
Model-based Self-Adaptive Resource Allocation in
Virtualized Environments∗

Nikolaus Huber
Karlsruhe Institute of

Technology
Am Fasanengarten 5
Karlsruhe, Germany

nikolaus.huber@kit.edu

Fabian Brosig
Karlsruhe Institute of

Technology
Am Fasanengarten 5
Karlsruhe, Germany

fabian.brosig@kit.edu

Samuel Kounev
Karlsruhe Institute of

Technology
Am Fasanengarten 5
Karlsruhe, Germany

samuel.kounev@kit.edu

ABSTRACT
The adoption of virtualization and Cloud Computing tech-
nologies promises a number of benefits such as increased
flexibility, better energy efficiency and lower operating costs
for IT systems. However, highly variable workloads make
it challenging to provide quality-of-service guarantees while
at the same time ensuring efficient resource utilization. To
avoid violations of service-level agreements (SLAs) or ineffi-
cient resource usage, resource allocations have to be adapted
continuously during operation to reflect changes in applica-
tion workloads. In this paper, we present a novel approach to
self-adaptive resource allocation in virtualized environments
based on online architecture-level performance models. We
present a detailed case study of a representative enterprise
application, the new SPECjEnterprise2010 benchmark, de-
ployed in a virtualized cluster environment. The case study
serves as a proof-of-concept demonstrating the effectiveness
and practical applicability of our approach.

Categories and Subject Descriptors
C.4 [Modeling techniques]; I.6.4 [Model Validation
and Analysis]

General Terms
Performance, Management

Keywords
Self-adaptive, resource management, virtualization

1. INTRODUCTION
Recent trends like virtualization and Cloud Computing

aim at decoupling applications and services from the un-
derlying hardware infrastructures. This provides increased

∗This work was funded by the German Research Foundation
(DFG) under grant No. KO 34456-1.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SEAMS ’11, May 23-24, 2011, Waikiki, Honolulu, HI, USA
Copyright 2011 ACM 978-1-4503-0575-4/11/05 ...$10.00.

flexibility because resources (e.g., CPU, memory, network
bandwidth) can be allocated on demand and adapted in re-
sponse to changes in system workloads. For example, in
Cloud Computing resource allocations can be scaled up and
down in an elastic manner reflecting the load intensity and
resource demands of running applications. Moreover, virtu-
alization allows to reduce the number of physical servers in
data centers by running multiple independent virtual ma-
chines (VMs) on the same physical hardware. By improving
energy efficiency, this promises significant cost savings for
both service providers and infrastructure providers.

However, the above benefits come at the cost of increased
system complexity and dynamics, making it challenging to
provide Quality-of-Service (QoS) guarantees (e.g, availabil-
ity and performance) in the face of highly variable appli-
cation workloads. Service providers are faced with the fol-
lowing issues during operation: How much resources should
be allocated to a new service deployed in the virtualized in-
frastructure on-the-fly, in order to guarantee Service-Level
Agreements (SLA) for both the new service and existing ser-
vices? How should resource allocations of running applica-
tions and services be adapted in response to changes in their
workloads? How much additional resources are required to
sustain increasing load conditions due to growing customer
workloads? How much resources can be released, without
compromising SLAs, in order to avoid inefficient resource
usage after a drop in the workload intensity? Answering
such questions requires the ability to predict at run-time
how the performance of running applications would be af-
fected if service workloads change, as well as the ability to
predict the effect of changing resource allocations to adapt
the system accordingly. We refer to this as online perfor-
mance prediction. The latter allows to proactively adapt the
system to the new workload conditions avoiding SLA viola-
tions or inefficient resource usage.

Over the past decade, a number of performance prediction
techniques based on architecture-level performance models
have been developed by the performance engineering com-
munity as surveyed in [18]. However, these techniques are
targeted for offline use at system design and deployment
time, and are normally employed for evaluating alternative
system designs and/or for sizing and capacity planning be-
fore putting the system into production. The advantage
of such techniques, compared to techniques, e.g., [21, 19,
10], based on classical performance models (e.g., queueing
networks), is that they could potentially allow to explicitly
capture the performance influences of the software architec-

ture, the application usage profiles as well as the execution
environment. While the software architecture typically does
not change during operation, the application usage profiles
and the resource allocations at the various levels of the exe-
cution environment may change frequently. Moreover, even
though the software architecture does not change often, its
performance-relevant behavior has to be taken into account.
For example, the input parameters passed to a service may
have direct impact on the set of software components in-
volved in executing the service, as well as their internal be-
havior and resource demands. Therefore, a detailed perfor-
mance model capturing the performance-relevant aspects of
both the software architecture and the multi-layered execu-
tion environment, as well as the dependencies on the usage
profile, is needed.

In this paper, we present a novel approach to self-adaptive
resource allocation in virtualized environments based on on-
line architecture-level performance models. We explore the
use of such models as a means for online performance predic-
tion allowing to predict the effects of changes in user work-
loads, as well as to predict the effects of respective reconfig-
uration actions, undertaken to avoid SLA violations or inef-
ficient resource usage. We present a detailed case study with
a representative application, the new SPECjEnterprise2010
benchmark1, deployed in a virtualized cluster environment.
The case study serves as a proof-of-concept showing the
feasibility of using architecture-level performance models at
run-time and the benefits they provide. The contributions
of this paper are: i) a generic self-adaptive control loop
and a respective resource allocation algorithm for virtualized
environments based on online performance models, ii) an
implementation of our approach in the context of a novel
case study of a representative enterprise application, the
new SPECjEnterprise2010 benchmark, of a realistic size and
complexity, iii) an experimental evaluation of the developed
framework demonstrating its effectiveness and practical ap-
plicability.

