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Abstract—Model-based performance analysis can be lever-
aged to explore performance properties of software systems.
To capture the behavior of varying workload mixes, configu-
rations, and deployments of a software system requires formal
modeling of the impact of configuration parameters and user
input on the system behavior. Such influences are represented
as parametric dependencies in software performance models.
Existing modeling approaches focus on modeling paramet-
ric dependencies at design-time. This paper identifies run-
time specific parametric dependency features, which are not
supported by existing work. Therefore, this paper proposes
a novel modeling methodology for parametric dependencies
and a corresponding graph-based resolution algorithm. This
algorithm enables the solution of models containing component
instance-level dependencies, variables with multiple descrip-
tions in parallel, and correlations modeled as parametric de-
pendencies. We integrate our work into the Descartes Modeling
Language (DML), allowing for accurate and efficient modeling
and analysis of parametric dependencies. These performance
predictions are valuable for various purposes such as capacity
planning, bottleneck analysis, configuration optimization and
proactive auto-scaling. Our evaluation analyzes a video store
application. The prediction for varying language mixes and
video sizes shows a mean error below 5% for utilization and
below 10% for response time.

Keywords-Architecture, Component-based systems, Perfor-
mance, Performance modeling, Parametric dependencies, Run-
time, Descartes modeling language

I. INTRODUCTION

Architectural performance models provide a powerful tool
enabling performance prediction for modern component-
based software systems. These performance predictions can
be used for multiple purposes, such as capacity planning [1]
and automated resource management [2]. Providing accu-
rate performance predictions using architectural performance
models requires the modeling of several system properties.
Specifically, it requires the explicit modeling of depen-
dencies between different model parameters, for example
the resource demand of a service might depend on the
value of its input parameters. Modeling such parametric
dependencies expands the range of system settings that can
be accurately modeled [3, 4, 5, 6]. Formal modeling of
parametric dependencies allows predicting the impact of
changing workloads, system reconfigurations, and deploy-
ment changes using a single performance model.

At run-time, variables and dependencies can be learned
and continuously updated based on available monitoring
data [7]. However, parts of the system may be inaccessible
to monitoring as instrumentation might negatively impact
the overall system performance [8]. At design-time, many
details on component interactions remain open, limiting
concrete specifications of parametric dependencies to as-
pects independent of component instantiation. In contrast,
a run-time environment can supply sufficient information
(e.g., using monitoring) to identify dependencies for specific
component instances.

Existing architectural performance modeling
formalisms [5, 9, 10, 11, 12] apply design-time assumptions
when modeling parametric dependencies. In particular,
we identified the following major limitations: (i) Existing
parameter dependency models only support the modeling
of dependencies per component type, not between specific
component instances. However, in a run-time scenario,
where dependencies between specific component instances
can be obtained from monitoring data, modeling them
becomes necessary. (ii) No support for parametrization
based on multiple parametric dependencies, which would
allow for selecting alternative input parameters based on
what is measurable. (iii) Existing solutions [5, 10, 11]
cannot incorporate and benefit from correlations if they are
not based on previously executed parameters from the call
path, such as backwards correlations.

This paper contributes a novel approach to solve para-
metric dependencies in architectural performance models of
component-based software systems. The dependency reso-
lution algorithm transforms its information to a directed
graph and resolves this graph to derive a fully parameterized
model. Compared to existing work, our approach enables the
resolution of the following features: (i) parametric dependen-
cies on a component instance level, (ii) multiple independent
dependencies describing one variable and (iii) modeling of
correlations as parametric dependencies.

Applying the presented approach, software architects ben-
efit from an improved ability to reflect system behavior
within architectural performance models based on a higher
flexibility of inputs. This results in more accurate perfor-
mance predictions valuable for various purposes such as ca-
pacity planning [13], bottleneck analysis [14], configuration
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Figure 1: Generation of new subtitles.

optimization [15] and proactive auto-scaling [16].
We implement our methodology and integrate it into the

Descartes Modeling Language (DML) [2, 17], an architec-
tural performance model with the goal of enabling run-time
resource management.

We evaluate the practical applicability of our approach,
based on two case studies in the context of an online video
store application. The first case study shows that the CPU
resource demand of a component can be described using two
independent parameters. The second case study investigates
the performance prediction accuracy for different parameter
configurations. We show that DML can accurately predict
the video store’s performance when varying language mixes.
Predictions of video store utilization feature a mean absolute
percentage error of below 5%, whereas response times can
be predicted with an error of below 10%.

