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Abstract—Trends such as the Internet of Things or edge
computing lead to a growing number of networked devices.
Hence, it is becoming increasingly important to manage com-
munication systems at runtime. Adding self-adaptive capabilities
is one approach to reduce administrative effort and cope with
changing execution contexts. Existing frameworks for building
self-adaptive software can help to reduce development effort
in general. Yet, they are neither tailored towards the use
in communication systems nor easily usable without profound
knowledge in self-adaptive systems development. In this paper, we
propose REACT, a reusable, model-based runtime environment
to complement communication systems with adaptive behavior. It
addresses the heterogeneity and distribution aspects of networks
and reduces development effort. REACT empowers developers
of communication systems to add adaptive behavior without
having experience in self-adaptive systems development. We
show the effectiveness and efficiency of our prototype in an
experimental evaluation based on two distinct use cases from
the communication systems domain: cloud resource management
and software-defined networking. The first use case includes a
comparison with Rainbow, which represents a state-of-the-art
model-based framework for building self-adaptive systems. The
second use case applies REACT in a sophisticated, real-world
communication system scenario.

I. INTRODUCTION

With increasing network sizes, mobility, and traffic, it

becomes a challenging task to achieve goals such as con-

tinuously delivering a satisfying service quality. Self-adaptive

approaches adapt a system at runtime according to changes in

the execution context [1]. A self-adaptive system consists of

the managed target system and an adaptation logic managing

the target system. Adding self-adaptive capabilities to com-

munication systems—computer networks as well as supporting

structures such as overlays or middleware—is a major research

focus. For instance, self-adaptive applications in the software-

defined networking (SDN) domain can help to reduce manage-

ment effort and improve the network’s performance [2]. SDN

provides possibilities to monitor and reconfigure a network by

specifying selectors for packets and corresponding actions. An

adaptation logic may use these capabilities for reconfiguring

the packet flows at runtime.

Making such communication systems self-adaptive, how-

ever, is a challenging task for domain experts, i.e., communi-

cation systems developers. First, the distributed nature of those

systems requires the collection of monitoring information from

multiple hosts and the adaptation of distributed components.

Second, communication systems consist of heterogeneous

components, e.g., developed in different programming lan-

guages. Third, domain experts typically lack knowledge about

the development of self-adaptive systems.

Instead of manually integrating self-adaptivity, the domain

expert may rely on frameworks or tools. While approaches

such as Rainbow [3], SASSY [4], or MUSIC [5] are suitable

for the general purpose of engineering self-adaptive systems,

they are neither tailored to communication systems, nor sup-

port the domain expert adequately in these use cases. To the

best of our knowledge, no existing approach supports multi-

ple programming languages, enables decentralized adaptation

logics with distributed deployments, and is available as an

easy-to-use open source project for domain experts.

Motivated by these observations, we propose REACT,

a Runtime Environment for Adapting Communication

SysTems. REACT allows domain experts to specify adapta-

tion behavior in a model-based fashion with Clafer [6] and

UML. By implementing language-independent interfaces and

selecting deployment options, REACT connects to the target

system and automatically deploys its integrated feedback loop.

Thus, it is applicable to legacy systems as well. REACT

is lightweight and easy-to-use while satisfying the specific

requirements of adaptive communication systems. To bridge

the prevailing gap between self-adaptive systems research and

practice [7, 8], we implement REACT, make it available as

an open source project1, and guide domain experts with a

well-defined development process. We evaluate REACT by (i)

comparing it with the state-of-the-art Rainbow framework in

a cloud resource management scenario and (ii) applying it in

a real-world use case from the SDN domain.

1Available here: https://github.com/martinpfannemueller/REACT.
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The remainder of this paper is structured as follows. Sec-

tion II reviews related work. Section III outlines the challenges

we address with our approach as well as REACT’s archi-

tecture. This is followed by Section IV that introduces how

REACT’s implementation supports self-adaptivity. Section V

presents the development process to apply REACT. Section VI

evaluates our approach in two distinct use cases comparing it

to the state of the art. Finally, Section VII summarizes our

findings and outlines future work.

II. RELATED WORK

Engineering of self-adaptive systems is a prominent research

area with a large body of excellent related work that we can

build upon. We review the research landscape in [9]. Several

related approaches perform adaptations based on architectural

models (e.g., [1, 10, 11]) or specify architecture definition lan-

guages for self-adaptive systems (e.g., [12–14]). Model-based

engineering approaches such as [15–18] often use DSPLs with

feature models. The models@run.time research proposes to

use runtime models that represent the system and environment

for reasoning [19, 20]. All of the aforementioned approaches,

however, do not offer an implementation explicitly designed

to be used by others. Since we design an approach that aims

at high applicability for practitioners and fellow researchers,

we focus on implementation aspects of related work in the

remainder of this section, as summarized in Table I.

First, an approach that optimally assists domain experts

should support all self-* properties [21]—self-configuration,

self-optimization, self-healing, and self-protection—to be suit-

able for various use cases in communication systems. Second,

the integration of a ready-to-use adaptation decision engine,

which adapts the communication system based on models,

goals, or utilities makes the approach useful for domain

experts without extensive knowledge about self-adaptive sys-

tems. Third, the support for existing systems is essential to

integrate self-adaptivity into legacy systems. Fourth, a use case

independent approach is applicable to a wide range of commu-

nication systems. We observe that multiple approaches fulfill

these requirements. However, FESAS [22] and HAFLoop [23]

for instance, provide excellent support with reusable MAPE

components, but do not integrate a decision engine.