The rest of this paper is organized as follows: Section 2
provides some background on performance models, the foun-
dation of this work. Section 3 describes our self-adaptive
resource allocation approach. In Section 4, we describe the
architecture of the SPECjEnterprise2010 benchmark, the re-
sulting performance model, and the results of the evaluation
of our approach. Finally, we review related work in Section 5
and wrap up with some concluding remarks in Section 6.

2. MODELING APPROACH
We distinguish between descriptive architecture-level per-

formance models and predictive performance models. The
former describe performance-relevant aspects of software ar-
chitectures and execution environments (e.g., UML models
augmented with performance annotations). The latter cap-
ture the temporal system behavior and can be used for per-
formance prediction by means of analytical or simulation
techniques (e.g., queueing networks or stochastic Petri nets).
Over the past decade, a number of architecture-level perfor-

1SPECjEnterprise2010 is a trademark of the Standard Per-
formance Evaluation Corp. (SPEC). The SPECjEnter-
prise2010 results or findings in this publication have not been
reviewed or accepted by SPEC, therefore no comparison nor
performance inference can be made against any published
SPEC result. The official web site for SPECjEnterprise2010
is located at http://www.spec.org/jEnterprise2010.

mance meta-models for describing performance-relevant as-
pects of software architectures and execution environments
have been developed by the performance engineering com-
munity, the most prominent examples being the UML SPT
and MARTE profiles [23]. Other proposed meta-models in-
clude CSM, PCM and KLAPER [18]. The common goal
of these efforts is to make it possible to predict the system
performance by transforming architecture-level performance
models into predictive performance models in an automatic
or semi-automatic manner. They are normally used for eval-
uating alternative system designs or for sizing and capacity
planning before putting the system into production. We ex-
plore the use of architecture-level performance models as a
means for online performance prediction during system op-
eration [16]. Such models allow for modeling the architec-
tural layers and their configurations as well as the behavior
of provided services explicitly. That way, the relative per-
formance of different execution platforms or software stacks
can be captured. Particularly when modeling virtualized en-
vironments, where virtualization layers may change during
operation, an explicit modeling of the performance influence
is valuable.

In recent years, with the increasing adoption of compo-
nent-based software engineering, the performance evaluation
community has focused on adapting and extending conven-
tional performance engineering techniques to support com-
ponent-based systems which are typically used as founda-
tion for building modern enterprise applications. One of
the most advanced component-based performance modeling
languages, in terms of parametrization and tool support, is
the Palladio Component Model (PCM) [18]. In this paper,
we use the PCM as architecture-level performance model
since it allows to explicitly model different usage profiles and
resource allocations. To derive predictions from the PCM
models, we use the Simucom framework [1] that implements
a queueing-network based simulation.

In order to capture the time behavior and resource con-
sumption of a component, PCM takes four factors into ac-
count [1]. Obviously, the component’s implementation af-
fects its performance. Additionally, the component may
depend on external services whose performance has to be
considered. Furthermore, both the way the component is
used, i.e., the usage profile including service input parame-
ters, and the execution environment in which the component
is running have to be taken into consideration.

To support modeling large applications and concurrently
involve multiple developers, the PCM’s model is split into
five sub-models: The repository model consists of interface
and component specifications. A component specification
defines which interfaces the component provides/requires.
For each provided service, the component specification con-
tains a high-level description of the service’s internal behav-
ior. The description is provided as a so-called Resource De-
manding Service Effect Specification (RDSEFF). The goal of
a RDSEFF is to capture the control flow and resource con-
sumption of the service depending on the input parameters
passed to it. The dependencies, e.g., loop iteration numbers
or branch conditions depending on parameters passed upon
service invocation, can be expressed probabilistically or de-
terministically. The system model describes how component
instances from the repository are assembled to build a spe-
cific system. The resource environment model specifies the
execution environment in which a system is deployed. PCM

Figure 1: The system reconfiguration process [16].

allows modeling processing resources like, e.g., CPUs and
disk drives. The allocation model describes the mapping of
component instances from the system model to resources de-
fined in the resource environment model. The usage model
describes the user behavior. It captures the services that
are called at run-time, the request frequency (workload in-
tensity), the order in which services are called and the input
parameters passed to them.

3. SELF-ADAPTIVE
RESOURCE MANAGEMENT

This section presents our self-adaptive resource manage-
ment algorithm which is based on a control loop model.

3.1 Adaptation Control Loop
The adaptation of the control loop described in [6] to our

scenario is depicted in Figure 1. Currently, for the collect
phase, we assume that changes of the workload are either
announced by the customers (e.g., for an upcoming sales
promotion) or by techniques like workload forecasting [3].
In the analyze phase, we use the described software perfor-
mance models to predict the effect of changes and to decide
which actions to take. The act phase implements the recon-
figuration options considered in the analysis and described
in the following.

Modern virtualization and middleware technologies pro-
vide multiple possibilities for dynamic resource (re)allocation
and system reconfiguration. For example, virtualization al-
lows to add/remove virtual CPU cores to virtual machines
(VMs) or to change the hypervisor’ scheduling parameters,
e.g., increasing/decreasing the cap parameter. Application
servers typically provide means to create application server
clusters and dynamically add/remove cluster nodes. Fur-
thermore, virtualization allows to migrate VMs from one
physical server to another.

The mentioned dynamic reconfiguration options have their
specific advantages and drawbacks. Some of them can be
used at run-time but require a special system setup or in-
troduce high reconfiguration overhead (e.g., VM live migra-

tion). Hence, for our self-adaptive resource allocation algo-
rithm based on online performance prediction, we focus on
adding/removing virtual CPUs and adding/removing appli-
cation servers to an application server cluster.

