
Planning as Optimization: Dynamically Discovering
Optimal Configurations for Runtime Situations

*Authors ordered alphabetically

Erik M. Fredericks∗, Ilias Gerostathopoulos†, Christian Krupitzer‡, and Thomas Vogel§
∗Oakland University, Rochester, MI, USA. Email: fredericks@oakland.edu

†Technical University of Munich, Munich, Germany. Email: gerostat@in.tum.de
‡University of Würzburg, Würzburg, Germany. Email: christian.krupitzer@uni-wuerzburg.de
§Humboldt-Universität zu Berlin, Berlin, Germany. Email: thomas.vogel@cs.hu-berlin.de

Abstract—The large number of possible configurations of
modern software-based systems, combined with the large number
of possible environmental situations of such systems, prohibits
enumerating all adaptation options at design time and necessi-
tates planning at run time to dynamically identify an appropriate
configuration for a situation. While numerous planning tech-
niques exist, they typically assume a detailed state-based model
of the system and that the situations that warrant adaptations
are known. Both of these assumptions can be violated in complex,
real-world systems. As a result, adaptation planning must rely
on simple models that capture what can be changed (input
parameters) and observed in the system and environment (output
and context parameters). We therefore propose planning as op-
timization: the use of optimization strategies to discover optimal
system configurations at runtime for each distinct situation that is
also dynamically identified at runtime. We apply our approach
to CrowdNav, an open-source traffic routing system with the
characteristics of a real-world system. We identify situations
via clustering and conduct an empirical study that compares
Bayesian optimization and two types of evolutionary optimization
(NSGA-II and novelty search) in CrowdNav.

Index Terms—planning, optimization, Bayesian optimization,
evolutionary search, traffic routing model problem

I. INTRODUCTION

A self-adaptive system (SAS) continuously monitors itself
and its environment to ensure that, for each environmental
situation, a valid system configuration is applied that achieves
optimal performance and behavior [1]. Using the monitored
data, adaptation planning aims at identifying such a valid
and optimal configuration. For this purpose, a SAS integrates
decision metrics based on rules or models with higher de-
grees of freedom [2]. However, both categories have their
shortcomings. Rules can be inflexible if not accompanied with
runtime learning [3] and they cannot cover all situations due
to the state-space explosion related to the number of possible
situations and configurations [1], [4], [5]. Models such as
Discrete Time Markov Chains [6] might cope with higher
numbers of situations and configurations as they offer more
adaptation freedom. However, such models require detailed
knowledge about the internal behavior of the system, the
behavior of its environment, and the effects of adaptation
actions to the system for all possible environmental situations.

In complex, real-world systems it is difficult to both identify
the environmental situations that warrant adaptation and un-
derstand how changes to the system affect the performance and

behavior in these situations. For example, optimizing a router
in a traffic system requires a detailed model of the behavior
of the individual cars, the traffic events that may occur (e.g.,
increase of traffic demand), and how changes in routing affect
the performance (e.g., the average trip time) and behavior (e.g.,
traffic jams). It is a challenge to obtain, maintain, and tailor
such detailed models to each environmental situation.

An alternative approach is to model the system as a black-
box with input and output parameters and its environment as a
set of context parameters. Optimizing the system then involves
finding values for input parameters (i.e., configurations) that
optimize the system performance and behavior specified in
terms of output parameters, and do so for each environmental
situation specified in terms of context parameters. In other
words, optimization is performed as a means of adaptation
planning for each situation. To be effective as a method at
runtime and applicable to real-world systems, optimization
needs to cope with large numbers and ranges of input, output,
and context parameters, and provide useful results in a timely
manner. The last point is especially important for usage in
scenarios where the optimization horizon is short.

In this setting, different optimization techniques can be used
if they can cope with problems that are (i) black-box, i.e.,
the function relating the input to the output parameters is
unknown, (ii) high-dimensional, i.e., large number and ranges
of input, output, and context parameters, and (iii) expensive,
i.e., they need to be solved in a minimal number of iterations
since computing outputs may be costly in terms of time or
other resources [7]. Examples of such optimization techniques
include Bayesian and evolutionary approaches.

Another challenge is “to support self-adaptation for complex
types of uncertainties” [8, p. 436], i.e., when it is not possible
to model a priori the situations in which a SAS might reside
at run time. In theory, optimization at run time can solely
focus on finding a system configuration that works well in
any situation (e.g., to optimize the parameters of a web server
without considering the fluctuations in demand). In practice,
such a situation-agnostic optimization may lead to sub-optimal
configurations. Therefore, a system should dynamically iden-
tify the distinct situations it encounters at runtime, based on the
effect of contextual parameters on the outputs, and optimize
individually for each of them. For example, a distinct situation
in a traffic system may be a traffic jam or an accident.



Responding to these challenges, we propose an approach
that we call planning as optimization: the use of optimization
strategies to discover optimal system configurations at runtime
for each distinct situation that is dynamically identified at run-
time. Our approach draws inspiration from online optimization
and learning [9]–[11] and tackles complex systems that are
modeled as black-box, high-dimensional, and computationally
expensive optimization problems.

In particular, we make the following contributions:
• We show the feasibility of planning as optimization by

dynamically identifying distinct situations at runtime via
clustering and by discovering optimal configurations via
different optimization techniques.

• We compare the solution quality, convergence, and over-
head of three optimization techniques in an empiri-
cal study using CrowdNav [12], an open-source self-
adaptation exemplar of a traffic system that corresponds
to a black-box, high-dimensional, and expensive opti-
mization problem.

As optimization techniques we select Bayesian optimization
and two evolutionary optimization techniques (NSGA-II and
novelty search) as they can cope with such a problem. Since in
general no technique is superior to any other technique for any
given optimization problem (cf. no “free lunch” theorems for
optimization [13]), we performed the comparison between the
three techniques to identify which performs best in CrowdNav.
This is also a first step towards our vision of dynamically
identifying and using the best optimizer at runtime.

