
Best Practices for Time Series Forecasting (Tutorial)
André Bauer, Marwin Züfle, Nikolas Herbst, and Samuel Kounev

University of Würzburg, Germany
Email: andre.bauer@uni-wuerzburg.de, marwin.zuefle@uni-wuerzburg.de, {firstname}.{lastname}@uni-wuerzburg.de

Abstract—In a fast-paced world, software systems require
autonomic management. To enable accurate and proactive au-
tonomic systems, reliable time series forecasting methods are
needed. In this tutorial paper, we guide the reader step-by-step
through different forecasting steps. In each step, we highlight best
practices and present available approaches. That is, we explain
how to pre-process the data and retrieve features. Then, the
model selection and fitting steps are shown. Finally, we discuss
the forecasting itself and its evaluation. For the individual steps,
we provide some basic code snippets in the language R.

Index Terms—Forecast, Pre-processing, R, Benchmarking,
Metrics, Time series

I. INTRODUCTION

Nowadays, software systems are pushed to their limits, on
the one hand, by the fast living and changing requirements
of their users and, on the other hand, by a massive amount
of data that they create or have to process. Although cloud
computing is a paradigm that allows facing the increasing
size and complexity of modern software, the management
is so demanding that automatic systems are required. Based
on observations, systems plan and execute actions either to
adjust to environment or to adapt to environment. However,
when triggering actions based on observations, the system only
reacts to past events. These actions have an inherent delay that
may lead to severe problems. To upgrade the systems to be
proactive, the systems require accurate and reliable forecasting
methods.

A forecasting task can usually be divided into eight basic
steps: (i) problem definition, (ii) data analysis, (iii) data pre-
processing, (iv) feature engineering, (v) method selection,
(vi) model fitting, (vii) forecasting, and (viii) evaluation. We
guide the reader through the steps (iii) to (viii).

II. PREREQUISITE FOR THE R SNIPPETS

For the following R code example snippets, we use the time
series AirPassengers [1], which shows the monthly totals of
international airline passengers from 1949 to 1960. Further,
the following R packages are required: stats, datasets, forecast,
and AnomalyDetection1. Due to the simplicity and limited
space, we show only some basic excerpts to highlight each
forecasting task.

# Set variables
air <- AirPassengers
freq <- 12 # monthly values
len <- length(air)

1AnomalyDetection package: https://github.com/twitter/AnomalyDetection

III. DATA PRE-PROCESSING

Before the forecast can be conducted, the data have to
be analysed and pre-processed. As most forecasting meth-
ods cannot handle missing values, these values have to be
reconstructed, e.g., using interpolation. Also, the data should
be checked if it contains seasonal patterns since there are
forecasting methods that cannot handle seasonal data. If the
data is seasonal, the suitable forecasting methods require
the frequency of the time series. In the case that the fre-
quency is not known, the most dominant frequency (e.g.,
daily, hourly, and yearly) can be estimated, for example, with
periodograms [2]. We also recommend removing anomalies
from the data set. One way is to use a generalised extreme
studentized deviate test [3] to detect anomalies and replace
these values with surrounding values.

# Find anomalies
AnomalyDetectionVec(x=air, period=freq)

IV. FEATURE ENGINEERING

One possibility, which may lead to a better forecast, is
transforming the time series to gain a simpler model. To
this end, the data is adjusted by applying a Box-Cox trans-
formation [4] as it reduces both variance and multiplicative
effects. The Box-Cox transformation offers logarithms and
power transformations. The choice of the function depends
on the transformation parameter, which can be estimated by
the method proposed by Guerrero [5].

# Box-Cox transformation
lambda <- BoxCox.lambda(x=air)
air <- BoxCox(x=air,lambda=lambda)

Another possibility is to decompose the time series into
components and use the parts either for modifying the data
(e.g., removing the trend or seasonality) or as additional
features. Many different decomposition methods lead to di-
verse components. In this tutorial, STL (Seasonal and Trend
decomposition using Loess) [6] is considered for time series
decomposition. STL is a commonly used method that decom-
poses the time series into the components trend, season, and
irregular, often called noise.

# Decompose time series
astl <- stl(x=air,s.window="periodic",t.window=len/2)

To add further information to the forecasting method, vari-
ous features can be extracted from a time series such as further
seasonal patterns, categorical information, Fourier terms, and
many more.

https://github.com/twitter/AnomalyDetection


V. METHOD SELECTION

After preparing the data and selecting proper features, the
forecasting method needs to be chosen. According to the “No-
Free-Lunch Theorem” [7], there is no forecasting method that
performs best for all time series. Instead, the operator has to
select a forecasting method from the domains: (i) statistical
models, (ii) machine learning, and (iii) hybrid methods. Again,
each of these categories contains various different forecasting
methods. Hybrid models combine multiple individual forecast-
ing methods to build a new method. Forecasting methods of
this type typically show a lower variance in their forecasting
accuracy, but also less precise results. Although there is no
best forecasting method, a suitable forecasting method can be
selected on the basis of time series characteristics.

