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Abstract—Modern enterprise applications have to satisfy in-
creasingly stringent Quality-of-Service requirements. To ensure
that a system meets its performance requirements, the ability
to predict its performance under different configurations and
workloads is essential. Architecture-level performance models
describe performance-relevant aspects of software architectures
and execution environments allowing to evaluate different usage
profiles as well as system deployment and configuration options.
However, building performance models manually requires a lot
of time and effort. In this paper, we present a novel automated
method for the extraction of architecture-level performance
models of distributed component-based systems, based on mon-
itoring data collected at run-time. The method is validated in
a case study with the industry-standard SPECjEnterprise2010
Enterprise Java benchmark, a representative software system
executed in a realistic environment. The obtained performance
predictions match the measurements on the real system within
an error margin of mostly 10-20 percent.

I. INTRODUCTION

Modern enterprise applications have to satisfy increasingly
stringent requirements for performance, scalability and effi-
ciency. The ability to provide performance guarantees under
certain resource efficiency constraints is gaining in importance.
To avoid the pitfalls of inadequate Quality-of-Service (QoS),
the expected performance characteristics of systems need to be
evaluated during all phases of their life cycle. Estimating the
level of performance a system can achieve is normally done by
means of system performance models that are used to predict
the performance and resource utilization of the system under
specific workloads. During system development, such models
can be exploited to evaluate the performance of early-stage
prototypes. During system deployment, capacity planning can
be conducted without the need for expensive load testing.
During operation, a performance model can be used as a basis
for continuous performance-aware resource management over
time [1], [2]. In all of these contexts, typically the following
questions arise:

« What will be the mean service response times and the
utilization of system resources under a given workload?

o What will be the impact of a changing workload (e.g.,
transaction mix and/or workload intensity)?
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e What are the maximum load levels that the system will
be able to handle and which resources would become
bottlenecks under load?

« How would the system performance change if resources
are added or removed, e.g., nodes in an application server
cluster are added or removed?

o How much resources are required to satisfy performance
and availability requirements while ensuring efficient
resource usage?

In order to answer such questions using a performance
model, the model needs to be designed to reflect the abstract
system structure and capture its performance-relevant aspects.
We distinguish between predictive performance models and
descriptive architecture-level performance models. The former
capture the temporal system behavior and can be used directly
for performance prediction by means of analytical or simula-
tion techniques (e.g., queueing networks). The latter describe
performance-relevant aspects of the system’s software archi-
tecture, execution environment, and usage profile (e.g., UML
models augmented with performance annotations). They can
normally be transformed into predictive performance models
by means of automatic model-to-model transformations [3].
By modeling the system’s performance-influencing factors
explicitly, architecture-level models allow to predict the impact
of changes in the software components, resource allocations
and/or system workloads.

Over the past decade, a number of architecture-level perfor-
mance meta-models have been developed by the performance
engineering community. Proposed meta-models are, e.g., the
UML SPT and MARTE profiles [4], CSM [5], PCM [6] and
KLAPER [7]. However, building models that accurately cap-
ture the different aspects of system behavior is a challenging
task and requires a lot of time when applied manually to large
and complex real-world systems [8], [9], [10]. Given the costs
of building performance models, techniques for automated
model extraction based on observation of the system at run-
time are highly desirable. Current performance analysis tools
used in industry mostly focus on profiling and monitoring
transaction response times and resource consumption. They
often provide large amounts of low-level data while important
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information about the end-to-end performance behavior is
missing (e.g., service control flow and resource demands).

In this paper, we propose a novel method for automated
extraction of architecture-level performance models for dis-
tributed component-based systems. The method uses run-time
monitoring data to extract the model structure based on tracing
information and to extract model parameters based on easily
obtainable performance metrics such as throughput, resource
utilization and response times. The method supports point-
to-point asynchronous communication and includes an ap-
proach for modeling probabilistic parameter dependencies. We
implemented the proposed extraction method and evaluated
its effectiveness by applying it to a system of a represen-
tative size and complexity - a deployment of the industry-
standard SPECjEnterprise2010 benchmark'. The benchmark
is deployed in a complex execution environment consisting
of a cluster of application servers and a back-end database
server for persistence. We extracted a performance model of
the system and evaluated its predictive power in scenarios of
increasing complexity.

The presented method builds on our approach sketched
in [11] where we described a preliminary implementation of
some parts of our extraction method suffering from many
limitations and restrictions. We studied a small part of a pre-
release version of SPECjEnterprise2010 deployed in a small
testing environment which was not representative of real-life
deployments. While the results were encouraging, it was not
clear if our approach was applicable to realistic applications
and what accuracy and scalability it provides. Given the many
limitations of our original method, a larger part of the SPEC-
jEnterprise2010 application (e.g., Java servlets, Java Server
Pages, Java Message Service, Message-Driven Beans) could
not be considered in the extraction. The work presented here
addresses the above challenges allowing to extract a model
of the entire SPECjEnterprise2010 application. In addition, it
includes a detailed validation and evaluation of our approach.

