based on the system description.

Information on the internal structure of the mentioned packages can be found in the
Appendix A.2.
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6.4 Limitations

In this section, we outline limitations that concern the prototype implementation as
presented in this chapter.

The implemented prototype does not provide a GUI that simplifies its usage. Fur-
thermore, an automated configuration of WLDF is not implemented. Nevertheless,
even if it was implemented, the drawback of a required redeployment remains. Since
we intend to monitor a Java EE application during operation, redeploying an appli-
cation is an issue. However, the application has to be redeployed only once. The
whole extraction method can then be processed repeatedly. Only if there are struc-
tural changes to the application, the monitors have to be adapted. In that case, a
redeployment would be necessary anyway.

In addition, an automated handling of message-driven beans is not yet implemented.
Demands for the application server CPU are extracted while demands for the DBS
CPU are not automatically captured. This is due to the challenge of determining
transaction boundaries and making response times of commit phases measurable.

The extraction of parametric dependencies as proposed in Section 5.4.2 is not im-
plemented. The same applies for the workload monitoring in Section 5.7 and the
automated extraction of passive resources.



7. Evaluation

In this chapter we evaluate the method we proposed in Chapter 5. The evaluation is
based on the SPECjAppServer2004 Next benchmark, a beta version of the successor
of SPECjAppServer2004. While Section 2.5 gives a general overview on the setting
underlying the benchmark, the subsequent Section 7.1 focuses on the technical im-
plementation. Section 7.2 describes the system environment in which we deployed
the benchmark. Section 7.3 shows several experiments to answer questions regarding
the overhead of monitoring. In Section 7.4 we conduct a case study with the tool
prototype to evaluate the results our extraction method delivers. A section on the
evaluation’s findings concludes this chapter.

7.1 SPECjAppServer2004 Next

We divide the presentation of implementation details of the considered SPECjApp-
Server2004 Next benchmark into a description of the benchmark application and
a description of the benchmark driver. For the benchmark’s architecture see Sec-
tion 2.5.

7.1.1 Benchmark Application

The benchmark application is implemented as a Java EE application. It is claimed
that the application has similar requirements on the execution environment as a
typical, real-world enterprise application. There are three domains that are deployed
on the application server under test: the orders domain, the manufacturing domain
and the supplier domain. For the communication between the domains JMS queues
are used. The benchmark driver accesses only two domains, namely the orders
domain and the manufacturing domain. The former is accessed via Java Servlets,
the latter either by RMI or by web service calls.

In this evaluation we focus on the manufacturing domain because our tool prototype
does not support Servlets and JMS messaging yet. Figure 7.1 shows the four state-
less session beans and two message-driven beans the manufacturing domain consists
of. Together with the LargeOrderSession EJB, the MDB LargerOrderMDB pro-
cesses orders sent by the orders domain. The MDB ReceiveMDB processes delivery
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Figure 7.1: UML class diagram of the benchmark’s manufacturing domain.

information from the supplier domain. The EJB WorkOrderSession handles work
order processing and is the manufacturing domain’s main EJB. It is the only bean
of the manufacturing domain that is called by the benchmark driver. The beans
MfgSession and MessageSenderSession act as helper beans.

7.1.2 Benchmark Driver

The SPECjAppServer2004 Next benchmark driver implementation is based on the
Faban“facility for developing and running benchmarks” [?]. The Faban driver frame-
work simplifies benchmark development, supports stochastic models for user simu-
lations and controls the life cycle of a benchmark run.

In Faban, a benchmark may consist of several driver classes implementing several
benchmark operations. For the benchmark one can configure a ramp up time, a
steady state time and a ramp down time. The steady state time describes the
interval in which the system under test is actually observed. For a benchmark driver
one can configure the number of executing threads, customize a driver report and
specify the benchmark operations to be processed. Faban allows to regulate the
benchmark driver’s cycle time by means of probability distributions. For instance,
with the exponential distribution it is possible to simulate a Poisson process. The
benchmark operation executed at the begin of a cycle is determined by an operation
mix. Benchmark operations are implemented as simple Java methods.

The Faban driver framework provides timer functionality to allow specifying how
elapsed times of benchmark operations are to be measured. One way is the manual
definition of a critical section of the method implementing the benchmark operation.
In terms of Faban, a critical section is the section whose response time should be
gathered, i.e., the section that contains those actions that are actually benchmarked.

The benchmark we consider for evaluation purposes provides two benchmark drivers:
one driver simulating manufacturing sites and one driver simulating dealerships.
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Figure 7.2: System environment.

Both drivers simulate the requests by means of a Poisson process. The benchmark
report aggregates several measurements to a single metric, namely business opera-
tions per seconds (BOPS). This metric can then be used to compare the performance
of Java application servers. To ensure comparability there are rules on how the sys-
tem under test has to be set up and configured before running the benchmark. To
put it simply, the whole benchmark including the driver and the application can be
configured by a specific injection rate. The injection rate determines the amount of
data in the database, the configuration of the application server and the workload
the driver generates. It is a scaling factor to enable the deployment in execution
environments of different dimensions.

In the context of the evaluation, we adapted the mentioned benchmark drivers re-
spectively implemented own drivers. For instance, we disabled the driver that pro-
duces workload for the dealer domain. During evaluation, we found an error concern-
ing the response time measurements conducted by Faban. The times measured with
millisecond granularity were incorrect. On current Microsoft Windows operating
systems the timer accessed by the Java timer method System#currentTimeMillis

has an accuracy of about 15 ms. This is shown in [?]. To calibrate its nanosecond
timer Faban made use of the millisecond timer assuming a 1 ms accuracy. Thus, the
response times measured with the nanosecond timer deviated by several milliseconds.
In a new version of the Faban driver framework the issue was corrected.