The rest of this paper is organized as follows: In Section II,
we illustrate the research gap with a literature review. Sec-
tion III describes our motivating scenario based on CrowdNav.
We present our planning as optimization approach involving
situation detection and optimization with three optimizers in
Section IV. We evaluate our approach in an empirical study
in Section V and discuss remaining research challenges in
Section VI. Lastly, we summarize our findings in Section VII.

II. USING OPTIMIZATION IN SELF-ADAPTIVE SYSTEMS

Many approaches apply optimization in SASs for adaptation
planning by generating new system configurations or adapta-
tion plans. We analyzed these techniques based on approaches
published during the last ten years in conferences and journals
related to SASs.1 As listed in Table I, we identified the use of
29 different techniques in 51 publications. This list shows that
a large set of techniques from different classes such as proba-
bilistic, combinatorial, evolutionary, stochastic, mathematical,
and meta-heuristic optimization are applied in SASs. However,
there is less information on how the techniques compare to
each other in terms of assumptions, overhead, and quality of
the achieved solutions.

Our overall approach of finding optimal configurations
in different situations bears similarities with the work by

1We considered ACM TAAS, ICAC, SASO, SEAMS, and FSE. Due to
space constraints we did not include the references in this paper but published
them here: https://doi.org/10.5281/zenodo.2584266.

TABLE I
LIST OF OPTIMIZATION TECHNIQUES USED IN SASS.

Probabilistic Optimization Techniques
Bayesian Networks, Bayesian Optimization, Simulated Annealing
Combinatorial Optimization Techniques
Cross-entropy Method for Combinatorial Optimization, Decentralized
Combinatorial Optimization
Evolutionary Optimization Techniques
Evolutionary Algorithm, Genetic Algorithm, Genetic Programming,
Learning Classifier System, NSGA-II, SPEA2
Stochastic Optimization Techniques
Greedy Algorithm, Markov Decision Process, Stochastic Approximation,
Stochastic Programming, Variable Neighbourhood Search
Mathematical Optimization Techniques
Binary Programming, Integer Programming, Linear Programming, Se-
quential Quadratic Programming, Convex Optimization Solver, Pattern
Search Algorithm
Meta-Heuristic Optimization Techniques
Heuristic Algorithm, Tabu Search
Other Optimization Techniques
Canonical Correlation, Weighted Sum Model, Reinforcement Learning,
Distributed Constraint Optimization, Gradient Descent

Porter et al. on learning optimal system configurations in
emergent software systems [9]. This work focuses on provid-
ing a general framework for online learning that interleaves
exhaustive search of configurations with determination of
environmental situations. In contrast, our work focuses on
optimization problems of higher dimensionality that require
more sophisticated search techniques. Similar to our work,
Kinneer et al. [14] introduced an approach for adaptation
planning that re-uses the knowledge of existing plans for
optimization via genetic algorithms. In contrast to our ap-
proach, the authors rely on tactics that can change the system
by integrating explicit knowledge of the system, whereas
we target black-box systems where such knowledge is not
available. Further, different authors did studies to compare the
performance of optimization techniques. Bischl et al. compare
mlrMBO, a flexible toolbox for black-box optimization with
Bayesian optimization [15] against other optimization tech-
niques, including NSGA-II. However, they used theoretical
problems for their comparison whereas we apply the optimiza-
tion techniques in a (simulated) traffic system that represents
a real-world problem. In another study, Moreno et al. [16]
compare Markov Decision and Analytic Hierarchy Processes
for adaptation planning in RUBiS. However, both techniques
are not applicable to black-box systems that we are targeting.

III. MOTIVATING SCENARIO

Many systems have been modeled as SASs in domains such
as cyber-physical [17], [18] and intelligent traffic systems [19],
[20]. In this paper, we focus on intelligent traffic systems and
perform an empirical study on the CrowdNav2 exemplar [12], a
SAS that performs smart routing for city-wide traffic manage-
ment. CrowdNav combines the SUMO traffic simulator3 with
a custom-built module for routing. In CrowdNav, cars contin-
uously drive in the city of Eichstädt from a randomly selected
destination to another with routes provided by the routing

2CrowdNav: https://github.com/iliasger/CrowdNav
3Simulation of Urban MObility: http://sumo.dlr.de/index.html



TABLE II
INPUT, OUTPUT, AND CONTEXT PARAMETERS OF CROWDNAV.

Input Parameters
Name Type Range
route randomization float [0-0.3] Controls the random noise introduced to avoid giving the same routes
exploration percentage float [0-0.3] Controls the ratio of smart cars used as explorers
static info weight float [1-2.5] Controls the importance of static information (i.e., max speed, street length) on routing
dynamic info weight float [1-2.5] Controls the importance of dynamic information (i.e., observed traffic) on routing
exploration weight integer [5-20] Controls the degree of exploration of the explorers
data freshness threshold integer [100-700] Threshold for considering traffic-related data as stale and disregard them
re-routing frequency integer [10-70] Controls how often the router should be invoked to re-route a car

Output Parameters
Name Type Constraints Description
trip overhead float >1 The actual trip time divided by the theoretical trip time if a car travels at max speed
routing cost integer >0 The time needed by the router to re-route all cars

Context Parameter
Name Type Constraints Description
number of cars integer >0 The total number of cars that are in the city and use the smart configurable router

values of outputs,
values of context parameters

Learning of situations 
via clustering
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Configuration (valuation of 
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Situations à
optimal 

configurations
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Apply optimal 
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[found][not found]

Fig. 1. Overview of our approach.

module. The module is used by all cars and comprises seven
configurable numeric input parameters detailed in Table II.
Moreover, CrowdNav provides two outputs, trip overhead and
routing cost, and features one context parameter that can be
observed but not controlled: the number of cars (see Table II).