II. MOTIVATING EXAMPLE

We illustrate general deficiencies for modeling of para-
metric dependencies based on a video store application and
then derive the general problem statement.

A. Video Store Example

The challenges of modeling parametric dependencies in
run-time scenarios can be easily highlighted using an on-
line video store application, similar to YouTube, Netflix or
Amazon Video. The video store in our example provides its
videos with subtitles in different languages. The subtitles
are automatically generated and translated. We introduce
two use cases which underline common requirements for
modeling parametric dependencies at run-time. The first
use case covers the automatic generation of new subtitles
by transcribing the audio using machine learning and sub-
sequent translation to different languages. In the second
use case, the video store retrieves subtitles from a subtitle
repository with a cache.

Use case 1: This use case is inspired by YouTube’s
’auto-caps’ feature1. To automatically generate subtitles for
newly uploaded videos, a transcription service uses machine
learning techniques to transcribe the video’s audio track.
Resulting subtitles are then automatically translated by a

1https://googleblog.blogspot.de/2009/11/automatic-captions-in-
youtube.html
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Figure 2: Retrieval of subtitles from the subtitle repository.

translation service, as shown in Figure 1. The resource
demand of the transcription service can be derived from the
size of the file it transcribes. Another way to characterize this
resource demand is to reverse engineer it using the resulting
number of subtitle lines.

This use case motivates two novel modeling features:
First, when designing a performance model it might not be
known for which parameters monitoring data will be avail-
able at run-time. Therefore, both dependencies have to be
modeled and the decision which of these two dependencies
should be used to characterize the resource demand of the
transcription service should be made at run-time. Secondly,
this use-case motivates the modeling of correlations as
parametric dependencies. Variables can be described by cor-
relations instead of relying on cause and effect. In general,
the output of a method may encapsulate information about
its internal execution process. In concrete, the correlation
between the number of lines and the transcription resource
demand opens an additional valid way to derive the resource
demand.

Use case 2: This use case is inspired by video-on-demand
providers, such as Netflix or Amazon Video. When a user
requests a video, the subtitle repository provides subtitles
in the corresponding language, as shown in Figure 2. The
subtitle repository implements a cache, which contains the
frequently requested subtitles. The retrieval of subtitles from
the cache causes a lower resource demand than retrieving
subtitles from the database. The cache probability depends
on both the popularity and language of the requested video,
as subtitles in a frequent language for popular videos are
more likely to be in the cache. This interaction can not
be generalized for all subtitle repository instances. Other
subtitle repository instances might be used in a different
context, where the access frequency does not depend on the
subtitle language or video popularity. An example for this
would be a component creating backups, which iterates over
all subtitles, independent of language or popularity. This
showcases the need to model dependencies on an instance
level in addition to component-level dependencies. At run-
time, correlations between parameters can be learned from
monitoring data for the deployed system. These correlations
are only applicable for specific component instances, not for
all instances of a component.



B. Problem Statement

Illustrated by the video store example, we identified the
following general requirements to model parametric depen-
dencies for component-based systems in run-time scenarios:
Instance-level dependencies Instance-level dependencies

describe interrelations between component instances.
Modeling these dependencies for component types,
as supported by existing approaches, would apply the
dependency to all instances of the component.

Multiple descriptions The description of parameters using
multiple independent parametric dependencies provides
alternatives for run-time model parametrization. A typ-
ical use case can be, for instance, the specification
of component-level dependencies and instance-level
dependencies for the same variable.

Correlations as dependencies At a runnable system state,
monitoring data may reveal correlations between pa-
rameters. Modeling these correlations as dependen-
cies can be used to derive characterizations in case
parameters cannot be measured. Existing parameter
models can only capture strictly causal correlations as
dependencies, since they enforce that a parameter may
only depend on prior parameters from the same call
path [5, 10, 11].

Existing performance modeling approaches [5, 9, 10, 11, 12]
cannot model the parametric dependencies that occur in
our video store example. In the following, we propose
a modeling and resolution approach that provides native
support for the above described modeling features.

III. PARAMETRIC DEPENDENCY MODELING

We integrate our work for modeling and resolution of
parametric dependencies into a representative architectural
performance modeling formalism, the Descartes Model-
ing Language (DML) [2, 3, 17, 18, 19]. Therefore, we
briefly introduce its relevant parts. The DML meta-model
is made of five sub-models: repository, assembly, resource
environment, deployment, and usage profile. The reposi-
tory model defines blueprints for the software components
that get assembled and connected in the assembly model.
The deployment model describes how these components
are distributed across the hardware resources defined in
the resource environment model. The usage profile model
contains the workload definition. For a detailed introduction
to the DML meta-model we refer to [3].