In summary, the contributions of this paper are: i) a method
for automated extraction of architecture-level performance
models of component-based systems, including an approach
to characterize parametric dependencies probabilistically, ii) a
comprehensive evaluation of our approach in the context
of a case study of a representative system deployed in a
realistic environment. To the best of our knowledge, no similar
studies exist in the literature considering systems of the size,
representativeness and complexity of the one considered here.
We demonstrate that the automated extraction of architecture-
level performance models using measurement data obtained
with common monitoring tools is feasible and provides a solid
basis for capacity planning. The latter can be exploited for
continuous performance-aware resource management improv-

ISPECjEnterprise2010 is a trademark of the Standard Performance Eval-
uation Corp. (SPEC). The SPECjEnterprise2010 results or findings in this
publication have not been reviewed or accepted by SPEC, therefore no
comparison nor performance inference can be made against any published
SPEC result. The official web site for SPECjEnterprise2010 is located at
http://www.spec.org/jEnterprise2010.
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Model extraction process.

ing the system’s efficiency and thus lowering its total-cost-of-
ownership.

The remainder of this paper is organized as follows. In Sec-
tion II, we describe the method for the automated extraction
of architecture-level performance models. We then describe a
proof-of-concept implementation in Section III followed by a
case study in Section IV. We review related work in Section V
and conclude the paper in Section VI

II. AUTOMATED PERFORMANCE MODEL EXTRACTION

Our goal is to automate the process of building performance
models by observing the system behavior at run-time. Based
on monitoring data, performance-relevant abstractions and
parameters should be automatically extracted. The process
we employ to extract architecture-level performance models
includes three main steps depicted in Figure 1. First, we
extract the system’s effective architecture [12], i.e., the set
of components and connections between components that are
effectively used at run-time. Second, we extract performance
model parameters characterizing the system’s control flow and
resource demands. Third, the resulting model is iteratively
refined until it provides the required accuracy.

A. Extraction of Effective Architecture

Given a component-based software system, extracting its
architecture requires identifying its building blocks and the
connections between them. In the context of performance
model extraction, also the components’ performance-relevant
internal structure needs to be extracted. Note that, as men-
tioned above, we consider only those parts of the architecture
that are effectively used at run-time.

1) Component Connections: Componentization is the pro-
cess of breaking down the considered software system into
components. It is part of the mature research field of software
architecture reconstruction [13]. Component boundaries can
be obtained in different ways, e.g., specified manually by
the system architect or extracted automatically through static
code analysis (e.g., [14]). The granularity of the identified
components determines the granularity of the work units
whose performance needs to be characterized, and hence the
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granularity of the resulting performance model. In our context,
a component boundary is specified as a set of software building
blocks considered as a single entity from the point of view of
the system’s architect. For instance, this can be a set of classes
or a set of Enterprise Java Beans and Servlets.

Once the component boundaries have been determined, the
connections between the components can be automatically
identified based on monitoring data. We determine the control
flow between the identified components using call path trac-
ing. We analyze monitoring data consisting of event records
obtained through instrumentation. An event record represents
an entry or exit of a software building block. In order to trace
individual system requests, the list of gathered event records
has to be grouped and ordered. The set of groups is equal
the set of equivalence classes [a], according to the following
equivalence relation R: Let a,b be event records obtained
through instrumentation. Then a relates to b (a ~x b) if and
only if a and b were triggered by the same system request.
This is well-defined because an event record is triggered by
exactly one system request. In the following, equivalence
classes are denoted as call path event record sets. Ordering
the elements of a call path event record set in chronological
order results in a call path event record list. From this list a
call path can be obtained. We refer to [15], [16], [12] where
call path event record lists are transformed to UML sequence
diagrams. Given a list of call paths and the knowledge about
component boundaries, the list of effectively used components,
as well as their actual entries (provided services) and exits
(required services) can be determined. Furthermore, for each
component’s provided service one can determine the list of
external services that are called.

When obtaining monitoring data, obviously only those paths
that are exercised can be captured. Thus, a representative usage
profile is a prerequisite for a dynamic control flow analysis.

