Performance Modeling in Industry:
A Case Study on Storage Virtualization

Nikolaus Huber
Karlsruhe Institute of
Technology, IPD
76131 Karlsruhe, Germany

nikolaus.huber@kit.edu

Christoph Rathfelder
FZI Forschungszentrum
Informatik
76131 Karlsruhe, Germany

rathfelder@fzi.de

ABSTRACT

In software engineering, performance and the integration
of performance analysis methodologies gain increasing im-
portance, especially for complex systems. Well-developed
methods and tools can predict non-functional performance
properties like response time or resource utilization in early
design stages, thus promising time and cost savings. How-
ever, as performance modeling and performance prediction
is still a young research area, the methods are not yet well-
established and in wide-spread industrial use. This work is
a case study of the applicability of the Palladio Component
Model as a performance prediction method in an industrial
environment. We model and analyze different design alter-
natives for storage virtualization on an IBM* system. The
model calibration, validation and evaluation is based on data
measured on a System z9" as a proof of concept. The results
show that performance predictions can identify performance
bottlenecks and evaluate design alternatives in early stages
of system development. The experiences gained were that
performance modeling helps to understand and analyze a
system. Hence, this case study substantiates that perfor-
mance modeling is applicable in industry and a valuable
method for evaluating design decisions.

Categories and Subject Descriptors

C.4 [Performance of Systems]: Design studies, Modeling
techniques; 1.6.4 [Model Validation and Analysis]

General Terms

Performance, Measurement

*Trademarks of IBM in USA and/or other countries

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ICSE ’10, May 2-8 2010, Cape Town, South Africa

Copyright 2010 ACM 978-1-60558-719-6/10/05 ...$10.00.

Jochen Schweflinghaus
IBM Research and
Development GmbH

71032 Boeblingen, Germany

schwefel@de.ibm.com

Steffen Becker
FZI Forschungszentrum
Informatik
76131 Karlsruhe, Germany

sbecker@fzi.de

Ralf H. Reussner
Karlsruhe Institute of
Technology, IPD
76131 Karlsruhe, Germany

reussner@kit.edu

1. INTRODUCTION

Today, (software) systems consist of an increasing num-
ber of interacting components. The resulting complexity
leads to an increasing difficulty of estimating and predict-
ing non-functional properties. Moreover, non-functional re-
quirements like the system performance are often considered
at a late stage during development. However, early evalua-
tion and prediction of the performance of a system can safe
time and money for late redesigns [22].

Developing performance models requires time, knowledge
and experience, thus increasing the initial cost of system de-
velopment. Therefore, it is necessary to research effective
tools and methods which ease and support the performance
modeling and analysis process. However, none of the cur-
rently available approaches has gained widespread industrial
use and many companies still rely on their software archi-
tects’ experience instead of engineering methods [9, 12, 23].
Hence, it is important to demonstrate that methods and
tools for software performance engineering evolve and im-
prove software system development.

One particular approach for performance analysis is the
Palladio Component Model (PCM) [4]. Its applicability and
usability was investigated in theoretical and industrial con-
text [1, 10, 12]. However, these investigations settled within
the PCM’s domain of business information systems which
makes a generalization of the benefits of software perfor-
mance engineering difficult.

This paper presents a case study on using the PCM to
build a performance model for evaluating different storage
hardware virtualization design alternatives for IBM systems.
Furthermore, the intention of this case study is also to ex-
amine the applicability of the PCM in an industrial context
outside its target domain of business information systems.
Questions answered by this performance model are, which
design alternative to choose, what the influences of addi-
tional resource provisioning are, which parts are potential
performance bottlenecks and how can the system perfor-
mance be improved.

The contributions of this paper are: i) a report on the
calibration and validation of a performance model based on
measurements on an IBM System z9, ii) an analysis and
evaluation of different design alternatives for storage vir-

Response Time,
Utilization,
Feedback Throughput

@

:|l||-I|L -

Analysis /
Simulation

Design

Estimation /
Measurement

Anngtated Zms Performance
Design Model Model
Transformation
—
IO~

Figure 1: Model-driven performance engineering.

tualization and iii) a list of experiences we gained in this
industrial case study. These experiences cover software per-
formance engineering in general as well as the applicability
of the PCM in the area of virtualized systems. The results
demonstrate that the PCM is mature enough to support sys-
tem development and predict the performance of a system.

Section 2 gives an overview of software performance en-
gineering and the PCM, and explains the architecture of
the modeled system. Section 3 describes the model and its
calibration. In Section 4, the results are evaluated and dis-
cussed. Section 5 lists the experiences we gained. Section 6
discusses related work. Section 7 concludes this paper and
presents an outlook for future work.

2. FOUNDATIONS

The following gives an overview of software performance
engineering in general and the PCM approach in particular.
Furthermore, the modeled system is introduced.

2.1 Software performance engineering

Software engineering aims to deal with the challenges of
the software development process by means of an engineer-
ing discipline. A characteristic of such is the availability
of a catalog of methods and practices plus guidelines for
the systematic selection of these practices. The goal is to
deliver predictable quality, cost and time-to-market for the
engineered product.

A non-functional attribute which is often of high impor-
tance during software development is the performance of the
developed system. If systems suffer from insufficient perfor-
mance, they are usually not applicable and cause projects to
fail. Therefore, performance prediction of software systems
is in the focus of research since the end of the 1990’s [9]. The
term performance often characterizes the timing behavior
and resource efficiency of hard- and software systems. The
most important performance properties are response time,
throughput and resource utilization [7].

Software Performance Engineering (SPE) is rooted in the

research of Connie U. Smith [18]. It aims at evaluating
the performance of (software) systems by offering different
methods like analytical modeling, simulation, and taking
measurements. The SPE’s goal is to conduct performance
evaluation of software architectures as early as possible [17].