The integration of novel modeling features requires the
identification of the affected meta-model parts. The resource
landscape and the deployment do not affect parametric
dependencies. Only the application architecture meta-model
contains information about parameters and dependencies
between them. In the application architecture, components
are modeled, instantiated, and connected to other compo-
nents using interface providing and requiring roles. Every
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Figure 3: Model variables in DML.
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Figure 5: Relationships in DML.

interface signature provided by a component has a corre-
sponding behavior description. It may contain control flow
descriptions such as loops, branches, and forks. Additionally,
behavior descriptions contain resource demands and external
calls to other components. The specification of parametric
dependencies builds upon three main concepts: (i) variables,
(ii) parameters, and (iii) relationships.

Variables depict a core concept for parametric depen-
dency modeling. Figure 3 shows the variable and pa-
rameter types to which dependency descriptions may re-
fer to. Every variable inherits from Relationship-
Variable. Each RelationshipVariable can either
be an InfluencableVariable or a CallParameter,
which are both contained in a BehaviorAbstraction.
An InfluencableVariable can be a Resource-
Demand, a BranchProbability, a CallFrequency,
or a LoopIterationCount. Any Relationship-
Variable contains a value attribute of type Random-
Variable describing its distribution. The value attribute
can be NULL if its distribution is to be derived based on
parametric dependencies. The Characterization of a
RelationshipVariable indicates whether the variable
value is explicitly modeled or should be characterized using
monitoring data.

Calls to components can contain parameters which
influence the behavior of the called component.
The value returned by a call to another component
can also influence the calling component’s behavior.
Common examples include file sizes and list
lengths. In DML, such parameters are modeled as
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CallParameters, which are depicted in Figure 4.
CallParameters include ExtCallParameters,
ExtCallReturnParameters, ServiceInput-
Parameters, and ServiceOutputParameters.
ServiceInputParameters together with
ServiceOutputParameters model a component’s
input and output parameters. Therefore they reference
a ProvidedRole, which describes the interface and
signature the parameter belongs to. The counterparts to
these parameters are the ExtCallParameters and
the ExtCallReturnParameters, which specify
the input and output parameters for a call to another
component. If two component instances are connected via
an assembly, the ExtCallParameter and the respective
ServiceInputParameter share the same distribution;
the same applies to ServiceOutputParameters and
ExtCallReturnParameters.

In order to model dependencies both on repository
level and on component instance level, DML provides
two types of Relationships, as shown in Figure 5.
A DependencyRelationship represents a dependency
on the repository level and is therefore modeled as
part of the component blueprint in the Repository.
CorrelationRelationships on the other hand are
used to model dependencies on a component instance level.
Therefore it is modeled as part of the System and refers to
two or more AssemblyContexts, which represent spe-
cific component instances. Both types of Relationships
contain an equation which can be used to derive the value
of the dependent RelationshipVariable from the one
or more independent RelationshipVariables.

IV. PARAMETRIC DEPENDENCY RESOLUTION

The second major objective of our approach is to au-
tomatically derive performance indices from models using
our novel and existing dependency modeling features. The
automated prediction requires a resolution of the declarative
parametric dependency description to enable model analyses.
Besides functional requirements, we formulate the following
design goals for the realization of our dependency resolution
approach: (i) modularity in order to improve maintainability
the resolution and (ii) independence of concrete stochastic
model solvers.

To achieve modular design, we decompose the resolution
into the multi-step dependency resolution process depicted
in Figure 6. It consists of the following steps:
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Figure 7: Callpath meta-model.

Step 1 Extraction of possible call paths through the system
from the architectural model into a CallpathModel.

Step 2 Transformation of the model parameters and the de-
pendencies between them into a directed graph, denoted
as DependencyGraph.

Step 3 Resolution of parametric dependencies within the
DependencyGraph using our dependency resolution
algorithm to generate the ResolvedDependency-
Graph.

Step 4 Combination of the information contained in
the CallpathModel and the Resolved-
DependencyGraph in order to generate a
StackframeModel [2]. The StackframeModel
represents a solution-ready model that can be solved
using existing simulators and analytical solvers using a
transformation to their respective analysis format [2].

The resolution of parametric dependencies should not rely
on a specific prediction formalism in order to be reused in
transformations to different stochastic models and respective
analytical or simulation-based solvers. Through the transfor-
mation to the StackframeModel, our dependency reso-
lution is independent of specific stochastic model solvers. In
addition, this enables the reuse of all existing DML solvers.
The description of employed intermediate models allows for
their reuse in the context of further architectural performance
modeling formalisms.