Selecting an optimal configuration in CrowdNav entails pro-
viding a value for each input parameter (route randomization,
exploration percentage, etc.) with the goal of minimizing trip
overhead and routing cost for each situation determined by the
number of cars. Note that a configuration impacts each output
parameter differently, leading to a multi-objective optimization
problem with competing concerns.

Viewed as a numeric optimization problem, CrowdNav op-
timization has some distinct properties. First, it is a black-box
optimization problem since there is no known model/function
that relates inputs to outputs. As a result, to evaluate a configu-
ration, it needs to be applied to CrowdNav and its effects need
to be measured on the outputs. Second, the number and range
of input and context parameters in CrowdNav also creates
a large configuration space, resulting in a high-dimensional
problem. Given that a float is represented in Python by default

with 15 decimal points and assuming that no discretization is
performed, the input configuration space of CrowdNav is 0.3 ·
1015 ·0.3·1015 ·1.5·1015 ·1.5·1015 ·15·600·60 ≈ 100, 000·1060.
Third, the outputs of CrowdNav exhibit high variance (noisy
outputs). To compare different configurations as to their effects
on the outputs, multiple samples of the outputs are required to
ensure that statistical measures are robust to noise and outliers.
We found that 5000 samples are sufficient to characterize a
situation and to evaluate a configuration. However, collecting
multiple samples from a running system increases the time
needed to evaluate a configuration, which makes CrowdNav
an expensive optimization problem.

Finally, optimization of CrowdNav must consider different
situations that depend on the value of its context parameter,
number of cars, as it is unlikely that a single optimal config-
uration exists for different values (e.g., 300 vs. 800 cars).

IV. APPROACH

Our approach aims at optimizing systems that are modeled
as black-box, high-dimensional, and computationally expen-
sive optimization problems in different runtime situations.
Therefore, there is a need for both learning the distinct sit-
uations the system might be in, and optimizing the system for
each such situation. Our approach comprises two modes, each
dealing with one of the above-mentioned needs (Figure 1).
Mode #1: Learning of situations via clustering. In this
mode, the outputs of the target system and the context param-
eters are monitored. The goal is to determine the valuations of
context parameters that can be grouped together in a distinct
situation in terms of the outputs. Once these valuations are
learned, the system can detect its current situation by only
monitoring its context parameters.

To learn a situation, we assume that for each context pa-
rameter, a discrete number of ranges for its values is provided.
For instance, the designers of CrowdNav may specify that the
number of cars – a context parameter in CrowdNav – belongs
to one of the ranges [0,100], [100, 200], [200, 300], [300,∞).
All possible states that the system can reside in is the Cartesian
product of the ranges of all of its context parameters. While
operating, the system can traverse from one state to another.



By observing the values of its output parameters for each state,
our approach essentially groups together states into situations
by learning which states are similar to each other with respect
to their impact on the output parameters. The clustering of the
output data to learn situations is detailed in Section IV-A.
Mode #2: Situation-driven optimization. In the second
mode, the context parameters of the target system are mon-
itored and the clustering model learned in Mode #1 is used
to determine the current situation. If the current situation is
different from the previous one, the Knowledge Base (cf.
Figure 1) is queried for an optimal configuration. If such
a configuration is already known, it is applied to the target
system. If not, an optimization process starts with the goal of
identifying an optimal configuration for the current situation,
applying the optimized configuration to the target system, and
saving it to the Knowledge Base for future use.

Situation-driven optimization relies on the learning of sit-
uations via clustering to optimize for distinct situations. If
clustering is not performed or returns just a single situation
(indicating that the context does not influence the outputs),
optimization can still be performed for this general case.

We assume that an optimization process is not interrupted
once started so that it finishes before the current situation
changes. If this assumption does not hold, the system needs
to be equipped with a mechanism of saving the currently best
configuration for a situation to the Knowledge Base and
continuing the optimization process when it is next detected.
Such an incremental optimization is a topic of future work.

The optimization process of our approach can be guided by
different optimization techniques. So far, we considered three
state-of-the-art techniques in optimizing CrowdNav (cf. Sec-
tion IV-B). Generally, the choice of the technique highly
depends on the target system and in particular in the response
surface of its outputs. We therefore provide a basis for compar-
ison between multiple optimization techniques (cf. Section V).

We next discuss how distinct situations are learned via
clustering as well as the optimization techniques we use.

A. Clustering-based Situation Learning

To group individual context states to situations, our ap-
proach continuously observes both the valuation of context
parameters and the corresponding system outputs. For each
context state (the number of context states is the Cartesian
product of all the possible ranges of context parameters),
a number of observations of system outputs are collected.
This collection results in a dataset for each context state,
with features computed for each dataset. Possible features
include well-known statistical measures of central tendency
and dispersion such as arithmetic mean, median, variance, and
standard deviation. Our approach assumes that such features
are provided for each system output (however, we can always
use generic features, such as the statistical measures mentioned
above). The features for each context state are then fed to a
clustering algorithm – we use k-means [21] – that determines
the datasets that are most similar and should form a cluster.
In particular, given a number of clusters k, k-means iteratively

tries to find a centroid for each cluster so that the sum of the
squared Euclidean distances between an observation assigned
to the cluster and the cluster’s centroid is minimized. The
context states that correspond to the datasets belonging to the
same cluster are then grouped together in a situation.

For illustration with CrowsNav, consider that the arithmetic
mean and median of trip overheads are used as clustering
features. Moreover, the only context variable is the number of
cars that can be in one of the four ranges [0,100], [100, 200],
[200, 300], [300,∞) corresponding to four system states. Our
clustering approach will compute the mean and median of a
large number of samples (5000) of trip overhead for each state.
If k-means groups the first three states into a single cluster,
then there is not enough difference between having 100 or 300
cars, corresponding to a single situation (e.g., “low traffic”).