2) Component-Internal Performance-Relev. Control Flow:
After extracting the components and the connections between
them, the performance-relevant control flow inside the com-
ponents is examined. In order to characterize the performance
of a component’s provided service, we need to know about
its internal resource demanding behavior, on the one hand,
and how it makes use of external service calls, on the other
hand. Obviously, it makes a difference if an external service is
called once or, e.g., ten times within a loop. Furthermore, the
ordering of external service calls and internal computations
of the provided service may have an influence on the com-
ponent’s performance. The performance-relevant control flow
we aim to extract is an abstraction of the actual control flow.
Performance-relevant actions are internal computation tasks
and external service calls, hence also loops and branches where
external services are called.

The set of call paths derived in the previous sub-
step provides information on how a provided component
service relates to external service calls of the compo-
nent’s required services. Formally, let X% =z{,... 2%
be the set of provided services of component C and
YO =9¢ ... ,ygc the set of its required services. For com-

<<LoopAction>>

<<ExternalCallAction>>
IMfgSession.getInventory
<<InternalAction>>

Example: Performance-relevant component service control flow.

<<ExternalCallAction>>
IMfgSession.findAssembly

<<InternalAction>>

Fig. 2.

pactness, we omit the index C' from now on. Then, the
call paths constitute a relation G = {(z,S;)|r € X, S5, C S}
with S = {(l1,...,lp)|k e N,I; e Y(Vi: 1 <i < k)}, where
S, represents the set of sequences of observed external service
calls for provided service x.

For instance, if there is a provided service = so that V.S, :
(2,5;) € G: S, =y1VS, = ys holds, then one could assume
that service  has a control flow where either y; or ys is
called, i.e., that there is a branch. Multiple approaches exist for
determining the performance-relevant control flow constructs,
e.g., [17], [14]. By instrumenting the performance-relevant
control flow constructs inside the component, the effective
component-internal control flow can be directly extracted from
the obtained call paths. An example of a performance-relevant
service control flow is depicted in Figure 2.

B. Extraction of Model Parameters

Having extracted the performance-relevant control flow
structure in the previous step, the model then needs to be
parameterized with statistical information about the control
flow including resource demand quantifications.

1) Control Flow Statistics: As control flow statistics, we
extract branch probabilities and loop iteration numbers. Both
parameters can be extracted from the call paths obtained in the
previous step. While it is sufficient to characterize a branch
probability with a mean value, for a loop iteration number,
the call paths allow deriving a Probability Mass Function
(PMF). For instance, the call paths might reveal that a loop is
executed either two times or ten times, each with a probability
of 50%. In that case, the average value would not be a proper
approximation as a loop iteration number.

2) Resource Demands: To characterize the resource de-
manding behavior of a component’s service, the resource
demands of its internal computations need to be quantified.
Determining resource demands involves identification of the
resources used by the service and quantification of the amount
of time spent using these resources. The resource demand
of a service is its total processing time at the considered
resource not including any time spent waiting for the resource
to be made available. Referring to Figure 2, the internal
actions need to be annotated with demands for the used
resources (e.g., CPU, HDD). Resource demand estimation
is an established research area. Typically, resource demands
are estimated based on measured response times or resource
utilization and throughput data [18], [19]. Most approaches
focus on CPUs and I/O resources, i.e., memory accesses are
normally not considered explicitly.
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3) Probabilistic Parametric Dependencies: The estimates
of the model parameters described in the previous two sections
are averaged over the observed call paths. In case the behavior
of the considered service depends on one or more input
parameters passed when invoking the service, such parametric
dependencies can be captured in the extracted model. For
instance, a branch probability might heavily depend on the
value of an input parameter and in such cases it is desirable
to be able to quantify such dependencies. By monitoring
service input parameters and co-relating observed parameter
values with the observed service control flow, we can derive
probabilistic models of parametric dependencies.

However, if no a priori information about the existence of
parametric dependencies is available, their automatic discovery
based on monitoring data alone is a challenging problem that
requires the use of complex correlation analysis or machine
learning techniques [20]. An automatic detection method has
to cope with high degrees of freedom: Each control flow
construct might depend on multiple input parameters and the
possible dependencies are not restricted to parameter values,
other parameter characterizations such as the length of an
array might also have an influence. For these reasons, we
consider the automatic discovery of parametric dependencies
at run-time based on monitoring data alone to be impractical.
We assume that information about the existence of potential
performance-relevant parametric dependencies is available a
priori, e.g., from the system developer or from an automatic
detection method based on static code analysis. With the
knowledge of which parametric dependencies to observe,
we then use monitoring data to quantify the dependencies
probabilistically.

We now discuss our approach to quantifying parametric
dependencies based on monitoring data. For compactness of
the presentation, we assume that each control flow action may
depend on at most one input parameter. For each service
execution and for each parameter dependent action, a tuple
can be obtained that consists of the observed parameter
characterization (e.g., the parameter value or its size) and
information about which control flow path was taken:

o For a branch action with btq, ..., bt,, branch transitions,
the monitored control flow path is characterized by the
index 7,1 < ¢ < m of the observed transition.

o For a loop action, the monitored control flow path is char-
acterized by the observed loop iteration number 7,7 > 0.