VI. MODEL FITTING

The choice of the method influences the features, which can
be used for the forecast. That is, some forecasting methods can
only handle one feature; some can handle multiple features.
Note that the selection of the features has an impact on the
resulting forecast error. In other words, the selection has to be
done carefully. There are different methods like (i) correlation
analysis also known as filter, (ii) wrapper (i.e., adding or
removing features iterative), and (iii) embedded (i.e., the
selection is already part of the forecasting method). During
the training of the model, the risk of over-fitting may occur,
as the best model does not always lead to the best forecast.
To counteract the over-fitting problem, the historical data can
be split into train and test data and internal validations can be
conducted. For estimating the forecasting error, the structural
error can be estimated to get an upper-bound for the forecast
error, or the internal model error can be taken into account.

# Model fitting
season <- astl$time.series[, 1]
air <- air - season
fit <- ets(y=ts(air))

VII. FORECASTING

The forecast step itself can be distinguished into one-step-
ahead or multi-step-ahead forecast. While performing a one-
step-ahead forecast, only the next value is forecast. Scientific
papers mostly do this approach. However, using the naı̈ve
forecast (i.e., using the last value of the history as forecast)
can be more accurate than using another method. In contrast,
a horizon of values is forecast at one time while using multi-
step-ahead forecasts. Another approach is to perform multiple,
subsequent one-step-ahead forecasts and use the last forecast
as the most recent value. A useful way to report the uncertainty
of the forecast is to display the prediction intervals in addition
to the forecast values. The prediction intervals are based on
the model error.

# Forecasting
sfc <- tail(rep(x=season, length.out=len+10),10)
airfc <- forecast(object=fit,h=10)$mean
airfc <- airfc + sfc
airfc <- InvBoxCox(x=airfc,lambda=lambda)

VIII. EVALUATION

To evaluate the performed forecast, there are three types
of forecast/accuracy error measures (i) scale-dependent error
measures, (ii) percentage error measures, and (iii) scaled error
measures. The first group has errors on the same scale as
the data. Thus, comparisons among different time series with
different scales are not possible. Examples are mean absolute
error (MAE), or root mean squared error (RMSE). The second
group is scale-free due to reporting in percentage and allows
the comparison between different time series. However, the
error can be zero or infinity. Examples are mean absolute
percentage error (MAPE) or the symmetric mean absolute
percentage error (sMAPE). The last group is an alternative to
the percentage error and uses the training mean absolute error
for normalisation. Although this group is recommended [8],
it is rarely used. An example is the mean absolute scaled
error (MASE). While forecasting, for example, the number
of enrollments at a university has no time constraints, the
time-to-result in the context of autonomic computing has strict
requirements. Thus, we recommend considering the time-to-
result in addition to the error measurements. For testing a
forecasting method, there are numerous data sets available
online: competitions (e.g., NN32, M33, and M44), kaggle,
R packages, and many more.

IX. CONCLUSION

In this tutorial paper, we briefly summarise the most im-
portant steps for forecasting of time series while guiding the
reader through each step by providing best practices and some
basic R code snippets.

ACKNOWLEDGMENTS

This work is co-funded by the German Research Foundation
(DFG) under grant No. KO 3445/11-1.

REFERENCES

[1] G. E. Box, G. Jenkins, and G. C. Reinsel, “Time series analysis, prediction
and control,” 1970.

[2] M. Züfle, A. Bauer, N. Herbst, V. Curtef, and S. Kounev, “Telescope:
A Hybrid Forecast Method for Univariate Time Series,” in Proceedings
of the International work-conference on Time Series (ITISE 2017),
September 2017.

[3] J. Hochenbaum, O. S. Vallis, and A. Kejariwal, “Automatic anomaly
detection in the cloud via statistical learning,” arXiv preprint
arXiv:1704.07706, 2017.

[4] G. E. Box and D. R. Cox, “An analysis of transformations,” Journal of the
Royal Statistical Society. Series B (Methodological), pp. 211–252, 1964.

[5] V. M. Guerrero, “Time-series analysis supported by power transforma-
tions,” Journal of Forecasting, vol. 12, no. 1, pp. 37–48, 1993.

[6] R. B. Cleveland, W. S. Cleveland, J. E. McRae, and I. Terpenning, “Stl:
A seasonal-trend decomposition procedure based on loess,” Journal of
Official Statistics, vol. 6, no. 1, pp. 3–73, 1990.

[7] D. H. Wolpert and W. G. Macready, “No free lunch theorems for
optimization,” IEEE Trans. on Evolutionary Computation, vol. 1, no. 1,
pp. 67–82, 1997.

[8] R. J. Hyndman and A. B. Koehler, “Another look at measures of forecast
accuracy,” International journal of forecasting, vol. 22, no. 4, pp. 679–
688, 2006.

2NN3 competition: http://www.neural-forecasting-competition.com/NN3/
3M3 competition: https://forecasters.org/resources/time-series-data/

m3-competition/
4M4 competition: https://www.mcompetitions.unic.ac.cy/the-dataset/

http://www.neural-forecasting-competition.com/NN3/
https://forecasters.org/resources/time-series-data/m3-competition/
https://forecasters.org/resources/time-series-data/m3-competition/
https://www.mcompetitions.unic.ac.cy/the-dataset/

	Introduction
	Prerequisite for the R snippets
	Data Pre-processing
	Feature Engineering
	Method Selection
	Model Fitting
	Forecasting
	Evaluation
	Conclusion
	References