In the following, we detail the employed intermediate
meta-models and our dependency resolution algorithm.
A. Intermediate Meta-Models

The dependency resolution algorithm applies a set of
intermediate graph meta-models. In this section, we describe
the CallpathModel, the DependencyGraph, and the
StackframeModel.

Callpath Model The CallpathModel, depicted in
Figure 7, captures all paths a request may take through the
system. It contains a set of CallpathPoints representing
entry points to the system. Each CallpathPoint spec-
ifies the Location where its Behavior is executed. A
location does not refer to a physical node in the system,
but to an assembled software component that contains the
executed behavior. For every Call in the Behavior of
a CallpathPoint, a CallMapEntry references an-
other CallpathPoint representing the Call’s target
Behavior and the assembly component it is executed
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in. Every possible path that leads to the execution of a
Behavior can be described by a single CallpathPoint
as it contains a reference to its predecessor. Additionally,
the CallpathModel contains Dependencies, which
connect two or more CallpathPoints. The Behavior
description of CallpathPoints contains the independent
and dependent parameters. The nature of the dependency
is abstracted in a DependencyCharacterization.
The meta-model only contains the connections between
CallpathPoints. Component level dependencies do not
have to be modeled in the CallpathModel since the
location of its dependent and independent components is
captured within the model.

Dependency Graph The DependencyGraph, depicted
in Figure 8, contains information about the model parameters
and the dependencies between them. Every Node in the
Graph represents a Parameter and a call path to it, which
is represented by a CallpathPoint. This means that
one Parameter can be contained in multiple Nodes if
it lies on multiple call paths, allowing a Parameter to
have different values depending on the call path. If the
distribution of the Parameter in this call path is known the
value is saved in its Distribution, otherwise it is NULL.
The Nodes are connected by directed Edges which model
the dependencies between them. Every Edge connects one
dependent Node to one or more independent Nodes. The
Edge’s StochasticExpression describes how the
distribution of the dependent Node can be calculated if the
values of the independent Nodes are known.

Stackframe Model We reuse the StackframeModel
presented in [2] as output for our dependency resolution
algorithm. The StackframeModel represents a solu-
tion ready form of an architectural performance model.
In the StackframeModel the sophisticated aspects
of architectural performance models are resolved, sim-
plifying the transformation to solution models such as

QPNs or LQNs, as described in [2]. Figure 9 shows
the meta-model of the StackframeModel. It con-
sists of a series of StackFrames which describe a
ServiceBehaviorAbstraction and a Component-
InstanceReference, which describe the assembly
instance on which the behavior is executed. For ev-
ery ExternalCall in the StackFrame’s behavior a
Successor annotates which StackFrame is called by
the ExternalCall. Similarly, a ValueMapEntry an-
notates every ModelVariable in the StackFrame’s
behavior with a RandomVariable describing its distribu-
tion.

B. Resolution Process

This section details how our dependency resolution al-
gorithm uses the intermediate meta-models to transform a
model containing parametric dependencies to an analysis-
ready model without dependencies. The approach consists
of the following four steps:

Step 1 The CallpathModel can be extracted from an
architectural performance model by creating Callpath-
Points for all possible entry points. Next, iterating over all
newly created CallpathPoints, a CallMapEntry and
a target CallpathPoint has to be created for every Call
inside the CallpathPoint’s Behavior. This needs to
be recursively repeated for all CallpathPoints created
by this step, until every call path ends in a Callpath-
Point who’s Behavior does not contain any Calls.

Step 2 The CallpathModel can be transformed to
the DependencyGraph by iterating over all Callpath-
Points in the CallpathModel and executing the fol-
lowing tasks on them:

• Create a Node for every parameter in the Callpath-
Point Behavior.

• Create an Edge for every component level dependency
described in the CallpathPoint’s Behavior.

• Create an Edge for every pair of input and output pa-
rameter in the CallpathPoint’s Behavior and
its predecessor’s Behavior.

• Create an Edge for every instance level dependency
modeled in the CallpathModel who’s dependent is
contained in the CallpathPoint’s Behavior.

This generates a complete DependencyGraph, which can
be used to derive values for all unknown parameters in the
following step.

