
QoS-aware Complex Service Composition

in SOA-Based Systems

Adam Grzech, Piotr Rygielski, and Paweł Świątek

Institute of Computer Science
Wrocław University of Technology,

Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
{Adam.Grzech,Piotr.Rygielski,Pawel.Swiatek}@pwr.wroc.pl

Abstract. In this work, a method for the QoS-aware complex service com-
position in SOA-based systems is presented. The considered complex ser-
vice composition process consists of three stages: complex service structure,
scenario and plan composition. Complex service structure contains a set
of required functionalities and precedence relations between them, and is
derived directly from a service level agreement. Service scenario is derived
from service structure by choosing the optimal (in the sense of certain
quality criterion) order of execution of required functionalities. Finally, a
service plan emerges from a scenario by choosing the best versions of atomic
services for the delivery of required functionalities. For such distinguished
composition process methods for complex service scenario and execution
plan optimization are proposed. Optimization of a complex service scenario
is based on the analysis of possible parallel executions of required function-
alities. In order to deliver required level of the quality of service, well known
QoS assurance models (i.e.: best effort, integrated services and differenti-
ated services) are applied in the process of complex service execution plan
optimization.

Keywords: Service Oriented Architecture (SOA), Quality of Service
(QoS), complex services composition

1 Introduction

Systems based on the SOA (Service Oriented Architecture) paradigm offer services
(complex services) which are often delivered as a composition of atomic services [12,
13]. The main feature of such an attempt is that the required complex services may
be efficiently and flexibly composed of available atomic services providing certain,
well defined, required and personalized functionalities. Requested complex services



290 A. Grzech, P. Rygielski, P. Świątek

are characterized by a set of parameters specifying both functional and nonfunc-
tional requirements; the former define the exact data processing procedures, while
the latter describe various aspects of required service quality. The set of parame-
ters describing requested complex service form SLA (Service Level Agreement) [1,
14].

Functionalities of the requested complex service are available as a sum of atomic
services functionalities. In order to deliver a complex service with requested func-
tional and non-functional properties appropriate atomic services must be chosen
in the process of complex service composition [10]. Required functionality, pre-
cisely defined in the SLA, determines a set of required atomic services as well as a
plan according to which atomic services are performed in the distributed environ-
ment. Properties of a requested complex service, which are mainly related to QoS
(Quality of Service) may be in most cases assured or obtained by proper resources
(processing and communication) and tasks (atomic services) allocation [4, 5, 7,
17].

Discussed complex services delivery approach is available only in a distributed
environment; possible parallel executions of distinguishable atomic services re-
quires the allocation of a proper amount of processing and communication re-
sources in a parallel manner. The distributed environment may be obtained both
by the allocation of separated or virtualized resources.

In order to obtain various required quality of service levels in distributed envi-
ronment well-known QoS strategies, i.e., best-effort, integrated services and differ-
entiated services concepts may be applied. Usefulness of the mentioned concepts
strongly depends on the formulation of the non-functional part of the entire SLA.
The application of the best-effort concept, based on common resources sharing,
leads to a solution where the same, high enough, average quality of service is
delivered to all performed services. The next two previously mentioned concepts
offer differentiated quality of service for requested services (also guarantees) and
are mainly based on resources reservation for individual requests (integrated ser-
vices concept) or for classes of requests (differentiated services concept) [4, 15].

In general, the task of complex service composition consists of finding, for given
ordered set of required functionalities (stated in the SLA), an order of atomic
services execution such that non-functional requirements are met. The task of
complex service composition can be decomposed into three subtasks, each of which
providing an input for subsequent subtask:

1. Complex service structure composition — transformation of the SLA into a
set of required functionalities and the precedence relations between them. The
result of this task is a complex service structure represented as a directed graph
(not necessarily connected) of required functionalities.

2. Complex service scenario composition — transformation of a complex service
structure graph into a single and consistent graph of required functionalities



QoS-aware Complex Service Composition in SOA-Based Systems 291

with precisely defined order of execution of all atomic functionalities. The de-
termination of the complex service scenario is composed of two stages. The
goal of the first is to propose for a given complex service structure graph a
set of consistent graphs, each representing certain order of execution of atomic
functionalities. The aim of the second stage is to select the best (for assumed
criteria) connected graph (scenario). Among others this task consists in making
the decision on whether to apply possible parallel executions to functionalities,
which are not bound by precedence relations in the complex service structure.
Since it is possible that a single functionality is delivered by more than one
atomic service (different versions of atomic service), the scenario graph repre-
sents in fact a family of execution graphs where member graphs differ in the
atomic service versions applied to deliver the required atomic functionality.

3. Complex service execution plan composition — the choice of particular atomic
services in a complex service scenario graph such that non-functional require-
ments of complex service are met. This stage is composed of three sub-stages.
In the first one, the nodes (functionalities) of the corresponding optimal sce-
nario graph are replaced by subsets of atomic services providing respective
functionalities. In the second substage particular atomic services from atomic
services subsets are chosen. In the last substage particular versions of chosen
atomic services are picked.

The main advantage of SOA-based systems is that atomic services which de-
liver certain functionalities may be provided by different service providers, what
allows users to chose the required complex services from many, functionally and
non-functionally equivalent, available alternatives. In order to facilitate such ca-
pabilities service providers have to describe delivered services semantically in a
unified manner. In order to deliver to the user a complex service with a requested
functionality, semantic matching of service request with the available complex
services has to be performed. This very important step of complex service com-
position is performed as a part of the first stage of the complex service structure
composition task which was described above.