3.2 Resource Allocation Algorithm
In this section, we present a formal definition of our re-

source allocation algorithm. This algorithm consists of two
phases: PUSH phase and PULL phase. The PUSH phase
allocates additional resources until all client SLAs are satis-
fied. The PULL phase optimizes the resource efficiency by
deallocating resources that are not utilized efficiently. We
present the algorithm in generic terms, such that it can be
applied to different types of resources and resource alloca-
tion options.

Formally, the environment can be represented as a 3-tuple
M = (T, S, C) where:

T = {t1, t2, ..., tm} is the set of resource types (e.g., types
of VMs executed in the environment),

S = {s1, s2, ..., sn} is the set of services offered in the envi-
ronment,

C = {c1, c2, ..., cl} is the set of client workloads and re-
spective SLAs. Each ci ∈ C is a triple (s, λ, ρ) where
s ∈ S is the service used, λ is the workload intensity
(expected request arrival rate), and ρ is the client re-
quested average response time (SLA).

We define the following functions:
V ∈ [S → 2T] specifies which resource types are required

by service s ∈ S,
F ∈ [S × T → Is,t] referred to as resource allocation func-

tion assigns to each service s ∈ S a set of instances Is,t of
resource type t ∈ T (e.g., VM instances). Each resource type
instance is assumed to be allocated a given number of iden-
tical processing resources (e.g., CPUs, HDDs). Formally,
the resource type instance i ∈ Is,t is represented as a triple
(π, κ, κ), where π is the processing rate of its processing re-
sources, κ is the number of processing resources currently
allocated (e.g., allocated virtual CPUs), and κ is the maxi-
mum number of processing resources that can be allocated
(e.g., number of CPUs on a physical machine).

D ∈ [S → R+] specifies the resource demand of service s ∈
S in the same unit as the processing rate π of the resource
type.

We define the following performance metrics:
X(c) is the total number of requests of client workload

c ∈ C completed per unit of time (request throughput),
R(c) is the average response time of a service request in

client workload c ∈ C,
U(t) is the average utilization of resource type t ∈ T over

all instances of the resource,
U(t) is the maximum allowed average utilization for re-

source type t ∈ T .
Finally, we define the following predicates:
PX(c) for c ∈ C is defined as (X(c) = c[λ]),
PR(c) for c ∈ C is defined as (R(c) ≤ c[ρ]),
PU (t) for t ∈ T is defined as (U(t) ≤ U(t)).
For a configuration represented by a resource allocation

function F to be acceptable the following condition must
hold (∀c ∈ C : PX(c) ∧ PR(c)) ∧ (∀t ∈ T : PU (t)). This con-
dition is checked by means of our online performance pre-
diction mechanism.

Each time there is a change in the set of client workloads

C −→ eC (e.g., a new client workload ec = (s, λ, ρ) is sched-
uled for execution or a change in the workload intensity λ
of an existing workload is forecast), we use our online per-
formance prediction mechanism to predict the effect of this
change in the overall system workload. If an SLA violation
is detected, the PUSH phase of our algorithm is executed
which allocates additional resources until all client SLAs are
satisfied. After the PUSH phase finishes, the PULL phase is
executed to optimize the resource efficiency. If no SLAs are
violated, the PULL phase starts directly. In the following,
we describe the PUSH and PULL phases in more detail.

3.2.1 PUSH Phase
The following algorithm written in mathematical style

pseudo code presents our basic heuristic for allocating re-
sources to services such that client SLAs are satisfied.

while ∃c ∈ eC : ¬PR(c) do
for all t ∈ V (c[s]) : ¬PU (t) do
while cap(c, t) ≤ cap(c, t) do
if ∃i ∈ F (c[s], t) : i[κ] < i[κ] then

i[κ] ← i[κ] + 1
else

F (c[s], t) ← F (c[s], t) ∪ {bi}
end if

end while
end for

end while

Basically, while there exists a client response time SLA
that is violated, the algorithm increases the amount of allo-
cated resources for all resource types used by the service that
currently exceed their maximum allowed utilization U(t).
This is based on the assumption that violations are caused
by at least one resource type used by the violated SLA has
become a bottleneck. Increasing the number of allocated
resources works as follows: If a there is an instance of the
overutilized resource type t (e.g., a VM) which has some pro-
cessing resources available (e.g., virtual CPUs) that are not
allocated yet, additional resources are allocated. Otherwise,
a new instance of the resource type bi is added (e.g., a new
VM is started). In our algorithm, an additional resource
instance increases the total capacity by one. Our algorithm
assumes that there is an infinite amount of resources avail-
able and hence, this capacity increase is repeated until the
amount of allocated resources reaches cap(c, t) defined as

cap(c, t) =

2

6
6
6
6

P

c∈ eC

c[λ] ·D(c[s])

P

c∈C

c[λ] ·D(c[s])

3

7
7
7
7

· cap(c, t) (1)

The above is an estimated upper bound on the capacity of
resource type t required to handle client workload c, based
on a factor calculated by the specification changes and the
previously assigned capacity cap(c, t). It is calculated as the
ratio of the newly specified arrival rates and the original
arrival rates both multiplied with their respective resource
demands. It is intended to reduce the number of scenarios
for which online performance prediction has to be performed
when searching for an acceptable configuration. Other meth-
ods on calculating this upper bound could be applied here
in the future as well.