Step 3 The DependencyGraph contains Nodes with
known distributions and Nodes with unknown distributions.
If all independent Nodes of an Edge have distributions
the distribution of the dependent Node can be derived. To
determine a resolution order which resolves distributions
for all Nodes we use the dependency solver algorithm
shown in Algorithm 1. It iterates over all Edges in the
dependency graph and evaluates if every independent Node
of the Edge is already characterized. Should this be the case



Algorithm 1 Dependency Resolution Algorithm

1: function RESOLVEDEPENDEN-
CIES(dependencyGraph)

2: hasChanged = true
3: while hasChanged == true do
4: hasChanged = false
5: for Edge in dependencyGraph.edges do
6: allIndependentsCharacterized = true
7: for Node in Edge.independents do
8: if Node.value == null then
9: resolvable = false

10: end if
11: end for
12: if resolvable == true then
13: Edge.dependent.value = Edge.calc()
14: hasChanged = true
15: end if
16: end for
17: end while
18: end function

the algorithm computes the distribution of the dependent
Node of the Edge. The algorithm repeats these steps until
no changes occur in the dependency graph after iterating
over the Edges. This resolves distributions for all Nodes
and therefore for every occurrence of every parameter in the
system.

Step 4 We transform the CallpathModel and
the ResolvedDependencyGraph to a Stackframe-
Model. The CallpathPoints and the CallMap-
Entries connecting them can be directly mapped to
StackFrames and Successor. For every parameter
in a CallpathPoint Behavior, its distribution can
be found in the corresponding Node of the Resolved-
DependencyGraph. We transform it to a ValueMap-
Entry of the StackframeModel. The result of the
whole process is a fully parameterized Stackframe-
Model, which can be analyzed using a variety of analytical
approaches and simulations [2].

V. EVALUATION

The evaluation goal is to show the suitability of the
proposed run-time dependency modeling features and the
capability of our approach to model and solve these para-
metric dependencies correctly. We refine our evaluation goal
using the following research questions, to be evaluated on
the previously introduced use cases:

RQ 1 Can model variables be accurately described by cor-
relations when causal parameters cannot be measured?

RQ 2 Can we provide multiple characterizations of a para-
metric resource demand based on alternative to param-
eters that enable accurate performance predictions?
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Figure 10: Modeling the video transcription case study.

RQ 3 Does modeling parametric dependencies on compo-
nent instance level improve the prediction accuracy?

To evaluate the research questions, we implemented parts
of the motivating video store required for analysis. All of
our experiments run on an HPE ProLiant DL160 server. It
features an Intel Xeon E5-2650 v3 processor with 10 cores at
2.4 GHz and 32 GB RAM. After dependency resolution, we
solve the resulting StackFrame model reusing a transfor-
mation to QPN and subsequent simulation using SimQPN,
a discrete event simulation tool for QPNs [20].

A. Case Study 1 - Video Transcription

1) Setting: To provide an implementation of the video
transcription service, we integrate the established open
source speech recognition software CMUsphinx 2 into a
Java EE servlet application. The processing time of the
transcription service depends on the properties of the re-
spective video. The length of a video, as well as the
number of subtitles (counted as number of lines), impact
the processing overhead. While the number of subtitle lines
can be monitored from the Java interface, the monitoring of
the file size requires a more intrusive monitoring. For the
evaluation we collected a training data set and an evaluation
data set, each consisting of 25 videos with 10 to 30 seconds
of English spoken content from YouTube. Based on these
videos, we investigate the response times of the transcription
service for a mixture of videos.

2) Modeling: Figure 10 models the video transcrip-
tion use case. The CPU resource demand of the
TranscriptionService is modeled as a Resource-
Demand variable. Two ServiceInputParameters
specify the file size and the number of lines parameters. Fur-
ther, we model a DependencyRelationship describing
the relationship between the file size and the resource
demand on component-level. To describe the relationship
between the number of lines and the resource demand of the
TranscriptionService, we select a Correlation-
Relationship to model the instance-level dependency.

3) Dependency characterization: To characterize the
parametric dependencies, we measure the video file size,
the amount of the generated subtitles in number of lines,

2https://cmusphinx.github.io/



Input Polynomial p-value Residual Multiple
order std. error R-Squared

File size

1 8.5e-13 3023 0.896
2 1.4e-11 3078 0.897
3 6.3e-11 3017 0.906
4 9.6e-11 2826 0.921

Number of
lines

1 1.8e-11 3445 0.865
2 1.7e-11 3363 0.877
3 5.2e-10 3338 0.884
4 2.9e-09 3357 0.889

Table I: Evaluation of the CPU resource demand estimations.