Since service requests, besides required functionality, include required non-
functional parameters, they must be taken into account during service composition
procedure. These parameters however concern, in general, the quality of required
service, which vary in time and depends mostly on current state of computer
communication system used as a backbone for complex service delivery. The aim
of this paper is to provide framework for QoS-aware complex service composition,
which allows to make decisions based on the network state of the SOA-based
system.

In order to deliver complex service with requested functionality and non-
functional properties various optimization tasks need to be solved on consecutive
stages of complex service composition task (i.e.: stages of complex service struc-
ture, scenario and execution plan composition).



292 A. Grzech, P. Rygielski, P. Świątek

Fig. 1. Decomposition of the process of
complex service composition

In this chapter a model of complex service, which facilitates decomposition
of complex service composition task and allows to formulate and solve various
complex service optimization tasks, is proposed. Decomposition of the complex
service composition task is presented on Figure 1. This work is organized as follows.
In Section 2 model of complex service and complex service structure composition
task is presented. In section 3 the task of complex service scenario composition
is presented. Section 4 describes three approaches to the task of complex service
execution plan composition, which are based on well-known QoS strategies. Some
numerical examples of proposed solutions are presented in section 5. Section 6
summarizes presented work and gives directions for future research.

2 Complex Service Model

Let CS = {cs(1), . . . , cs(i), . . . , cs(I)} denote the set of all complex services
delivered in the considered system. It is assumed, that a functionality ϕ(cs(i)) of



QoS-aware Complex Service Composition in SOA-Based Systems 293

a complex service cs(i) is delivered by the execution of a certain number of atomic
services as(j) from the set AS = {as(1), . . . , as(j), . . . , as(J)} of atomic services
available in the system. The functionality ϕ(as(j)) of complex service as(j) is
an aggregation of the functionalities ϕ(as(j)) of the atomic services as(j), which
compose the complex service cs(i). Similarly non-functional properties ψ(cs(i)) of
complex service cs(i) are the aggregation of the non-functional properties ψ(as(j))
of the applied atomic services as(j).

The i-th (i = 1, 2, . . . , I) complex service cs(i) is a response to a call
for a service fully described by the appropriate service level agreement denoted
by SLAl = (SLAfl, SLAnfl), which contains information about the functional-
ity (SLAfl) required by the user, and the nonfunctional requirements (SLAnfl)
determining the required level of the quality of service. The functional part of
SLAfl = (Φl, Rl) is a subject of the structure composition process which delivers
the set of atomic functionalities Φ = {ϕl1, . . . , ϕlnl} present in the system. It
defines the allowed order of execution of the required functionalities with use of
the precedence relations ≺, given in matrix Rl.

The discussed precedence matrix, describing the set of precedence relations
may be — in the simplest case — described by a square binary order constraints
matrix Rl of size (nl + 2)× (nl + 2). The Rl matrix defines which functionalities
are bound with the relation of precedence.

Exemplary order constraints (precedence) matrix is presented below:

Rl =



0 1 0 1 0
0 0 1 1 0
0 0 0 1 1
0 1 1 0 1
0 0 0 0 0


 (1)

The matrix Rl of dimension 5 × 5 corresponds to three atomic functionalities
with the addition of abstract starting and ending functionalities Φl = {ϕls, ϕl1,
ϕl2, ϕl3, ϕle}. The matrix should be understood as follows:

— column 1 — Functionality ϕls (abstract start functionality) cannot be preceded
by any other functionality;

— column 2 — functionality ϕl1 can be preceded by functionality ϕls or ϕl3;
— column 3 — functionality ϕl2 can be preceded by functionalities ϕl1 or ϕl3;
— column 4 — functionality ϕl3 can be preceded by functionalities ϕls, ϕl1 or
ϕl2;

— column 5 — functionality ϕle (abstract end functionality) can be preceded by
functionalities ϕl2 or ϕl3.

The ordering constraints given with by matrix Rl can be transformed into
description using the precedence relation ≺ as follows:



294 A. Grzech, P. Rygielski, P. Świątek

ϕls ≺ {ϕl1, ϕl3};
ϕl1 ≺ {ϕl2, ϕl3};
ϕl2 ≺ {ϕl3, ϕle};
ϕl3 ≺ {ϕl1, ϕl2, ϕle};
ϕle ≺ ∅

(2)

In general, the binary 1 in i-th row and in j-th column (rlij = 1) means that
the functionality ϕj can be preceded by the functionality ϕli. The zero value in
i-th row and in j-th column (rlij = 0) means that the functionality ϕlj cannot be
preceded by the functionality ϕli. Abstract start and abstract end is guaranteed
by zeros in column j = 0 and row i = nl + 1.

rlij =

{
1 if ϕli ≺ ϕlj
0 otherwise

(3)

Moreover each row (except for row i = nl + 1) has to have at least one 1
value which guarantees the presence of exactly one end functionality. Additionally
guarantee of having exactly one start functionality is determined by having at
least one 1 in each column (except for j = 0 column). Above assumptions can be
summarized with the following formulas:

∀i ∈ {0, . . . , nl}
nl+1∑
j=1

rlij ≥ 1 (4)

∀j ∈ {0, . . . , nl + 1}
nl∑
i=0

rlij ≥ 1 (5)

Having the functionalities set Φl = {ϕl1, . . . , ϕlnl} and the order constraints
matrix Rl gives the ability to build a base graph denoted by GBl. GBl =
GB(SLAfl) = GB({Φl, Rl}) = GB(V Bl, EBl) is a graph defining the structure of
a complex service, where V Bl = {vbl1, vbl2, . . . , vblk, . . . , vbln} is the set of vertex
of a base graph (each vertex vblk corresponds to a proper functionality ϕlk) and
EBl is set of edges corresponding to the precedence relations defined by matrix
Rl.