We aim to support the domain expert during the develop-

ment process. Especially in the heterogeneous communication

systems landscape, an approach is easy to use if it supports

multiple programming languages such as the approach by

Malek et al. [24]. A vast majority of approaches relies on par-

ticular programming languages only, with Java being the most

frequently used language. In addition, predefined interfaces as

introduced by the prominent Rainbow [3] framework allow

connecting the target system easily to the adaptation logic,

which is especially important for legacy systems. Rainbow,

however, belongs to the approaches [3, 4, 25–27] that do not

specify an easy-to-follow development process.

We argue that an approach that is suitable for large and

heterogeneous communication systems must support decen-

tralized control with multiple feedback loops [28]. This typ-

TABLE I
OVERVIEW OF RELATED APPROACHES

(DEPL. = DEPLOYMENT, DEV. = DEVELOPMENT, ENG. = ENGINE, EVAL.
= EVALUATION, EX. = EXISTING, SUP. = SUPPORT)

Capabilities Dev. Sup. Depl. Eval.
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ActivForms [33] • • • • • •
Cetina [25] • •
FESAS [22] • • • • • • • •
Genie [35] • • • • •
GRAF [36] • • • • • • •

HAFLoop [23] • • • • • • • •
Malek [24] • • • • • • •

MOSES [26] • •
MUSIC [5] • • • • • •
Preisler [30] • • • • •

Rainbow [3, 37] • • • • • • •
REFRACT [27] • • •

SASSY [4] • • • • •
StarMX [31] • • • • • •

Tomforde [38] • • • • • • •
Zanshin [32] • • • • • • • •

REACT • • • • • • • • • • •

ically also encompasses that one feedback loop itself can

be separated into several distinct components that may run

distributed. Most existing approaches are designed for central-

ized feedback loops only. As a running system might change

over time in an unexpected way, it is helpful to adjust the

behavior manually, apply self-improvement [29], or change the

deployment at runtime. This holds true for communication sys-

tems in particular, where, e.g., new components or subsystems

may join or leave the system at any time. In several related

approaches [3, 25, 26, 30–33], the influence of the developer

already ends with the design process.

Ideally, the source code of the implementation is publicly

available and well documented. This helps to foster further

research and enables adoption by domain experts in practice.

Only a small subset of existing approaches [3, 22, 23, 31–

33] is available at present. Moreover, a comparative evaluation

with other approaches highlights the merits of the particular

approach and gives users guidance to select the proper ap-

proach for their respective communication system. Here, only

Rainbow [3] and Zanshin [32] have been compared in [34].

In this paper, we propose REACT, a reusable runtime

environment for model-based adaptations in communication

systems. REACT contributes to the state of the art due

to its focus on communication systems and domain expert

support. None of the existing approaches offers multi-language

support, enables decentralized control as well as distributed

deployments, and is available as an open source project. We

make the source code of REACT’s implementation available

and compare our approach with Rainbow.
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III. REACT- A REUSABLE RUNTIME ENVIRONMENT FOR

ADAPTIVE COMMUNICATION SYSTEMS

In this section, we first outline the challenges that shape

REACT’s design. Second, we introduce REACT’s architecture.

A. Challenges

Introducing self-adaptivity to modern communication sys-

tems poses challenges regarding distribution and decentraliza-
tion, heterogeneity, and development effort. We design REACT

to address these challenges.

C1 Distribution & Decentralization: First, we adapt com-

munication systems, i.e., inherently distributed systems. Thus,

REACT has to collect sensor information from various dis-

tributed components and subsystems. Since adaptation may

affect different parts of the distributed system, REACT must

identify and adapt the affected parts. Second, REACT must

support decentralized control, which has been identified as an

open research challenge recently [7]. Typically, decentralized

feedback loops are deployed distributed [28]. This makes it

possible to share the computational overhead of self-adaptivity

across multiple nodes.

C2 Heterogeneity: We face heterogeneity in two ways. First,

REACT must be applicable to a wide range of heterogeneous

communication systems. Therefore, domain experts must be

able to use their preferred language to connect their (legacy)

communication system to REACT. Second, the specification

of the adaptation must be independent from the target com-

munication system. This allows REACT to apply the same

self-adaptive behavior to different target systems easily.

C3 Development Effort: Building self-adaptive systems is

still a complicated task [9]. For adding adaptive behavior to a

system, domain experts require specific knowledge, e.g., about

feedback loops and adaptation planning. In practice, a domain

expert typically does not have the required expertise. Thus,

REACT simplifies and minimizes the development effort. This

comprises a clear and easy, model-based development process

with low programming overhead.

B. REACT’s Architecture

In contrast to self-adaptation frameworks which offer a

standard way to build self-adaptive applications, we refer to

REACT as a runtime environment, i.e., a platform that is

additionally able to plan and execute adaptations based on

user-specified adaptation behavior. REACT includes a feed-

back loop as well as interfaces for connecting target systems.

Potential target systems in the communication systems do-

main are overlay networks such as peer-to-peer systems and

underlay networks, e.g., in SDN scenarios. However, REACT

could possibly be used in other application domains as well.