and corresponding resource demands for the training data
set. Then, we fit polynomial functions up to fourth order
that describe the resource demand from the file size and
the number of lines. Our investigations show that increas-
ing polynomial degrees does not significantly improve the
prediction. Therefore, we conclude a linear correlation and
model both aspects using first order functions. The CPU
resource demand description of the transcription service
based on the file size in KB is:

ResourceDemand = 43.2 ∗ FileSize− 1662.5

Additionally, we model the resource demand based on the
number of lines parameter as:

ResourceDemand = 2253.5∗NumberOfLines+3894.2

In this use case, modeling the correlation between the
number of lines parameter and the transcription service
resource demand allows to accurately estimate the resource
demand. This provides an additional description of the
resource demand, which can be used as a fallback in case
the size of the video files cannot be monitored.

4) Experiment results: Table I shows the residual stan-
dard error, multiple R-squared metric and p-value for estima-
tions of four polynomial orders with either the file size or the
number of subtitle lines as input. The low p-value indicates a
significant relationship between the input parameter and the
response time, which justifies modeling it. The residual stan-
dard error of the number of lines estimation exceeds the error
of file size estimation by about 10%. Similarly, the file size
estimation captures the variance within the sample slightly
better, as described by the multiple R-squared metric. While
the file size estimation produces more accurate predictions,
the estimation using the number of lines is sufficient in case
the file size cannot be monitored. Our experiments show
that the correlation between the resource demand and the
number of lines parameter provides an accurate description
of the resource demand (RQ 1). Moreover, we demonstrate
that we can provide two accurate description of the same
variable based on different input (RQ 2).

To demonstrate that each of the two descriptions allows
for accurate performance predictions, we analyze the accu-
racy of response time predictions for each description. We

Region ENG SPA GER FR IT POL RUM

USA 83% 17% 0% 0% 0% 0% 0%
EU 25% 11% 21% 15% 14% 9% 5%

Table II: Assumed language mix within the workload.

Popularity Class Number of Products Product Likelihood

Frequent access 200 0.3%
Moderate access 800 0.033%
Long tail 9000 0.0011%

Table III: Product popularity classes.

configure an exponentially distributed request inter-arrival
rate with an average delay of 60 s which corresponds
to a CPU utilization around 45%. The requests randomly
select a video from the evaluation data set. The measured
average response time was 44207 ms. The model predicts an
average response time of 45518 ms when using the file size
estimation and 46252 ms for the number of lines estimation.
This corresponds to an accuracy of 97.03% and 95.38%
respectively. While using the file size estimation achieves a
better accuracy, the accuracy of both predictions is sufficient
for capacity planning [13].

B. Case Study 2 - Subtitle Provider

1) Setting: The second case study monitors the impact
of different parametrizations on the system performance for
the subtitle retrieval. At the retrieval, subtitles have to be
queried from a database if not cached within the subtitle
repository component. Subtitles in frequent languages and
for popular videos are more likely to be in the cache.
Consequently, the likelihood of a subtitle being in the cache
is influenced by the requested language as well as the
popularity of the video. We assume two workload mixes
depicted in Table II, denoted as USA and EU. We assume
American traffic to be predominated by English and His-
panic customers, whereas the European traffic consists of a
wide variety of languages. The popularity of videos follows
a long tail distribution [21]. As shown in Table III, the store
provides 10.000 videos from which the 200 most frequently
accessed videos make up for over half of the traffic. The
next 800 most frequently accessed videos cause 30% of the
traffic. The remaining 9000 long tail videos cause only 10%
of the traffic. For each video, subtitles can be requested in
the seven languages. While the cache allows to store 250
subtitles at a time, the number of subtitles sums up to a
total of 70.000. Next, we evaluate how caching behavior
affects performance indices when moving applications from
one region to another.

2) Modeling: Figure 11 shows modeling of the sub-
title provider use case. The behavior of cache hits and
misses is modeled as a BranchAction with an un-
known BranchingProbability. The branch denot-
ing a cache-hit is connected to a lower resource demand



Video
Store

Subtitle
Repository

ServiceInputParameter

CorrelationRelationship

BranchingProbability

Figure 11: Modeling the subtitle generation case study.

Region Metric Eval. Load-Level
high med low lowest

EU Utilization measured 79.6 39.2 19.7 9.4
USA Utilization measured 57.2 29.9 15.4 8.0
Both Utilization predicted 70.7 35.3 17.6 8.8

EU Relative Prediction Error 11.2 9.9 10.7 5.9
USA 23.6 18.1 14.3 10.6

Table IV: Comparison of the measured utilization to a
model-based prediction without parametric dependencies.

than the branch for cache misses. The input parameters
Language and Popularity are modeled as Service-
InputParameters. The dependency between these pa-
rameters and the branching probability is represented by a
CorrelationRelationship with two independents, to
model an instance-level dependency.