The exemple graph for Rl matrix (eq. 1) and the functionalities set Φl = {ϕls,
ϕl1, ϕl2, ϕl3, ϕle}, is presented on Figure 2. Each binary value “1” represents an
edge between the functionalities in graph GBl.

3 Complex Service Scenario Composition



QoS-aware Complex Service Composition in SOA-Based Systems 295

Fig. 2. Graph GBl representation for matrix
Rl (eq. 1). Each binary “1” value in the
matrix corresponds to an edge in the

structure graph GBl. Redundant edges make
the graph cyclic

The structure of a complex service determines which atomic functionalities are
delivered within it and what are the order bounds. Such a service can be an entry
of the optimization process concerning the determination of the exact order of
functionalities delivery and parallel execution. The result of processing a complex
service structure is called a l-th complex service execution scenario.

A complex service execution scenario is a graph GC1 defined by the sce-
nario determination process. The scenario GC1 = GC(SLAfl) = GC({Φl, Rl}) =
GC(V Cl, ECl) is a graph containing the vertices set V Cl = V Bl = {vbl1, vbl2, . . . ,
vblk, . . . , vbln} the same as in service structure, and the edge set ECl = EBl \EAl
which is a subset of the structure edge set EBl:

ECl ⊆ EBl
ECl ∪ EAl = EBl

The problem of finding an optimal scenario can be formulated as follows:
Given:

— the l-th complex service request given with SLAl;
— the graph GBl with set of vertices V Bl and set of edges EBl;
— the order constraints matrix Rl;
— the other parameters vector al.

Find:
An adjacency matrix RGCl (as a representation of the graph GCl) from the set

of binary matrices of size (nl + 2)× (nl + 2) which minimizes the function f :

R∗GCl = arg min
RGCl

f(RGCl ; al) (6)

with respect to constraints:



296 A. Grzech, P. Rygielski, P. Świątek

— the graph GCl represented by the matrix RGCl should be acyclic;
— the graph GCl represented by the matrix RGCl should have exactly one ab-

stract start and an abstract end functionality:

∀i ∈ {0, . . . , nl}
nl+1∑
j=1

rCGijl ≥ 1

∀j ∈ {1, . . . , nl + 1}
nl∑
i=0

rCGijl ≥ 1

— the matrix RGCl should comply with the order constraints matrix Rl: RGCl ⊗
Rl = RGCl .

The satisfaction of ordering constraints can be determined via the logical mul-
tiplication of each binary element of matrix. The operation ⊗ is defined as follows:

A⊗B = C

∀i ∈ {0, . . . , nl + 1} ∀j ∈ {0, . . . , nl + 1} : cij =

{
1 if aij = 1 and bij = 1
0 otherwise

The equality RGCl ⊗ Rl = RGC determines the satisfaction of the ordering
constraints. The function f(RGC; al) can be any function determining the quality
of service level e.g. execution time, cost, security level, reliability, etc. Depending on
the function relationship with quality (a function value growth can mean quality
level increase or decrease), the optimization task might has to be changed to
maximization or minimization.

The determination of the optimal scenario consists in removing a subset of
edges EAl from the EBl set in such a way, that each vertex in the result graph
belongs to some path connecting the start vertex and the end vertex in such a
way that the input and output degrees of vertices {ϕl1, ϕl2, . . . , ϕlnl} are at least
equal to 1. Moreover the input degree of start vertex and the output degree of
end vertex must be equal to 0. Additionally, the result graph GCl representing a
scenario must be acyclic.

The set of edges that are subject to be removed is uniquely defined by the
subtraction of the adjacency matrices R∗Al = Rl−R

∗
GCl

. The remaining binary “1”
values in the adjacency matrix R∗Al define the edges that are subject to be removed
from the graph GBl to obtain an optimal complex service execution scenario GC∗l .

For exemple with the matrix Rl (eq. 1), there are six possibilities of scenario
graphs GCl. All are presented in Figure 3.

The scenario presented in Figure 3a was obtained after the substraction RGCln
= Rl −RGAln :



QoS-aware Complex Service Composition in SOA-Based Systems 297

a) b)

c) d)

e) f)

Fig. 3. Six possible scenario graphs GCl obtained for the structure graph GBl
with the ordering constraints given in matrix Rl (eq. 1). Black edges are edges

from ECl, grey ones are from EAl

RGCln =



0 1 0 1 0
0 0 1 1 0
0 0 0 1 1
0 1 1 0 1
0 0 0 0 0


−


0 0 0 0 0
0 0 0 1 0
0 0 0 1 0
0 1 1 0 0
0 0 0 0 0


 =


0 1 0 1 0
0 0 1 0 0
0 0 0 0 1
0 0 0 0 1
0 0 0 0 0




One can notice that the scenarios presented in figure 3 differ in the serial
and parallel execution cases. All functionalities from scenarios b), c) and d) are
executed serially (one-by-one), thus one can suspect that quality expressed e.g.
the execution time, may be worse than in scenarios a), e) and f) wich execute in
parallel. But if a parallel execution of functionalities shortens a complex service
execution time, it uses more system resources than a serial execution.