The feedback loop follows the MAPE-K architecture that

consists of components for (i) Monitoring the system and the

environment, (ii) Analyzing the monitored data for necessary

adaptations, (iii) Planning the adaptations, and (iv) Executing

the adaptations in the target system as well as (v) a shared

Knowledge base [21]. The feedback loop uses information

stored in an instance of the knowledge for reasoning. It

REACT
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Fig. 1. REACT’s architecture in a UML-like notation. It consists of one or
multiple MAPE feedback loop(s) connected to instance(s) of the knowledge
service with the adaptation options specification and target system specifica-
tion provided by the domain expert. REACT’s reusable feedback loop uses the
adaptation options specification to solve the current adaptation problem and
maps it to the target system with the target system specification. The target
system connects to REACT via well-defined sensor and effector interfaces.

receives sensor information from the communication system as

an input and determines the required adaptations as an output

via interfaces (Challenge C2). Figure 1 shows REACT’s archi-

tecture on top of a communication system using a UML-like

notation. The MAPE components and the knowledge service

are generic, internal parts of REACT and are independent from

the use case. These gray parts in Figure 1 are encapsulated in

a ready-to-use fashion and do not require any programming

effort from the domain expert (Challenge C3). The white boxes

represent the specifications and the effector implementation

that have to be provided by the domain expert.

Considering the specifications, self-adaptive systems can

use models, rules, goals, utility functions, or combinations

of the former as decision criteria [9]. As models provide

a sufficient level of expressiveness while being easy to use

for domain experts, we select a model-based approach for

REACT’s feedback loop. By creating the models at design

time, the domain expert tailors the feedback loop to the

respective use case. Thus, the domain expert is able to integrate

self-adaptivity into the target system by only providing the

models used as decision criteria. These models are then used

by the readily provided internal feedback loop of the runtime

environment. REACT requires two models:

1) The adaptation options specification is an explicit

representation of valid reconfiguration options. It thus de-

scribes the problem space with a structural modeling language,

including constraints.

2) The target system specification models the architecture

of the target system, i.e., the solution space. After solving a

problem in the problem space, REACT maps the result to the

solution space according to the target system specification.

With these two models, REACT is able to perform architec-

tural as well as parametric adaptation [39]. The separation of

the two models decouples the specification of the reconfigura-

tion behavior from the target system and its architecture. Sepa-

rating the models is largely inspired by models@run.time [19]

research, which distinguishes between problem and solution
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space. REACT uses the live sensor data provided by the

communication system, together with the adaptation options

specification to adapt the system to the desired target state.

REACT’s internal MAPE components themselves are reusable

since they are working with arbitrary adaptation options spec-

ifications and target system specifications.

To connect to the underlying communication system,

REACT provides programming language independent sensor

and effector interfaces (ISensor and IEffector). The

sensor receives live context information from different parts

of the communication system and forwards it to the feedback

loop (Challenge C1). The effector transfers the result of the

feedback loop to the respective part of the communication sys-

tem. The exposed IKnowledgeService interface can be

used by domain experts to update the specifications stored in a

knowledge service instance at runtime. This may be necessary

due to two reasons. First, complexity and uncertainty may lead

to situations that were not foreseeable at design time [40]. Sec-

ond, environmental changes may necessitate model changes.

The IKnowledgeService interface thus allows, for in-

stance, REACT to be connected to a self-improvement [29]

module that continuously learns and improves the models.

Multiple instances of the MAPE-K components and the sensor

can be distributed on different machines, as the communication

between the components is handled by REACT. Thus, we

achieve high scalability and allow distributed deployments and

decentralized control. Fully decentralized or hybrid patterns,

as described in [28], are realizable (Challenge C1).

IV. ENABLING SELF-ADAPTIVITY WITH REACT

In this section, we present the implementation of REACT

and how it achieves self-adaptivity. First, we describe how

domain experts use a model-based specification approach for

self-adaptation with REACT. Second, we explain REACT’s

integrated feedback loop that leverages the model-based spec-

ification without human intervention. Third, we show how

REACT makes decentralized control, distributed deployment,

and changes at runtime possible.

A. Modeling

An essential part of REACT are the models of the adap-

tation behavior (adaptation options specification) and of the

target system (target system specification). The domain ex-

pert provides these models at design time and may update

them at runtime. REACT uses the models at runtime to

adapt the target system. REACT supports adaptation options

specifications in the structural specification language Clafer

(class, feature, reference) [6]. There are multiple reasons to

use Clafer. First, it is a well-established approach applied in

different domains [6, 41], which is available as an open source

project and extensively documented. Second, Clafer provides

lightweight modeling capabilities with just a minimal set of

concepts. Thus, Clafer makes modeling accessible to users

from different domains without large modeling experience.

Third, Clafer provides model verification and validation [42].

By using Clafer, REACT offers the possibility for advanced

static analysis as presented in [43]. Thus, we can make sure

that no contradictions exist in the Clafer specifications and that

each possible sensor input leads to valid adaptation decisions.

A Clafer-based model is created using a single type of

element, named Clafer. A Clafer represents a type, an at-

tribute, a relationship, an instance, or a combination of these.

Each Clafer has a name and is either top-level or nested

under other Clafers. Nesting is expressed using indentation.