Let v be a monitored parameter characterization, then
te = (v,i) is such an observed tuple for the considered
parameter-dependent action a. Considering multiple service
executions, for each parameter-dependent action a, a set of
observed tuples T, = (tq,1,...,tq,n) can be extracted. In
the following, we fix the action a so that we can omit
the index, ie., T, =T = (¢1,...,tn). Considering the taken
control flow path for a given parameter characterization v as a
discrete random variable, we can approximate its probability
mass function (PMF) based on the observed tuple list. Let
V = {vg|ty = (vk,ix) € T} be the set of observed parameter

characterizations. Let C' = {iy|t; = (vg,ir) € T} be the set
of observed control flow paths taken. Then for each v € V,
the PMF of the taken control flow path can be approximated
as f, : C —[0,1], where

foli) = #{t|ty = (vg,ix) ET ANvg =v Nip =1}
° #{tk|tk = (Uk,ik) ceT Nvg, = U}

If the set V= {v1,...,v,} is large, distinguishing the
branch transition probabilities, loop iteration numbers or re-
source demands for each individual v; is impractical. In this
case, we partition the set V' and work with partitions instead
of individual values. The partitioning can be done using, e.g.,
equidistant or equiprobable bins. The distribution of the branch
transition probabilities, loop iteration numbers and resource
demands is then approximated partition-wise. The PMF rep-
resenting one partition can be computed by aggregation: Let
P. ={v;1,...,u;} CV be such a partition. Then the PMF
fr : C —[0,1] representing the partition P, is defined as the
normalized weighted sum of the PMFs f,, ..., fu,

S p(vrg) fo,, (4)

. C = [0,1], f.(i)=
fr:C—=[0,1], f(2) S p(ony)

where
_ #{tk|tk = (Uk,ik) ceT N, = ’U}
#V

p:C—[0,1], p(v)

C. Performance Model Calibration

Calibrating a performance model means comparing model
predictions with measurements on the real system with the
aim to adjust the model improving its accuracy. Given an
observed deviation between predictions and measurements,
in general, there are two ways of adjusting the performance
model: (i) one possibility is to increase the model’s granularity
by adding details on the modeled system behavior, i.e., refining
the model. The other possibility (ii) is to adjust the model
parameters (e.g., branch probabilities or resource demands).
In that case, the granularity of the model does not change.

In our approach, we propose two ways of calibrations: The
resource demands are calibrated by a factor that represents
the measurement overhead during resource demand extraction.
Furthermore, given that component-based systems typically
run on a complex middleware stack, system requests may
get delayed until they enter the system boundaries where the
measurement sensors are injected. These delays should be
accounted for.

D. Overhead Control

When applying the model extraction, the monitoring over-
head has to be kept low. Particularly, when extracting resource
demand parameters as mentioned in Section II-B2, the over-
head has to be low since otherwise the parameter extraction
then may be biased.

To reduce the overhead of monitoring system requests, in
general there exist two orthogonal concepts: (i) quantitative
throttling: throttling the number of requests that are actually
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monitored, (ii) qualitative throttling: throttling the level of
detail requests are monitored at. Existing work on (i) is
presented, e.g., in [21]. The authors propose an adaptive time
slot scheduling for the monitoring process. The monitoring
frequency depends on the load of the system. In phases of high
load, the monitoring frequency is throttled. Concerning (ii),
the monitoring approach presented in [22] allows an adaptive
monitoring of requests, i.e., monitoring probes can be enabled
or disabled depending on what information about the requests
should be monitored.

III. PROOF-OF-CONCEPT

In this section, we describe an implementation of our
approach presented in the previous section in the context
of a representative platform for distributed component-based
applications. In Section IV, we then present a case study of a
representative application demonstrating the effectiveness and
practicality of our approach.

A. Context

We apply our automated performance model extraction ap-
proach in the context of the Java Platform, Enterprise Edition
(Java EE), one of today’s major technology platforms for
building enterprise systems. Besides providing a framework
for building distributed web applications, it includes a server-
side framework for component-based applications, namely the
Enterprise Java Beans (EJB) Architecture.

