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Abstract—Modern virtualized system environments usually
host diverse applications of different parties and aim at utilizing
resources efficiently while ensuring that quality-of-service re-
quirements are continuously satisfied. In such scenarios, complex
adaptations to changes in the system environment are still
largely performed manually by humans. Over the past decade,
autonomic self-adaptation techniques aiming to minimize human
intervention have become increasingly popular. However, given
that adaptation processes are usually highly system specific,
it is a challenge to abstract from system details enabling the
reuse of adaptation strategies. In this paper, we propose a novel
modeling language (meta-model) providing means to describe
system adaptation processes at the system architecture level in
a generic, human-understandable and reusable way. We apply
our approach to three different realistic contexts (dynamic
resource allocation, software architecture optimization, and run-
time adaptation planning) showing how the gap between complex
manual adaptations and their autonomous execution can be
closed by using a holistic model-based approach.

I. INTRODUCTION

Today’s software systems are increasingly flexible and dy-
namic providing means to react quickly on changes in the en-
vironment and to adapt the system configuration accordingly,
in order to maintain the required quality-of-service (QoS).
For example, the main reason for the increasing adoption of
Cloud Computing is that it promises significant cost savings,
by providing access to data center resources on demand over
the network, in an elastic and cost-efficient manner. Industry’s
most common approach for automatic run-time adaptation of
dynamic systems, such as in Amazon EC2 or Windows Azure,
is using rule-based adaptation mechanisms. More complex
adaptations like resource-efficient server consolidation are still
largely performed manually. However, the increasing complex-
ity of system adaptations and the rising frequency at which
they are required, render human intervention prohibitive and
increase the need for automatic and autonomous approaches.

With the growth of autonomic computing and self-adaptive
systems engineering, many novel approaches address the chal-
lenge of building autonomic and self-adaptive systems with
considerable success. However, such systems nowadays do
not separate the software design and implementation from
the system adaptation logic, i.e., they are typically based on
highly system-specific adaptation techniques hard-coded in the
system’s implementation.

Hence, many researchers agree in [1] that a remaining
major challenge in engineering self-adaptive systems is the

development of novel modeling formalisms, allowing to de-
scribe and perform self-adaptation and reconfiguration in a
generic, human-understandable and reusable way. To reduce
the amount of human intervention required in run-time system
adaptations, detailed models abstracting the system architec-
ture, its execution environment and its configuration space,
as well as models describing the implemented adaptation
processes are needed [2].

Self-adaptation approaches based on architectural models
have been proposed before (e.g., [3], [4], [5]). However, such
approaches concentrate on modeling the system’s software
architecture and in general, knowledge about adapting the
architecture is still captured within system-specific adaptation
processes and not as part of the software architecture models.

In this paper, we present a novel domain-specific language,
called S/T/A (Strategies/Tactics/Actions), providing means
to describe run-time system adaptation in component-based
system architectures based on architecture-level system QoS
models. The latter describe the QoS-relevant components of
the system and reflect the QoS properties of the system
architecture that must be taken into account when adapting the
system at run-time. Architecture-level system QoS models in-
clude as part of them an adaptation space model which defines
the space of valid system configurations, i.e., the boundaries
within which run-time adaptations may be performed. We
use the S/T/A meta-model presented in this paper on top
of architecture-level system QoS models to describe system
adaptation processes at the architecture level, in a generic,
human-understandable, and reusable way.

Our approach has several important advantages: First, it
distinguishes high-level adaptation objectives (strategies) from
low-level implementation details (adaptation tactics and ac-
tions), explicitly separating platform adaptation operations
from system adaptation plans. We argue that separating these
concerns has the benefit that system designers can describe
their knowledge about system adaptation operations, indepen-
dently of how these operations are used in specific adaptation
scenarios. Similarly, the knowledge of system administrators
about how to adapt the system is captured in an intuitive
and easy to use S/T/A model instance, as opposed to a
system-specific adaptation language or process hard-coded in
the system implementation. Second, given the fact that the
knowledge about system adaptations is described using a meta-
model with explicitly defined semantics, this knowledge is



machine-processable and can thus be easily maintained and
reused in common adaptation processes in dynamic systems
like cloud environments.

The contributions of the paper are: i) An approach for
separating system adaptation processes into technical and
logical aspects by using architecture-level system QoS models
to abstract technical aspects and our adaptation language to
abstract logical aspects. ii) A general purpose meta-model
(S/T/A) for describing the logical aspects of system adaptation
processes in a generic way. The meta-model is capable of mod-
eling (self-)adaptation described either as simple workflows
based on conditional expressions or as complex heuristics
considering uncertainty. It provides a set of intuitive and easy
to use concepts that can be employed by system architects
and software developers to describe adaptation processes as
part of system architecture models. iii) An example for adapt-
ing dynamic systems using our models as input. It applies
meta-modeling techniques end-to-end, i.e., from the system
architecture up to the high-level system adaptation plans. iv)
An evaluation of our approach in three representative scenarios
each using a different type of architecture-level system QoS
model. The evaluation shows how our adaptation language can
be used for dynamic resource allocation, software architecture
optimization, and adaptation planning, demonstrating its gen-
eral applicability, flexibility and usability at run-time.