We illustrate Clafer’s basic modeling capabilities with the

following use case from a cloud server management scenario,

where a domain expert uses REACT to implement adap-

tive behavior. Based on the context dimensions (i) number

of running servers, (ii) total number of servers, and (iii)

average response time, REACT launches additional servers

adaptively if required. The launch of an additional server

happens if the average response time exceeds a threshold

value (here 75) and additional servers are available. Listing 1

shows an exemplary adaptation options specification in Clafer

for this use case. Line 1 contains a (top-level) Clafer named

ServerLauncher that describes that an additional cloud

server should be started. Clafers may have cardinalities, while

the default cardinality is 1. By adding 0..1 to Line 1, we

specify that model instances are valid with either none or only

one ServerLauncher Clafer. Clafers may be abstract. An

abstract Clafer “aggregates commonalities” [41] like a class

in object-oriented programming. Hence, a Clafer can inherit

from an abstract Clafer and use abstract Clafers like a type.

The lines 2-5 describe an abstract entity of type Context with

integer attributes. A solution of this problem space requires to

have exactly one instance of this Clafer with all attributes set.

Lines 6 and 7 define the auxiliary Clafers ExtraServers
and HighRT that state whether it is possible to start an

additional server and whether the response time is high. In

addition, a Clafer model may contain constraints in brackets.

Lines 8-9 specify constraints that set the auxiliary Clafers

ExtraServers and HighRT according to the context. Line

10 is the adaptation rule stating that the ServerLauncher
Clafer should be present in a model instance if the response

time is high and more servers are available.

1 ServerLauncher 0..1
2 abstract Context 1
3 servers −> integer 1
4 maxServers −> integer 1
5 responseTime −> integer 1
6 ExtraServers 0..1
7 HighRT 0..1
8 [ if Context.servers < Context.maxServers then one ExtraServers else no

ExtraServers
9 if Context.responseTime >= 75 then one HighRT else no HighRT

10 if HighRT && ExtraServers then one ServerLauncher else no ServerLauncher ]

Listing 1. Adaptation options specification in Clafer for self-adaptive
cloud server management.

REACT uses separate models for the adaptation behavior,

which is modeled in Clafer, and the target system. Hence,

REACT needs a mapping from the problem space to the

solution space, which represents the target system. For this

purpose, REACT uses the target system specification, which

the domain expert provides in UML as class diagrams. In many
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cases, a UML model of a target system might already exist and

be ready to use as a target system specification for REACT.

This considerably decreases development effort. In addition,

an automated creation of a UML model from source code

can also reduce the time for modeling. REACT parses the

UML class diagram as an XML file complying to the UML 2
Abstract Syntax Metamodel by the Object Management Group.

Due to this standardized format, the domain expert can create

the XML file manually or use a graphical editor that offers

an export in this format such as Papyrus2. In the cloud server

management example with its adaptation options specification

in Listing 1, the simplest UML model only contains a single

class named ServerLauncher. An instance of this UML

model indicates if the corresponding class should be present

in the target system or not.

B. Integrated Feedback Loop

The previous section describes the modeling of the adapta-

tion options specification in Clafer and the target system spec-

ification in UML. Now, we show how REACT autonomously

leverages these use case dependent models to achieve self-

adaptivity. Figure 2 shows the behavior of REACT’s integrated

MAPE-K feedback loop in the aforementioned cloud server

management example. The feedback loop starts as soon as

new sensor information is received via the sensor interface in

JSON format. In the example, this sensor data 1 is context

information about the cloud system. The received information

is handed over to the monitoring component.

REACT allows domain experts to choose from multiple

integrated monitoring strategies. In the default strategy, the

monitor parses the raw JSON data and hands it to the analyzer

as a map 2 . REACT offers an aggregation strategy that

additionally aggregates information from multiple sensors and

a windowing strategy that applies a sliding window approach

to the incoming sensor values. An IMonitoringStrategy
interface further makes it possible for advanced users to create,

share, and integrate custom monitoring strategies.

The analyzer fetches the adaptation options specification 3
from the knowledge service. It uses the abstract Clafers spec-

ified in the adaptation options specification to create concrete

Clafers from the monitoring data. To achieve this mapping,

the original sensor data contains type attributes. REACT uses

these type attributes to map the monitoring data objects to the

correct abstract Clafers in the adaptation options specification.

In the exemplary case, the type has the value Context and

REACT therefore maps it to the Context Clafer in the

adaptation options specification 3 . The concrete Clafers are

then forwarded to the planning component 4 .

REACT’s planner merges the generated Clafers with the

adaptation options specification to the problem specification.

The problem specification thus contains the global constraints

of the adaptation options specification and the current con-

straints imposed by the sensor data. Now, REACT solves this

problem specification as a constraint-satisfaction problem with

2https://www.eclipse.org/papyrus/
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Fig. 2. An adaptation cycle of REACT for the cloud server management
example. The analyzer maps the JSON-based sensor information to the
adaptation options specification in Clafer. The planner evaluates the model
and finds a valid instance. Here, it adds a ServerLauncher Clafer as
starting a new server is desired. The effector maps the plan to the target system
specification in UML and transfers the adaptation to the target system.

Chocosolver [44], a Java-based library for constraint program-

ming. Hence, the solver finds a model instance 5 that satisfies

all constraints. In the exemplary case, this model instance

would either contain or not contain the ServerLauncher
Clafer, which constitutes the adaptation decision.

The planning result in the form of concrete Clafers is

then passed to the executor, which maps the Clafers to the

target system specification 6 . REACT maps the Clafers

by name to the classes or parameters of the UML model

and creates an UML instance. In the example, the created

ServerLauncher Clafer (note the missing 0..1 cardinality

in 5 ) is mapped to the class ServerLauncher of the target

system specification. REACT transforms the UML instance to

a language-independent representation. Finally, the executor

passes this representation via the effector interface 7 to

the target system, where adaptations will take place. The

integrated feedback loop of REACT works with arbitrary adap-

tation options specifications and target system specifications

and is thus applicable to a wide range of scenarios.