Starting point for most approaches in SPE is the sys-
tem’s software architecture [2, 9]. The architecture can
be enhanced with performance annotations. This software
model must then be transformed into a performance model
(e.g. Queueing Networks, Petri Nets, Markov Chains) and
solved for the metrics of interest (see Figure 1).

In the area of SPE, the idea to use model-driven tech-
niques gained attention because they provide automated
transformation from source to target performance model(s).
However, model-driven performance prediction methods re-
quire suitable meta-models like [13, 17, 24]. These meta-
models formalize the syntax and semantics of the source and
target model. The automatic transformation and process-
ing simplifies the software performance engineering approach
and makes it less error-prone.

2.2 The Palladio Component Model

The following describes the Palladio Component Model
(PCM), a performance meta-model we used in work to model
the performance behavior of the storage virtualization under
study. The following gives a brief overview of the PCM. A
more detailed and technical description is given in [4].

The PCM is a domain specific meta-model. It describes
the performance-relevant aspects of component-based soft-
ware architecture, often used in business information sys-
tems. The PCM approach provides tools (the PCM bench')
to create and analyze PCM performance model instances.
According to the definition of Lau [11], in this work a com-
ponent model defines what components are, how they can
be constructed and represented, how they can be composed
or assembled and how they can be deployed.

Software components are units of composition with explic-
itly defined provided and required interfaces [19]. The kind
of components the PCM aims for are entities of business in-
formation systems. However, the PCM can be used to model
any other entity of a software system. The performance of
such a software component is influenced by four factors [9],
depicted in Figure 2. The PCM meta-model provides means
to take all of these factors into account.

Figure 3 depicts the PCM modeling process, divided into
four different views according to these four influence factors.
Each influence factor is modeled by a specific role, specifying
the performance-influencing factors in separate models. The
composition of these models forms a PCM instance.

The Component Developer models the components and
their implementation. At first, the interfaces (comparable
to signature lists) which are provided or required by a com-
ponent are specified. Provided interfaces specify the ser-
vices a component offers. Required interfaces are external
services the component needs to fulfill its purpose. Further-
more, the component developer models the internal behavior
of the provided service(s). To this end, the PCM provides
a description language, called ResourceDemandingService-
EffectSpecification (RDSEFF), to specify the control flow
(e.g. branches, loops, external service calls) and the resource
usage of the provided service(s).

"http:/ /www.palladio-approach.net /

Component
Implementation

Required
Services

<<Component
Developer>>

<<System
Architect>>

<<System
Deployer>>

Component Specifications

iy

Assembly Model

Allocation Model

Stochastic Regular Expressions

aC@a

Queueing Network Model

OO

Performance Prototype

besge =
T

Deployment
Platform

<<Domain
Expert>>

Figure 2: Factors influencing component perfor-
mance [9].

Second, the System Architect models the structure of the
system. By interconnecting components via their provided
and required interfaces, it can be specified which other ser-
vices a component uses. Hence, the overall system’s per-
formance depends on the selection of components, e.g. if a
database cache component is used or not.

The System Deployer maps the components of the system
model to physical resources. Thereby, the influence of the
deployment platform on the system performance is specified.
Therefore, he must model the hardware environment(s) the
system is executed on (like middleware, processor speed,
network links, etc.) Furthermore, he allocates the system
components onto the specified hardware nodes.

The Domain Ezpert models the performance influence of
the usage of the whole system. The Domain Expert de-
scribes which parts of the system get invoked by the sys-
tem’s end-users. This description also comprises the kind of
workload issued to the system (open or closed). The work-
load specifies for example how many users invoke the system
or the interarrival time of invocations.

Usually, the performance of software does not depend on
constant parameter values because e.g. resource demands or
system usage may vary during execution. The PCM offers
random variables to express the uncertainty of such param-
eters. Random variables can be specified by various prob-
ability distributions functions. Furthermore, it is possible
to specify mathematical expressions by combining variables
with mathematical operators. For further details see [4].

2.3 Reference system

The following describes the basic architecture of IBM sys-
tems which are subject to the integration of a storage vir-
tualization layer. In this case study, storage virtualization
layer designates an abstraction layer for e.g. direct attached
storage devices or storage area networks. Moreover, this
section explains how the Virtualization Layer for I/O (VL)
could be integrated. Finally, two possible design alterna-
tives for the implementation of the VL are presented. These
are a synchronous and an asynchronous implementation, ex-
plained later in this section.

2.3.1 System architecture and virtualization layer in-
tegration

The core element of the systems under investigation is the
hypervisor, depicted in the middle of Figure 4. It virtual-
izes and separates the hardware (processing resources, main
memory, etc.) of an IBM system into several logical parti-

]

Java Code Skeletons

BBg

Usage Model £
<<User>>

=

Figure 3: The PCM process [4].

-

LPAR 1 LPAR 2 LPAR n
GuesiGues# | Z/OS |

— . . .
Virtualization Layer for I/O

L

[Hypervisor]
[Hardware]
[Storage Hardware]

Figure 4: Abstracted system architecture.

tions (LPAR). Each LPAR can be considered as a separate,
smaller instance of the whole system. The hypervisor en-
ables each LPAR to be configured with an individual amount
of the system’s processing resources, main memory and I/O
devices. LPARs can either host a special operating system
(e.g. z/OS™) or can again be virtualized (e.g. by z/VM"*) to
host further guest systems. These guest systems are sharing
the hardware resources of the LPAR. Both the single op-
erating systems and the virtualized guests are users of the
storage hardware, hence called clients in the remainder.