7.2 Experimental Environment and

Experiment Setup

For the evaluation, the benchmark is deployed in the system environment illustrated
in Figure 7.2. There are three machines: The Java EE benchmark application is
deployed on a WebLogic Server (WLS) instance of version 10.3.1.0. As a database
server (DBS), we use Oracle Database 11g Release 1. The system under test consists
of both the WLS instance and the DBS. The benchmark driver as well as the sup-
plier emulator run on a separate machine. The machines are connected via 1 GBit
Ethernet. As operating system, Microsoft Windows Server 2008 Enterprise is used.

Note that the CPUs are dual-core CPUs. Since the PCM Bench 3.0 respectively
the simulation framework SimuCom currently does not support multi-core CPUs,
we had to switch one core off. In terms of queueing networks a multi-core CPU
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has to be mapped to a multiserver queue. A multiserver queue provides one queue
for multiple servers. Currently, SimuCom is capable of simulating multiple CPUs,
but only with exactly one queue for each CPU. Thus, multi-core CPUs cannot be
simulated.

Furthermore, the CPUs we use support the Enhanced Intel Speedstep Technology
(EIST). EIST aims at decreasing power consumption and average heat production
by means of dynamic frequency and voltage scaling. In short, the processor speed
varies according to the processor utilization. The less the CPU is utilized the slower
it works. With EIST, from the user point of view, an application seems to have load-
dependent resource demands. Obviously, the resource demands remain the same, it
is the resource’s processing rate that changes. We have to switch EIST off because
we do not model dynamic frequency scaling. Currently, the PCM Bench does not
provide such a feature.

As mentioned in Section 2.3, we use the perfmon tool to measure resource utiliza-
tions. When conducting an experiment we specify a ramp up time after which we
assume a steady system state to be reached. We measure the utilizations (values
between 0.0 and 1.0) only during steady state time. Response times or method in-
vocation counts are also measured during steady state time. Both elapsed times and
invocation counts are either measured by the driver at the client side or with WLDF
with action MethodInvocationStatisticsAction. We introduce the following no-
tation:

UDBS CPU : Average utilization of the DBS machine’s CPU.
UWLS CPU : Average utilization of the WLS machine’s CPU.
UDBS IO : Average utilization of the DBS machine’s disk.
UCLIENT CPU : Average utilization of the client machine’s CPU.
DWLS CPU : Demand for the WLS machine’s CPU.
DDBS CPU : Demand for the DBS machine’s CPU.
RDriver : Average response time measured by the benchmark driver.
RWLDF : Average response time measured by WLDF.
icDriver : Invocation count monitored by the benchmark driver.
icWLDF : Invocation count monitored by WLDF.

Furthermore, to ensure repeatability, for each experiment the WLS instance is set up
from scratch. For exemplary experiments see the subsequent section where different
monitoring approaches are assessed.

7.3 Evaluating Monitoring Approaches

In this section, we conduct experiments to assess the overhead of the WLDF instru-
mentation, to figure out if and how JVM optimizations influence the instrumentation
and to assess the method sampling approaches for resource demand quantification.
The experiments are used to motivate the design decisions we made in Chapter 6.

7.3.1 Instrumentation Overhead

To evaluate the overhead of the WLDF instrumentation, we run the benchmark
application with different diagnostic actions injected. By comparing resource uti-
lization and the benchmark operation’s response times we get an overview to what
extent instrumentation affects an application’s performance.
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SPECjAppServer2004 Next benchmark (txRate = 5, ramp up time = 600 sec, steady
state time = 1140 sec, ramp down time = 60 sec).

All EJB
business
methods in-
strumented
with action:

RDriver [ms]

P
u

rc
h
as

e

M
an

a
ge

B
ro

w
se

C
re

at
e-

V
eh

ic
le

E
J
B

C
re

at
e-

V
eh

ic
le

W
S

UWLS UDBS UCLIENT

CPU CPU IO CPU

-none- 0.519 0.163 0.004 0.029 62 74 403 1108 1118
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Action

0.549 0.163 0.006 0.025 74 77 426 1131 1138

Trace-

ElapsedTime-

Action

0.607 0.164 0.003 0.023 432 361 964 1518 1559

Table 7.1: Experiments regarding WLDF instrumentation overhead.

We investigated three different instrumentation configurations: i) The application
is not instrumented at all, ii) all EJB business methods are monitored with action
MethodInvocationStatisticsAction or iii) all EJB business methods are moni-
tored with action TraceElapsedTimeAction. Both considered diagnostic actions
measure response times. The latter creates an event record for each measurement
whereas the former aggregates the measurements in statistics that are kept in mem-
ory.

Table 7.1 shows the experimental results. The Configurations ii) and iii) both in-
troduce an overhead. The utilization of the DBS and the client remain almost
constant. The utilization of the application server CPU increased from about 50%
to 60% leading to a significant increase in the benchmark operation response times.
Particularly the event record generating action entails a highly increased response
time. Note that the response times for the operations CreateVehicleEJB and Cre-

ateVehicleWS both include an internal delay of about 1000 ms. Hence, the increase
from 1108 ms to 1518 ms represents an increase by 480% and not 37%, if we consider
the times spent waiting for a response from the server.

We conclude that event record generating actions have a significant impact on the
instrumented application. Data aggregating monitors have an overhead as well but
it is by far much lower. While we consider the latter overhead acceptable during
operation, event record generating actions should only be injected in time frames
where the application’s response time is not crucial. We do not quantify the instru-
mentation overhead because it obviously depends on the number of instrumented
methods and the user behavior. Compared to the instrumentation required for the
extraction as described in Section 6.2, instrumenting only the EJB business methods
is a light instrumentation.

As a secondary aspect we conclude that the CPU utilization of the client machine
as well as the IO utilization of the DBS are negligible in our experiment setup.
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7.3.2 Instrumentation versus JRockit Optimizations

In our experimental setup, the WLS instance runs on a JRockit JVM. One specific
characteristic of the JRockit JVM is that there is no interpreter. JRockit runs Just-
In-Time (JIT) compilation when a method is called for the first time and then “calls
that method’s compiled code instead of trying to interpret it” [?]. JRockit internally
uses method sampling to detect heavily used methods, so-called hot methods. Hot
methods are then marked for further code optimization like, e.g., method inlining or
loop unrolling.