In the case of a serial scenario, we can estimate the time of execution of a
complex service using the following equation:



298 A. Grzech, P. Rygielski, P. Świątek

t(GClserial) =

nl+2∑
k=1

t(vblk) + t(ECl)

where t(ECl) is the overall time of transferring the requests between functionalities
in a complex service scenario.

If a transfer delay request between the i-th and the (i+ 1)-th functionality is
denoted by t(ecli,i+1), the calculation of the transfer times in a whole complex
service within a serial scenario is as follows:

ECl = {eclij : rCGijl = 1}

t(ECl) =
nl+1∑
i=1

t(ecli,i+1).

In the extreme parallel scenario, above calculations are slightly different. The
time of execution of a complex service is calculated as follows:

t(GClparallel) = max
k∈{1,2,...,nl+2}

{t(vblk) + t(ecl1k) + t(eclkn+2)}

Two extreme scenarios — by mean of best and worst execution time — are
presented on Figure 4.

a)

b)

Fig. 4. Two extreme scenario graphs. Serial scenario: a — gives
the worst execution time, extreme parallel scenario b — gives

the best execution time



QoS-aware Complex Service Composition in SOA-Based Systems 299

Situation where the maximum number of parallel functionalities delivery is
limited must be considered. A need for the introduction of such a limitation may
arise in the case where the utilization of a larger number of parallel functionalities
delivery can decrease the end-user quality e.g. increases the cost of the service to
such a level which violates user requirement.

In order to determine the parallelism in an execution scenario, it is needed to
introduce a measure to determine parallelism level. In the literature [16] the most
popular parallelism level is the ILP — Instruction Level Parallelism — which
measures the number of operations that can be done simultaneously divided by
the number of operations (eq. 7):

lpILP =
nlpar
nl

(7)

where lpILP is the ILP measure and nlpar is the number of operation that can be
executed in parallel manner.

For scenarios given by graphs, other parallelism measures can be used, e.g. a
measure that uses weight path length in a graph, where weights correspond to
time needed to deliver a proper functionality ϕlk. The proposed measure lpMP can
be defined as follows:

lpMP (GCl) =

(
1

np

np∑
i=1

pl(i)

)−1
,

where np is the number of paths in the graph GCl and pl(i) is a weight of i-th
path length. Other parallelism measures can be found e.g. in [11].

In order to optimize end-user quality there is need to introduce constraints
concerning the parallelism level in an execution scenario graph GCl. When there
are no constraints in SLAnfl concerning QoS parameters like e.g. cost, the for-
merly formulated problem can be used without change; otherwise one should add
a constraint concerning the parallelism level of a scenario:

lp(GCl) = lp(RGCl) ≤ lpmax,

where the lp function returns a parallelism level (with respect to the chosen mea-
sure) for a graph or for an adjacency matrix which is a representation of the graph.
This function should be designed in such a way that a higher value means the de-
livery of a larger number of functionalities simultaneously, when a smaller value
means that the scenario graph is mainly executed like the extreme serial scenario.



300 A. Grzech, P. Rygielski, P. Świątek

4 Complex Service Execution Plan

The result of the scenario composition stage is an optimal scenario graph GC∗l =
(V Cl, EC

∗
l ), where V Cl ⊂ AS is a set of atomic services, which provide the func-

tionality requested in SLAfl, and EC∗l is a set of edges describing the optimal
order of atomic services execution. The main feature of systems based on the SOA
paradigm is that each atomic service may be available in many versions which dif-
fer in non-functional properties. Therefore, a scenario graph GC∗l must be treated
as a set of graphs, which differ in the versions of atomic services.
AS(ϕlk) = {aslk1, . . . , aslknlk} ⊂ AS denotes a set of versions of atomic

services, which provide functionality ϕlk, where nlk is the number of versions:

AS(ϕlk) = {aslkmlk ∈ AS : ϕ(aslkmlk ) = ϕlk,mlk = 1, . . . , nlk}.

As an example, consider graph GC∗l presented in Figure 3a, which consists
of three functionalities. Functionality ϕl1 is provided by three different versions
of atomic services, and functionalities ϕl2 and ϕl3 are provided by two versions.
The number ml of all possible complex service execution plans is equal to the
product of the numbers nlk of the atomic service versions providing the respective

Fig. 5. Different versions of atomic services providing the
respective functionalities resulting in twelve possible complex

service execution plans



QoS-aware Complex Service Composition in SOA-Based Systems 301

functionalities ϕlk; ml =
∏nl
k=1 nlk. The twelve possible execution plans of complex

service represented by graph GC∗l are presented on Figure 5.

5 Problem Formulation

The task of complex service execution plan composition consists in choosing for
each functionality ϕlk a version of atomic service, such that the non-functional
properties ϕ(cs(i)) of the composed complex service cs(i)meet the requirementsΨl
stated in the non-functional part of the service level agreement SLAnfl. Formally
this task can be formulated as follows:
Given:

— non-functional requirements for complex service Ψl;
— optimal complex service execution scenario GC∗l = (V Sl, ES

∗
l );

— complex service quality criterion Q.

Find:

A set of atomic services versions that such the following quality criterion is
minimized:

asl1ml1 , . . . , aslnlmlnj =

= arg min
asl1ml1∈AS(ϕl1),...,aslnlmlnl

Q
(
G({asl1ml1 , . . . , aslnlmlnj}, El)

) (8)

where the graph G({asl1ml1 , . . . , aslnlmlnl}, El) = G(Al, El) originates from the
graph GC∗l = (V Sl, ES

∗
l ) in such a way, that the nodes Al are particular atomic

services delivering the same functionalities than nodes V Sl, and El = ES∗l .