Currently, the hypervisor handles all client I/O requests.
The approach investigated in this paper is to migrate the
storage I/O request processing into a dedicated VL. The
VL is privileged to directly access the memory of LPARs.
This avoids store and forward of I/O requests. The VL
itself is an application running in a specialized operating
system. To access the storage hardware, the VL uses the
I/0 interface provided by the underlying operating system.
The I/0O interface is connected to the storage hardware by
channels. Each channel has a bandwidth (bytes/second) and
throughput (requests/second) restriction.

2.3.2 Virtualization layer design

The VL is situated between the request issuing clients
and the request processing storage hardware, similar to a
message broker between sender and receiver. The request
handling can be accomplished e.g. in a synchronous or asyn-
chronous manner. These are the two design alternatives

*Trademarks of IBM in USA and/or other countries

Client 1 Client 1 Client 1

Request Request Request Request Request Request
Queue 1 Queue n Queue 1 Queue n Queue 1 Queue n

A S N

Virtualization Layer for IO

10 Thead

10 Thead
(0 10 Interface

Storage Hardware ‘

(a) synchronous request handling

Client 1 Client 2 Clientn
Request Request Request Request Request Request
Completion Completion Ci 1 Ci ion Ci ion Completion
Queue Pair 1 Queue Pairn| |Queue Pair 1 Queue Pair n Queue Pair 1 Queue Pair n

g U

Virtualization Layer for IO

UL

Completion Thead

10 Interface

‘ Storage Hardware ‘

10 Thead

(b) asynchonous request handling

Figure 5: Synchronous and asynchronous virtualization layer design alternatives.

investigated in this case study. They basically correspond
to synchronous and asynchronous message handling and are
described in the following.

The clients have separate queues (see Figure 5) for each
storage device they are configured with. The queue is a part
in the client’s memory where requests are stored for pro-
cessing. The storage device is the receiver of a request. If
a client wants to issue a new request to a device, it puts
the request in the corresponding request queue. How these
stored requests are processed will be explained in the follow-
ing. The request queues cannot be accessed concurrently by
I/O threads. Actually, if a thread accesses a queue, the ac-
cess might be blocked because the queue is already in use
by another I/O thread. However, I/O threads will not block
threads from the client’s side and vice versa. This can be
achieved by a special queue design. In both design alterna-
tives, the I/O interface to the storage hardware is accessible
in parallel. The VL’s behavior can differ as follows.

Synchronous design: The VL contains a theoretically
unlimited amount of I/O threads, handling client requests.
An I/O thread accesses a client’s requests queue, collects a
request (if available) and sends the request to the storage
hardware by passing it to the I/O interface (see Figure 5a).
While the request is executed by the storage hardware, the
thread waits for the result and signals it back to the client
after completion. Then the I/O thread continues processing
the next requests in the queue. If a request queue is empty,
the thread accesses one of the remaining request queues and
continues with request processing.

Asynchronous design: In this case (see Figure 5b), the
forwarding of requests to the storage hardware is decoupled
from sending the results back to the clients. Here, a fixed
amount of I/O threads works on the request queues. The
I/O thread’s work is completed after sending the requests
to the storage hardware via the I/O interface. Instead of
waiting for the result, thel/O thread processes the next re-
quest. To receive the results, the clients are equipped with
an additional completion queue where the results of requests
are signaled to. The signaling is accomplished by another
thread type, the completion thread. Such a thread is started
by the VL as soon as results of the storage hardware be-
come available. It may happen that a completion thread is
blocked because another completion thread signals a result
to exactly the same queue.

<<Resource Container>>
:VirtualizationLayerForlO

‘ :CapacityController £
&7 <nterface>> N
\f CapacityControllerlf
:I0Interface 33}—@# :ComplelionThread%j‘
<<interface>> I\
A?\' StorageHardwarelf \
<<Interface>>
:StorageHardware &) CompletionThreadif

‘ :RequestGeneratord_] ‘

i é
| RequestQueuelf
\ @

L :l0Thread &] %
g
<<interface>> |\ ~
10Triggerlf <<interface>>
10lnterfacelf

Figure 6: Overview of the functional model.

The differences in the proposed design alternatives re-
garding their influences on the system’s performance lead to
questions like the following: Which design alternative pro-
vides better performance? What influence has the amount
of used threads and queues on the system throughput? How
many threads are necessary to handle a specific system load?
How does queue blocking influence the overall performance?
What VL hardware configuration is required to provide an
efficient virtualization? Where are the system’s performance
bottleneck(s)? The model described in the following shall
answer such questions without having to implement each
design alternative.

3. MODEL IMPLEMENTATION AND
CALIBRATION

The following describes the implementation and calibra-
tion of the developed performance model, following the SPE
process by Smith explained in Section 2.1. First, we imple-
mented a functional model according to the system and the
design alternatives described previously. Second, we con-
ducted several experiments on a prototype to derive the re-
source usage of each model component. Finally, we used
these measurements to calibrate the functional model with
realistic resource demands.

3.1 Functional model description

The developed PCM model instance is depicted in Figure
6. Its illustration follows a simplified combination of the
UML deployment diagram and the UML composite struc-
ture diagram. The following explains the modeled compo-
nents according to the control flow through the model.