3.2.2 PULL Phase
The PULL phase aims to optimize the resource efficiency

by trying to release resources that are not utilized much by
the current client workloads.

for all c ∈ C do
while ∃t ∈ V (c[s]) : U(t)− U(t) ≥ � do
if ∃i ∈ F (c[s], t) : i[κ] > 0 then

i[κ] ← i[κ]− 1
if ¬PR(c) then

i[κ] ← i[κ] + 1
end if
if i[κ] = 0 then

F (c[s], t) ← F (c[s], t) \ {i}
end if

end if
end while

end for

The optimization algorithm is applied to all client work-
loads c ∈ C. While there is a resource type t assigned to
service s of the currently considered workload c whose delta
between the maximum utilization U(t) and current utiliza-
tion U(t) is greater than a predefined constant �, the amount
of resources allocated to this service will be decreased, i.e.,
for a resource type instance i of t which currently has some
resources allocated (e.g., virtual CPUs), the amount of allo-
cated resources is decreased. If the client SLAs are predicted
to be violated after this change, the change is reversed. In
case after the change, the instance has no remaining allo-
cated resources, the instance i can be removed from the set
of resource type instances (e.g., VM can be shut down). Note
that the set of a resource type instances can also become
empty, e.g., if there is no service left using the respective
resource type t.

4. CASE STUDY
In the following case study we evaluate our approach with

the new SPECjEnterprise2010 benchmark. First, we explain
the architecture of the benchmark and the corresponding
performance model. Next, we describe the experimental
setup the benchmark is deployed in. Finally, we present
the results of our approach in different execution scenarios.

4.1 SPECjEnterprise2010
We selected the SPECjEnterprise2010 benchmark appli-

cation as a basis for our case study since it models a rep-
resentative, state-of-the-art system. In our case study, each
service of the benchmark is considered as an independent
service a client can invoke and specify SLAs for. Previous
versions of the benchmark have already been successfully
applied for research purposes [15, 17].

SPECjEnterprise2010 is a benchmark which is developed
by SPEC’s Java subcommittee to measure the end-to-end
performance and scalability of Java EE-based application
servers. The benchmark workload is generated by an ap-
plication that is modeled after an automobile manufacturer.
As business scenarios, the application comprises customer
relationship management (CRM), manufacturing and sup-
ply chain management (SCM).

To give an example of the business logic implemented by
the benchmark, consider a car dealer that places a large or-
der with the automobile manufacturer. The large order is

Figure 2: SPECjEnterprise2010 benchmark archi-
tecture.

sent to the manufacturing domain which schedules a work
order to manufacture the ordered vehicles. In case some
parts needed for the production of the vehicles are depleted,
a request to order new parts is sent to the supplier domain.
The supplier domain selects a supplier and places a purchase
order. When the ordered parts are delivered, the supplier
domain contacts the manufacturing domain and the inven-
tory is updated. Finally, upon completion of the work order,
the orders domain is notified.

Figure 2 depicts the architecture of the benchmark as de-
scribed in the benchmark documentation. The benchmark
application is divided into three domains: orders domain,
manufacturing domain and supplier domain. The applica-
tion logic in the three domains is implemented using EJBs
which are deployed on the considered Java EE application
server. The domains interact with a database server via
Java Database Connectivity (JDBC) using the Java Persis-
tence API (JPA). The communication between the domains
is asynchronous and implemented using point-to-point mes-
saging provided by the Java Message Service (JMS). The
workload of the orders domain is triggered by dealerships
whereas the workload of the manufacturing domain is trig-
gered by manufacturing sites. Both, dealerships and manu-
facturing sites are emulated by the benchmark driver, a sep-
arate supplier emulator is used to emulate external suppli-
ers. The communication with the suppliers is implemented
using Web Services. While the orders domain is accessed
through Java Servlets, the manufacturing domain can be
accessed either through Web Services or EJB calls, i.e., Re-
mote Method Invocation (RMI). As shown on the diagram,
the system under test spans both the Java application server
and the database server. The emulator and the benchmark
driver have to run outside the system under test so that they
do not affect the benchmark results.

The benchmark driver executes five benchmark opera-
tions. A dealer may browse through the catalog of cars,
purchase cars or manage his dealership inventory, i.e., sell
cars or cancel orders. A manufacturer may place work orders

for manufacturing vehicles, either triggered per WebService
or RMI call.

The original benchmark driver distinguishes between the
dealer and manufacturing domain, each having three and
two benchmark operations, respectively. In the following,
we refer to these benchmark operations as services. To con-
trol the request arrival rate of each service individually, we
had to slightly modify the benchmark driver. We split up the
two driver domains into five different domains, each invoking
its own service. The resulting five independent services are
called Purchase, Manage, Browse, CreateVehicleEJB and
CreateVehicleWS. This separation enables us to control the
workload intensity of each service independently of the oth-
ers and to specify individual SLAs.

4.2 Performance Model
The predictions of the SPECjEnterprise2010 application

are conducted using a PCM model as performance model.
The PCM model is semi-automatically extracted from a run-
ning benchmark application instance. As extraction method,
the method presented in [5] is used. While in [5], the fo-
cus was on modeling the manufacturing domain of a pre-
version of the benchmark, for this work, we extracted the en-
tire benchmark application, i.e., including supplier domain,
dealer domain, web tier and the asynchronous communica-
tion between the three domains.

The three main steps of the extraction process are: i) ex-
traction of the application architecture, ii) extraction of the
performance-relevant control flow and iii) extraction of re-
source demands. The extraction is based on monitoring data
collected during operation with the Oracle WebLogic Diag-
nostics Framework (WLDF) running on Oracle WebLogic
server instances.

In the first step, the effective application architecture is
extracted. The latter refers to the set of components and
connections between components that are effectively used
during operation. The component boundaries, i.e., the ques-
tion which servlets or Enterprise Java Beans (EJBs) form a
component, can be provided manually. If not, the method
considers each EJB, servlet and Java Server Page (JSP) as
individual component. The components and connections are
identified on the basis of trace data reflecting the observed
call paths during execution. With the help of the diag-
nostic context id provided by the WLDF instrumentation
engine, individual requests can be traced as they traverse
the system. For instance, if WLDF is configured to mon-
itor entries and exits of EJB business methods, each call
to a business method triggers the generation of an event
record at the beginning and end of the method. Grouping
the event records by the diagnostic context id and sorting
the groups by the event record id leads to traces of individ-
ual requests [4]. Based on the set of observed call paths,
the effective connections among components can be deter-
mined, i.e., required interfaces of components can be bound
to components providing the respective services.