6 QoS Assurance Models

Depending on specific non-functional requirements and on the assumed model of
the quality of service assurance various complex service optimization tasks can be
formulated basing on the above general task of complex service execution plan com-
position. In the literature, there are three main concepts of QoS assurance i.e.: best
effort (BE), integrated services (IntServ) and differentiated services (DiffServ). In
the best effort approach no quality of service is guaranteed. Incoming request are
serviced according to their arrival order and for each of them the best possible
execution plan is chosen. In this model, only average values of QoS parameters
may be guaranteed with the use of proper admission control mechanism.



302 A. Grzech, P. Rygielski, P. Świątek

Fig. 6. Exemple scenario and plan of complex service execution with a serial
execution order of atomic services

In the IntServ model necessary resources are reserved for each incoming re-
quest, what allows to deliver strict guarantees on the values of quality of service
parameters. Besides resources reservation, this model requires the utilization of
other QoS mechanisms such as: admission control, request scheduling, etc.

In the DiffServ model, incoming requests are separated into classes and for each
class, required resources are reserved. Requests in different classes may be served
according to the best effort or the IntServ model. Application of the best effort
model to single DiffServ class, results in delivering guaranties on average values of
QoS parameters for requests in this class. On the other hand, the application of the
IntServ model to the single DiffServ class allows to provide strict QoS guarantees
for each single request belonging to this class.

In order to present the application of aforementioned models of QoS assurance
in the considered task of complex service execution plan optimization, let us as-
sume that the optimal complex service scenario requires that the functionalities
Φl are executed in serial order, and that the non-functional requirements Ψl of
the requested complex service, apply to complex service response time. Above as-
sumptions are made in order to clarify the presented approaches, and do not affect
the generality of further considerations.

The optimal complex service execution scenario considered in this example is
presented on Figure 6. This scenario requires nl atomic services to be executed in
serial order. Moreover, there are nlk available versions of atomic services for each
functionality ϕlk(k = 1, . . . , nl) what results in ml = n1 · n2 · . . . · nl possible
complex service execution plans. For simplicity, we denote the m-th complex ser-
vice execution plan as the sequence of indices of chosen versions of the consecutive
atomic services eplm = (ml1, . . . , mln1), where nl1 = 1, . . . , nl1; . . . ; mlnl = 1,
. . . , nlnl .

In the considered example, the non-functional property Ψ(aslkmlk) of the ato-
mic service aslkmlk is interpreted as an atomic service response time. Property



QoS-aware Complex Service Composition in SOA-Based Systems 303

ψ(aslkmlk , asl(k+1)ml(k+1)) denotes a communication delay on link between the
atomic services aslkmlk and asl(k+1)ml(k+1) . The response time ψ(eplm) of complex
service executed according to the m-th execution plan eplm = (ml1, . . . , mlnl) is
equal to the sum of response times of the applied atomic services and communi-
cation delays between them:

ψ(eplm) =
∑

mlk∈eplm

⌊
ψ(aslkmlk) + ψ(aslkmlk , asl(k+1)ml(k+1))

⌋
(9)

The average response time dl experienced by the service requests in the whole
system can be calculated as the weighted average over the response times of each
execution plan eplm (m = 1, . . . , ml)):

dl =

ml∑
m=1

pm · ψ(eplm) (10)

where pm is the probability, that certain service request will be served according
to the m-th execution path eplm.

7 Average Complex Service Response Time Minimization
(best effort)

In such a system, the task of minimization of the average complex service response
time (best effort model) can be formulated as a task of finding such a vector p =
[p1, . . . , pml ] of probabilities to chose a particular execution plan with minimized
average response time:

p∗ = argmin
p

ml∑
m=1

pm · ψ(eplm) (11)

with respect to constraints on probabilities p:

ml∑
m=1

pm = 1 and pm ≥ 0 for m = 1, . . . ,ml (12)

In general the average response time ψ(eplm) of each execution plan eplm de-
pends on request arrival intensity and probabilities p, which change over time.
Therefore the optimization task (11) has to be solved iteratively in consecutive
time steps. The execution of complex services consists in assigning to incoming re-
quest such execution plans that the number of requests executed according to each
execution plan is proportional to calculated probabilities p∗. For a large number



304 A. Grzech, P. Rygielski, P. Świątek

ml of possible execution plans this approach may be inefficient due to the high
computational complexity of the optimization task (11). In such a case, one can
approximate optimal solution by the application of greedy approach, which for
each new service request chooses the execution plan eplm, with the lowest average
delay ψ(eplm∗):

m∗ = arg min
m=1,...,ml

ψ(eplm) (13)

8 Service Response Time Guarantees (IntServ)

S(tl) denotes the state of the system at the moment tl of arrival of the new
request SLAl. State S(tl) contains information concerning the moments of arrival,
the assigned execution plans, and the location of all service requests present in the
system at moment ti. Given the system state S(tl), it is possible to calculate exact
service response time ψ(eplm) for the request SLAl for each execution plan eplm
(m = 1, . . . , ml):

ψ(eplm) = d(S(tl), SLAl,m) (14)

where function d(S(tl), SLAl,m) (presented in [6]) represents an iterative algo-
rithm for the calculation of the response time of the service request SLAl delivered
according to the m-th execution plan.