The control flow of the VL starts at the system inter-
face depicted on the left. A client invokes the system via
this interface. This invocation is delegated to the IOThread

component. Now the IOThread calls the RequestGenerator
component to get a request in return. The RequestGenerator
component represents the clients and their request queues.
It can be configured by several parameters like request size,
request type (READ or WRITE), amount of queues, etc.
The IOThread demands a specific amount of CPU time be-
fore passing the received request to the [OInterface. The
IOInterface calls the CapacityController used to assure the
throughput constraint of the I/O interface. In case the max-
imum throughput of requests is reached, further requests
will be delayed. Afterwards, the IOInterface consumes some
CPU time and forwards the request to the StorageHardware.
This component models the request execution on the phys-
ical hardware by a delay depending on the request’s size
and type. Subsequently, in the synchronous case, the con-
trol flow returns to the client. In the asynchronous case, the
control flow already returned from the /OThread to the user,
as the call of the IOInterface was forked. Hence, in the asyn-
chronous case the IOInterface calls the CompletionThread,
which signals the results and thereby the end of the trans-
action to the client. The CompletionThread also requires a
specific amount of CPU time.

The behavior of the IOThread and IOInterface differs in
the synchronous and asynchronous case. Therefore, the per-
formance model includes a synchronous and asynchronous
version of these components. This offers the flexibility to
easily switch between the different design alternatives.

Modeling restrictions: As already mentioned, the tar-
get domain of the PCM is business information systems.
Therefore, the model could not be created as straight for-
ward as it might appear. Several work-arounds were re-
quired to implement a performance model equivalent to the
system. One problem was that components have no active
behavior. They must be invoked by either a client or other
components. The modeling of the I/O thread in the virtual-
ization system requires such active behavior. To realize this
we extended the IOThread component with a trigger inter-
face. This interface is then called from an external workload.

Second, currently the PCM does not support automated
replication of components. However, this is required to ex-
plicitly model a varying (one to 100) amount of request
queues. The RequestGenerator solves this issue. It is an ad-
ditional component representing all request queues, reflect-
ing the behavior of queue accesses and returning requests.
Depending on the parameter settings of the RequestGenera-
tor, the I0Thread’s call is delayed to simulate blocked queue
accesses.

Third, the current version of the PCM has no direct sup-
port to model component state. Hence, it is impossible to
count and limit the throughput of a component directly. The
CapacityController component encapsulates and reflects the
throughput restriction by using the features PCM currently
provides (forks, passive resources and delays). A more de-
tailed description of the model and the specific behavior im-
plementation of each component is given in [6].

3.2 Experiment setup

The following describes the experiment setup to determine
the model parameters. The calibration and validation of the
functional performance model is based on the experiment-
based derivation of software performance models presented
in [5]. This approach is inspired by the general ideas and
rules proposed by Jain [7]. It combines existing knowledge of

Model ponents Y p Measurements/Experiments

1/0 thread 1 Application] 2o
Device driver I/0 interface and é g
application Es =
1/0 interface Adapter driver response time ! s §
. || 23
Hypervisor § 2
— Storage hardware | gs

[Extemal hardware | responsetime 1) 2

Figure 7: Measurement setup architecture.

the system under study with iterative, goal-oriented exper-
iments. These experiments support performance analysts
in identifying valid assumptions for performance modeling.
They help to assess the prediction accuracy of the model.
Furthermore, it is important that the performance model
design is driven by a specific goal. This directs the design
effort to the factors of interest, similar to the GQM-approach
[3].

All experiments and measurements were executed on a
System z9 with 48 processors and 128 Gigabyte of main
memory. The storage controller was a DS8000", connected
via four 8 Gbit/s FCP (Fiber Channel Protocol) channels.

In the experiments, two different variables were observed.
Response time measurements were conducted for calibrating
the resource demands of the model components. Moreover,
we measured the throughput used to validate the model de-
scribed in Section 4. In the following, the system’s through-
put (X) is defined as the ratio of requests (R) per time (T),
ie. X =R/T.

The measurement data was gathered with two different
tools. One to identify the response times of different com-
ponents of the request handling stack depicted in Figure 7.
The second tool generates system load and measures the
overall system throughput and response time.

The generated workload was a closed workload with a con-
figurable amount of clients, issuing request to the system.
Open workloads were not supported by IBM’s load genera-
tor. In our experiments, we measured the throughput for a
varying amount of clients (1,2,4,..., 256) and different re-
quest sizes (4KB, 16KB, 64KB, 256KB, 1024KB) and types
(READ, WRITE). Moreover, we ascertained response times
for the same request size/type combinations with an addi-
tional tool. However, for this measurements we restricted
the amount of clients to one client to avoid mutual distur-
bances. The results are listed in Table 1. In this approach
we chose a synthetic benchmark to calibrate the model with
reasonable costs for measurements. However, the bench-
mark was designed to cover different load conditions and
request sizes. Nevertheless, in future work, we plan to sim-
ulate and analyze the model with realistic workloads.

3.3 Model calibration

The response time measurements of the experiments are
used to derive the resource demands of the functional per-
formance model. However, the use of the additional tool to
measure the response times leads to a throughput lower than
without the tool. This indicates a disturbing influence of the
response time measurement on the throughput characteris-
tic of the system. If the measured response times are used
to configure the model, the measured throughput (with re-

*Trademarks of IBM in USA and/or other countries

1/0 interface response times for READ requests

2000

- measured (+)
calculated (o)

Z

T T T T T T
0 200 400 600 800 1000

1000 1500
Il Il

Response time (in us)

500
Il

Request size (in KB)

(a)

1/0 interface response times for WRITE requests

2000

- measured (+)
calculated (o)

1500
Il

Response time (in us)
1000
Il

500

0 200 400 600 800 1000

Request size (in KB)

(b)

Figure 8: Measured (4) and calculated (o) I/O interface response time for READ (Fig. 8a) and WRITE (Fig. 8b).