In PCM, the performance-relevant control flow of a com-
ponent service is modeled as an RDSEFF. Given a com-
ponent service, in order to extract an RDSEFF, one first
has to identify the performance-relevant actions of the ser-
vice. We assume these performance-relevant actions to be
known, given that they can be identified using existing ap-
proaches [12]. We monitor the effective control flow, extract
probabilities of different call paths in contrast to extracting

Figure 3: Modeling SPECjEnterprise Benchmark
Application Structure.

Figure 4: Usage scenario for operation Manage.

explicit parametric dependencies. RDSEFFs distinguish in-
ternal component computations (InternalActions), calls to
external services (ExternalCallActions) and control flow
constructs between external service calls (LoopActions or
BranchActions). In order to make it possible to monitor
the performance-relevant actions of a service, we assume
that such actions are moved to separate methods. That
way, WLDF can be configured to monitor the performance-
relevant control flow. Based on the generated trace data,
RDSEFFs can be extracted. For LoopActions, the number
of loop iterations is extracted as probability mass function
(PMF). For BranchActions, branch transition probabilities
are extracted.

After having the model structure extracted in the previous
two steps, the resource demand annotations are estimated
based on measured utilization and throughput data using
the service demand law [21]. We partition the total resource
utilization using weighted response time ratios as described
in [5].

Figure 3 gives an overview of how the structure of the
resulting PCM performance model looks like. The system
model configuration shows a load balancer which distributes
incoming requests to replicas of the SPECjEnterprise2010
benchmark application which themselves need an emulator
instance and a database instance. A benchmark application
instance refers to a composite component which is located

Figure 5: Experiment setup.

in the component repository. The composite component in
turn consists of component instances, e.g., a SpecAppServlet

component or a PurchaseOrderMDB component. Those com-
ponents reside in the repository as well. The performance
model of the benchmark application consists of 28 compo-
nents whose services are described by 63 RDSEFFs. In total,
51 internal actions, 41 branch actions and four loop actions
have been modeled.

The usage model representing the benchmark workload
has been provided manually. The five benchmark opera-
tions are modeled as individual usage scenarios. Figure 4
shows the usage scenario of benchmark operation Manage in
a notation similar to UML activity diagrams. It consists of
several system calls, two branches with corresponding tran-
sition probabilities and a loop action. The loop iteration
number is given as a probability mass function. For instance,
in the depicted example, with a probability of 55% the loop
body is executed only once, with a probability of 11% the
loop iterates two times. The probabilities of the loop it-
eration numbers are derived from monitoring data. The
remaining four benchmark operations are of similar com-
plexity.

4.3 Experimental Setup
As hardware environment for the experiments, we use six

blade servers from a cluster environment. Each server is
equipped with two Intel Xeon E5430 4-core CPUs running
at 2.66 GHz and 32 GB of main memory. The machines
are connected by a 1 GBit LAN. Figure 5 shows the ex-
periment environment. On top of each machine, we run
Citrix XenServer 5.5 as the virtualization layer. Inside the
XenServer’s VMs, we run the benchmark components (appli-
cation servers, driver agents, emulator, load balancer). Each
component runs in its own VM, initially equipped with 2 vir-
tual CPUs (VCPUs). As operating system, these VMs exe-
cute CentOS 5.3. As Java EE application server, we use the
Oracle Weblogic Server (WLS) 10.3.3. The load balancer is

haproxy 1.4.8 using round-robin as load balancing strategy.
The driver agents are provided by the Faban framework that
is shipped with the benchmark. The database is an Oracle
11g database server instance deployed on a VM with eight
VCPUs on a separate node on Windows Server 2008.

The SPECjEnterprise2010 benchmark application is de-
ployed in a cluster of WLS nodes. For the evaluation, we
considered reconfiguration options concerning the WLS clus-
ter and the VCPUs the VMs are equipped with: WLS nodes
are added to or removed from the WLS cluster, VCPUs are
added to or removed from a VM. These reconfigurations are
applicable at run-time, i.e., can be applied while the bench-
mark application is running. In our experiments, the VMs
(WLS nodes) map to resource type instances in our real-
location algorithm and their VCPUs map to the capacity
parameter. For the latter, we change the amount of VCPUs
of a VM between four and two. These limits were chosen for
technical reasons to ensure that all allocated resources are
dedicated and not shared by several VMs.

4.4 Evaluation
We evaluate our approach in different scenarios presented

in the following.

4.4.1 Adding a New Service
This first scenario is intended to evaluate the results of our

approach when a new service is deployed in the environment
on-the-fly. Assume that there are four services executed in
our environment running on one node with two VCPUs (de-
fault configuration c0). The SLAs of the four currently run-
ning services are as follows: (CreateVehicleEJB, 15, 54ms),
(Purchase, 12.5, 80ms), (Manage, 12.5, 80ms), (Browse, 25,
80ms). This specification follows the same notation as the
more general client workload specifications in Section 3.2.

Service Name

M
e
a
n
 R

e
sp

o
n
se

 T
im

e
 [
s]

0
.0

0
0
.0

2
0
.0

4
0
.0

6
0
.0

8
0
.1

0
0
.1

2

EJB WS Purchase Manage Browse

default configuration (c0)
new service (c0)
after reallocation (c1)

Figure 6: The response times of the five services
and their respective SLAs (denoted by �) before and
after reallocation when adding a new service.