In the the quality of service delivery task it is assumed that each incoming
request SLAl contains a set SLAnfl = Ψl of requirements concerning the values
of various parameters describing quality of service such as: response time, security,
cost, availability, etc. For the purpose of this example, it is assumed that the set
Ψl = {Ψl1} contains only one requirement concerning complex service response
time.

The aim of the task of guarantying service response time is to find such a
execution plan eplm for which the service response time requirements are satisfied:

m∗ = arg min
m=1,...,ml

ψ(eplm) = arg max
m=1,...,ml

d(S(tl), SLAl,m) (15)

with respect to:

ψ(eplm) ≤ ψl1



QoS-aware Complex Service Composition in SOA-Based Systems 305

It is possible that it does not exist such an execution plan for which the response
time requirements are met. In this case requirements can be renegotiated, for
example by suggesting a minimal possible service response time ψ∗l1:

ψ∗l1 = min
m=1,...,ml

ψ(eplm) (16)

When the required execution plan eplm∗ is found (by solving either task (15) or
(16) in order to be able to guarantee the requested service response time, resources
in execution plan eplm have to be reserved.

9 Average Service Response Time Guaranties (DiffServ)

Assume that each incoming service requests SLAl belongs to a certain class cl
(cl = 1, . . . , C). Each class c (c = 1, . . . , C) is characterized by the probability qc,
that the response time requirements of requests from this class are met:

P{ψ(eplm) ≤ ψl1} = qc1 (17)

where ψ(eplm) and ψl1 denote respectively the response time of the request SLAl
executed according to the execution plan eplm, and the response time requirement
of request SLAl.

The aim of the task delivering the average service response time guaranties is
to assign each incoming service request SLAl to such an execution plan eplm∗ for
which equation (17) holds. Since the probability P{ψ(eplm) ≤ ψl1} for each service
execution plan can be calculated by means of the cumulative distribution function
Flm(ψl1) [8], the task of delivering the average service response time guaranties
can be formulated as follows:

m∗ = arg min
m=1,...,ml

{Flm(ψl1)} (18)

with respect to:

Flm(ψl1) ≥ qcl

Similarly to the task of delivering strict guaranties, it is possible that none of
the execution plans allows to obtain the required probability for the response time
requirement. In such a case, the execution plan with the highest probability for
response time requirement enforcement may be suggested:

m∗ = arg max
m=1,...,ml

{Flm(ψl1)} (19)



306 A. Grzech, P. Rygielski, P. Świątek

10 Numerical Example

To illustrate the presented tasks of optimal execution plan determination a simula-
tion study was carried out. Therefore a simulation environment has been designed
and developed to allow the execution of various experiments concerning quality of
service aspects in a system based on service oriented architecture paradigm [9].

The simulation environment has been configured for the needs of experiment in
the following way. Simulated system consisted of three serially ordered functional-
ities each having atomic services in three versions: AS(ϕl1) = {asl11, asl12, asl13},
AS(ϕl2) = {asl21, asl22, asl23} and AS(ϕl3) = {asl31, asl32, asl33}. Moreover, in
the simulation system, three classes of requests were considered; request belonging
to the first class were served according to the best effort model in which the av-
erage complex service response time is minimized; requests from the second class
were served according to IntServ model which allows to deliver strict guaranties
for complex service maximal response time; requests from the third class were
served according to the DiffServ model and has been divided into four subclasses,
each class having different average response time guarantee. Subclasses from the
DiffServ class have different average guarantee level set. Each request was required
to be served in ψ(eplm) = 0, 5 second although the first subclass with probability
0.8, the second with 0.7, the third with 0.6 and the fourth with a probability equal
to 0.5.

A stream of requests following a Poisson law was connected to the input system,
characterized with an average stream intensity λ0 = 50. The share of each request
class in the overall stream was as follows: best effort: 50%; IntServ: 10% and
DiffServ: 40%. Each subclass of DiffServ request had 10% share in overall stream
of requests. The ratio of the number of requests from different requests classes was
chosen to be similar to the ratio of traffic volume in real computer communication
networks.

The aim of the simulation was to evaluate the performance of the proposed
approaches to a deliver quality, meant in this experiment as the response time
guaranties delivered to the distinguished traffic classes for increasing the value of
request arrival intensity. The results of the performed simulation are presented on
Figures 7 and 8.

Figure 7 depicts the influence of an increasing request arrival rate on the aver-
age service response time for three main classes. Requests from both — best effort
and IntServ — classes are served according to a plan that minimizes the average
response time. There are two main differences between these classes: for IntServ,
the computational and communication resources are reserved to provide strict
guaranties. Moreover, the IntServ traffic is treated in prioritized way in compari-
son to the best effort traffic. Due to the lowest priority of the best effort class, all
computational resources of atomic services are assigned to the traffic with higher



QoS-aware Complex Service Composition in SOA-Based Systems 307

Fig. 7. Influence of increasing request arrival intensity λ on average service
response time for three main requests classes: best effort, IntServ, DiffServ

Fig. 8. Influence of the increasing request arrival intensity on the percentage
of requests from each subclass of DiffServ meeting its response time

requirements



308 A. Grzech, P. Rygielski, P. Świątek

priority and the best effort traffic is provided with only of the resources that are
not consumed by other classes.