C. Communication and Deployment

We showed how REACT makes it possible to build self-

adaptive communication systems or integrate self-adaptive

behavior into a legacy system while only demanding two

models from the domain expert and low programming effort.

Another main strength of REACT is its ability to run dis-

tributed. To achieve this, REACT’s internal communication

interfaces between MAPE components, knowledge service,

and sensor/effector interfaces are specified in ZeroC Ice’s

Interface Definition Language [45]. Ice is a well-established

framework for creating Remote Procedure Call (RPC) bindings

to many programming languages. For supporting distribu-

tion, runtime change of the deployment, and bootstrapping,

REACT’s MAPE-K components and sensors are integrated
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into OSGi bundles with iPOJO [46]. The domain expert de-

ploys the system with a key-value-based configuration file for

each component. REACT’s OSGi runtime then instantiates one

component for each available key-value-based configuration

file on a host. Thus, domain experts can deploy the feedback

loop easily in a distributed way. For setting up the connections

to the successor and knowledge component(s), REACT uses

Multicast DNS in local networks or a Consul3 registry for

automatic setup, or manual IP address and port specifications.

Apart from distributed deployment, REACT further supports

changes of the adaptation options specification, the target

system specification, and the deployment at runtime. REACT

allows to use an RPC at runtime to add models remotely to

the knowledge service. Hence, a domain expert can change

the self-adaptive behavior without interruptions. The domain

expert can also change the deployment or re-locate REACT’s

components. After updating the configuration files, REACT’s

OSGi containers reconfigure automatically.

V. REACT’S DEVELOPMENT PROCESS

Defining a process for development, deployment, and op-

eration is a major challenge in the self-adaptive systems

domain [8]. This section shows how a domain expert can use

REACT with a three-step development process. Figure 3 de-

picts the three development steps: 1) Modeling, 2) Connecting,

and 3) Configuring.

1. Modeling 2. Connecting 3. Configuring

2.1 Effector Implementation

2.2 Sensor Implementation

1.1
Adaptation Options 

Specification

1.2
Target System 
Specification

3.1
Key-Value-Based 

Configuration Files

Fig. 3. Development process for using REACT. After modeling the self-
adaptive behavior, the domain expert connects REACT to the target system.
With a simple configuration step, the domain expert is able to deploy REACT.

In the first step, the domain expert creates the adaptation

options specification (1.1) and the target system specification

(1.2) for REACT’s feedback loop with Clafer and UML. The

separation into adaptation options specification and target sys-

tem specification allows REACT to reuse the same adaptation

options specification for different communication systems. For

instance, a shared repository with reusable specifications could

offer other domain experts the possibility to readily use these

specifications for their system. In this case, they could only

specify the target system specification and reuse an existing

adaptation options specification. With the Clafer executable4,

it is possible to check the adaptation options specification as

well as to test the specification with sample inputs at design

time for assuring a correct behavior.

After the modeling part, the domain expert connects REACT

to the target system. First, she implements the effector inter-

face (Listing 2) to the target system (2.1). As it is common

in the field of self-adaptive systems to have parameter and

architectural adaptation [39], the interface encompasses a

3https://www.consul.io/
4https://gsd.uwaterloo.ca/clafer-tools-binary-distributions.html, v. 0.4.5

method for each adaptation type. For parameter changes, all

available attributes of the UML instances are transmitted to the

target system in REACT’s current version instead of only the

values which changed. Similar, complete UML instances are

transferred instead of deltas for component changes. Future

versions of REACT may only transfer changes.

1 interface IEffector {
2 void sendParameterChanges(ParameterChange p);
3 void sendComponentChanges(ComponentChange c); }
4 interface ISensor {
5 void receiveSensorData(SensorData s); }

Listing 2. IEffector and ISensor interfaces.

After this step, the domain expert implements the sending

of sensor information from the target system to REACT (2.2).

The ISensor interface, shown in Listing 2, specifies the

function implemented in REACT’s sensor component for

receiving sensor information. Hence, the target system calls

the sensor function periodically to trigger REACT. After the

implementation step, the interfaces can be used with REACT

and any kind of specification, i.e., arbitrary adaptation options

specification and target system specification. Hence, they can

be reused if the specification changes.

Finally, the domain expert provides REACT with a minimal

set of configuration information (3.1). This configuration step

enables a distributed deployment of REACT’s components.

One configuration file for each MAPE component allows con-

figuring the component type, a unique identifier, the successor

component, and the corresponding knowledge component.

REACT then creates and deploys a respective component for

each key/value-based configuration file.

VI. EVALUATION

This section experimentally evaluates the prototypical im-

plementation of REACT5. First, we compare REACT with

Rainbow, a well-known and frequently applied framework

for model-based adaptation. For doing so, we implemented

the simulation-based SEAMS exemplar SWIM (Simulator for

Web Infrastructure and Management) [47], which represents a

cloud system. Second, this section presents the application of

REACT in an emulated communication system in the field of

Software-Defined Networking (SDN).

A. Cloud Server Management

In our first experiment, we compare REACT with the well-

known Rainbow framework [3] in terms of development effort,

performance, and features.

