
TeaStore: A Micro-Service Reference Application
for Cloud Researchers

Simon Eismann, Jóakim v. Kistowski, Johannes Grohmann, André Bauer, Norbert Schmitt,
Nikolas Herbst and Samuel Kounev

University of Würzburg, Germany
Email: [firstname].[lastname]@uni-wuerzburg.de

Abstract—Researchers propose and employ various methods to
analyze, model, optimize and manage modern distributed cloud
applications. In order to demonstrate and evaluate these methods
in realistic scenarios, researchers rely on reference applications.
These applications should offer a range of different behaviors,
degrees of freedom allowing for customization and should use
a modern and representative technology stack. Existing testing
and benchmarking applications are either outdated, designed for
specific testing scenarios, or do not offer the necessary degrees of
freedom. Further, most cloud reference applications are difficult
to deploy and run.

In this paper, we present the TeaStore, a micro-service-based
test and reference cloud application. TeaStore offers services
with various performance characteristics and a high degree of
freedom regarding its deployment and configuration to be used
as a cloud reference application for researchers. The TeaStore
is designed for the evaluation of performance modeling and
resource management techniques. We invite cloud researchers to
use the TeaStore and provide it open-source, extendable, easily
deployable and monitorable.

Index Terms—Micro-service Architectures, Reference Imple-
mentation, Cloud Resource Management, Performance modeling

I. INTRODUCTION

Modern distributed micro-service applications have complex
performance characteristics, as the constituent services feature
different performance properties and are short-lived compared
to traditional software components. These applications are
usually deployed in container orchestration frameworks, such
as Kubernetes, Docker Swarm or cloud provider specific
solutions. These frameworks add another layer of complexity
by autoscaling the service containers, regenerating failing
containers or by the introduction of monitoring or service mesh
sidecars.c

Current research employs many analysis, modeling, opti-
mization, and management approaches that aim to tackle this
challenging performance behavior [1], [2]. Verifying, compar-
ing, and evaluating the results of such research is difficult.
To enable practical evaluation, researchers need a software
application that they can deploy as reference and (2) that
offers realistic degrees of freedom. The reference application
must also feature sufficient complexity regarding performance
behavior to warrant optimizing it in the first place. Finding
such an application and performing the necessary experiments
is often difficult. The software in question should be open
source, available for instrumentation, and should have repro-

ducible results, all while being indicative of how the evaluated
research would affect applications in production use.

Real-world distributed software is usually proprietary and
cannot be used for experimentation. Existing test and reference
software, on the other hand, is usually explicitly created for
evaluating a single contribution, which makes comparisons
difficult [3]. Other existing and broadly used test software
does not offer the necessary degrees of freedom and is often
manually adapted [4]. Some of the most widely used test
and reference applications, such as RUBiS [5] or Dell DVD
Store [6], are outdated and therefore not representative of
modern real-world applications. Reference applications from
industry vendors, such as the Sock Shop by WeaveWorks [7],
usually use a modern technology stack but are built to
showcase a specific software solution and do not pose the
performance challenges that current research focuses on.

We present TeaStore, a micro-services-based test and refer-
ence application that can be used as a benchmarking frame-
work by researchers. TeaStore consists of five different ser-
vices, each featuring unique performance characteristics and
bottlenecks. Due to the services’ different resource usage
profiles, the TeaStore poses interesting challenges in the area
of performance modeling, autoscaling, and energy efficiency
[8]. It is designed to be scalable and to support both distributed
and local deployments. Additionally, its architecture supports
run-time scalability as services and service instances can be
added, removed, and replicated at run-time.

II. THE TEASTORE

The TeaStore is an online store for tea and tea-related
utilities. Users can browse the available products by category
and look at individual products. After logging in, the user
can add items to the shopping cart, modify the content of the
shopping cart and checkout by entering shipping and payment
information. Previous orders can be tracked on the user’s
profile page. After the user is finished, he can log out. The
TeaStore displays advertisements for other products based on
the user’s previous orders, his current shopping cart and the
item/category he is currently looking at.

In addition to these regular operations, the TeaStore’s user
interface provides an overview of all running service instances
and the option to populate the database with an adjustable
number of categories, products per category, users, and average



Fig. 1. TeaStore Architecture.

number of previous orders per user. These operations should
not be part of any benchmark but simplify measurement setup.

The TeaStore consists of five distinct services and a Registry
service as shown in Figure 1. All services communicate
with the Registry. Additionally, the WebUI service issues
calls to the Image-Provider, Authentication, Persistence and
Recommender services.

The Image provider and Recommender both connect to
a provided interface at the Persistence service. However,
this is only necessary on startup (dashed lines). The Image
provider must generate an image for each product, whereas
the Recommender needs the current order history as training
data. Once running, only the Authentication and the WebUI
access, modify, and create data using the Persistence.