It is predictable that, for increasing the request arrival intensity, average ser-
vice response time should grow for all traffic classes. An interesting situation takes
place when intensity reaches λ = 1.25λ0. Average response time of requests from
the DiffServ class approaches its required response time at half a second delay,
and stops increasing. At the same time, the response time of the best effort class
slightly decreases and after a short moment begins to increase rapidly. This situ-
ation is caused by the fact, that when the DiffServ class reaches its requirement
it does not need as much resources as earlier. Excess resources were assigned to
the best effort class, what resulted in a decreased response time. When the re-
quest intensity increased, the DiffServ class needed more resources to provide the
required response time guaranties. Necessary, resources were taken from the best
effort class, what caused a rapid growth of the best effort average response time.

Each subclass of the DiffServ class have different requirements on the percent-
age of requests meeting response time requirements. The results of quantitative
analysis of the influence of increasing the request arrival intensity on the per-
centage of requests from each subclass of DiffServ, meeting then response time
requirements, is presented on Figure 8. One can notice, that as the request arrival
rate grows, the percentage of requests not violating the response time guaranties
approaches to the required values, which in the presented study were set to 0.8,
0.7, 0.6, and 0.5 for corresponding subclasses.

11 Related Work

The problem of QoS-aware complex service composition in the systems based on
service-oriented architecture is being addresses as one of the main research field
by both academy and industry [22]. Most of research analyzes the problem of
service candidate selection as an optimization problem assuming that the busi-
ness workflow is given [29]. In general it has been shown that the complex service
composition problem is NP-hard when considered as a global optimization task
[18, 19]. There are few factors which have an influence to the problem complexity.
The main is the exponential growth of the solutions space with increasing num-
ber of service candidates, but the multidimensional QoS requirements along with
the variety of connecting atomic services possibilities can also cause the problem
to be more complicated [26, 27, 28]. The problem’s complexity grows exponen-
tialy so only heuristic algorithms can be proposed to obtain a feasible solution in
runtime. The metaheuristics like simulated annealing, tabu search or genetic algo-
rithms seems to be a logical idea to use due to intractable nature of the problem.
Moreover a local optimization problem has been investigated in order to obtain a



QoS-aware Complex Service Composition in SOA-Based Systems 309

suboptimal solution [24, 25]. Most of researchers used the Integer or Linear pro-
gramming in order to determine optimal QoS-aware service composition, but the
proper problem formulation allows to use the multidimensional multichoice knap-
sack problem (MMKP) solutions in order to obtain desired composition satisfying
all of the QoS constraints. However the MMKP problem has been also shown to
be NP-hard [21]. [20] proposes a branch and bound algorithm (BBLP) to find the
optimal solution for MMKP. In [30] author proposed an approach to optimize both
service semantic functionality fit and the quality of service in single optimization
stage. The aggregated task was complex, that is why author used metaheuristics
to obtain only a suboptimal solution.

To cope with the complexity of the composition problem we propose to divide
the composition process into three stages as shown in the paper. First stage, where
the complex service structure is determined, allows to use semantic composition
methods in order to satisfy end-user’s functional requirements. In the second stage
complex service execution scenario is determined, which addresses both aspects of
composition process — functional and non-functional requirements satisfaction.
The last stage — determination of complex service execution plan — is purely
the quality of service optimization stage, which has been mostly investigated in
the literature. The presented division of the composition process allows to perform
pre-optimization tasks in order to reduce the possible solutions space. As shown
in [23] the scenario graph optimization allows to estimate the obtainable complex
service execution time before determining the execution plan which is the last
optimization stage in our approach.

Besides the pre-optimization advantages, the composition process decomposi-
tion allows to investigate various optimization tasks concerning purely function-
alities — with use of domain ontologies — in the first stage, and purely QoS-
awareness in the last stage. The middle stage — where the complex service exe-
cution scenario is determined — allows to find a tradeoff between functional and
non-functional requirements satisfaction. The presented three stage process can
be also understood as a two layers of optimization (functional and non-functional)
with the middle layer not considered in the literature before.

12 Final Remarks

In this work we presented the general method for QoS-aware complex service
composition which consists of three stages: complex service structure, execution
scenario and execution plan composition. On illustrative examples, we showed how
to enhance the quality of complex service by solving certain optimization task in
each stage of complex service composition. In particular we showed that complex
service scenario optimization, analysing of complex service parallelism degree, may
prove useful in the task of quality of service assurance.



310 A. Grzech, P. Rygielski, P. Świątek

Moreover, we showed that it is possible to deliver a required level of quality of
service and differentiate it between distinguished request classes by the application
of commonly known quality of service assurance approaches in the process of com-
position of complex service execution plan. It is worth noting, that the presented
method uses only few mechanisms (resource reservation, request scheduling) from
classical QoS assurance models. The application of all QoS mechanisms (e.g.: traffic
shaping and conditioning, request classification, contract renegotiation, congestion
control, etc.) as well as knowledge engineering methods [5] (e.g.: prediction of client
behavior, adaptive scheduling, atomic services load prediction, etc.) to the man-
agement of systems resources may allow to significantly improve delivered quality
of service.

The main advantage of our proposed method for complex service composition is
that it is not necessary to go through all stages during service composition. In the
case, when a new service request arrives in the system, it is possible to make use of
partial solutions derived for similar requests which were served earlier. For example
a single execution scenario may be used for functionally similar requests. Quality
differentiation between these requests is achieved by the application of different
execution plans for each request. The determination of semantic similarity between
different complex service requests is one of the tasks for our future research.

References

1. Anderson S., Grau A., Hughes C. Specification and satisfaction of SLAs in service
oriented architectures. 5th Annual DIRC Research Conference, 141–150, 2005.