3) Dependency characterization: The dependency be-
tween the language distribution, the popularity distribution
and the probability of accessing the database to retrieve a
subtitle follows the Wallenius’ noncentral hypergeometric
distribution [22], which can be approximated as a binomial
distribution. This approximation leads to the following for-
mula describing the probability for a cache hit:

P(hit) =
Languages∑

l

Popularities∑
p

P(p)2 ∗ P(l)2 ∗ 250
|p|

(1)

For all popularity levels p and all languages l, their respec-
tive occurrence probabilities P(p) and P(l) are squared and
multiplied by the cache capacity, which is 250. Finally, the
resulting value is divided by the number of subtitles in the
language l and popularity class p, which is equivalent to the
number of videos in the popularity class p, denoted as |p|.

Instance-level dependencies are required to capture the
influence of the video popularity and subtitle language in-
fluence on the cache probability of the subtitle provider. We
argue that this dependency has to be modeled on component
instance level, i.e. for this specific component instance. In
contrast, the traditional approach would model it as a de-
pendency on repository component level, i.e. a dependency
that applies to all subtitle provider instances. However, this
dependency can not be applied to every subtitle provider
instance. For example, if a subtitle provider instance is used
by a backup component the dependency would not apply.
The backup component iterates over all subtitles leading to

Region Metric Eval. Load-Level
lowest low med high

EU
Utilization measured 9.4 19.7 39.2 79.6

predicted 9.8 19.8 39.0 79.3

Resp. time measured 21.0 27.0 39.0 149.0
predicted 23.1 26.7 37.0 106.0

USA
Utilization measured 8.0 15.4 29.9 57.2

predicted 7.2 14.4 28.8 57.4

Resp. time measured 17.0 18.0 22.0 45.0
predicted 16.2 18.3 23.6 43.9

Table V: Comparison of measured performance metrics to
predictions using parametric dependencies.

a cache probability of zero, since no subtitle is requested
twice. However, the dependency from Section V-B3 would
derive a cache probability > 0. This shows that modeling
some dependencies on component instance level instead of
repository component level is necessary (RQ 3).

4) Experiment results: Modeling this case study without
parametric dependencies corresponds to using the average
monitored value for the branching probability. Analysis
results presented in Table IV show this to be highly inap-
propriate to capture the system behavior due to an average
utilization prediction error of 13%.

When modeling the dependency between the language
and popularity distribution and the branching probability
of the subtitle repository, the DML model is capable of
accurately predicting the utilization for all eight scenarios,
with a relative error below 5%, as shown in Table V. The
response time prediction error is below 10%, except for a
high load of EU traffic. Here, the model-based prediction
underestimates the response time by 28.86%. This outlier is
still within a 30% margin considered to be acceptable for
capacity planning [13]. By modeling the cache probability
as a parametric dependency, our model can accurately pre-
dict the impact of different language distributions on the
performance of the system.

VI. LIMITATIONS AND THREATS TO VALIDITY

While our approach presents an improvement compared
to the state of the art, there still are limitations and threats
to the validity to be discussed.

Algorithm 1 for the resolution of parametric dependencies
always terminates, since each iteration reduces the number
of nodes without characterization. In case no new node was
characterized, the algorithm also terminates.

Whenever a parametric performance model contains
cyclic dependencies, one of the dependencies making up
the cycle can be ignored since it describes an already
known variable. Assuming that all dependencies describe
the variable with the same accuracy, no information is lost.

In case the parameter model contains insufficient infor-
mation to derive distributions for all variables, our algo-



rithm still resolves as many distributions as possible and
then returns the partially resolved DependencyGraph.
This partially resolved DependencyGraph contains the
information which variables could not be resolved and
measurement values for which parameters would allow to
resolve the missing distributions.

The distributions of two variables can be derived from
the same parameter or share a common ancestor in the
DependencyGraph. Then the resulting model wrongly
assumes that the distributions of the two variables are
statistically independent. This problem is also inherent to
existing approaches [23]. In contrast to existing work, our
approach allows to automatically detect this by checking
whether two variables share a common ancestor in the
DependencyGraph. This allows to proactively inform the
user that the parameterization might be inaccurate.

VII. RELATED WORK

Related work discusses modeling parametric dependen-
cies as well as the identification and characterization of
parametric dependencies.