The rest of the paper is structured as follows: In Section II,
we present our modeling approach and the proposed adaptation
language which is illustrated with examples. In Section III,
we evaluate our approach in three different representative
application scenarios. Section IV gives an overview of related
work and finally Section V concludes the paper and outlines
our planned future work.

II. MODELING SYSTEM ADAPTATION

In the context of dynamic system adaptation, we distinguish
between technical view and logical view. The technical view
describes in detail the exact architecture of the system, what
parts of the system can be adapted at run-time. We capture
such information in architecture-level system QoS model. The
logical view describes the adaptation process which keeps
the system in a desired state. This is modeled by the S/T/A
adaptation language. Figure 1 depicts the connection between
the technical and logical view of the system.

A. Modeling System Architecture and Adaptation Space

One important benefit of this approach and a major differ-
ence to others is the explicit separation of the architecture-
level system QoS model into two sub-models, namely system
architecture sub-model and adaptation space sub-model.

The system architecture sub-model reflects the system from
the architectural point of view. Within adaptation processes, it
can be used to analyze and evaluate QoS metrics for different
configurations of the system, i.e., the model is typically used
to predict the impact of possible system adaptations on the sys-
tem QoS. Examples of suitable architecture-level QoS models
are the Palladio Component Model (PCM) [6] or the Descartes

Meta-Model (DMM) [7] considered in this paper, or other
component-based performance models as surveyed in [8].
These models have in common that they contain a detailed
description of the system architecture in a component-oriented
fashion, parameterized to explicitly capture the influences of
the component execution context, e.g., the workload and the
hardware environment.

The adaptation space sub-model describes the degrees of
freedom of the system architecture in the context of the system
architecture sub-model, i.e., the points where the system
architecture can be adapted. Thereby, this sub-model reflects
the boundaries of the system’s configuration space, i.e., it
defines the possible valid states of the system architecture.

The adaptation points at the model level correspond to the
operations executable on the real system at run-time, e.g.,
adding virtual CPUs to VMs, migrating VMs or software com-
ponents, or load-balancing requests. Examples of such sub-
models are the Degree-of-Freedom Meta-Model [9] for PCM
or the Adaptation Points Meta-Model which is an integral
part of DMM. Having explicit adaptation space sub-models is
essential to decouple the knowledge of the logical aspects of
the system adaptation from technical aspects. One can specify
adaptation options based on their knowledge of the system
architecture and the adaptation actions they have implemented
in a manner independent of the high-level adaptation processes
and adaptation plans. Furthermore, by using an explicit adap-
tation space sub-model, adaptation is forced to stay within
the boundaries specified by the model. The use of explicit
adaptation space sub-models is an important distinction of
our approach from other (self-)adaptive approaches based
on architecture models [4], [3]. Such approaches typically
integrate the knowledge about the adaptation options and
hence, the possible system states, in the operations and tactics,
i.e., at the logical level.

Finally, it is important to mention that architecture-level sys-
tem QoS models are capable of reflecting much more details
of the data center environment and software architecture than
classical system architecture models (e.g., as used in [4]). The
main resulting benefit is that we have more information about
the system, thus being able to make better adaptation decisions
and having more flexibility for adapting the model and real
system, respectively.

B. Example: Dynamic Resource Allocation

In [10], we presented an algorithm for dynamic resource
allocation in virtualized environments. This algorithm is cur-
rently implemented in Java. It is highly system-specific, un-
intuitive and difficult to maintain and reuse. We use this
algorithm throughout this paper as a running example to
illustrate the concepts of our adaptation language in Sec. II-C
and as one of the evaluation scenarios in Sec. III.

The algorithm uses an architecture-level system QoS model
we already developed and successfully applied for finding
a system configuration that maintains given Service Level
Agreements (SLA) while using as little resources as possible.
The algorithm consists of two phases, a PUSH and a PULL
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Fig. 1. Interaction of the system, the system models and the S/T/A adaptation language.