Especially in view of the methods we introduce when refactoring component imple-
mentations we have to figure out how JRockit optimizations affect diagnostic actions
we inject into the application code. Due to the lack of knowledge concerning JRockit
internals we conduct an experimental analysis. To find out if an injected action can
be optimized away by JRockit, we first instrument different methods with different
actions. Then we run a specific driver that logs method call counts. Comparing the
method call counts obtained through instrumentation and the method call counts
logged by the driver we can deduce if an action was optimized away. See Section B.1
in the appendix for more detailed information on the experiments we conducted.

We observe that the action MethodInvocationStatisticsAction is not affected by
JRockit optimizations while action TraceElapsedTimeAction is. Obviously, this
behavior cannot be guaranteed to hold in all cases, in particular since we can not
explain why the results of the two actions differ. Nevertheless, in all experiments we
made, action MethodInvocationStatisticsAction was never optimized away. The
action appears to be immune against the JRockit optimizations. As a conclusion, we
propose to disable JRockit optimizations when extracting the application’s structure
as described in Section 6.2.1. At least the instrumented methods should be excluded
from the optimization (JRockit supports such a fine-grained configuration). For the
resource demand extraction the optimizations should be enabled. In that step, we
only instrument with diagnostic action MethodInvocationStatisticsAction.

7.3.3 Method Sampling for Workload Partitioning

In Section 5.6.2.2 different methods for resource demand estimation are proposed.
In this section, we conduct experiments to assess the approach of using JRA for
run-time portion estimation. We define the run-time portion of a method as the
fraction of the total resource utilization that is caused by the method. Run-time
portions are needed to partition the resource utilization among different methods.
Partitioning is needed to apply the Service Demand Law.

During the experiments we execute a transaction mix of the two business methods
scheduleWorkOrder (sWO) and createLargeOrder (cLO). Both methods trigger
internal actions whose resource demands are to be estimated. To identify the internal
actions, we introduce the following abbreviations:

sWO int 2: WorkOrderSession#scheduleWorkOrder_1_internalaction_2

sWO int 6: WorkOrderSession#scheduleWorkOrder_1_internalaction_6

getInv int 1: MfgSession#getInventory_1_internalaction_1

fA int 1: MfgSession#findAssembly_1_internalaction_1

cLO int 2: LargeOrderSession#createLargeOrder_1_internalaction_2
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Transaction mix (ramp up time = 600 sec, steady state time = 1140 sec, ramp down
time = 60 sec). During experiments 3-5 JRA recorded 18 min within steady state time
with a trace depth of 128 and a sampling interval of 16 ms.

ID
Mix JRA UWLS UDBS icDriver RDriver [ms]

sWO : cLO on/off CPU CPU IO sWO cLO sWO cLO

1 1 : 2 off 0.088 0.055 0.005 5852 11356 21.41 5.54

2 1 : 2 off 0.454 0.197 0.018 28402 57282 32.48 10.25

3 1 : 2 on 0.495 0.186 0.018 28721 57047 33.42 10.39

4 1 : 1 on 0.524 0.171 0.016 33901 34469 35.25 12.05

5 1 : 4 on 0.539 0.213 0.030 27108 108829 37.84 12.36

Table 7.2: Experiments for resource demand estimation.

Note that getInv int 1 is only called by sWO whereas fA int 1 is called by both
sWO and cLO. We adapted the implementation of sWO to never trigger the supplier
domain, i.e., when calling sWO and cLO only the two methods cause system load.

Table 7.2 describes five experiments we conducted. The experiment with ID 1 is
executed under light load. The measured internal actions’s response times should
be roughly equal to the estimated resource demands [?]. Experiments 2 to 5 are
executed under medium load (≈50%). Experiments 2 and 3 differ in the usage of
JRA, Experiments 3 to 5 differ in the transaction mix. Comparing Experiments 2
and 3 we see that the usage of JRA with a trace depth of 128 and a sampling interval
of 16 ms has an acceptable overhead on the WLS CPU. Note that method inlining
by the JRockit optimizer has to be avoided during method sampling.

In the following, we compare the JRA alternatives for resource utilization parti-
tioning: i) partitioning with relative sample counts or ii) partitioning with absolute
sample counts. In the description of alternative ii) in Section 5.6.2.2 an internal
action’s sample count is divided by the total sample count. Here, we divide an
internal action’s sample count by the sample count of method run of class weblo-

gic.work.ExecuteThread. In a WLS instance, all threads doing work in a Java EE
application stem from that method.

Table 7.3 details the resource demand estimations for Experiment 3. For instance,
alternative ii) estimates the WLS CPU demand of internal action fA int 1 to 564300·
504
3565
· 1

85768
= 0.93. As another example, alternative i) estimates the WLS CPU

demand of internal action getInv int 1 to 564300 · 919
1968
· 1

286422
= 0.92. Notice that

the JRA total sample count is 4468 while the weblogic.work.ExecuteThread#run

sample count is 3565. On the one hand, we cannot explain the notable difference
between the total sample count and the worker thread method count. On the other
hand, the sample count is much lower than we expected. We assumed JRA to sample
each 16+ms a selection of active threads. Even if we consider that UWLS CPU is about
50% we assumed a total sample count of at least 1000ms/sec

16ms
· 0.50 · 1140sec ≈ 35000.

It might be that JRA adjusts the sampling rate so that the overhead is kept small.
Some further investigations are required.