Rainbow Framework: The Rainbow framework uses soft-

ware architectures and a reusable infrastructure to support

self-adaptation of software systems, with components imple-

menting each aspect of the MAPE-K loop. Probes are used

to extract information from the target system that update

the model via Gauges, which abstract and aggregate low-

level information to detect architecture-relevant events and

5Supplementary material including a dockerized version of REACT, eval-
uation scripts, and documentation can be found here: https://github.com/
martinpfannemueller/ACSOS2020-Supplementary-Material.
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properties. This separation means that the same code for

Rainbow can be used across multiple deployments of the

system by only changing probes (and effectors). Evaluators

check for satisfaction of constraints and properties in the

model and triggers adaptation if any problems are found, (e.g.,

the response time falls below some threshold or the cost of

deployment becomes too high). The adaptation manager, on

receiving the adaptation trigger, chooses the “best” adaption

plan to execute, and passes it on to the strategy executor, which

executes the strategy on the target system via effectors.

The best strategy is chosen on the basis of stakeholder utility

preferences and the current state of the system, as reflected in

the models. The underlying decision making model is based on

decision theory and utility [37]; varying the utility preferences

allows the adaptation engineer to affect which strategy is

selected. Each strategy, which is written using the Stitch

adaptation language [13], is a multi-step pattern of adaptations

in which each step evaluates a set of condition-action pairs and

executes an action, namely a tactic, on the target system with

variable execution time. A tactic defines an action, packaged

as a sequence of commands (operators). It specifies conditions

of applicability, expected effect and cost-benefit attributes to

relate its impact on the quality dimensions. Operators are basic

commands provided by the target system. As a framework,

Rainbow can be customized to support self-adaptation for a

wide variety of system types. Furthermore, the flexibility of

the framework has enabled not only the multi-object trade-

off selection of strategies among competing objectives that is

embodied in Stitch, but has also supported research into online

adaptation planning [48], predictive proactive adaptation [49],

and human-machine cooperation [50].

Scenario: In this experiment, REACT and Rainbow adapt a

cloud server deployment providing a web application. This

experiment uses SWIM [47], which offers a reproducible way

for evaluating adaptation logics in this web server environ-

ment. It is a simulation environment based on OMNeT++. The

SWIM exemplar consists of multiple simulated web servers

connected to a round-robin load balancer. The load balancer

distributes simulated requests and the corresponding server

simulates the execution. Each web server response can contain

optional content (e.g., advertisements) which increases the

response time but also leads to additional revenue for the

web site operator. The overall goal of the system is thus

continuously reaching a fixed response time goal, maximizing

the revenue with the optional content, and minimizing the cost

for the servers. Accordingly, there are two ways of adapting

the running system: 1) Adding or removing servers, and 2)

controlling the percentage of responses with optional content.

We use the “1998 World Cup Web Site Access Logs” trace

provided by SWIM for comparison.

Experimental Setup: In accordance with [37, 51], we measure

the required source lines of code (SLOC) for implementing

the SWIM use case with REACT and Rainbow. The lines

of codes comprise the specification files and the interface

implementation for connecting the respective approach to

SWIM. Further, we measure the cycle time for executing an

adaptation in REACT and Rainbow as well as the processing

time of each MAPE activity. We conduct 10 evaluation runs

each for REACT and Rainbow on a machine equipped with an

Intel Core i7-8700k and 32GB of RAM. Both approaches have

been executed in Docker containers. For better comparability,

REACT and Rainbow perform similar adaptations, leading to

the same response times and simulated costs for the web site

operator in SWIM.

Results: In this experiment, we answer three research ques-

tions regarding REACT’s development effort, performance,

and capabilities in comparison to the Rainbow framework.

RQ1: How does REACT compare to the state of the art in
terms of development effort?

As far as development effort is concerned, two metrics

influence the domain expert’s experience: the lines of code

required to achieve self-adaptivity and the number of different

programming languages, tools, and technologies she needs

to be familiar with. Both metrics apply to i) specifying

the adaptive behavior and ii) implementing the interfaces to

SWIM. Table II shows the lines of code for the specification

of the adaptive behavior.

TABLE II
SLOC MEASUREMENTS OF THE MODELING IN RAINBOW AND REACT

Rainbow REACT
Artefact SLOC Language Artefact SLOC Language
Strategies
and tactics

113 Stitch
Adaptation
options
specification

123 Clafer
Utilities 55 YAML

Architecture
Model

261 YAML
Target
system
specification

38 XML
128 ACME
25 DTD
11 XML

Total 593 Total 152

We observe that specifying the adaptive behavior with

REACT requires considerably fewer SLOC. The domain ex-

pert has to write 152 SLOC in 2 files with clear respon-

sibilities. To achieve the same behavior with Rainbow, the

domain expert has to write 593 SLOC in 6 different files using

various languages. Next, we assess the development effort

for the interface implementation. In Table III, we observe

that REACT requires 200 SLOC and Rainbow requires 204
SLOC. However, REACT requires fewer (configuration) files

for setting up the connection. In addition, due to its language-

independent interfaces, domain experts can use their preferred

language.

TABLE III
SLOC MEASUREMENTS OF THE INTERFACE IMPLEMENTATIONS OF

RAINBOW AND REACT.

Rainbow REACT
Artefact SLOC Language Artefact SLOC Language

Probes
91 Perl

Interfaces 200 Python
68 YAML

Effectors
9 Bash
25 YAML

Utility Files 11 Bash
Total 204 Total 200

71



RQ2: How does REACT compare to the state of the art in
terms of performance?