I/O interface + 1/O thread (us) 180 200 300 650 1820
Storage hardware (us) 100 160 420 1490 5160
Overall response time (us) 270 360 720 2140 6980
Throughput (req./sec.) 4KB 16KB 64KB 256KB 1024KB
with response time measurement| 3600 2750 1400 470 145
w/o response time measurement | 6219 4707 2184 656 223
WRTE [4KB 16KB 64KB 256KB 1024KB|
I/O interface + /O thread (us) 170 180 200 300 1120
Storage hardware (us) 250 380 890 2180 5830
Overall response time (us) 420 560 1090 2480 6950
Throughput (req./sec.) 4KB 16KB 64KB 256KB 1024KB
with response time measurement| 2350 1780 915 400 145
w/o response time measurement | 3276 2286 1130 498 175

Table 1: I/O Interface + I/O thread, storage hardware and
overall response times, and system throughput with and
without simultaneous response time measurement.

sponse time measurement tool) is predicted precisely. How-
ever, the performance model should predict the throughput
without reflecting the influences of the response time mea-
surements. Hence, the actual resource demands could not
be calculated directly from the response time measurements.
We could only use the trends discernible in the measurement
data and the ratio of different response times to parameter-
ize the model components.

The I/O thread’s runtime is independent of the request
type or size, as the thread simply passes the memory ad-
dress to the I/O interface and vice versa. In contrast, the
1/0 interface’s resource usage depends on the request’s size
and type. Several tests with a temporary configured model
revealed that the I/O interface response time significantly
influences the throughput, especially for high system load.
Hence, the measured I/O interface response time cannot lead
to an accurate throughput prediction because the measured

4 6219 6049 2.73% 47416 48706 2.72%|

16 4707 4539 3.57%)| 39518 37879 4.15%

READ 32 3580 3372 5.81% 22530 23196 2.96%)|
64 2184 2183 0.05%) 11911 12889 8.21%

256 656 688 4.88% 3053 3125 2.36%

1024 223 184 17.49% 771 820 6.36%)

4 3276 3628 10.74% 34487 36355 5.42%

16 2286 2384 4.29% 23700 22906 3.35%)

WRITE 32 1690 1636 3.20% 15574 15338 1.52%
64 1130 1221 8.05%)| 9553 9144 4.28%

256 498 543 9.04% 2863 2593 9.43%|

1024 175 168 4.00% 723 717 0.83%)

Table 2: Absolute and relative errors for initial and max-
imum throughput of measurements and simulation for the
final configured model.

response time is simply too long. This can be understood
with the following example calculation. If a throughput of
e.g. 6219 requests per second for a 4KB READ request is
achieved, the overall response time is at most 61% = 160us
for one request. Hence, we calculated the I/O interface re-
sponse time from the throughput measured without the ad-
ditional response time measurement tool and used the trends
depicted in Figure 8 for the correlation of request size and
response time. This is described in more detail in [6].

After this calibration, the predicted throughput deviation
was below 10% for most of the measurements. The average
error over all data was 5% (see Table 2). Initial Throughput
lists the throughput measurements for one request issuing
client. This throughput is only influenced by the hardware
response time and hence is proportional to the system re-
sponse time. Mazimum Throughput denotes the throughput
measured and predicted for 256 request issuing clients.

50000
|

Poasbddd

4KB measured
16KB measured
64KB measured s
256KB measured omeme—tm oo e a0
4KB simulated ’ g

16KB simulated
64KB simulated
256KB simulated

40000
|

30000
|

20000
|

Throughput (requests/second)

10000
|

0
|

9
&
T
1 2 4 8 16 32 64 128 256

Number of request producers

(a) Throughput comparison for READ/WRITE mix-
tures

§ B 4KB measured
16KB measured
64KB measured L
256KB measured k4
4KB simulated !
16KB simulated
64KB simulated
256KB simulated

90
|

SERRE AR

80
|

70
|

60
|

30
|

Throughput (in 1000 requests/second)
20
|

10
|

Number of request producers

(b) Throughput comparison for two CPUs

Figure 9: Model validation by throughput comparison for two scenarios.

4. EVALUATION

To validate the created performance model and to evalu-
ate the simulation results we used a two-step approach. The
first step validates the synchronous performance model by
comparing the simulation results with measured experiment
results conducted on the prototypical synchronous design
alternative.

In the second step we compare the results of the validated
synchronous model with the asynchronous model. Note that
we use only one single model instance which is calibrated and
parameterized once and have no separate models for the syn-
chronous and asynchronous design alternatives. The design
alternatives can be simulated by simply replacing compo-
nents, which has no effect on the calibrated resource de-
mands of the model.

4.1 Model validation

To validate the performance model, we conducted two spe-
cific throughput measurement series and compared the re-
sults to the simulated throughput. In one series, the request
type (a mix of 60% READ and 40% WRITE requests) dif-
fers. In a second series, we used the same mix and added
an additional CPU to the VL. For both series, we measured
the throughput for 1,2,4,...,256 clients (see Figure 9).

The diagrams show a qualitatively high correlation of mea-
sured and predicted throughput. The predictions are not
completely accurate, but tend to the same error behavior,
e.g. the initial throughput (1 client) is overestimated whereas
the maximum throughput (256 clients) is underestimated for
all sizes of the plain READ/WRITE mix. On average, the
relative prediction error f = (Zsim/Tmeas) — 1 for all mea-
surement data for the READ/WRITE mix is below 19% and
below 21% for the mix with an additional CPU.

However, predictions show a relatively high quantitative
discrepancy in some cases, e.g. the 16KB READ/WRITE

mix, which leads to further investigations. The discrepancy
can have its origin in the measurements. For example, al-
though we configured the tool to avoid caches, cache hits
cannot be completely precluded, especially in case of the
READ/WRITE mix. However, each cache hit can cause a
considerable speedup in the measured throughput. Another
reason could be an absent detail in the performance model,
e.g. a possible influence of a scheduling overhead for two
CPUs. To test this assumption, we provisionally integrated
a more detailed scheduler simulation for multicore platforms
[5] into the PCM. This scheduler improved the prediction ac-
curacy for the maximum throughput, in which case the CPU
is the bottleneck, by about 7% on average.