A problem with using k-means or any other clustering
algorithm at runtime is that these algorithms typically expect
the number of clusters to be provided by the user. Instead,
we assume that a list of candidate numbers of clusters is
provided, from which the optimal number of clusters is au-
tomatically determined at runtime based on the available data.
To determine the optimal number of clusters, we follow the
Silhouette method [22], a well-accepted method for measuring
clustering validity [23]. For each number of clusters, we
perform clustering via k-means and then compute the average
Silhouette coefficient. In particular, the Silhouette coefficient
sc for a datum is calculated by Equation 1:

sc =
b− a

max(a, b)
(1)

where a is the average Euclidean distance between the datum
and other data in its cluster and b is the average Euclidean
distance between the datum and other data in the next nearest
cluster. A Silhouette coefficient takes values within [-1,1] with
values close to 1 indicating a good match of the datum to
the cluster. The average Silhouette coefficient is calculated by
considering all data points and provides a measure of how
well the data are assigned to clusters [23]. In our approach,
we select the number of clusters that yields the highest average
Silhouette coefficient.

B. Optimization Techniques

Since each optimization technique presented in Section II
has its own strengths and limitations, they cannot all be applied
to all optimization problems. For a black-box problem/system,
there is generally no model describing its function/behavior.
This limitation rules out all techniques that require such a
model, such as linear programming. Moreover, a problem with
high dimensionality poses challenges for techniques that do
not scale and a multi-objective problem prevents the use of
single-objective techniques.

For this paper, we consider probabilistic and evolutionary
techniques to optimize CrowdNav, as it is a black-box system
comprising high-dimensionality and multi-objective character-
istics. These techniques have been shown to cope with such



criteria in SASs (cf. Section II) in related optimization prob-
lems. Particularly, as a probabilistic technique we use Bayesian
Optimization that has been previously applied to CrowdNav
for a single-objective problem [24] and as evolutionary tech-
niques we use the widespread NSGA-II algorithm and novelty
search. These three techniques all rely on some form of fitness
functions to evaluate a configuration of the CrowdNav router in
terms of its objectives: trip overhead and routing cost. Having
no model of CrowdNav, we have no means to directly calculate
the fitness of a router configuration. Instead, a configuration is
applied to CrowdNav and its effects on the trip overhead and
router cost are measured to obtain the fitness. This corresponds
to an online experiment of applying and evaluating a router
configuration in the running CrowdNav. Next, we briefly
describe the three optimization techniques we employed.

1) Bayesian Optimization: Bayesian or sequential model-
based optimization is an approach to global optimization that
can be used for efficiently optimizing expensive black-box
functions [25]. By expensive it is meant that a single evaluation
of the function is costly in terms of time or resources. Bayesian
optimization can be used for optimizing a single objective
(already demonstrated on CrowdNav [24]) as well as a multi-
objective problem, which is the focus of this paper.

In short, Bayesian optimization works as follows. Given a
number of execution steps (budget), at each step, the process
fits a regression model to the selected inputs and obtained
outputs, then uses the model to propose a promising set of
inputs to try next by optimizing an acquisition function. A
common approach for the regression model is to use Gaussian
processes. Such processes can capture the uncertainty in the
measurements and deal with noisy functions. They have been
applied to CrowdNav whose outputs have high variance [24].

Being a topic of active research, many different flavors
of Bayesian multi-objective optimization have been pro-
posed [26]. They differ mainly on whether they use a single
(i.e., scalarized objectives) or separate regression models. We
have chosen a variant called S-Metric-Selection-based Effi-
cient Global Optimization (SMS-EGO) [27]. In this algorithm,
separate regression models for each objective are fitted and
the proposed point to evaluate next is selected based on the
estimated contribution to the hypervolume indicator.

2) NSGA-II: The Non-dominated Sorting Genetic Algo-
rithm II (NSGA-II) is a multi-objective evolutionary algorithm
that searches for pareto-optimal solutions to an optimization
problem [28]. During the search, NSGA-II evolves a popu-
lation of candidate solutions using crossover, mutation, and
selection operators inspired by evolution and natural selection
in biology. The goal is to find solutions that are optimal with
respect to the search objectives. For this purpose, a fitness
function is used that evaluates how well a solution satisfies
the objectives. The resulting fitness of a solution determines
the selection of this solution to the next generation for further
evolution steps. Having multiple objectives, the result of the
search is a pareto frontier, a set of solutions with the best
trade-offs between the objectives that could be found.

Additionally, NSGA-II promotes the diversity of solutions,
which supports exploring the search and objective spaces.
In contrast to the original NSGA, it introduces elitism that
avoids losing good solutions during the search and improves
the performance of the non-dominated sorting. These aspects
make NSGA-II a popular technique that is widely used in op-
timization as well as search-based software engineering [29].

For CrowdNav, a configuration of the router (i.e., a can-
didate solution) is encoded as a chromosome or a vector of
components with one component for each input parameter.
While mutation randomly modifies the value of one input
parameter taking the defined range of this parameter into
account, crossover recombines two configurations to obtain
a new configuration. To evaluate the fitness of a single
configuration in terms of trip overhead and routing cost, an
online experiment is performed in the running CrowdNav.

3) Novelty Search: Novelty search provides an alternative
method for evolutionary optimization by searching the solu-
tion space for uniquely optimal, rather than solely optimal,
solutions. In contrast to more common evolutionary processes
(e.g., genetic algorithms), novelty search relies on a measure
of distance between genomes as a point of optimization while
considering the validity and/or optimality of the genomes,
commonly called the novelty metric. The intent of the novelty
function is to avoid the issue in which an evolutionary process
becomes “stuck” in a local optima and instead explores the
solution space for a globally-optimal solution [30].