Figure 4 presents the average runtimes per MAPE activity as

well as their average sum. REACT considerably outperforms

Rainbow in the monitoring and analyzing phase. Since Rain-

bow holds an exact architecture model of the target system,

it updates the model when new sensor data is available,

periodically checks for problems including an analysis where

the problem is located in the model, and triggers an adaptation.

This design choice thus allows a more complex analysis of

the target system architecture at the cost of slower adaptation.

The total execution time of an adaptation cycle in REACT is

determined to a very high degree by the planner component.

This is not surprising, as the planner executes Chocosolver

to find a valid model instance. Clafer itself scales well with

increasing problem size even with models of several thousand

Clafers [42, p. 84]. In Rainbow, the complex problem analysis

in the monitoring and analyzing component accelerates plan-

ning. The planner only uses the utility function and expected

outcomes for selecting one of the specified strategies instead of

running a solver. In total, REACT’s average adaptation cycle

execution requires 84ms in comparison to 215ms in Rainbow.

Thus, we argue that REACT is well-applicable in scenarios

where fast adaptation is required.

Fig. 4. Average run times of the MAPE activities of REACT and Rainbow.

RQ3: How do REACT and Rainbow differ in terms of
capabilities?

Rainbow has its strengths in more in-depth analysis using

its architecture model and a less complex planning phase as

a result. In addition, it works utility-based with the possi-

bility to weight optimization goals, which may considerably

reduce a domain expert’s effort in scenarios with multiple

goals. REACT, however, offers runtime modifications of the

adaptation behavior, decentralized control, and multi-language

support. Accordingly, if there is the need for weighted opti-

mization and a central deployment without too strict timing

requirements, Rainbow is a good choice. If there is no need for

weighted optimization, and the requirement for decentralized

deployments and fast execution, REACT is a good candidate.

B. SDN-Based Wifi Handover

In the second experiment, we show REACT’s focus on

communication systems in a real-world SDN-based use case

adding adaptive behavior to an underlay network. Sensor infor-

mation from two distributed hosts is pushed to a decentralized

adaptation logic following the regional planning pattern [28].
Scenario: A car receives a live stream from a streaming

server via a wireless network connection (see Figure 5). With

each handover between the wireless network towers along the

road, the user in the car experiences packet loss. The goal

is to improve the quality of experience by minimizing the

packet loss during the handover. SDN “is a paradigm where
a central software program, called a controller, dictates the
overall network behavior” [52]. The controller manages a set

of controllable switches. These switches deal with incoming

packets according to flow rules. A flow rule can, for instance,

forward a packet to a specific port, change or add packet

headers, or implement firewall functionality by rejecting a

packet. The SDN controller offers an API that allows domain

experts to write applications for the controller. In our case,

we apply these capabilities by monitoring and adapting the

flow rules with REACT for seamless handovers. A specific

adaptation means that there should be flow rules for the current

wireless tower, as well as flow rules duplicating the streaming

traffic to the next tower. This duplication should only take

place when the car is going to leave the radio range of the first

tower soon. Achieving this behavior continuously requires a

recurring adaptation of the flow rules.

SDN Switch Live Stream 
ProviderP3P2

Effector

REACT

Sensor

P1

Tower 1 Tower 2

Legend
MAPE Flow

Ethernet

Px Port x

SDN Controller

REACT

P K

Sensor

A EMS

Host1

Host2 Host3

Host4

Fig. 5. SDN handover setup with two access points in a live streaming
scenario with multiple sensors. The SDN sensor sends topology information
while the car sends its distance to the currently connected radio tower. REACT
creates flow rules for adaptively duplicating the live stream traffic.

Experimental Setup: REACT receives sensor data from two

sources. First, the sensor SDN application sends the host

location, which contains addressing information as well as

the currently connected network tower, to REACT. An ad-

ditional sensor in the car sends the distance to the cur-

rently connected access point to REACT every second to

minimize the network traffic duplication. We apply REACT’s

built-in aggregation monitoring strategy to combine the data

for reasoning. REACT’s integrated MAPE components are

distributed according to the regional planning pattern [28].

Monitor, analyzer, and executor are deployed on a separate

machine. A powerful and stable resource runs the computa-

tionally intensive planner and the knowledge service.
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We use the ONOS [53] SDN controller in this evaluation,

which runs on another separate machine. The network was

emulated with Mininet-Wifi [54] on a forth machine. In a

pre-test, we used the VLC player for streaming a 4K video.

However, for better controllability and reproducibility of the

experiment, we run Iperf6 in UDP mode with 25Mbit/s, the

bandwidth recommendation of Netflix for 4K video streams.

The ethernet connections have a bandwidth of 100Mbit/s. We

emulated four access points, one moving wireless node as the

car, and a static host representing the live stream provider.

We compare the self-adaptive handover with REACT to

ONOS’ reactive forwarding application. The reactive forward-

ing application deploys flow rules on switches if a host

connects to another. In this case, the corresponding switches

would request the controller to decide how the packets should

be handled. The reactive forwarding application subscribes to

a corresponding event and deploys flow rules handling these

packets on the switches. We measure the packet loss with

REACT and ONOS’ reactive forwarding in 30 runs each.

Results: We answer the following research question:

RQ4: Can REACT be implemented and used effectively in a
real-world communication system?

As shown in Figure 6, self-adaptivity with REACT reduces

the packet loss considerably. The aggregated mean packet loss

of the overall simulation time improves from 4.87% in the

reactive forwarding case to 0.48% with REACT.