Additional measurements would have been necessary to
obtain further system details and to create a more accu-
rate model. However, one must trade-off the benefits of a
more accurate model with the cost and effort for creating
the model. Therefore, despite the quantitative errors the
qualitative prediction accuracy of the model was considered
to be sufficient to discern the system behavior as the tends
are accurately simulated.

4.2 Discussion of simulation results

The validated model can now be used to vary parame-
ters like request size, request type, amount of threads and
queues, and design alternatives like synchronous and asyn-
chronous components to observe their influences on the sys-
tem performance. As there exists no asynchronous sys-
tem prototype, the validated parameters of the synchronous
model were used to parameterize the asynchronous model,
too. This is feasible as the design alternatives only vary in
the behavior of the I/O thread and the completion thread,
respectively, not in the resource demands of the I/O inter-
face or storage hardware components. To simulate the asyn-
chronous performance model, the synchronous components
must simply be replaced by their asynchronous counterparts.

The comparison of the simulation results of both design
alternatives unveils little differences w.r.t. the selected met-
ric throughput. Also the response times in both scenarios
are very similar for closed workloads. However, a crucial dif-
ference is observable if an open workload with an exponen-
tially distributed interarrival time is used instead of a closed
workload. In this case, the asynchronous design alternative
is more capable in handling peak loads. In the synchronous
case, the response times were distributed relatively constant
compared to the closed workload whereas they improved in
the asynchronous case (see Figure 10). The open workload
also demonstrates that one to ten asynchronous I/0O threads
are capable of handling the same load as synchronous I/O
threads. Additional asynchronous I/O threads do not fur-
ther improve the results.

In the synchronous case, there is one active I/O thread
per request. However, in the asynchronous case, more than
n I/O threads are active. In addition, there is one thread
per request for handling the request within the I/O inter-
face. Furthermore, completion threads are required to signal
the results. Nevertheless, the model revealed that the influ-
ence of the amount of I/O threads and completion threads
on the throughput is negligible because their runtime is in-
significant compared to I/O interface and storage hardware
response times.

Several conclusions can be drawn based on a comparison
of both models. The differences between both implementa-
tions concerning the system throughput is low. Hence, one
must consider the advantages and drawbacks of the design
alternatives itself. For example, the synchronous version is
easier to implement and to maintain in case of malfunctions.
Moreover, it has an intrinsic overload protection as the syn-
chronous threads must wait for the result and cannot send
more requests to the I/O interface as the I/O interface can
process. However, the asynchronous implementation offers
higher flexibility and better responsiveness in case of peak
loads. Hence, in this case study the decision whether to use a
synchronous or asynchronous approach is mainly depending
on other factors than performance.

S. EXPERIENCES GAINED

Software performance engineering is usually motivated by
cost savings that are achieved by detecting performance is-
sues in an early phase of the development process [9, 17, 23].
Moreover, models promise to support system understand-
ing and improve the system development. In this work we
collected experiences which support these statements and
learned how to use models properly. Furthermore, short-
comings of the used meta-model could be identified, useful
for further improvements of the PCM.

Performance models must be elaborated thoroughly and
the creation of performance models can cause high initial
costs. Nevertheless, this work demonstrates that perfor-
mance models provide a quick, easy, and flexible way to com-
pare and analyze design alternatives without implementing
prototypical design alternatives. Hence, they provide a valu-
able alternative to performance prototypes or performance
measurements in real systems. For example, the PCM model
offers the flexibility to easily switch between the modeled
design alternatives and vary their parameter settings to ob-
serve the influences on the performance. This shows another
lesson learned. Performance models are abstractions of sys-
tems. Hence, the performance model can concentrate on

Response time probabilities

<
i
ee)
® 4
©
z °|
z
©
Qo
<)
a
<
(=]
N
o
— synchronous I/O thread
. ; - 11/O thread
S 100 I/O threads
T T T T T
0 5 10 15 20

Response time (in ms)

Figure 10: Cumulative distribution function of the response
time for 1 and 100 asynchronous I/O threads and the syn-
chronous I/0 threads.

relevant and important parts of a system. Especially for
complex systems like the System z9, the focussing on rel-
evant factors and their easy changeability offers a higher
flexibility in system analysis.

However, one must consider that there is always a trade-
off between model accuracy and modeling effort. For exam-
ple, in this case study the prediction results revealed certain
inaccuracy. The reason for this could have been identified
with additional, more costly measurements. However, the
objectives were already achieved with the presented model
(“Make everything as simple as possible, but not simpler!”).

The case study shows that performance modeling actu-
ally works and that a creation of a performance model can
replace further prototypical implementations. We estimate
the effort of creating a calibrated and validated performance
model for an unexperienced person which is not familiar-
ized with the system and the PCM to be about four person
months. The effort to implement a plain asynchronous VL
running in an LPAR is at most three person months. How-
ever, one would still need to implement a simple and flexible
configuration of the VL and the communication with other
partitions. Already available at IBM were the front-ends
to generate traffic and the back-end drivers. If all this had
to be implemented and taking into consideration all the re-
quired skills, the effort to implement a full-fledged prototype
would be at least 24 people months. Hence, in a scenario
like this where knowledge of a complex system is distributed
over several departments, a performance model can be cre-
ated by few people with much less effort than a performance
prototype. This fortifies that the initial effort for creating
a performance model is high but if a model is available, it
is an easy, cheap, and flexible way to investigate different
alternatives.