Generally, the novelty metric is calculated from a com-
bination of the combined pair-wise distances between all
generated solutions (e.g., Manhattan distance between instan-
tiated genome parameters) and a measure of performance for
each solution (e.g., the fitness of solutions). These values
are combined via a linear-weighted sum into the overall
novelty metric that quantifies the diversity, combined with the
optimality, of each solution. For this instantiation of novelty
search, we use the same approach for defining genomes as
does our implementation of NSGA-II.

Novelty search also differs from common evolutionary
approaches in that it maintains a novelty archive of the most
diverse solutions. This archive is populated each generation by
ranking all genomes in the population, as well as the contents
of the archive, and selecting the k most diverse solutions (i.e.,
the solutions with the highest novelty score). Upon completion,
the novelty archive will contain the k most diverse solutions
discovered throughout the entirety of the search. For this paper,
we set k to retain the top 20% of all evaluated solutions.

V. EVALUATION

In this section, we evaluate the two modes of our approach,
learning of situations and situation-driven optimization.

A. Experimental Setup

Using CrowdNav as a managed system, we investigate
the learning of situations by clustering and how different
optimization techniques for adaptation planning perform in
identifying optimal configurations for these situations. The



Fig. 2. Numbers of clusters and their score (the higher, the better).

optimization techniques are Bayesian Optimization, NSGA-II,
and novelty search. To connect the optimization techniques to
CrowdNav, we use RTX,4 a framework that supports online
experiments with CrowdNav. Thus, the three optimization
techniques have been implemented in RTX.5

We ran the experiments comparing the different optimiza-
tion techniques on identical virtual machines.6 For each exper-
iment, we use the Wilcoxon-Mann-Whitney U-test (p < 0.05)
to determine statistical differences between datasets, as we as-
sume no normality of data. To establish statistical significance,
we performed 30 replicates for each experiment [31], where
the replicate served as the seed value to RTX/CrowdNav.

B. Experiments on Learning of Situations via Clustering

To show the feasibility of dynamically identifying distinct
situations at runtime via clustering, we performed an empirical
study with CrowdNav, in which we experimented with differ-
ent values of the context parameter number of cars. Assuming
that the ranges provided to the method for this parameter
are [100-150], (150-200], ..., (750-800], we performed 14
experiments where each experiment had 150, 200, 250, ..., 750,
800 number of cars respectively, assuming that the highest
value of a range is representative of all other values in
the range. For each experiment, we collected 5000 samples
of trip overhead and calculated the average, median, 75th
percentile, 90th percentile, standard deviation, and variance of
each dataset. Then, we invoked k-means with all the features
for each dataset required to produce clusters with numbers
in the range [2,9]. For each of the 8 produced clusterings,
we computed the average Silhouette score. The results are
depicted in Figure 2. As can be seen, the clustering with three
clusters had the highest score and thus was selected by our
approach. Such a clustering groups the values of the context
parameter into the following three groups:

• Cluster/Situation #1: Car counts between 101 and 500.
• Cluster/Situation #2: Car counts between 501 and 700.
• Cluster/Situation #3: Car counts between 701 and 800.
These three clusters correspond to “low traffic,” “medium

traffic,” and “high traffic,” respectively. We note here that an
extension of these experiments to also consider the features

4RTX is available open source: https://github.com/iliasger/RTX/
5https://github.com/iliasger/RTX/tree/saso19
6The virtual machines run Ubuntu 18.04, 16 Intel Haswell vCPUs, and

14.4gb of memory, and they host CrowdNav in version https://github.com/
iliasger/CrowdNav/tree/saso19 with SUMO in version 0.32.0.

of routing cost is straightforward. Next, we explain how our
approach tries to optimize both CrowdNav objectives in each
of the above situations by setting the number of cars to its
highest possible value for each situation (i.e., 500, 700, and
800 cars, respectively).

C. Experiments on Situation-driven Optimization

To show the feasibility of discovering optimal configurations
via different optimization techniques and evaluate these tech-
niques in terms of solution quality, convergence, and overhead,
we performed the following empirical study with CrowdNav.
For each of the three distinct situations of 500, 700, and 800
cars (cf. previous section), we compare the three optimization
techniques – Bayesian optimization (BOGP), NSGA-II, and
novelty search – with each other and with random search as a
baseline (cf. [31]). We configured each technique to perform
100 fitness evaluations, that is, 100 router configurations were
generated, applied, and evaluated on CrowdNav during the
optimization process. For BOGP, this corresponds to a budget
of 100. For NSGA-II and novelty search, a population of
size 10 is evolved over 10 generations with an offspring size
of 10. Thus, each member of the population is adapted by
mutation or crossover in each generation, resulting in a total
of 100 candidate solutions evaluated throughout the search.
The crossover and mutation rates are set to 0.7 and 0.3,
respectively. Moreover, for novelty search the novelty archive
size is set to 20%. To provide a fair comparison, random search
evaluated 100 randomly-generated candidate solutions.

Given that an evaluation of a single configuration takes
approximately six minutes in our setting, if ten configurations
are evaluated in parallel (e.g., for NSGA-II evaluating all
ten configurations of one generation concurrently), then 100
evaluations can be performed within a given optimization
horizon of 60 mins. In our experiments, we did not employ
any parallelization to better track the overall process. We
now discuss the results from 30 replicates of running each
optimization technique for each of the three situations.

1) Solution Quality: To evaluate how well an optimization
technique performs, we consider the quality of the pareto-
optimal router configurations found by the technique. The
quality of a configuration is measured by how well the
objectives, trip overhead and routing cost, are minimized.

Considering each objective individually, we selected the
minimum value of trip overhead and routing cost achieved by
the technique’s pareto-optimal configurations. The correspond-
ing trip overheads and routing costs over the 30 replicates
are plotted in Figures 3(a)-(f) for each of the three distinct
situations of 500, 700, and 800 cars. The averages and medians
of trip overhead and routing cost are also listed in Table III
showing that the average and median values do not differ
much. Thus, we just use the average values in the following.