Now a new service with the SLA (CreateVehicleWS, 15,
54ms) is added. To ensure that all SLAs are still maintained
after deployment of the new service, our self-adaptive re-
source allocation mechanism is triggered. The results are
depicted in Figure 6. After adding the new service to the
model, the simulation predicts SLA violations for the ser-

vices CreateVehicleWS and Purchase. Hence, the PUSH-
Phase of the reconfiguration algorithm starts and suggests a
capacity increase by one, hence adds an additional VCPU to
the existing node (configuration c1). After this change, the
simulation indicates satisfied SLAs, hence the algorithm en-
ters the PULL-Phase and tries to reduce the overall amount
of used resources considering all workload classes, but fails
because then the SLAs of CreateVehicleWS and Purchase
are again violated. Therefore, the resulting configuration of
our algorithms consists of one node with three VCPUs.

The above behavior was confirmed in our experiments de-
picted in Figure 6. The measurements show that with the
default resource allocation the SLA for service CreateVehi-
cleWS and Purchase cannot be sustained. However, after
applying the resource allocation proposed by our algorithm,
all SLAs are satisfied.

4.4.2 Workload Growth
In this scenario, we evaluate our approach when increasing

the workload of all services deployed in our environment. We
increase the load in two steps from 2x to 4x and 4x to 6x
(see Figure 7). The standard workload (1x) is the workload
as defined in the previous scenario for all five services.

a) increasing workload from 2x to 4x

M
e

a
n

 R
e

sp
o

n
se

 T
im

e
 [

s]

0
.0

0
0

.1
0

0
.2

0

EJB WS Purchase Manage Browse

2x workload (c1)
4x workload (c1)
4x workload (c2)

b) increasing workload from 4x to 6x

M
e

a
n

 R
e

sp
o

n
se

 T
im

e
 [

s]

0
.0

0
0

.1
0

0
.2

0
0

.3
0

EJB WS Purchase Manage Browse

4x workload (c2)
6x workload (c2)
6x workload (c3)

Figure 7: The response times when changing work-
load from 2x to 4x and 4x to 6x, respectively (SLAs
denoted by �).

Our starting point is that five services are running on one
node with three VCPUs (c1) with twice the standard work-
load and the following SLAs (CreateVehicleEJB, 30, 74ms),
(CreateVehicleWS, 30, 74ms), (Purchase, 25, 130ms), (Man-
age, 25, 130ms), (Browse, 50, 130ms) which are initially
satisfied. Now, we increase the workload to 4x the standard
load. For this new workload, the reallocation algorithm de-
tects a violation of the SLAs and recommends to reallocate
the system resources using two nodes, one with four VCPUs
and one using three VCPUs (c2). Applying this configu-
ration to our benchmark, the SLAs are satisfied. For the

measurement results see Figure 7 a).
In the second step, we increase the workload to 6x the

standard load, not changing the SLAs. Again, this leads to
a violation of the SLAs in our simulation results. Therefore,
we apply our algorithm, finding a new suitable configura-
tion with three nodes, two with four VCPUs and one with
three VCPUs (c3). The experiment results are depicted Fig-
ure 7 b). However, the results show that after reallocation
the SLA of the Browse service is still slightly violated. This
is not due to inaccuracy of our model, but rather due to
scalability problems of the database machine, which is not
powerful enough to handle the new workload while satisfy-
ing the original SLAs. Hence, we are confident that given a
more powerful database, the SLAs would be satisfied. The
way this problem would be addressed in practice would be
to either scale the database or renegotiate the SLAs. As
both solutions can be handled with our online performance
prediction mechanism, we plan to extend our approach with
this solution in the future.

4.4.3 Workload Decrease
This scenario’s purpose is to evaluate our approach in sit-

uations were the workload decreases. The intention is to
release resources that are not utilized efficiently and hence
increase the system efficiency.

Assume the situation that all services are executed with
6x the standard workload on three nodes - a total number
of eleven VCPUs and all SLAs are satisfied (c3). Now, we
decrease the workload to 4x the standard load. For this
change, our approach predicts that two nodes with a total
of seven VCPUs (c4) are sufficient to handle the decreased
workload. The measurement results are depicted in Fig-
ure 8, demonstrating that the recommendation is correct.
One can see that for configuration c4 the average response
time increases, but the SLAs are still satisfied.

M
e
a
n
 R

e
sp

o
n
se

 T
im

e
 [
s]

0
.0

0
0

.0
5

0
.1

0
0
.1

5
0
.2

0

EJB WS Purchase Manage Browse

4x workload (c3)
4x workload (c4)
4x workload (c5)

Figure 8: The response times when executing 4x
workload before and after reconfiguration and with
less resources (SLAs denoted by �).

To verify that resource allocations cannot be further re-
duced while satisfying the SLAs, we further reduced the al-
located resources manually to one node with four VCPUs
(c5). The results for this configuration show that it would
violate the SLAs, hence the previously found configuration
is valid.

Workload

A
ss

ig
n
e
d
 C

a
p
a
ci

ty
 (

V
C

P
U

s)

0
5

1
0

1
5

day1
1x

day2
4x

day3
6x

day4
4x

day5
6x

day6
2x

day7
1x

0
1

2
3

4

static assignment

capacity
servers

A
ss

ig
n
e
d
 S

e
rv

e
rs

Figure 9: Assigned capacity and servers for a work-
load distribution over seven days.