Table 7.4 provides an overview on the results of alternatives i) and ii) for the Ex-
periments 3 to 5. The usage of relative sample counts leads to an overestimation of
the resource demands. Estimation via absolute sample counts shows more promising
but nevertheless, the issues raised above have to be addressed.
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Details of experiment with ID 3 (JRA total sample count = 4468,
weblogic.work.ExecuteThread#run sample count = 3565, effective processing
time = 0.495 · 1000 · 1140 sec = 564300 ms).
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Sample count (scJRA) 426 86 919 504 33 1968

DWLS CPU [ms] estimated via
Service Demand Law: Parti-
tioning with relative sample
counts

4.25 0.09 0.92 1.69 0.17 -

DWLS CPU [ms] estimated via
Service Demand Law: Parti-
tioning with absolute sample
counts

2.35 0.05 0.51 0.93 0.09 -

Table 7.3: Resource demand estimations for Experiment 3 of Table 7.2.
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Response times: RWLDF 1 3.28 0.04 0.96 1.04 0.05

Service Demand Law: Partitioning with
relative sample counts

3 4.25 0.09 0.92 1.69 0.17
4 5.12 0.07 0.83 1.60 0.15
5 5.21 0.10 1.10 0.95 0.10

Service Demand Law: Partitioning with
absolute sample counts

3 2.35 0.05 0.51 0.93 0.09
4 2.92 0.04 0.47 0.91 0.09
5 2.65 0.05 0.56 0.48 0.05

Table 7.4: Comparison of estimated resource demands.
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Figure 7.3: UML class diagram of the delegating EJB DelegateWorkOrderSession.

7.3.4 Summary

The evaluation of different monitoring approaches points out the challenges. Moni-
toring should impose a low overhead but provide steady results.

With regard to the results of Section 7.3.1 and Section 7.3.2, separating the extrac-
tion steps concerning the structure and resource demand extraction (see Section 6.2)
is an appropriate design decision.

Regarding the method sampling approach evaluated in 7.3.3, further investigations
are required. See the subsequent section for an evaluation of the other approach
for resource demand estimation, namely partitioning the resource utilization via
weighted response time ratios.

7.4 Case Study

With the tool prototype (see Chapter 6) we conduct a case study to evaluate the ap-
plicability of our approach. For the case study we use the benchmark application de-
scribed in Section 7.1. We consider two scenarios. In the first scenario, the workload
only consists of calls to business method WorkOrderSession#scheduleWorkOrder,
i.e., we extract only those parts of the benchmark application that are required to
process that method. In the second scenario, the workload consists of the benchmark
operation CreateVehicleEJB. Thus, in this scenario we extract the main parts of
the manufacturing domain.

As mentioned in Section 5.6.2.1, we approximate the DBS CPU demand by trans-
actions’s commit phases. To enable measuring of commit phase response times, we
follow the approach described in Section 6.2.2. For the WorkOrderSession EJB we
introduce a delegating stateless session bean annotated with transaction attribute
NOT_SUPPORTED. Figure 7.3 illustrates the delegation. In the PCM, demands for the
DBS CPU are then modelled as external service call to service dbaccess(Double

resourceDemands). We put that service in an IJDBCDriver interface which is pro-
vided by the component JDBCDriver we introduce. The RDSEFF of the component
service then consists of one internal action with a CPU demand equal to the given
input parameter value. Finally, the single assembly context of the JDBCDriver com-
ponent is allocated to a DBS resource container.

Until now, we considered only demands of the application itself, i.e., CPU demands
of internal actions. Resource demands for establishing connections are not considered
yet. Since the benchmark driver accesses the EJBs via RMI we conducted an experi-
ment to quantify RMI connection overhead at the WLS instance. We implemented a
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Calls to business method DelegateWorkOrderSes-

sion#dummyCall (ramp up time = 600 sec, steady
state time = 1140 sec, ramp down time = 60 sec).

UWLS CPU icDriver DWLS CPU [ms]

0.45 2277515 0.23

Table 7.5: Experiment to quantify RMI connection overhead at the WLS instance.

benchmark driver that calls the delegating EJB’s business method dummyCall. The
method body is empty. Since there are neither method arguments nor method return
values, marshalling and demarshalling overhead is not considered. Table 7.5 shows
the experimental results. The connection overhead is estimated with the Service
Demand Law. A connection overhead of 0.23 ms is considered negligible because the
case study’s benchmark operations are measured with millisecond granularity.

Besides the average response times of benchmark operations, in this case study we
consider the avg. utilization of the WLS CPU and the avg. utilization of the DBS
CPU.

7.4.1 Scenario 1: Schedule Work Order

The benchmark driver is configured to only call business method DelegateWork-

OrderSession#scheduleWorkOrder targeting a specific throughput. During driver
run-time, we use the tool prototype to extract two performance models, one PCM
instance for each implemented resource demand extraction approach. Thus, we have
one PCM instance with resource demands estimated from the measured response
times (Model A) and one PCM instance with resource demands estimated with
weighted response time ratios and the Service Demand Law (Model B).

The resource demands for Model A are extracted during light system load ( UWLS CPU

= 0.12, ramp up time = 120 sec, steady state time = 1020 sec). The resource de-
mands for Model B are extracted during high system load ( UWLS CPU = 0.81,
ramp up time = 120 sec, steady state time = 1020 sec). For validation we pro-
ceed as follows. On the one hand we simulate calls to scheduleWorkOrder using
the two extracted PCM instances (measurement count = 100000). On the other
hand, we conduct measurements of the real system, i.e., without any instrumenta-
tion. Then we compare the predicted CPU utilization and the predicted average
response times with the actual measurements. The comparison is repeated for low
load conditions (≈ 20%), medium load conditions (≈ 40% and ≈ 60%) and high
load conditions (≈ 80%).