We use the Palladio Component Model (PCM) as an
architecture-level performance modeling formalism to de-
scribe extracted models of running Java EE applications.
PCM is a domain-specific modeling language for describing
performance-relevant aspects of component-based software
architectures [6]. It provides modeling constructs to capture the
influence of the following four factors on the system perfor-
mance: i) the implementation of software components, ii) the
external services used by components, iii) the component
execution environment and iv) the system usage profile. These
performance-influencing factors are reflected in an explicit
context model and a parameterized component specification.
Recent surveys [23], [24], [25] show that the clear separation
of these factors is one of the key benefits of PCM compared to
other architecture-level performance models such as the UML
SPT and MARTE profiles [4], CSM [5], or KLAPER [7].

PCM models are divided into five sub-models: The reposi-
tory model consists of interface and component specifications.
A component specification defines which interfaces the com-
ponent provides and requires. For each provided service, the
component specification contains a high-level description of
the service’s internal behavior. The description is provided in
the form of a so-called Resource Demanding Service Effect
Specification (RDSEFF). The system model describes how
component instances from the repository are assembled to
build a specific system. The resource environment model
specifies the execution environment in which a system is
deployed. The allocation model describes the mapping of
components from the system model to resources defined in

the resource environment model. The usage model describes
the user behavior. It captures the services that are called at run-
time, the frequency (workload intensity) and order in which
they are invoked, and the input parameters passed to them.

As an application server implementing the Java EE specifi-
cations, we employ Oracle WebLogic Server (WLS). WLS
comes with an integrated monitoring platform, namely the
WebLogic Diagnostics Framework (WLDF). WLDF is a mon-
itoring and diagnostics framework that enables collecting and
analyzing diagnostic data for a running WLS instance. The
two main WLDF features that we make use of are the data
harvester and the instrumentation engine.

The data harvester can be configured to collect detailed
diagnostic information about a running WLS and the appli-
cations deployed thereon. The instrumentation engine allows
injecting diagnostic actions in the server or application code at
defined locations. In short, a location can be the beginning or
end of a method, or before or after a method call. Depending
on the configured diagnostic actions, each time a specific
location is reached during processing, an event record is
generated. Besides information about, e.g., the time when or
the location where the event occurred, an event record contains
a diagnostic context id which uniquely identifies the request
that generated the event and allows to trace individual requests
as they traverse the system.

B. Implementation

The implementation of the extraction process is based on
our preliminary work in [11] which included a very basic
and limited implementation of a subset of the extraction
algorithm. While in [11] we only considered EJBs, our
new implementation supports also Servlets and Java Server
Pages (JSPs) as well as Message-Driven Beans (MDBs) for
asynchronous point-to-point communication using the Java
Message Service (JMS). In the following, we briefly describe
the implementation of the extraction process.

For the extraction of the component connections according
to Section II-A1, the component boundaries can be specified as
groups of EJBs, Servlets and JSPs. Thus, WLDF is configured
to monitor entries/exits of EJB business methods, Servlet
services (including also JSPs) and JMS send/receive methods.
As depicted in Figure 3, the WLDF diagnostic context id
uniquely identifies a request, but forked threads receive the
same context id. Hence, to separate the different call paths
from each other, the context id is not sufficient. In those
cases, we make use of the transaction id. The ordering of
the event records is done via the event record id. Based
on the set of observed call paths, the effective connections
among components can be determined, i.e., required interfaces
of components can be bound to components providing the
respective services.

For the extraction of the component-internal performance-
relevant control flow according to II-A2, we follow the ap-
proach described in [11]. Performance-relevant actions are
made explicit by method refactorings. This is because of the
lack of tool support for in-method instrumentation. Current
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instrumentation tools including WLDF support only method-
level instrumentation. They do not support instrumentation at
custom locations other than method entries and exits.

The sending of asynchronous JMS messages is modeled as
fork action. Control flow statistics are collected in parallel to
the extraction of the abstract component-internal control flow.

For the resource demand estimation of individual internal
actions, we apply two approaches: i) in phases of low load we
approximate resource demands with measured response times,
ii) in phases of medium to high load we estimate resource
demands based on measured utilization and throughput data
with weighted response time ratios [11].

Concerning the extraction of probabilistic parametric de-
pendencies, the current WLDF version limits the type of
parameters that can be examined. While WLDF allows in-
jecting monitors providing information about method input
parameters, it provides only String representations of the
monitored parameters. For complex types, only the object
name is provided. Thus, complex parameter types currently
cannot be monitored appropriately.

An example of an extracted PCM RDSEFF is shown in
Figure 4. In includes internal actions, external call actions and
a loop action. The loop action is annotated with a loop iteration
number, specified as a PMF. With a probability of 30%, the
loop body is executed 11 times, with a probability of 50%, it is
executed 10 times and with a probability of 20% it is executed
9 times. Notice that both internal actions of the RDSEFF are
enriched with a CPU demand annotation. While PCM supports
generic work units, in the context of this paper, a demand of
1 CPU unit is understood as a demand of 1 millisecond CPU
time.