Furthermore, the performance model has identified other
performance bottlenecks than originally expected. It re-
vealed that the influences of the amount of threads and

queues on blocked queue accesses on the system performance
are eclipsed by the IOInterface and the StorageHardware.
Besides, the model demonstrates that optimizing the stor-
age hardware influences the initial throughput of the system,
i.e. if system load is little, faster hardware can improve the
throughput. In contrast, to increase the throughput for high
system load, it is necessary to improve the I/O interface re-
sponse time by decreasing its CPU resource demands.

We experienced ourselves that performance models sup-
port the design and analysis, and improve the understanding
of existing systems. During the modeling and calibration,
the simulation results caused revisions of measurements re-
sults and assumptions about the system behavior. For exam-
ple, the model indicated a higher throughput for two CPUs
than the measurements. The flaw was the bandwidth limit
which was hit by the measurements and could be fixed by
adding an additional channel.

Concerning the applicability of the PCM, we learned that
this performance meta-model is practical and capable of
modeling component-based software architectures. Further-
more, the created model was able to predict the performance
behavior with sufficient accuracy. However, to model soft-
ware and system components with more detail (e.g. queues
and threads), the current features of the PCM are insuffi-
cient. Work-arounds had to be implemented to model cir-
cumstances like queue blocking or throughput constraint.
Hence, the PCM requires improvements for better applica-
bility outside the domain of business information systems.
The performance metrics and the visualizations the PCM of-
fers were sufficient for the purpose of this case study. They
depicted resource utilization and response times of the sys-
tem and components very detailed. However, a more flexible
database to manage simulation runs and their results would
be a great benefit.

By means of a real system, this industrial case study shows
that model-driven performance engineering works, even in a
virtualized environment. No experts for performance mod-
els are required, as by tool support performance models can
be created and easily modified on a very high level of ab-
straction.

6. RELATED WORK

There are two different areas of research this work is re-
lated to. Distantly related is the performance analysis of
1/0 virtualization and closely related performance model-
ing, especially case studies about methods and tools.

Concerning I/O virtualization, there exist at least two ap-
proaches as examined in [20, 21]. Wiegert et al. analyze the
performance impact of improving the internal setup (scale-
up) of an I/O virtual machine monitor (IOVM) on scalable
networking [21]. In several experiments the authors exam-
ine different configurations of cores, context distributions
and thread types. In particular, results show that moving
from a single processor to a SMP configuration further im-
proves throughput. Wei et al. propose and evaluate solutions
for delivering scalable network performance on a multi-core
platform [20]. The authors want to achieve a performance
increase by moving the 1/O virtualization work out of the
hypervisor onto dedicated IOVMs (scale-out). Their exper-
iment results and performance comparisons show improved
efficiency and flexibility of dedicated IOVMs compared to a
centralized solution.

The paper of Ramesh and Perros describes a multi-layer

client-server queuing network model with synchronous and
asynchronous messages [16]. Their work is motivated by
CORBA, where distributed objects use the client-server in-
terface to communicate by synchronous and asynchronous
messages. Although motivated by practical topic, the model
is very generic as the focus is more on model analysis then
performance modeling. The authors analyze the model for
one-layer and multi-layer networks and compare the sim-
ulation results with performance measures to evaluate the
accuracy with good results.

The Proactor/Reactor patterns used in middleware are
closely related to the synchronous and asynchronous 1/0
request handling analyzed in this work. The authors of [14]
present a Queueing Model which captures the performance
relevant characteristics of this Proactor pattern. They ana-
lyze the performance of a Proactor-based Web server, con-
centrating on metrics like throughput and response time. In
a second paper, the authors present a performance model of
the Reactor pattern based on Stochastic Reward Nets (SRN)
[15]. Their analyses are the same as in the previous paper
and they evaluate the same performance metrics as response
time, throughput and loss probability. Again, a case study
illustrates the use of the model. However, yet there is no
comparison of the results.

Another related approach uses Queueing Petri Nets to
model and evaluate a deployment of the industry-standard
SPECjAppServer2004 benchmark for J2EE application ser-
vers [8] . Moreover, it explains a practical performance mod-
eling methodology to construct accurate performance mod-
els. Results show that QPNs are capable to predict the per-
formance of distributed component-based systems systems.

An evaluation of different approaches of model-based per-
formance prediction of component-based systems is given in
[2] and [9]. The major benefit of the component-oriented
PCM is its flexibility. It enables easy exchange of com-
ponents (e.g. synchronous with asynchronous implemented
components) to observe the model behavior. For the PCM,
there are two studies examining the applicability of the PCM
in a theoretical [10] and industrial context [1]. The results
present the PCM as a practical tool for modeling business
information systems but did not investigate the applicabil-
ity besides business information systems. Additionally, the
applicability of the PCM approach was investigated in an
experiment [12]. The results show that the quality of the
models and predictions created by the test subjects devi-
ated less than 10% from the predictions achieved with a ref-
erence model created by the experimentators. Furthermore,
over 80% of the subjects were able to rank the given design
alternatives correctly, which indicates the appropriateness
of the approach itself.

7. CONCLUSIONS AND OUTLOOK

This work is an industrial case study whether software
performance engineering, particularly the PCM approach,
can be applied in industry. For IBM this work is an in-
vestigation if the PCM is suitable for their requirements.
Although other approaches (e.g. QPNs) might appear more
suited, the PCM with its mature toolset was intentionally
chosen as the preferred performance model to test its appli-
cability in a domain outside of business information systems.

The resulting model was used to analyze two virtualiza-
tion layer design alternatives, investigated as a proof of con-
cept on a System z9. The analysis results revealed that the

two examined design alternatives (synchronous and asyn-
chronous request handling) have no difference concerning the
metric throughput of the system, even if the workload type
is varied. However, the asynchronous implementation has
slightly better response times for peak loads and is able to
handle the same amount of system load with fewer threads.
The advantages of a synchronous approach is an easier im-
plementation with intrinsic overload protection.