Table 7.6 shows the results. Obviously, predictions based on Model B are better
than predictions based on Model A. For a high throughput Model A delivers no per-
formance predictions (indicated by “-”) because the throughput cannot be achieved
anymore. For Model B, the prediction error is mostly about 20%. In the exper-
iment with the highest throughput, it is the overestimated WLS CPU utilization
that causes the response time deviation of 77%. Both models underestimate the
DBS CPU utilization while overestimating WLS CPU utilization. For Model B, we
assume the overestimation to be caused by the instrumentation overhead during re-
source demand estimation. For Model A, we assume the overestimation to be caused
by measuring also queue waiting times during resource demand estimation.
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Throughput: 13.32 ops/sec

Metric Measurement Model A Error Model B Error

UWLS CPU 0.157 0.195 0.19 0.179 0.12

UDBS CPU 0.074 0.053 0.28 0.049 0.34

RDriver 19.4 22.4 0.14 20.4 0.05

Throughput: 33.63 ops/sec

Metric Measurement Model A Error Model B Error

UWLS CPU 0.377 0.492 0.23 0.454 0.17

UDBS CPU 0.161 0.134 0.17 0.124 0.23

RDriver 26.1 33.7 0.23 29.0 0.10

Throughput: 49.93 ops/sec

Metric Measurement Model A Error Model B Error

UWLS CPU 0.570 0.732 0.22 0.675 0.16

UDBS CPU 0.230 0.191 0.17 0.184 0.20

RDriver 35.5 59.7 0.41 46.3 0.23

Throughput: 71.12 ops/sec

Metric Measurement Model A Error Model B Error

UWLS CPU 0.851 - - 0.962 0.12

UDBS CPU 0.314 - - 0.262 0.17

RDriver 81.8 - - 353.0 0.77

Table 7.6: Scenario 1: Validation of the scheduleWorkOrder performance model.

7.4.2 Scenario 2: Benchmark Operation Create Vehicle EJB

In this scenario we use the benchmark operation CreateVehicleEJB as workload
generator. Using the tool prototype we extract two performance models for the
manufacturing domain, one PCM instance for each resource demand extraction ap-
proach. Thus, we have one PCM instance with resource demands estimated from
the measured response times (Model A) and one PCM instance with resource de-
mands estimated with weighted response time ratios and the Service Demand Law
(Model B). For the latter model, UWLS CPU is partitioned using the weighted inter-
nal actions’s response time ratios while UDBS CPU is partitioned using the weighted
commit phases’s response time ratios.

The resource demands for Model A are extracted during light system load ( UWLS CPU

= 0.09, ramp up time = 600 sec, steady state time = 1140 sec). The resource de-
mands for Model B are extracted during high system load ( UWLS CPU = 0.75, ramp
up time = 600 sec, steady state time = 1140 sec). For validation we proceed as
follows. On the one hand we simulate the manufacturing domain using the two
extracted PCM instances (measurement count = 100000). On the other hand, we
conduct measurements of the real system, i.e., without instrumentation. Then we
compare the predicted CPU utilization and the predicted average response times
with the actual measurements. The comparison is repeated for low load condi-
tions (≈ 20%), medium load conditions (≈ 40% and ≈ 60%) and high load condi-
tions (≈ 80%).

For simulation, we have to model the considered benchmark operation in a PCM
usage model instance. Note that the considered benchmark operation calls four dif-
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Throughput: 11.25 ops/sec

Metric Measurement Model A Error Model B Error

UWLS CPU 0.188 0.234 0.20 0.234 0.20

UDBS CPU 0.112 0.133 0.16 0.086 0.23

Rcorr avg 39.9 41.0 0.03 35.7 0.11

Throughput: 22.21 ops/sec

Metric Measurement Model A Error Model B Error

UWLS CPU 0.422 0.463 0.09 0.463 0.09

UDBS CPU 0.180 0.263 0.32 0.129 0.28

Rcorr avg 50.6 55.1 0.08 48.3 0.05

Throughput: 33.90 ops/sec

Metric Measurement Model A Error Model B Error

UWLS CPU 0.606 0.711 0.15 0.705 0.14

UDBS CPU 0.275 0.403 0.32 0.258 0.06

Rcorr avg 72.3 91.4 0.21 81.9 0.12

Throughput: 43.60 ops/sec

Metric Measurement Model A Error Model B Error

UWLS CPU 0.788 0.906 0.13 0.909 0.13

UDBS CPU 0.335 0.524 0.36 0.333 0.01

Rcorr avg 128.8 250.1 0.49 244.7 0.47

Table 7.7: Scenario 2a: Validation of the CreateVehicleEJB performance model.

ferent business methods in a specific order and contains three pauses implemented
by calling Thread.sleep(333). That is why we do not compare the actual bench-
mark operation’s response time but the corrected response time Rcorr avg. We denote
a response time as corrected if the length of enclosed delay intervals is subtracted.
While SimuCom simulates exact delays of 333 ms, the benchmark driver calls to
Thread.sleep(333) not always guarantee a delay of 333 ms [?]. Thus, we have to
adapt the benchmark driver to measure the corrected response time instead of the
overall response time.

In the appendix in Section B.2, there are screenshots showing the corresponding
PCM usage model and models extracted by the tool prototype.

Table 7.7 shows the results for the manufacturing domain. Generally, predictions
based on Model B are better than predictions based on Model A. For Model B, the
prediction error is mostly about 20%. In the experiment with the highest through-
put, it is the overestimated WLS CPU utilization that causes the response time
deviation of 47%. For high CPU utilization like 80% an overestimated utilization
results in a considerably higher response time. Both models overestimate the WLS
CPU utilization. Model A also overestimates the DBS CPU utilization while this is
underestimated by Model B. Similar to the previous scenario, we assume the overes-
timation of Model B to be caused by the instrumentation overhead during resource
demand estimation.