IV. CASE STUDY: MODELING SPECJENTERPRISE2010

To evaluate the implemented model extraction method, we
applied it to a case study of a representative Java EE applica-
tion. The application we consider is the SPECjEnterprise2010
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<<ExternalCallAction>> & IntPMF[(9;0.2)(10;0.5)(11;0.3)]

"?' IMfgSession.findAssembly
InputVariableUsage

<<ExternalCallAction>>

. N %’IMfgSession.getInventory
InputVariableUsage

OutputVariableUsage

<<InternalAction>>
¢ IntAct_2
ResourceDemand

L5411 <cPu> .

Fig. 4. Example RDSEFF for the provided service scheduleWorkOrder.
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Fig. 5. SPECjEnterprise2010 architecture [26].

benchmark. We start with an overview of the benchmark
followed by a description of our experimental environment.

A. SPECjEnterprise2010

SPECjEnterprise2010 is a Java EE benchmark developed
by SPEC’s Java subcommittee for measuring the performance
and scalability of Java EE-based application servers. The
benchmark workload is generated by an application that is
modeled after an automobile manufacturer. As business sce-
narios, the application comprises customer relationship man-
agement (CRM), manufacturing and supply chain management
(SCM). The business logic is divided into three domains:
orders domain, manufacturing domain and supplier domain.
Figure 5 depicts the architecture of the benchmark as described
in the benchmark documentation. The application logic in
the three domains is implemented using EJBs which are
deployed on the considered Java EE application server. The
domains interact with a database server via Java Database
Connectivity (JDBC) using the Java Persistence API (JPA).
The communication between the domains is asynchronous
and implemented using point-to-point messaging provided by
the Java Message Service (JMS). The workload of the orders
domain is triggered by dealerships whereas the workload of
the manufacturing domain is triggered by manufacturing sites.

188



Benchmark
Supplier Driver Master

Emulator DNS Load
Balancer

[

Benchmark
Driver Agents

Gbit

ORACLE" Switch

DATABASE >

[

ORACLE
WebLogic Server® 11g

Up to 8 Application Servers

Fig. 6.

Experimental environment.

Both, dealerships and manufacturing sites are emulated by
the benchmark driver, a separate supplier emulator is used
to emulate external suppliers. The communication with the
suppliers is implemented using Web Services. While the orders
domain is accessed through Java Servlets, the manufacturing
domain can be accessed either through Web Services or EJB
calls, i.e., Remote Method Invocation (RMI). The benchmark
driver executes five benchmark operations. A dealer may
browse through the catalog of cars, purchase cars, or manage
his dealership inventory, i.e., sell cars or cancel orders. In
the manufacturing domain, work orders for manufacturing
vehicles are placed, triggered either per WebService or RMI
calls (createVehicleWS or createVehicleEJB).

B. Experimental Environment

We installed the benchmark in the system environment
depicted in Figure 6. The benchmark application is deployed
in an Oracle WebLogic Server (WLS) 10.3.3 cluster of up to
eight physical nodes. Each WLS instance runs on a 2-core Intel
CPU with OpenSuse 11.1. As a database server (DBS), we
used Oracle Database 11g, running on a Dell PowerEdge R904
with four 6-core AMD CPUs, 128 GB of main memory, and
8x146 GB SAS disk drives. The benchmark driver master,
multiple driver agents, the supplier emulator and the DNS load
balancer were running on separate virtualized blade servers.
The machines are connected by a 1 GBit LAN, the DBS is
connected with 4 x 1 GBit ports.

C. Evaluation

1) Performance Model: While in [11], the focus was on
modeling the manufacturing domain of a pre-version of the
benchmark, the study presented here considers the entire
benchmark application, i.e., including supplier domain, dealer
domain, the web tier and the asynchronous communication
between the three domains. We had to deal with EJBs in-
cluding MDBs for asynchronous point-to-point communica-
tion, web services, Servlets and JSPs. Figure 7 presents a
high-level overview of the basic structure of the extracted
PCM performance model. The system model configuration
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O Balancer _('O_ Instance N _( ----------------- D_ mulator
Fig. 7. SPECjEnterprise2010 PCM model structure.

shows a load balancer which distributes incoming requests
to replicas of the SPECjEnterprise2010 benchmark appli-
cation which themselves need an emulator instance and a
database instance. A benchmark application instance refers to
a composite component which is located in the component
repository. The composite component in turn consists of
component instances, e.g., a SpecAppServlet component
or a PurchaseOrderMDB component. These components
reside in the repository as well. The performance model of
the benchmark application consists of 28 components whose
services are described by 63 RDSEFFs. In total, 51 internal
actions, 41 branch actions and four loop actions have been
modeled.