For all situations, random search, NSGA-II, and novelty
search found configurations that achieve similar average trip
overheads of around 1.62 (500 cars), 1.81 (700 cars), and
1.91 (800 cars) while BOGP is slightly worse with values
of 1.63, 1.82, and 1.92, respectively. Concerning the average



(a) Trip Overhead for 500 cars. (b) Trip Overhead for 700 cars. (c) Trip Overhead for 800 cars.

(d) Routing Cost for 500 cars. (e) Routing Cost for 700 cars. (f) Routing Cost for 800 cars.

(g) Hypervolume for 500 cars. (h) Hypervolume for 700 cars. (i) Hypervolume for 800 cars.

(j) Hypervolume Evolution for 500 cars. (k) Hypervolume Evolution for 700 cars. (l) Hypervolume Evolution for 800 cars.
Fig. 3. Trip Overheads & Routing Costs (the lower, the better), and Hypervolumes (the higher, the better) for 500, 700, and 800 cars. Dots represent averages.

TABLE III
TRIP OVERHEADS, ROUTING COSTS, AND HYPERVOLUMES.

Technique Trip Overhead Routing Cost Hypervolume
Average Median Average Median Average Median

50
0

ca
rs BOGP 1.6302 1.6301 19.20 20.00 171.1091 171.4032

NSGA-II 1.6250 1.6254 18.03 18.00 173.0898 173.0635
Novelty Search 1.6244 1.6232 22.73 23.00 170.4439 170.4801
Random 1.6242 1.6234 19.53 20.00 172.4161 172.6764

70
0

ca
rs BOGP 1.8206 1.8202 28.03 30.00 111.6234 111.6794

NSGA-II 1.8095 1.8078 28.45 29.00 114.5563 114.4319
Novelty Search 1.8112 1.8148 29.62 30.25 112.9054 112.2987
Random 1.8086 1.8093 29.90 30.00 113.7743 113.7692

80
0

ca
rs BOGP 1.9201 1.9195 31.07 32.00 82.4267 82.0824

NSGA-II 1.9098 1.9108 32.53 33.00 84.3859 83.9632
Novelty Search 1.9068 1.9052 33.50 35.00 84.4170 85.0677
Random 1.9049 1.9079 32.32 34.00 85.0024 85.2451

routing cost in the situation with 500 cars, NSGA-II obtained
the best results (18.03), followed by BOGP (19.20), Random
(19.53), and novelty search (22.73). In contrast, for 700
cars, BOGP discovered the best results (28.03) followed by
NSGA-II (28.45), novelty search (29.62), and random search

(29.90). Likewise for 800 cars, BOGP found again the best
configurations (31.07) followed by random search (32.32),
NSGA-II (32.53), and novelty search (33.50).

Using the Wilcoxon-Mann-Whitney U-test (p < 0.05)
and concerning the trip overhead, we observe a statistically
significant difference for 500 and 700 cars between NSGA-II
and BOGP, novelty search and BOGP, as well as random
search and BOGP; and for 800 cars between novelty search
and BOGP, as well as random search and BOGP. Concerning
the routing cost, a statistically significant difference exists for
500 cars between novelty search and BOGP, novelty search
and NSGA-II, random search and NSGA-II, as well as random
search and novelty search; for 700 cars only between random
search and BOGP, while there is no statistically significant
difference between any two techniques for 800 cars.

In general, we observe that by increasing cars, the average
trip overhead and routing cost of the pareto-optimal config-



urations across all optimization techniques increase as well.
This matches our expectation that with increasing traffic, it is
more difficult to optimize the system in absolute terms.

Besides considering each objective individually, we want to
investigate how both objectives together are satisfied by solu-
tions found by the different optimization techniques. Instead of
defining a utility function over the trip overhead and routing
cost, which may introduce some bias toward one objective,
we use the well-known quality indicator hypervolume [32].7 In
general, the hypervolume measures the volume in the objective
space that is dominated by a pareto front. Thus, a higher
hypervolume indicates a pareto front of better quality.

Thus, we computed the hypervolume for each pareto front
of the 30 replicates for each technique and situation. The
resulting data is plotted in Figures 3(g)-(i) and the average and
mean hypervolumes are listed in Table III. Since the average
and median values do not differ much, we consider the average
hypervolume in the following. For the situations with 500 and
700 cars, the pareto-front found by NSGA-II achieves the
highest average hypervolume (173.09 and 114.56), followed
by random search (172.41 and 113.77), BOGP (171.11 and
111.62), and novelty search (170.44 and 112.91). In contrast,
for 800 cars the highest average hypervolume is achieved by
the pareto front obtained by random search (85.00), closely
followed by novelty search (84.42) and NSGA-II (84.39),
and finally BOGP (82.43). Concerning the hypervolume, we
notice a statistically significant difference for 500 cars between
NSGA-II and BOGP, NSGA-II and novelty search, as well
as novelty search and random search; for 700 cars between
NSGA-II and BOGP, as well as random search and BOGP;
and for 800 cars between random search and BOGP.

2) Convergence: We evaluate the convergence of the differ-
ent techniques by evaluating how the hypervolume evolves by
plotting the achieved hypervolume over the 100 fitness eval-
uations for each situation as shown in Figures 3(j)-(l). While
for 500 cars, there is no distinct difference between the tech-
niques, we observe for 700 and 800 cars that BOGP achieves
slightly better results during the first 10 fitness evaluations
than the other techniques. However, later on BOGP converges
faster than the other techniques. Thus, BOGP is a promising
technique to find good configurations quicker, which supports
a faster adaptation cycle while the other techniques may
continue their search to find better configurations used for an
adaptation later on in time. For instance, one run of NSGA-II
with a budget of 1000 fitness evaluations (ten times the budget
we considered so far) achieved a hypervolume of 186.14 for
500 cars. This run illustrates that better solutions can be
obtained by NSGA-II with a larger budget. However, a budget
of 1000 evaluations corresponds to an optimization horizon of
600 minutes (when evaluating 10 configurations in parallel),
which prevents a timely adaptation in a traffic system.