Hence, we observe that REACT can be applied effectively

in a real-world communication system (RQ4). In addition,

REACT makes it possible to efficiently change the behavior

of the SDN controller by changing the adaptation options

specification. It further allows to port the specified behavior

to different SDN controllers by only implementing the ef-

fector interface and sending sensor data accordingly. Thus,

we achieve portability of the specified behavior which is

not available in SDN in general, where each SDN controller

needs specific SDN applications with different interfaces to

the controller for applying a certain behavior in the network.

Fig. 6. Average packet loss in % over time. The duplication flows are added
as soon as the distance to the connected access point is below a threshold.

C. Threats to Validity

REACT’s current implementation is limited in both its

features and its performance. For instance, a weighted op-

timization of multiple adaptation goals, which is possible in

6https://iperf.fr/

Rainbow, is not supported by Clafer. Thus, we plan to integrate

an easy-to-use API for domain experts to forward multiple,

weighted optimization goals to REACT’s underlying Choco-

solver in future work. In the evaluation, we measure SLOC

and the number of different languages to show REACT’s low

development effort for domain experts. Even though SLOC

are frequently used as a metric (e.g., in [22, 37, 51]), a future

user study with domain experts who apply REACT in different

scenarios would strengthen validity. In the second experiment,

we adapt an underlay network with REACT, showing its

capabilities for decentralized control, distributed deployment,

and multi-sensor support. It would be interesting to observe

the scalability of our approach as far as (i) large Clafer and

UML models and (ii) larger system sizes are concerned. This

work is further limited to a comparison with Rainbow and to

two use cases only. Future research may include a comparison

to other frameworks such as SASSY [4] or StarMX [31] in

additional use cases from the communication systems domain.

VII. CONCLUSION

In this paper, we propose REACT, a reusable runtime

environment for model-based adaptations in communication

systems. REACT integrates a MAPE-K feedback loop that

leverages a Clafer and a UML model provided by the domain

expert to autonomously achieve self-adaptivity. We implement

REACT and make it available for domain experts. Due to

its support for multiple programming languages, decentralized

control, distributed deployments, and runtime modifications,

REACT is well-applicable for adapting overlay and underlay

networks. We compare REACT to the well-known Rainbow

framework, showing that it is easy-to-use for domain experts

and suitable for use cases that require fast adaptations.

In future work, we will integrate additional interfaces

that allow developers to use own analyzing and planning

techniques such as machine learning for proactivity or a

different specification language such as Stitch [55] instead of

Clafer. As verification and validation (V&V) is an important

research challenge [8, 55], we plan to add verification of

dynamic properties such as runtime V&V techniques and

guarantees according to costs into REACT, e.g., using model-

checking methods. This will ensure the correctness of the

models and REACT will give certain runtime guarantees.

Future work additionally includes a user study with domain

experts which further investigates the development effort.

Focussing on such empirical evidence with practitioners has

been identified as general challenge for further self-adaptive

systems research [7].
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[4] D. A. Menascé, H. Gomaa, S. Malek, and J. P. Sousa, “SASSY: A
framework for self-architecting service-oriented systems,” IEEE Soft-
ware, vol. 28, no. 6, pp. 78–85, 2011.

[5] S. O. Hallsteinsen et al., “A development framework and methodology
for self-adapting applications in ubiquitous computing environments,”
Journal of Systems and Software, vol. 85, no. 12, pp. 2840–2859, 2012.

[6] K. Bak, Z. Diskin, M. Antkiewicz, K. Czarnecki, and A. Wasowski,
“Clafer: unifying class and feature modeling,” Software and System
Modeling, vol. 15, no. 3, pp. 811–845, 2016.

[7] D. Weyns, “Software engineering of self-adaptive systems,” in Handbook
of Software Engineering. Springer, 2019, pp. 399–443.

[8] R. de Lemos et al., “Software engineering for self-adaptive systems: A
second research roadmap,” in Software Engineering for Self-Adaptive
Systems II. Springer, 2010, pp. 1–32.

[9] C. Krupitzer, M. Breitbach, F. M. Roth, S. VanSyckel, G. Schiele,
and C. Becker, “A survey on engineering approaches for self-adaptive
systems (extended version),” 2018.

[10] S. Sicard, F. Boyer, and N. D. Palma, “Using components for
architecture-based management: the self-repair case,” in Proc. of ICSE,
2008, pp. 101–110.

[11] J. Floch, S. O. Hallsteinsen, E. Stav, F. Eliassen, K. Lund, and
E. Gjørven, “Using architecture models for runtime adaptability,” IEEE
Software, vol. 23, no. 2, pp. 62–70, 2006.

[12] J. Dowling and V. Cahill, “The k-component architecture meta-model
for self-adaptive software,” in Proc. of REFLECTION, 2001, pp. 81–88.

[13] S. Cheng and D. Garlan, “Stitch: A language for architecture-based self-
adaptation,” Journal of Systems and Software, vol. 85, no. 12, pp. 2860–
2875, 2012.

[14] J. Magee, N. Dulay, S. Eisenbach, and J. Kramer, “Specifying distributed
software architectures,” in Proc. of ESEC, 1995, pp. 137–153.

[15] N. Bencomo, P. Sawyer, G. S. Blair, and P. Grace, “Dynamically adaptive
systems are product lines too: Using model-driven techniques to capture
dynamic variability of adaptive systems,” in Proc. of SPLC), 2008, pp.
23–32.
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