Table 7.8 shows simulation results where the performance model of the manufac-
turing domain is used to predict the performance of only the scheduleWorkOrder

method. The difference between these simulations and the simulations conducted
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Throughput: 13.32 ops/sec

Metric Measurement Model A Error Model B Error

UWLS CPU 0.157 0.186 0.16 0.189 0.17

UDBS CPU 0.074 0.055 0.26 0.031 0.58

RDriver 19.4 21.6 0.10 20.1 0.04

Throughput: 33.63 ops/sec

Metric Measurement Model A Error Model B Error

UWLS CPU 0.377 0.468 0.19 0.478 0.21

UDBS CPU 0.161 0.140 0.13 0.079 0.51

RDriver 26.1 31.3 0.16 29.9 0.12

Throughput: 49.93 ops/sec

Metric Measurement Model A Error Model B Error

UWLS CPU 0.570 0.695 0.18 0.713 0.20

UDBS CPU 0.230 0.208 0.10 0.119 0.48

RDriver 35.5 50.9 0.30 51.9 0.32

Throughput: 71.12 ops/sec

Metric Measurement Model A Error Model B Error

UWLS CPU 0.851 - - - -

UDBS CPU 0.314 - - - -

RDriver 81.8 - - - -

Table 7.8: Scenario 2b: Validation of the CreateVehicleEJB performance model.

for the scenario in Section 7.4.1 (see Table 7.6) is that the underlying performance
models are extracted using a different transaction mix. As expected, this section’s
Model A performs similar to Model A of the previous section. The performance
predictions based on Model B do not match the measurements well. While here,
predictions for the WLS CPU utilization are about 5% higher than the predictions
of the previous section, the DBS CPU utilization is seriously underestimated. This
leads to the conclusion that partitioning via weighted response time ratios appears
to be appropriate for WLS CPU demands but not for DBS CPU demands. In other
words, partitioning the DBS CPU demands by the commit phase response time
ratios has to be reconsidered.

7.5 Summary

In this chapter we evaluated different monitoring approaches and presented a case
study evaluating the accuracy of the extracted performance models. As the simula-
tion results show, the extraction method delivers appropriate performance models.
However, there are still issues to be addressed. The estimated resource demands
should be calibrated with regard to the instrumentation overhead. While the esti-
mated WLS resource demands are already adequate, the estimation of DBS resource
demands has to be improved.

Furthermore, there are some technical issues. Performance models should be able to
consider dynamic frequency scaling technologies like EIST. Additionally, the PCM
Bench should provide simulations for multi-core CPUs. Moreover, the overhead of



82 7. Evaluation

monitoring tools plays a crucial role when extracting performance models during
operation.



8. Conclusion

This thesis concludes with a summary of preceding chapters and a section on future
work.

8.1 Summary

In this thesis we developed a method for semi-automated extraction of Palladio
Component Model (PCM) instances of Java EE applications based on monitoring
data collected during operation. The method is implemented in a proof-of-concept
tool prototype. To obtain monitoring data we use state-of-the-art, industrial moni-
toring tools available for the current version of the Oracle WebLogic Server (WLS)
Platform. Namely, these are the WebLogic Diagnostics Framework (WLDF) and the
JRockit Runtime Analyzer (JRA). In the context of a case study we evaluated our
approach with a real-world enterprise application. For reasons of external validity
we chose a beta version of the successor of the SPECjAppServer2004 benchmark
application.

Extracting a PCM instance requires the extraction of the application’s architecture,
the application’s performance-relevant behavior and the application’s resource de-
mands. We extracted structural information by means of call path tracing enabled
by the WLDF instrumentation engine. For resource demand extraction we presented
several approaches. Basically, resource demands are estimated either with response
times or with the Service Demand Law.

We focused on the EJB 3.0 Component Model, the web tier or user interface tech-
nologies like Java Server Faces are not considered. As persistence framework we
considered JPA. The output of our extraction method is a PCM (component) repos-
itory model and a PCM system model. The former describes the application’s com-
ponents, their behavior and their relationships with each other. The system model
shows the components as they are actually deployed. The extraction assumes infor-
mation about the component boundaries to be available. Furthermore, for the cur-
rent prototype implementation component code has to be structured in a form that
makes performance-relevant intra-component control flow explicit. This is required
due to the lack of support for in-method instrumentation in current monitoring tools.
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Given that the extraction is based on trace data the method may not extract the
entire application but only those parts that are actually called during monitoring.
Thus, we model the effective architecture of the considered application.

The method as it is implemented in the tool prototype separates the extraction
approach into structure extraction and resource demand extraction. We assume the
considered application to be running on a WLS instance. The extraction can be
started as soon as the prototype is provided with information on the component
boundaries. To introduce application monitors the application of interest has to be
redeployed unless the diagnostic actions are already injected and only disabled. In
the latter case, enabling instrumentation can be performed without a redeployment.
Note that the proof-of-concept prototype does not configure WLDF automatically.
However, once the application is instrumented it has to be exposed to workload in
order to raise gathering of trace data. Since the overhead of trace data generation
cannot be neglected, the workload intensity should not be high in this step. The
tool’s user decides when to stop the structure extraction and when to start the time
interval for resource demand extraction. For the extraction of resource demands
we use low overhead instrumentation. Here, the system performance is affected to
a degree we consider acceptable. The way resource demands should be estimated
depends on the system load. We implemented two approaches, one for light load
and one for medium to heavy load.

We evaluated the applicability of the method on a part of the beta version of the
successor of the SPECjAppServer2004 benchmark which we deployed in a realistic
system environment. We extracted performance models and conducted performance
predictions which we compared to actual measurements. Mostly, we encountered
an error of about 20 to 30%. However, further calibrations of estimated resource
demands are possible.

The described method automates extraction of PCM instances from Java EE appli-
cations. Even though some intervention is required, the prototype we implemented
provides a proof-of-concept showing how the existing gap between low level moni-
toring data and high level performance models can be closed. It also reveals issues
needed to solve for a complete automation.

As part of the thesis, a collaboration with Oracle was conducted. Results of this
thesis will be published on the Oracle Technology Network. In addition, we plan to
submit a research paper to the first international workshop on run-time models for
self-managing systems and application (ROSSA 2009).

8.2 Future Work

The considered Java EE benchmark can be used as a basis for future work. To
capture not only a part of the benchmark but the entire application, the scope with
regard to the covered Java EE technologies has to be extended:

• The extraction tool will be extended to extract also message-driven beans
and asynchronous message flows. To consider not only point-to-point but also
publish-subscribe messaging, i.e., general JMS messaging, the PCM has to
be adapted too. Currently, the PCM does not allow for modelling message-
oriented-middleware mechanisms.
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• Beyond EJB 3.0, the web tier respectively Java Servlets will be considered to
completely model the benchmark.