A. Meta-Models

Existing surveys on component-based performance mod-
eling [29, 30] neglect a detailed discussion on capabilities to
model parametric dependencies. We categorize existing per-
formance modeling approaches according to their parametric
dependency modeling capabilities into four categories:

a) Modeling formalisms having no parameter model lack
modeling features to model parameters or their impact on
the performance of individual components. Such models
cannot capture changing workload mixes and system config-
urations within a single model. Examples include stochastic
formalisms, like QN, QPN, LQN and process models, as
well as some architectural models [31, 32, 33].

b) Meta-models with a static parameter model, as pre-
sented in [24, 25, 26, 27], allow for the parametrization
of component instances to model the influence of instance-
specific parameters on component performance. However,
these approaches require each component instance to be
parameterized individually. They lack features to model the
impact of deployment changes on component performance.
Instance-specific parameters can be hardware parameters,
such as processing rate or number of cores, or software
parameters, such as operating system, hypervisor, or num-
ber of virtual cores [26]. Parameters can also be used to
model different component configurations, as for example,
two instances of a compression component with different
compression rates. Resource demands and external call
frequencies can be described as a linear combination of the
static parameters [25].

c) Dynamic parameter models are supported e.g., by
PCM [5], RESOLVE [9], HAMLET [10], ROBOCOP [11].
While these models suit for design time analysis, they

encounter deficiencies at run-time. This class of models
allows the modeling of input [11] and output parameters
for components and external calls [5]. The resolution of
parameter values propagates from caller to callee which
makes parameter values dependent on the deployment con-
text. Correlations that do not propagate from caller to callee
cannot be modeled.

d) Persistent parameter models allow to model internal
state for subsystems and components based on parameters
[28]. These parameters may change during the model sim-
ulation impacting the component behavior. Modeling the
internal state increases the prediction accuracy, but cannot
accurately model the case studies presented in this paper.

Table VI compares the capabilities of existing modeling
approaches with regard to modeling of parametric dependen-
cies. Summarizing, none of the related approaches provides
means to model correlations as dependencies, instance-level
dependencies, or multiple descriptions of the same variable.

B. Model Learning

Parametric dependencies can be identified and character-
ized based on expert knowledge but also automatically based
on static code analysis, correlation analysis, or machine
learning. Automation reduces the overhead and required
expertise to benefit from parametric dependencies. The fol-
lowing approaches can be transferred to the novel modeling
features proposed in this work. Krogmann et al. [6] propose
to combines static code analysis, micro benchmarks and
a genetic search to automatically identify and characterize
parametric dependencies. If static code analysis is not feasi-
ble, [19] proposes a technique to automatically characterize
known dependencies based on monitoring data. Identifying
the parameters influencing a target variable, is an established
research topic in the area of machine learning called feature
selection. Chandrashekar et al. [34] present a comprehensive
survey on the state-of-the-art for feature selection.

To minimize the modeling effort for large scale systems,
we propose to combine these approaches with fully auto-
mated model extraction approaches [35, 36] that are capable
to derive non-parametric models.

VIII. CONCLUSION

This work provides novel modeling features for para-
metric dependencies and a corresponding solution algo-
rithm, which extends state-of-the-art modeling with run-
time specific features. In particular, it enables parametric
dependencies on component instance level, multiple descrip-
tions of a single variable, and modeling of correlations as
dependencies. Applying the presented approach, software
architects benefit from an improved ability to reflect system
behavior within architectural performance models based on
a higher flexibility of inputs. This results in more accurate
performance predictions valuable for various purposes such
as capacity planing or proactive auto-scaling. We evaluated



Modeling Feature
No Parameter

Model
Static Parameter

Model
Dynamic Parameter

Model
Persistent Parameter

Model
Modeling Approach

of this Paper
[24, 25, 26, 27] [24, 25, 26, 27] [5, 9, 10, 11, 12] [28]

Input and output parameters × × X X X
Component-level dependencies × × X X X
Dependency chaining × × X X X
Instance-level dependencies × × × × X
Multiple descriptions × × × × X
Correlations as dependencies × × (X) (X) X

Table VI: Support of parametric dependency modeling features by existing performance modeling approaches.

our methodology based on two case studies. The first case
study shows that multiple dependencies based on different
input parameters can be used to describe the same variable.
The second case study models parametric dependencies on
a component instance level to characterize and accurately
predict system behavior. Across both case studies, the mean
prediction error for utilization and response time is mostly
below 5% and 10% respectively.
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