The resources we considered were the CPUs of the WLS
instances (WLS CPU) and the CPUs of the database server
(DBS CPU). The network and hard disk I/O load could be
neglected. Note that we configured load-balancing via DNS.

We extracted a PCM model whose resource demands were
estimated based on utilization and throughput data. For the
apportioning of resource demands among WLS CPU and
DBS CPU, see [11]. To keep the overhead low, we separated
the extraction step in which call paths are monitored from
the extraction step in which resource demands are estimated.
Both steps were conducted with one single WLS instance. The
resource demands were extracted during a benchmark run with
a steady state time of 900 sec and a WLS CPU utilization
of about 60%. The same benchmark run was then executed
without any instrumentation in order to quantify the instru-
mentation overhead factor and calibrate the estimates of the
WLS CPU resource demands. Furthermore, we measured the
delay for establishing a connection to the WLS instance which
is dependent on the system load. With the knowledge of the
number of connections the individual benchmark operations
trigger, the load-dependent delay is estimated and taken into
account in the predicted response times.

For the solution of the extracted PCM model, we used the
queueing-network-based simulator SimuCom [6].
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Fig. 8. Usage scenario for operation Manage.

2) Evaluation Results: The extracted PCM models are
validated by comparing the model predictions with measure-
ments on the real system. The usage model representing
the benchmark workload has been provided manually. The
five benchmark operations are modeled as individual usage
scenarios. Figure 8 shows the usage scenario of benchmark
operation Manage in a notation similar to UML activity
diagrams. It consists of several system calls, two branches
with corresponding transition probabilities and a loop action.
The loop iteration number is given as a PMF that was derived
from monitoring data. The usage scenarios of the remaining
four benchmark operations are of similar complexity.

In the investigated scenarios we vary the throughputs of the
dealer and manufacturing driver as well as the deployment
configuration. Note that we extracted the performance model
on a single WLS instance whereas for validation, WLS clusters
of different sizes were configured. As performance metrics, we
considered the average response times of the five benchmark
operations as well as the average utilization of the WLS CPU
and the DBS CPU. In clustered scenarios where several WLS
instances are involved, we considered the average utilization
of all WLS CPUs. Note that the response times of the
benchmark operations are measured at the driver agents, i.e.,
the WLS instances run without any instrumentation. For each
scenario, we first predicted the performance metrics for low
load conditions (=~ 20% WLS CPU utilization), medium load
conditions (~ 40%), high load conditions (=~ 60%) and very
high load conditions (=~ 80%) and then compared them with
steady-state measurements on the real system.

Scenario 1: Cluster of two application server instances.
For the first validation scenario, we configured an appli-
cation server cluster consisting of two WLS instances and
injected different workloads. The measured and predicted
server utilization for the different load levels are depicted in
Figure 9 a). The utilization varies from 20% to 80%. The
utilization predictions fit the measurements very well, both
for the WLS instances as well as for the DBS. Figure 9 b)
shows the response times of the benchmark operations for the
four load levels. The response times vary from 10ms to 70ms.
As expected, the higher the load, the faster the response times
grow. Compared to the other benchmark operations, Browse
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Fig. 9. Scenario 1: Measurements, prediction results and prediction errors.

and Purchase have lower response times, while CreateVehi-
cleEJB and CreateVehicleWS take most time. In Figure 9 c),
the relative error of the response time predictions is shown.
The error is mostly below 20%, only Browse has a higher
error but still lower than 30%. The prediction accuracy of the
latter increases with the load. This is because Browse has a
rather small resource demand but includes a high number of
round trips to the server translating in connection delays (15
on average).

Scenario 2: Cluster of four application server instances.
In Scenario 2, we considered a four node WLS cluster
again at four different load levels. Figure 10 a) shows the
measurements and predictions of the server utilization. Again,
the predictions are accurate. However, one can identify a small
deviation of the DBS CPU utilization that is growing with the
load.

Figure 10 b) depicts the relative response time prediction
error for Scenario 2. Again, the relative error is mostly below
20%. For the same reasons already mentioned in Scenario 1,
operation Browse stands out a little. However, its prediction
error is still below 30%.

Scenario 3: Cluster of eight application server instances.
For Scenario 3, we deployed the benchmark in a cluster of
eight WLS instances. As shown in Figure 11, the server utiliza-
tion predictions are very accurate. While the DBS utilization
prediction exhibits an error that grows with the injected load,
it does not exceed 15%.

In cases of low to medium load, the accuracy of the
predicted response times is comparable to Scenarios 1 and 2
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Fig. 11. Scenario 3: Utilization measurements and predictions and relative
error of response time predictions.