• Our extraction method currently does not distinguish between stateless session
beans and stateful session beans. It is unlikely that the performance of a
stateful bean can be accurately predicted if its state is not considered.

In addition, the extraction tool can be enhanced concerning the following aspects:

• We will provide a GUI to ease the usage of the tool. An automated WLDF
configuration would also ease application of the extraction method. For that
purpose, WLDF configuration would have to be simplified. Currently, the
provided monitor management functionalities are limited.

• The tool can be enhanced to support model extraction of applications that are
deployed on more than one WLS instance.

• Another issue that requires further considerations is that the currently needed
instrumentation enforces a redeployment of the application. Given that the
approach aims for PCM instance extraction of running Java EE applications
this is an important challenge.

• Given that the monitoring tools provide detailed information on workload and
resource utilization data, one can integrate the data into the PCM. Event
though such information cannot be used as input data for the performance
model it would be useful to detect hot spots or bottlenecks.

• In the current version, the extraction tool does not generate a PCM resource
environment or a PCM allocation model. In future versions, the tool should
support these models as well. In addition, an automated extraction of a PCM
usage model based on monitoring data is imaginable.

• The implementation can be extended concerning the extraction of probabilis-
tic parameter dependencies. However, automated extraction of performance-
relevant behavior and modelling of PCM RDSEFFS remains an issue. For the
proof-of-concept prototype we implemented a workaround which should be re-
vised to be applicable in practice. Thus, further research on how to overcome
the workaround of refactoring component code is needed. Therefore, the work
presented in [?] is of great interest.

Beyond, the PCM Bench should provide support to simulate (hardware-implemented)
techniques for power reduction like dynamic frequency scaling. Otherwise, the pre-
diction accuracy will suffer unless these techniques are disabled. Especially if the
performance predictions aim for run-time performance management with the objec-
tive to reduce power consumption, deactivation can not be a solution.

In general, the monitoring tools should impose an overhead as low as possible. The
influence on the system and application should be minimized in order to not cause
failing performance objectives on the one hand and to extract representative mon-
itoring data on the other hand. The latter requirement particularly holds for the
extraction of resource demands. One approach to reduce the overall monitoring
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overhead would be to implement an adaptive monitoring that allows monitoring for
sensitive parts of the application. In conjunction with the monitoring approaches,
further investigations on resource demand estimation are desirable. To give a con-
crete example, the usefulness of method sampling data from the JRockit Runtime
Analyzer needs some further investigation.



A. Tool Prototype Implementation
Details

A.1 XML Schema for System Description
<?xml version=”1 .0 ” encoding=”UTF−8”?>

<xs:schema xmlns :xs=”h t tp : //www. w3 . org /2001/XMLSchema”
targetNamespace=”ht tp : // sdq . ipd . uni−ka r l s ruhe . de/ fabro ”
elementFormDefault=” q u a l i f i e d ”
attr ibuteFormDefau l t=”u n q u a l i f i e d ”>

<xs:complexType name=”rootType ”>
<xs : annota t i on><xs :documentat ion>

The root type f o r a l l types de f ined in t h i s schema .
</ xs :documentat ion></ xs : annota t i on>
<xs : s equence>

<xs : e l ement name=”name” type=” x s : s t r i n g ” minOccurs=”0 ” n i l l a b l e=”true ”/>
</ xs : s equence>

</ xs:complexType>

<xs :s impleType name=”app l i c a t i on−name−type ”>
<xs : annota t i on><xs :documentat ion>

The type r e p r e s e n t i n g the a p p l i c a t i o n name o f the a p p l i c a t i o n to s e l e c t .
</ xs :documentat ion></ xs : annota t i on>
<x s : r e s t r i c t i o n base=” x s : s t r i n g ”></ x s : r e s t r i c t i o n>

</ xs :s impleType>

<xs :s impleType name=”configmode−type ”>
<xs : annota t i on><xs :documentat ion>

The type r e p r e s e n t i n g the configmode . The configmode enab l e s opt ions
o f how to map EJBs to Components . E i ther each EJB i s mapped
to i t s own component , or a component c o n s i s t s o f a l l EJBs
conta ined in the same Java package , or the user manually
maps EJBs and components .

</ xs :documentat ion></ xs : annota t i on>
<x s : r e s t r i c t i o n base=” x s : s t r i n g ”>

<xs :enumerat ion value=”ejbtocomponent ”/>
<xs :enumerat ion value=”packagetocomponent ”/>
<xs :enumerat ion value=”manual ”/>

</ x s : r e s t r i c t i o n>
</ xs :s impleType>

<xs:complexType name=”component−type ”>
<xs : annota t i on><xs :documentat ion>

The type r e p r e s e n t i n g a component s p e c i f i c a t i o n .
A component has a name and more than one EJBs conta ined .

</ xs :documentat ion></ xs : annota t i on>
<xs : s equence>
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<xs : e l ement name=”name” type=” x s : s t r i n g ” maxOccurs=”1 ”
minOccurs=”1 ” n i l l a b l e=” f a l s e ”/>

<xs : e l ement name=”e jb ” maxOccurs=”unbounded ” type=” x s : s t r i n g ”
minOccurs=”1 ” n i l l a b l e=” f a l s e ”/>

</ xs : s equence>
</ xs:complexType>

<xs:complexType name=”system−type ”>
<xs : annota t i on><xs :documentat ion>

The type r e p r e s e n t i n g the root element o f the system d e s c r i p t i o n XML f i l e .
In add i t i on to the a p p l i c a t i o n ’ s name , the configmode
and the component s p e c i f i c a t i o n s , the in c lude and exc lude e lements
can be used to f i l t e r the c l a s s e s that should be cons ide r ed .