3) Overhead: We now discuss the overhead of each opti-
mizer. As such, Figures 4(a) and 4(b) present our performance

7We use variant 3 of the hypervolume algorithm by Fonseca et al. [33].
Implementation: https://ls11-www.cs.tu-dortmund.de/rudolph/hypervolume/.

(a) Peak memory usage (kb).

(b) Peak processor usage (%)
Fig. 4. Performance metrics for all evaluations.

TABLE IV
MEMORY OVERHEAD AND PROCESSOR USAGE FOR 500, 700, 800 CARS.

Technique Memory Overhead (kb) Processor Usage (%)
Average Median Average Median

50
0 NSGA-II 109687.2000 109944.0000 82.0333 82.0000

Novelty Search 110802.1333 110710.0000 82.6667 83.0000
Random 110135.7333 109994.0000 83.4000 83.0000

70
0 NSGA-II 110308.6667 110352.0000 83.0333 83.0000

Novelty Search 109671.6000 109594.0000 84.0333 84.0000
Random 110873.4667 110750.0000 84.8667 84.5000

80
0 NSGA-II 110543.6000 110360.0000 84.1667 84.5000

Novelty Search 109932.2667 110096.0000 84.5000 85.0000
Random 111425.7333 111274.0000 84.1667 83.0000

metrics for 500, 700, and 800 car counts, and Table IV summa-
rizes those results. Note that, for each plot, the optimizers are
presented in the order of NSGA-II, novelty search, and random
search, respectively. We examine the peak memory overhead
(kb) and peak processor usage (%) required to execute RTX.

For the presented metrics, a general trend of increasing
overhead is seen as the number of cars increases, with random
search tending to require the most resources. For both memory
overhead and processor usage, we see no statistically signifi-
cant difference between random, NSGA-II, and novelty search
at any of the situations. As such, these results suggest that each
of our implemented optimizers, including the baseline, require
a similar amount of memory and CPU overhead.

4) Discussion: Given the results from evaluating multiple
optimization techniques, we see that these techniques struggle
with optimizing the trip overhead. Our interpretation of these
results is that: (1) We investigated the valuations of the input
parameters for the pareto-optimal configurations across all
techniques. We found that these valuations are spread in the



search space so that we can assume that there are many local
minima. (2) The trip overhead is influenced by all of the seven
input parameters, which results in a large search space. (3) The
trip overhead is rather noisy (it has high variance). These
three aspects make it difficult to optimize the trip overhead.
In contrast, the routing cost is easier to optimize than the
trip overhead as it is only affected by one input parameter
(re-routing frequency). Therefore, a technique might identify
and follow a gradient based on the relationship that a higher
routing frequency leads to lower routing cost.

Considering the goal of selecting one optimization tech-
nique, it depends on which criterion the selection is based
on. If it is based on the solution quality, NSGA-II performs
best – even though slightly – in two situations (500 and 700
cars) and only slightly worse than the best technique in the
remaining situation (800 cars). Nevertheless, random search
performs surprisingly well in comparison to the other, more
intelligent techniques. A reason for this might be the many
local minima that exist for the trip overhead (cf. previous
paragraph) so that a random search may easily catch such
a minimum with 100 trials of random configurations. Simi-
lar observations, that random search performs well in cases
of parameter optimization, have been made [34], [35] and
witness that random search can be an effective technique for
optimizing high-dimensional, black-box systems. Considering
the convergence of the different techniques, BOGP should be
selected since it finds good configurations quicker than the
other techniques. However, it shows smaller improvement in
the solution quality in longer runs. Finally, no selection can
be done based on the overhead of the different optimization
techniques, since their overhead in terms of memory and
processor usage is comparable.

D. Threats to Validity

We have identified the following threats to validity of the
evaluation results. First, we have used only a single context
parameter to show the feasibility of runtime clustering for
situation detection in CrowdNav. We further rely on the well-
known k-means clustering algorithm for situation detection,
using the Silhouette method for determining the best value of
k. Other methods exist to learn the optimal number of clusters,
such as XMeans [36], that may lead to different results.
Second, when optimizing for a situation, we set the number
of vehicles to the largest number in the corresponding cluster,
assuming that this is representative of other vehicle numbers in
the cluster. Third, we have used the vanilla version of the three
optimization strategies we selected. Thus, we did not tune
the meta-parameters (e.g., number of generations, crossover
rate, etc.) to tailor each technique specifically to CrowdNav.
Fourth, this study focused on CrowdNav as a representative
of the class of systems corresponding to black-box, high-
dimensional, and expensive problems. Therefore, although
our approach of planning as optimization may generalize to
other systems in this class, the evaluation results are obtained
for a specific simulated system (CrowdNav) and cannot be
generalized to other systems.

VI. CHALLENGES

We have presented a proof of concept of the planning
as optimization approach, together with an empirical study
of different optimization techniques applied in a complex
system that corresponds to a black-box, high-dimensional, and
computationally expensive optimization problem. Our evalu-
ation results indicate that none of the compared techniques
is superior in optimizing CrowdNav in terms of solution
quality, convergence, and overhead. Moreover, the results
indicate that different techniques perform better in different
situations of the running system with respect to different
objectives. Thus, these insights motivate our vision of self-
learning continuous optimization: to use multiple optimization
techniques at runtime and switch between them according
to the situation and objective of optimization, while always
having an optimization process and a situation identification
process running. To realize the vision, our proposed approach
must be extended by addressing the following challenges.