All services communicate via representational state transfer
(REST) calls, as REST has established itself as the de-facto
industry standard in the micro-service domain. In order to
distribute these REST calls between the available service in-
stances, the TeaStore uses the client-side load balancer Netflix
Ribbon. The TeaStore uses a custom service registry, which
is similar to Netflix Eureka that supplies service instances
with target instances of a specified target service type. To
enable this, all running instances register and unregister at
the registry. This allows for dynamic addition and removal
of service instances during run-time. Each service also sends
heartbeats to the registry. In case a service is overloaded or
crashes and therefore fails to send the heartbeat messages, it
is removed from the list of available instances. Subsequently,
it will not receive further requests from other services. This
mechanism ensures good failure recovery and minimizes the
number of requests sent to unavailable service instances.

Generally, all requests to the WebUI by a user or load
generator are handled similarly. The WebUI always retrieves
information from the Persistence service. If all information is
available, images for presentation are fetched from the Image
provider and embedded into the page. Finally, a Java Server
Page (JSP) is compiled and returned. This behavior ensures
that even non-graphical browsers and simple load generators
that otherwise would not fetch images from a regular site cause
image I/O in the TeaStore, ensuring comparability regardless

of the load generation method.
As the TeaStore is primarily a benchmarking and testing

application, it is open source and available to instrumentation
using available monitoring solutions. Pre-instrumented Docker
images are available for each service that include the Kieker
monitoring probes [9] as well as a central trace repository
service- We choose Kieker, as it is a commonly used ap-
plication level monitoring solution in academia. System-level
monitoring for micro-service applications is usually managed
by container management frameworks, such as Kubernetes.

A short video showcasing how to deploy and use the
TeaStore in Kubernetes is available online1. The TeaStore
source code and detailed documentation can be found on
GitHub2, ready to deploy Docker containers are available on
DockerHub3.

III. CONCLUSION

We present the TeaStore, a test and reference cloud appli-
cation intended to serve as a benchmarking framework for
researchers evaluating their work. The TeaStore is designed
to offer the degrees of freedom and performance character-
istics required by cloud software management, prediction,
and analysis research. Specifically, the TeaStore facilitates
research focused on model-based software and performance
engineering. Researchers may use the TeaStore together with
its pre-packaged testing tools and profiles for their evaluation
scenario.

REFERENCES

[1] A. Ilyushkin, A. Ali-Eldin, N. Herbst, A. V. Papadopoulos, B. Ghit,
D. Epema, and A. Iosup, “An Experimental Performance Evaluation of
Autoscaling Policies for Complex Workflows,” in Proceedings of the 8th
ACM/SPEC International Conference on Performance Engineering (ICPE
2017). ACM, April 2017.

[2] J. Grohmann, S. Eismann, and S. Kounev, “The Vision of Self-Aware
Performance Models,” in Companion of the 2018 IEEE International
Conference on Software Architecture (ICSA 2018), 2018.

[3] J. Happe, H. Koziolek, and R. Reussner, “Facilitating performance
predictions using software components,” IEEE Software, vol. 28, no. 3,
pp. 27–33, 2011.

[4] F. Willnecker, M. Dlugi, A. Brunnert, S. Spinner, S. Kounev, and
H. Krcmar, “Comparing the Accuracy of Resource Demand Measurement
and Estimation Techniques,” in Computer Performance Engineering -
Proceedings of the 12th European Workshop (EPEW 2015). Springer,
August 2015, pp. 115–129.

[5] RUBiS User’s Manual, May 2008.
[6] D. Inc., “Dell DVD Store,” https://linux.dell.com/dvdstore/, 2011, Ac-

cessed: 13.10.2017.
[7] Weaveworks Inc., “Sock Shop: A Microservice Demo Application,” https:

//github.com/microservices-demo/microservices-demo, 2017, Accessed:
19.10.2017.

[8] J. von Kistowski, S. Eismann, N. Schmitt, A. Bauer, J. Grohmann,
and S. Kounev, “TeaStore: A Micro-Service Reference Application for
Benchmarking, Modeling and Resource Management Research,” in Pro-
ceedings of the 26th IEEE International Symposium on the Modelling,
Analysis, and Simulation of Computer and Telecommunication Systems,
ser. MASCOTS ’18, September 2018.

[9] A. van Hoorn, J. Waller, and W. Hasselbring, “Kieker: A framework
for application performance monitoring and dynamic software analysis,”
in Proceedings of the 3rd joint ACM/SPEC International Conference on
Performance Engineering (ICPE 2012). ACM, April 2012, pp. 247–248.

1TeaStore on Vimeo: https://vimeo.com/281987676
2TeaStore on GitHub: https://github.com/DescartesResearch/TeaStore/
3TeaStore on DockerHub: https://hub.docker.com/u/descartesresearch/