Moreover, this work shows that performance models help
to get a performance abstraction of a system in a quick and
cost effective way because no alternative prototypes must
be implemented. Furthermore, it demonstrates that perfor-
mance models can be created without the need to involve all
system experts required to create a performance prototype.
Simplified, one person with sufficient system knowledge is
able to implement an accurate performance model which
achieves convincing prediction results.

However, the PCM has some shortcomings (e.g. no com-
ponent state, no component replication) which must be re-
solved in future work to better support scenarios outside the
domain of component-based software architectures. Never-
theless, the PCM can be considered as a mature approach
with a tool which is capable to describe a system’s perfor-
mance abstraction and predict a system’s performance be-
havior in an efficient way.

Future work will conduct further measurements to refine
and improve the knowledge and the model of the examined
system. Furthermore, the identification and usage of realis-
tic workload profiles can improve the prediction quality of
the model and even lead to a conclusion which implementa-
tion fits best for real workload profiles. Additionally, with a
classification of workload profiles, one could think of using a
performance model during deployment to calibrate a system
to the customer-specific workload. Furthermore, a quanti-
tative cost-benefit comparison of a modeling approach with
the PCM and a performance prototype implementation is
important to get quantifiable statements about the effec-
tiveness of a performance modeling approach. Finally, a
comparison of the PCM with other performance models and
tools like QPNs in terms of effectiveness would be of interest.

8. REFERENCES
[1] R. Andrej. Evaluation of the prediction approach

"Palladio” in the industrial context of the CAS
Software AG, 2008. Master’s thesis (in German).

[2] S. Balsamo, A. D. Marco, P. Inverardi, and
M. Simeoni. Model-based performance prediction in
software development: A survey. IEEE Transactions
on Software Engineering, 30(5):295-310, 2004.

[3] V. R. Basili, G. Caldiera, and H. D. Rombach. The
Goal Question Metric approach. In Encyclopedia of
Software Engineering. Wiley, 1994.

[4] S. Becker, H. Koziolek, and R. Reussner. The Palladio
component model for model-driven performance
prediction. Journal of Sys. and Softw., 82:3-22, 2009.

[5] J. Happe. Predicting Software Performance in
Symmetric Multi-core and Multiprocessor
Environments. PhD thesis, Univ. of Oldenburg, 2008.

[6] N. Huber. Performance Modeling of Storage
Virtualization. Master’s thesis, University of
Karlsruhe (TH), 20009.

[7] R. K. Jain. The Art of Computer Systems
Performance Analysis: Techniques for Experimental

8]

[9]

(10]

(1]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

20]

(21]

(22]

23]

24]

Design, Measurement, Simulation and Modelling. John
Wiley & Sons, April 1991.

S. Kounev. Performance Modeling and Evaluation of
Distributed Component-Based Systems using
Queueing Petri Nets. IEEE Transactions on Software
Engineering, 32(7):486-502, July 2006.

H. Koziolek. Performance evaluation of
component-based software systems: A survey.
Performance Evaluation, 2009.

K. Krogmann and R. H. Reussner. The Common
Component Modeling Example, volume 5153 of LNCS,
pages 297-326. Springer-Verlag Berlin Heidelberg, ’08.
K.-K. Lau. Software Component Models. In ICSE’06,
pages 1081-1082. ACM Press, 2006.

A. Martens, S. Becker, H. Koziolek, and R. Reussner.
An Empirical Investigation of the Applicability of a
Component-Based Performance Prediction Method. In
EPEW’08, volume 5261 of LNCS, pages 17-31.
Springer-Verlag Berlin Heidelberg, 2008.

Object Management Group (OMG). UML profile for
schedulability, performance and time.
http://www.omg.org/cgi-bin/doc?formal /2005-01-02.
U. Praphamontripong, S. Gokhale, A. Gokhale, and
J. Gray. Performance analysis of an asynchronous web
server. COMPSAC 06, 2006.

U. Praphamontripong, S. Gokhale, A. Gokhale, and
J. Gray. Performance analysis of a middleware
demultiplexing pattern. In HICSS 07, 2007.

S. Ramesh and H. G. Perros. A multilayer
client-server queueing network model with
synchronous and asynchronous messages. IEEE Trans.
Softw. Eng., 26(11):1086-1100, 2000.

C. Smith and L. G. Williams. Performance solutions:
a practical guide to creating responsive, scalable
software. Addison Wesley, 2002.

C. U. Smith. Increasing information systems
productivity by software performance engineering. In
Int. CMG Conference, pages 5-14, 1981.

C. Szyperski, D. Gruntz, and S. Murer. Component
Software: Beyond Object-Oriented Programming.
ACM Press and Addison-Wesley, 2002.

J. Wei, J. R. Jackson, and J. A. Wiegert. Towards
Scalable and High Performance I/O virtualization - A
Case Study. In HPCC ’07, pages 586-598, 2007.

J. Wiegert, G. Regnier, and J. Jackson. Challenges for
scalable networking in a virtualized server. ICCCN
07, pages 179-184, 2007.

L. G. Williams and C. U. Smith. Making the business
case for software performance engineering. In 29th Int.
CMG Conference, pages 349-358, 2003.

M. Woodside, G. Franks, and D. C. Petriu. The future
of software performance engineering. In FOSE 07,
pages 171-187, 2007.

M. Woodside, D. C. Petriu, D. B. Petriu, H. Shen,

T. Israr, and J. Merseguer. Performance by unified
model analysis (puma). In WOSP ’05, 2005.