Continuous clustering. While performing clustering at
runtime based on system outputs to identify distinct situations,
the number and range of situations may evolve in time. For
instance, in the first 30 minutes of collecting output data
three situations may be identified; this number may evolve
to four after 60 minutes. These four situations may even
have no overlap with the previous three. An approach for
self-learning continuous optimization should be able to detect
situations that do not change, or similar situations between
consecutive learning phases for which optimal configurations
can be reused. Moreover, it should effectively “forget” old data
to identify clusters that correspond to the latest environment.

Seamless operation of optimizers. Our planning as opti-
mization approach needs to be able to pause an optimization
process when the current situation changes and continue it
when the situation arises again. For instance, when the current
situation sa changes to sb while optimizer oa is running, oa
needs to store its status (e.g., the best solutions found so far) to
the Knowledge Base (Figure 1) to reuse it when sa appears
again. Self-learning continuous optimization not only needs to
be able to pause and resume the operation of optimizers, but
also dynamically switch between optimizers at runtime.

Automated comparison of optimizers. In our empirical
study, we have compared three optimizers based on solution
quality, convergence, and overhead. We presented all the re-
sults and drew conclusions which can be used for choosing one
optimizer over another. In self-learning continuous optimiza-
tion, such conclusions need to be taken by the system itself,
which raises a number of challenges: How many iterations
to perform per optimizer? How many samples to collect for
the evaluation of a configuration? Which criteria to use in
the comparison? Consider also that different situations (e.g.,
accidents) may require a change in the choice of optimizers
(e.g., select the fast and less effective optimizer).

VII. CONCLUSION

In this paper, we presented the planning as optimization
approach that uses optimization strategies to discover optimal



system configurations at runtime for each distinct situation that
is dynamically identified at runtime. We instantiated our ap-
proach with well-known techniques such as the k-means clus-
tering algorithm to identify distinct situations, and Bayesian
optimization with Gaussian Processes (BOGP), NSGA-II, and
novelty search for finding optimal configurations. Our ap-
proach tackles complex, real-world systems such as CrowdNav
that can be modeled as black-box, high-dimensional, and
computationally expensive optimization problems.

We show the feasibility of planning as optimization by
dynamically identifying distinct situations via clustering and
by identifying optimal configurations via optimization tech-
niques. We further compare the solution quality, convergence,
and overhead of three optimization techniques in an empirical
study with CrowdNav. The results show that no technique is
significantly superior for all three situations in terms of the
solution quality. However, NSGA-II performs slightly better
in terms of solution quality in two situations while BOGP
converges faster in all three situations. With respect to CPU
and memory overhead, no technique is significantly different.

Finally, we discussed our vision of self-learning continuous
optimization and related open research challenges: (i) con-
tinuous clustering; (ii) seamless operation of optimizers; and
(iii) automated comparison of optimizers.
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[23] A. Starczewski and A. Krzyżak, “Performance Evaluation of the Sil-
houette Index,” in Artificial Intelligence and Soft Computing. Springer,
2015, pp. 49–58.

[24] I. Gerostathopoulos, C. Prehofer, and T. Bures, “Adapting a system with
noisy outputs with statistical guarantees,” in Proc. SEAMS, 2018, pp.
58–68.

[25] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. d. Freitas, “Tak-
ing the Human Out of the Loop: A Review of Bayesian Optimization,”
Proceedings of the IEEE, vol. 104, no. 1, pp. 148–175, 2016.

[26] D. Horn, T. Wagner, D. Biermann, C. Weihs, and B. Bischl, “Model-
Based Multi-objective Optimization: Taxonomy, Multi-Point Proposal,
Toolbox and Benchmark,” in Evolutionary Multi-Criterion Optimization.
Springer, 2015, vol. 9018, pp. 64–78.

[27] W. Ponweiser, T. Wagner, D. Biermann, and M. Vincze, “Multiobjective
optimization on a limited budget of evaluations using model-assisted S-
metric selection,” in Proc. PPSN, 2008, pp. 784–794.

[28] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: Nsga-ii,” IEEE Trans. Evol. Comput.,
vol. 6, no. 2, pp. 182–197, 2002.

[29] M. Harman, S. A. Mansouri, and Y. Zhang, “Search-based software
engineering: Trends, techniques and applications,” ACM Comput. Surv.,
vol. 45, no. 1, pp. 11:1–11:61, 2012.

[30] J. Lehman and K. O. Stanley, “Exploiting open-endedness to solve
problems through the search for novelty,” in Proc. ALIFE, 2008.

[31] A. Arcuri and L. Briand, “A hitchhiker’s guide to statistical tests for
assessing randomized algorithms in software engineering,” Software
Testing, Verification and Reliability, vol. 24, no. 3, pp. 219–250, 2014.

[32] S. Wang, S. Ali, T. Yue, Y. Li, and M. Liaaen, “A practical guide to
select quality indicators for assessing pareto-based search algorithms in
search-based software engineering,” in Proc. ICSE, 2016, pp. 631–642.

[33] C. M. Fonseca, L. Paquete, and M. Lopez-Ibanez, “An improved
dimension-sweep algorithm for the hypervolume indicator,” in Intl.
Conference on Evolutionary Computation. IEEE, 2006, pp. 1157–1163.

[34] K. Seymour, H. You, and J. Dongarra, “A comparison of search
heuristics for empirical code optimization,” in Proc. Cluster, 2008, pp.
421–429.

[35] J. Bergstra and Y. Bengio, “Random search for hyper-parameter opti-
mization,” J. Mach. Learn. Res., vol. 13, pp. 281–305, 2012.

[36] D. Pelleg and A. Moore, “X-means: Extending k-means with efficient
estimation of the number of clusters,” in Proc. ICML, 2000, pp. 727–734.