(Figure 11 b). However, in cases of high load, the predic-
tion error grows by an order of magnitude. This is because
under this load level some of the WLS cluster nodes were
overloaded, i.e., the cluster was not load-balanced anymore.
The overloaded WLS instances then lead to biased response
time averages. We assume that the cluster is unbalanced due to
DNS caching effects that are not reflected in the performance
model.

3) Summary: We validated the performance model that
was extracted with the automated method as described in
Sections II and III in various realistically-sized deployment
environments under different workload mixes and load inten-
sity. Concerning the CPU utilization, the observed prediction
error for the WLS application server was below 5%. For
the database server, the CPU utilization prediction error was
mostly below 10%. The response time predictions of the
benchmark operations mostly had an error of 10% to 20%.

In the case of the eight node application server cluster, the
response time predictions were inaccurate for higher loads.
This is because the cluster was not load-balanced anymore.

V. RELATED WORK

Each part of the approach presented in this paper is re-
lated to multiple extraction approaches: a) trace-based ap-
proaches, b) resource demand estimation, ¢) run-time moni-
toring, d) benchmark-based approaches and e) extraction of
PCM instances.

Trace-based approaches. Call path tracing is a form of
dynamic analysis which a number of approaches apply to
gain reliable data on the actual execution of an application.
Hrischuk et al. [16] use such an approach to extract perfor-
mance models in the scope of “Trace-Based Load Character-
ization”. Israr et al. [12] use pattern matching on trace data
to differentiate between asynchronous, blocking synchronous,
and forwarding communication. Both approaches use Layered
Queueing Networks (LQNs) as the target performance model
and are hence limited to LQN structures. Thus, features such
as stochastic characterizations of loop iteration numbers or
branch probabilities are not supported. Briand et al. [15]
extract UML sequence diagrams from trace data which is
obtained by aspect-based instrumentation.

Resource demand estimation. Approaches to resource de-
mand estimation can be found in [18], [19], [27]. While
in [18] applies the Service Demand Law directly for single
workload classes, linear regression approaches to partition
resource demand among multiple workload classes can be
found in [19], [28]. In [27], utilization and throughput data
is used to build a Kalman filter estimator.

Run-time monitoring. Approaches such as [29], [30] use
systematic measurements to build mathematical models or
models obtained with genetic optimization. However, the mod-
els serve as interpolation of the measurements and a represen-
tation of the system architecture is not extracted. Tools for
automatic and adaptive monitoring are presented in [31], [32],
[33], all focused on monitoring and collecting performance
data of Java applications, but they are not explicitly focused
on component-based architectures.

Benchmark-based approaches. Denaro et al. [34] and Chen
et al. [35] identify the middleware as a key factor for perfor-
mance problems in component-based applications. To allow
performance prediction, Denaro develops application-specific
performance test cases to be executed on available middleware
platforms. Chen et al. propose a simple benchmark that pro-
cesses typical transaction operations to extract a performance
profile of the underlying component-based middleware and to
construct a generic performance model.

PCM extraction. Several approaches are concerned with the
extraction of PCM instances from code. The tool Java2PCM
[17] extracts component-level control flow from Java code.
Krogmann et al. [20] extract behavior models via static and
dynamic analysis but do not focus on extracting timing values
during system operation and their approach relies on manual
instrumentations.
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VI. CONCLUDING REMARKS

In this paper, we presented a method to automate the extrac-
tion of architecture-level performance models of distributed
component-based systems using run-time monitoring data. We
combined existing techniques such as call path tracing and
resource demand estimation to an end-to-end model extraction
method. As a proof-of-concept, we implemented the method
with state-of-the-art, component-of-the-shelf monitoring tools.
We validated it with the representative, industry-standard
SPECjEnterprise2010 benchmark application in realistically
scaled deployment environments. We extracted a performance
model and derived performance predictions for various val-
idation scenarios. Resource utilizations are predicted with
a relative error of mostly 5%. Response times, which are
typically much harder to predict accurately, are predicted with
a relative error of about 10 to 20%.

We could show that an automated extraction of architecture-
level performance models using measurement data obtained
with common monitoring tools is a feasible way to extract
performance models for distributed component-based systems.
The obstacle of building a performance model manually can
be overcome. Performance engineers can use the automated
extraction process to obtain performance models allowing to
answer sizing, resource efficiency and performance questions
in an effective way.

However, further investigations concerning the extraction of
internal service behavior and the characterization of proba-
bilistic parametric dependencies are of concern. In addition,
we are interested in studies with performance predictions for
highly configurable, dynamic virtualized environments. The
latter will reveal new challenges how appropriate architecture-
level performance model representations should look like in
the context of virtualized environments.
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