2. Garey M., Johnson D., Sethi R. The complexity of flowshop and jobshop scheduling.
Math. Oper. Res. 1, 117–129, 1976.

3. Graham R.L., Lawler E.L., Lenstra J.K., Rinnooy Kan A.H.G. Optimization and
approximation in deterministic sequencing and scheduling: a survey. Ann. Discr.
Math. 3, 287–326, 1979.

4. Grzech A. Teletraffic control in the computer communication networks. Wrocław
University of Technology, 2002.

5. Grzech A., Świątek P. Parallel processing of connection streams in nodes of
packet-switched computer communication networks. Cybernet. Syst. 39, 2, 155–170,
2008.

6. Grzech A., Świątek P. Modeling and optimization of complex services in
service-based systems. Cybernet. Syst. 40, 08, 706–723, 2009.

7. Grzech A., Świątek P. The influence of load prediction methods on the quality of
service of connections in the multiprocessor environment. Syst. Sci. 35, 3, 7–14,
2009.



QoS-aware Complex Service Composition in SOA-Based Systems 311

8. Grzech A., Rygielski P., Świątek P. QoS-aware infrastructure resources allocation in
systems based on service-oriented architecture paradigm. Proc. 6th Working Conf.
on Performance Modeling and Evaluation of Heterogeneous Networks, Zakopane,
Poland, 35–48, 2010.

9. Grzech A., Rygielski P., Świątek P. Simulation environment for delivering quality of
service in systems based on service-oriented architecture paradigm. Proc. 6th
Working Conf. on Performance Modeling and Evaluation of Heterogeneous
Networks, Zakopane, Poland, 89–98, 2010.

10. Jaeger M.C., Rojec-Goldmann G., Muhl G. QoS aggregation in web service
compositions. IEEE Int. Conf. on e-Technology, e-Commerce and e-Service,
181–185, 2005.

11. Jain K.K., Rajaraman V. Parallelism measures of task graphs for multiprocessors.
Microproc. Microprogr. 40, 4, 249–259.

12. Johnson R., Gamma E., Helm R., Vlisides J. Design patterns; elements of reusable
object-oriented software. Addison-Wesley, 1995.

13. Milanovic N., Malek M. Current solutions for web service composition. IEEE
Internet Comp. 8, 6, 51–59, 2004.

14. Narayanan S., McIlraith S. Analysis and simulation of web services. Comp.
Networks 42, 5, 675–693, 2003.

15. Rajan R., Verma D., Kamat S., Felstaine E., Herzog S. A policy framework for
integrated and differentiated services in the Internet. IEEE Network, 34–41, Sept.
1999.

16. Rau B.R., Fisher J.A. Instruction-level parallel processing: history, overview, and
perspective. Readings in computer architecture. M.D. Hill, N.P. Jouppi, G.S. Sohi
(eds.), Morgan Kaufmann, San Francisco, 288–308.

17. Wang Z. Internet QoS: architecture and mechanisms for Quality of Service.
Academic Press, London, 2001.

18. D. Ardagna and B. Pernici Global and local qos guarantee in web service selection.
Business Process Management Workshops, 32–46, 2005.

19. P. A. Bonatti and P. Festa On optimal service selection. In WWW ’05: Proceedings
of the 14th int. conf. on World Wide Web, 530–538, New York, NY, USA, 2005.
ACM.

20. Khan, S. Quality Adaptation in a Multisession Multimedia System: Model,
Algorithms and Architecture. Ph.D. Dissertation, Department of ECE, University of
Victoria, Canada, May 1998.

21. Martello, S. and Toth, P. Algorithms for Knapsack Problems. Annals of Discrete
Mathematics, 31, 70–79, April 1987.

22. M. P. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann Service-oriented
computing: State of the art and research challenges. IEEE Computer, 40(11), 38–45,
November 2007.

23. Grzech A., Rygielski P. Translations of Service Level Agreement in Systems Based
on Service Oriented Architecture. Knowledge-Based and Intelligent Information and
Engineering Systems, 14th Int. Conf. KES2010, Part II, LNAI 6277, 523–532, 2010.



312 A. Grzech, P. Rygielski, P. Świątek

24. Kwiatkowski J., Pawlik M. Budowa struktur gridowych współpracujących
komputerów i agregacji zasobów w strukturach organizacyjnych. Przegląd
Elektrotechniczny, 221–225, 2009.

25. Kwiatkowski J., Pawlik M., Fraś M., Konieczny D. Request distribution in hybrid
processing environments. Int. Conf. on Parallel Processing and Applied
Mathematics, Wroclaw, Poland, 2009 (abstract).

26. Kołaczek G., Juszczyszyn K. Smart Security Assessment of Composed Web
Services. Cybernetics and Systems, 41, 1, 46–61, 2010.

27. Kołaczek G. Multiagent Security Evaluation Framework for Service Oriented
Architecture Systems. Int. Conf. on Knowledge Engineering Systems KES2009,
LNAI, Santiago, Chile, 30–37, 2009.

28. Kołaczek G. A logical-based security level evaluation method for service oriented
systems. Int. Journal on Information Technologies & Security, 2, 29–42, 2009.

29. Yu, T., Zhang, Y., Lin, K.-J Efficient algorithms for Web services selection with
end-to-end QoS constraints. ACM Trans. Web 1, 1, 6, 2007.

30. Lecue F. Optimizing QoS-Aware Semantic Web Service Composition. The Semantic
Web - ISWC 2009, LNCS 5823, 375–391, 2009.