</xs:documentation></xs :annotat ion>
<xs:complexContent>

<x s : e x t e n s i o n xmlns : sys=”ht tp : // sdq . ipd . uni−ka r l s ruhe . de/ fabro ”
base=”sys : rootType”>

<xs : sequence>
<xs : e l ement name=”a p p l i c a t i o n ” type=”s y s : a p p l i c a t i o n−name−type ”

n i l l a b l e =”f a l s e ” maxOccurs=”1” minOccurs=”1”/>
<xs : e l ement name=”configmode ” type=”sys :conf igmode−type ”

maxOccurs=”1” minOccurs =”1” n i l l a b l e =”f a l s e ”/>
<xs : e l ement name=”inc lude ” maxOccurs=”unbounded ”

type=”x s : s t r i n g ” minOccurs =”0” n i l l a b l e =”f a l s e ”/>
<xs : e l ement name=”exc lude ” maxOccurs=”unbounded ”

type=”x s : s t r i n g ” minOccurs =”0” n i l l a b l e =”f a l s e ”/>
<xs : e l ement name=”component ” type=”sys:component−type ”

maxOccurs=”unbounded ” minOccurs =”0” n i l l a b l e =”f a l s e ”/>
</xs : sequence>

</xs : ex t en s i on>
</xs:complexContent>

</xs:complexType>

<xs : e l ement xmlns : sys=”ht tp : // sdq . ipd . uni−ka r l s ruhe . de/ fabro ”
name=”system ” type=”sys : system−type”>

<xs :annotat ion><xs:documentation>
A component name has to be unique amongst the other component names .
An EJB may be mapped to at most one component .

</xs:documentation></xs :annotat ion>
<xs :un ique name=”unique−component−name”>

<x s : s e l e c t o r xpath=”component”/>
<x s : f i e l d xpath=”name”/>

</xs :unique>
<xs :un ique name=”unique−component−e jb”>

<x s : s e l e c t o r xpath=”component”/>
<x s : f i e l d xpath=”e jb ”/>

</xs :unique>
</xs :e lement>

</xs:schema>

A.2 Design of Prototype Implementation

The tool prototype is implemented as a Eclipse plug-in in Java. In order to get an
overview on how the implementation is organized, Figure A.1 shows the package
structure. Only the main packages and their dependencies are shown.

The internal structure of the six mentioned packages is illustrated in Figures A.2,
A.3, A.4, A.6, A.7 and A.5. Subpackages are not shown in detail.
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de.uka.ipd.sdq.fabro.systemdescription

de.uka.ipd.sdq.fabro.wlsconnection

de.uka.sdq.ipd.fabro.systemdeployment

«uses»

«uses»

de.uka.ipd.sdq.fabro.dataaccess

«uses»

de.uka.ipd.sdq.fabro.dataextraction

de.uka.ipd.sdq.fabro.pcm

«uses»

«uses»

«uses»

Figure A.1: Package overview of the tool prototype.

Figure A.2: Overview of de.uka.ipd.sdq.fabro.wlsconnection.
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Figure A.3: Overview of de.uka.ipd.sdq.fabro.systemdeployment.

Figure A.4: Overview of de.uka.ipd.sdq.fabro.systemdescription.

Figure A.5: Overview of de.uka.ipd.sdq.fabro.pcm.
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Figure A.6: Overview of de.uka.ipd.sdq.fabro.dataaccess.

Figure A.7: Overview of de.uka.ipd.sdq.fabro.extraction.
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B. Evaluation Details

B.1 Instrumentation versus JRockit Optimization
We would like to find out if an injected action can be optimized away by JRockit.
Therefore, we instrument different methods with different actions. Then we run
a specific driver that logs method call counts. Comparing the method call counts
obtained through instrumentation and the method call counts logged by the driver
we can deduce if an action was optimized away.

We execute a transaction mix of the two business methods scheduleWorkOrder

(sWO) and createLargeOrder (cLO). Both business methods trigger internal ac-
tions that are denoted as follows:

sWO int 2: WorkOrderSession#scheduleWorkOrder_1_internalaction_2

sWO int 6: WorkOrderSession#scheduleWorkOrder_1_internalaction_6

getInv int 1: MfgSession#getInventory_1_internalaction_1

fA int 1: MfgSession#findAssembly_1_internalaction_1

cLO int 2: LargeOrderSession#createLargeOrder_1_internalaction_2

Note that getInv int 1 is only called by sWO whereas fA int 1 is called by both
sWO and cLO.

Four experiment runs are conducted. Table B.1 shows the experimental results.
In Experiment 1, we instrumented with the call pointcut expression. We instru-
mented sWO with diagnostic action TraceElapsedTimeAction and cLO with action
MethodInvocationStatisticsAction. Obviously, the expected method invocation
counts differ from the measured counts of sWO but match with the measured counts
of cLO. Notice that all instrumented methods are also marked as optimized in JRA
(indicated by the asterisk *).

Figure B.1 shows a screenshot of a JRockit Runtime Analyzer (JRA) recording.
Methods annotated with a“lightning”have been optimized. For instance, the screen-
shot shows that method sWO has been optimized.

In Experiment 2, we instrumented with the execution pointcut expression and
received similar results as for Experiment 1. The kind of the pointcut expression
appears not to have an influence on code optimization.
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Figure B.1: Screenshot of JRockit Runtime Analyzer recording.

In Experiment 3, we instrumented both methods sWO and cLO with the action
MethodInvocationStatisticsAction. There, for all instrumented methods the
expected method invocation counts match with the measured invocation counts.
For Experiment 4 we configured WLDF as in Experiment 2 but switched JRockit
optimizations off. Obviously, this had an influence on the measured invocation
counts.

To summarize, action TraceElapsedTimeAction appears to be affected by JRockit
optimizations while MethodInvocationStatisticsAction is not. Nevertheless, this
issue needs further investigation.

B.2 PCM Model Instances used in the Case Study

In this section we show screenshots of PCM model instances used for Scenario 2.
Figure B.2 shows the output of the tool prototype, Figure B.3 shows the PCM usage
model instance that is modelled manually.
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Figure B.3: Screenshot of the PCM usage model instance that is manually modelled
for Scenario 2a of the case study in Section7.4.2.
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