4.4.4 Resource Usage and Efficiency
After evaluating the functionality of our approach, this

section discusses its benefits. Imagine a workload distribu-
tion over seven days like the one depicted in Figure 9. In a
static scenario, one would assign three dedicated servers to
guarantee the SLAs for the peak load. However, with our ap-
proach one can dynamically assign the system resources. In
the static scenario, one would use 7 ·3 = 21 servers, whereas
our approach needs only 1+2+3+2+3+1+1 = 13 servers.
Hence, in such a scenario, only 62% of the resources of the
static assignment are needed and thereby almost 40% of the
resources available can be saved.

4.4.5 Limitations and Future Work
In this paper, we use features of virtualization for reconfig-

uration at runtime. To avoid the effects of shared resources,
in our experiments virtual resources are dedicated and each
VM is executed on a single physical machine to avoid re-
source contention. Nevertheless, we are investigating the
influences of virtualization on system performance to inte-
grate the gained insights into our performance models [9].
Moreover, for the validation, we used an experimental envi-
ronment with homogeneous hardware. We plan to evaluate
our approach on heterogeneous hardware environments in
the future. Also, currently we only consider CPU as the
resource type but our algorithm is designed to support ar-
bitrary resources, e.g., hard disks or network, which we also
plan to evaluate in further experiments.

5. RELATEDWORK
Many related work in terms of resource allocation algo-

rithms which is done offline can be found in the fields of ca-
pacity planning and resource management. In recent years
with virtualization and Cloud Computing also other ap-
proaches on automatic resource management appear. In this
section, we give a brief summary of the latter approaches and
then present some works in more detail.

There has been many research done on the resource allo-
cation problem using techniques like bin packing, multiple
knapsack problems, etc. For dynamic resource allocation,
previous research addresses this problem using linear opti-
mization techniques [13] or non-linear optimization strate-
gies based on simulated annealing [27], fuzzy logic [28], or
others. However, the resource allocation problem in virtu-

alized environments is more complex because of the intro-
duction of virtual resources. Along with the growth of cloud
computing, there have been several approaches on QoS and
resource management at runtime [19, 2, 22, 8, 11]. However,
these approaches are often on a very high level of resource
management and deal with very coarse-grained resource al-
location (e.g. are restricted to only adding/removing VMs)
[22] or focus on different optimization targets, e.g., the profit
[19]. Recently, approaches on adaptation based on virtual-
ized systems have been proposed [10, 24, 25]. Problem of
all the approaches is that their performance predictions are
rather restricted (if any) in terms of the level of detail. The
approaches do either not consider run-time dynamics and
aspects relevant to predicting the performance behavior in
an evolving environment or the presented capacity manage-
ment techniques abstract the platform as a black box.

In [14], algorithms placing virtual machines on physical
servers while attempting to minimize the cost of migration
and maintaining acceptable application performance levels
are presented. This approach focuses on VMs as a whole
and does neither consider the type of service executed in
the VM nor use performance models to predict the impact
of changes in virtualized environments.

Mistral [10] is a resource managing framework with a
multi-level resource allocation algorithm considering simi-
lar reallocation actions: adapt a VM’s CPU capacity, add
or remove a VM, live-migrate a VM between hosts, and
shutdown or restart a host. This approach considers power
consumption, performance and transient costs in its recon-
figuration algorithm. However, the approach is based on
a simple multi-tier application with read-only transactions
and a fixed web tier modeled with a layered queuing network
(LQN), further details are missing. The extensive evaluation
shows promising results, but is restricted to 4 different in-
stances of the RUBiS package, and is not evaluating different
types of services.

Steinder et al. propose an implementation [25] and a place-
ment algorithm [13] for heterogeneous workloads in virtual-
ized environments. Their results demonstrate how virtual-
ization technology can be used to manage the performance
goals of different workloads (emulated by different bench-
marks). However, this approach does not use performance
prediction techniques and hence is a reactive approach.

In [24], a feedback control system consisting of an online
model estimator and a resource controller is presented. The
target of this framework is to dynamically allocate resources
to applications running in a virtualized environment. For
performance prediction, this approach is based on transfer
functions to model the dynamic relationship between a per-
formance metrics and physical control features. Although
the authors show that their model predicts the application
performance accurately, the model is rather coarse-grained.
As reconfiguration options, the authors focus on the hyper-
visor’s cap and disk share parameters. Nevertheless, the
evaluation with RUBiS and TPC-W in combination with a
production-trace-driven workload is promising.

An example for QoS-aware dynamic resource management
on the middleware level is [20]. This approaches uses load-
balancing and middleware techniques (clustering of appli-
cation servers) to ensure QoS in distributed enterprise ap-
plications. Their results show that the presented approach
and its configuration based on monitoring data is suitable to
meet SLAs while optimizing resource utilization. However,

this approach is a purely reactive approach and does not use
any prediction techniques or models.

Also interesting and closely related is the work [26], which
proposes the SLAstic framework. The authors also consider
runtime system reconfiguration by means of performance
models. However, no experimental validation has been pre-
sented so far.

6. CONCLUSIONS
In this paper, we presented a novel approach to self-adap-

tive resource allocation at runtime. We used performance
models to predict the effect of changes in the service work-
loads and the respective system reconfiguration actions. By
using virtualization techniques, we applied these allocation
changes to the SPECjEnterprise2010 benchmark to evaluate
the use of such models for online performance prediction.

The results show that our approach can be applied to
react on changes during runtime to find efficient resource
allocations while satisfying specified SLAs. In an example,
we showed that this approach can save up to 40% of the re-
sources. More important to us is that this case study demon-
strates that architecture-level performance models can be
used effectively at runtime to support self-adaptiveness.

The findings of this case study underline the importance
of further research on engineering of self-aware systems in
virtualized environments. In the future, we plan to extend
our resource allocation with improved heuristics for finding
resource allocations. Moreover, we plan to evaluate our ap-
proach with different resource types. In addition, we intend
to consider the effect of shared resources in virtualized en-
vironments by extending the performance models with vir-
tualization effects [9] and of other physical resources like
network or storage. This future research will be carried out
as part of the Descartes Research Project [16, 7].

7. REFERENCES

[1] S. Becker, H. Koziolek, and R. Reussner. The Palladio
component model for model-driven performance
prediction. Journal of Systems and Software, 2009.

[2] M. N. Bennani and D. Menascé. Resource Allocation
for Autonomic Data Centers using Analytic
Performance Models. In ICAC, 2005.

[3] G. Box and G. Jenkins. Time series analysis:
forecasting and control. Prentice Hall PTR Upper
Saddle River, NJ, USA, 1994.

[4] L. Briand, Y. Labiche, and J. Leduc. Toward the
reverse engineering of uml sequence diagrams for
distributed java software. IEEE TSE, (9), 2006.

[5] F. Brosig, S. Kounev, and K. Krogmann. Automated
Extraction of Palladio Component Models from
Running Enterprise Java Applications. In Proceedings
of ROSSA 2009. ACM, Oct. 2009.

[6] B. H. C. Cheng, R. de Lemos, H. Giese, P. Inverardi,
and J. Magee. Software Engineering for Self-Adaptive
Systems: A Research Roadmap. In Software
Engineering for Self-Adaptive Systems, 2009.

[7] Descartes Research Group.
http://www.descartes-research.net, December 2010.

[8] S. Ferretti, V. Ghini, F. Panzieri, M. Pellegrini, and
E. Turrini. QoS-aware Clouds. In IEEE Computer
Society Press Cloud 2010, 2010.

[9] N. Huber, M. von Quast, F. Brosig, and S. Kounev.
Analysis of the Performance-Influencing Factors of
Virtualization Platforms. In DOA’10, 2010.

[10] G. Jung, M. Hiltunen, K. Joshi, R. Schlichting, and
C. Pu. Mistral: Dynamically Managing Power,
Performance, and Adaptation Cost in Cloud
Infrastructures. In ICDCS, 2010.

[11] G. Jung, K. Joshi, M. Hiltunen, R. Schlichting, and
C. Pu. Generating adaptation policies for multi-tier
applications in consolidated server environments. In
ICAC, 2008.

[12] T. Kappler, H. Koziolek, K. Krogmann, and R. H.
Reussner. Towards Automatic Construction of
Reusable Prediction Models for Component-Based
Performance Engineering. In Software Engineering
2008, Munich, Germany.

[13] A. Karve, T. Kimbrel, G. Pacifici, M. Spreitzer,
M. Steinder, M. Sviridenko, and A. Tantawi. Dynamic
placement for clustered web applications. In
International Conference on World Wide Web, 2006.

[14] G. Khanna, K. Beaty, G. Kar, and A. Kochut.
Application performance management in virtualized
server environments. In Network Operations and
Management Symposium, 2006. NOMS 2006. 10th
IEEE/IFIP, pages 373–381. IEEE, 2006.

[15] S. Kounev. Performance Modeling and Evaluation of
Distributed Component-Based Systems Using
Queueing Petri Nets. IEEE TSE, (7), July 2006.

[16] S. Kounev, F. Brosig, N. Huber, and R. Reussner.
Towards self-aware performance and resource
management in modern service-oriented systems. In
Proc. of IEEE SCC, 2010.

[17] S. Kounev and A. Buchmann. Performance Modeling
and Evaluation of Large-Scale J2EE Applications. In
Proceedings of Intl. CMG Conference 2003, 2003.

[18] H. Koziolek. Performance evaluation of
component-based software systems: A survey.

Performance Evaluation, August 2009.

[19] J. Li, J. Chinneck, M. Woodside, M. Litoiu, and
G. Iszlai. Performance model driven QoS guarantees
and optimization in clouds. In CLOUD ’09,
Washington, DC, USA, 2009. IEEE.

[20] G. Lodi, F. Panzieri, D. Rossi, and E. Turrini.
SLA-driven clustering of QoS-aware application
servers. IEEE TSE, 2007.

[21] D. A. Menascé, V. A. F. Almeida, and L. W. Dowdy.
Capacity Planning and Performance Modeling˜- From
Mainframes to Client-Server Systems. Prentice Hall,
Englewood Cliffs, NG, 1994.

[22] J.-M. Menaud, H. Nguyen Van, and F. Dang Tran.
Performance and Power Management for Cloud
Infrastructures. In IEEE Cloud 2010, 2010.

[23] Object Management Group (OMG). UML SPT, v1.1
(January 2005) and UML MARTE (May 2006).

[24] P. Padala, K.-Y. Hou, K. G. Shin, X. Zhu, M. Uysal,
Z. Wang, S. Singhal, and A. Merchant. Automated
control of multiple virtualized resources. In
Proceedings of EuroSys ’09. ACM, 2009.

[25] M. Steinder, I. Whalley, D. Carrera, I. Gaweda, and
D. Chess. Server virtualization in autonomic
management of heterogeneous workloads. In Integrated
Network Management, 2007. IM ’07. 10th IFIP/IEEE
International Symposium on, pages 139–148, 2007.

[26] A. van Hoorn, M. Rohr, A. Gul, and W. Hasselbring.
An adaptation framework enabling resource-efficient
operation of software systems. In Proc. of Warm Up
Workshop for ICSE 2010.

[27] X. Wang, D. Lan, G. Wang, X. Fang, M. Ye, Y. Chen,
and Q. Wang. Appliance-based autonomic
provisioning framework for virtualized outsourcing
data centre. In ICAC 2007.

[28] J. Xu, M. Zhao, J. Fortes, R. Carpenter, and
M. Yousif. On the use of fuzzy modeling in virtualized
data center management. In ICAC 2007.