phase. The PUSH phase is triggered by SLA violations ob-
served in the real system. The PULL phase is either triggered
after the PUSH phase or by a scheduled resource optimization
event. In the first step of the PUSH phase, the algorithm
uses the system architecture sub-model to estimate how much
additional resources are needed to maintain SLAs, based on
the current system state. Then, it increases the resources in
the model up to this estimation. These steps are repeated
until the predicted QoS fulfills the SLAs. Resources can be
increased by either adding a virtual CPU (vCPU) to a virtual
machine (VM) – in case additional cores are available – or by
starting additional VMs running application servers and adding
them to the application server cluster. In the PULL phase, the
algorithm uses the system architecture sub-model to estimate
how much resources can be released without breaking SLAs.
The amount of allocated resources are reduced stepwise by
removing vCPUs from VMs and removing whole VMs from
the application server cluster when their number of allocated
vCPUs reaches zero. At each step, the system architecture sub-
model is used to predict the effect of the system adaptation.
If an SLA violation is predicted, the previous adaptation step
is undone and the algorithm terminates. After the algorithm
terminates successfully, the operations executed on the model
are replayed on the real system. A more detailed description of
this algorithm and its execution environment is given in [10].

C. S/T/A Meta-Model

Our S/T/A adaptation language consists of three major in-
teracting concepts: Strategy, Tactic, and Action. Each concept
resides on a different level of abstraction of the adaptation
steps. At the top level are the strategies where each strategy
aims to achieve a given high-level objective. A strategy uses
one or more tactics to achieve its objective. Tactics execute
actions, which implement the actual adaptation operations on
the system model or on the real system, respectively.

In this work, we use the terms strategy, tactic, and action as
follows. A strategy captures the logical aspect of planning an
adaptation. A strategy defines the objective that needs to be
accomplished and conveys an idea for achieving it. A strategy
can be a complex, multi-layered plan for accomplishing the

objective. However, which step is taken next will depend on
the current state of the system. Thus, in the beginning, the
sequence of applied tactics is unknown, allowing for flexibility
to react in unforeseen situations. For example, a defensive
strategy in the PUSH phase of our running example could
be ”add as few resources as possible stepwise until response
time violations are resolved”, whereas an aggressive strategy
would be ”add a large amount of resources in one step so
that response time violations are eliminated, ignoring resource
efficiency”.

Tactics are the essential part of strategies. They are the
technical aspect that follows the planning. Tactics are the
part that actually execute the adaptation actions. Therefore,
tactics specifically refer to actions. In the strategy phase of
a plan, one thinks about how to act, i.e., one decides what
tactics can be employed to fulfill the strategy’s objective
depending on the current system state. However, in contrast
to strategies, tactics specify precisely which actions to take
without explicitly considering their effect which is done at
the strategy level. A possible tactic of adding resources in
our running example could be ”if possible, add another vCPU
to a VM, otherwise, request another application server”. An
important property of tactics is their transaction-like semantic.
We define tactics as: i) atomic, i.e., either the whole tactic with
all its contained actions is executed or the tactic must be rolled
back, ii) consistent, i.e., the model’s and system’s state must
be consistent after applying a tactic, and iii) deterministic, i.e.,
tactics have the same output if applied on the same system
state. This transaction-like behavior is important because after
applying a tactic at the model level, the effect of the performed
adaptation is evaluated by analyzing the QoS model, i.e.,
several actions can be executed at once without having to
analyze the model after each action. This can save costly
model analysis time which is crucial at run-time. Furthermore,
applying tactics at the model level before applying them to
the real system has the advantage that we can test their effect
when applied as a whole without actually changing the system.
Thereby, it is always possible to jump back to the state before
starting to apply the tactic in case an error is detected saving
costly executions of roll-back operations on the system.



The distinction of these three abstraction levels can be found
in other approaches too, e.g., in [11] or [5], however, with
limited expressiveness (cf. Section IV). In contrast to existing
approaches, we propose a generic meta-model explicitly defin-
ing a set of modeling abstractions to describe strategies, tactics
and actions with the flexibility to model the full spectrum of
self-adaptive mechanisms. In the following, we describe the
concepts of the proposed meta-model as depicted in Figure 2.

1) Action: Actions are the atomic elements on the lowest
level of the adaptation language’s hierarchy. They execute an
adaptation operation on the model or the real system, respec-
tively. Actions can refer to Parameter entities specifying a
set of input and output parameters. A parameter is specified
by its name and type. Parameters can be used to customize
the action, e.g., to specify the source and target of a migration
action or use return values of executed actions as arguments
for subsequent actions.

Example: Figure 3 shows the four actions we modeled
in our dynamic resource allocation algorithm. The actions
addVCPU and addAppServer increase the resources used
by the system, either by adding a vCPU to a VM (addVCPU)
or by adding a new VM running an application server to
the application server cluster (addAppServer). Similarly,
removeVCPU and removeAppServer can be used to
remove resources. These actions do not implement the logic of
the operation, they are simply references to adaptation points
defined in the respective architecture-level system QoS model,
i.e., DMM instance in this case. On the model level, actions
are implemented by the framework using the models. On the
system level, the virtualization layer executes the respective
operations on the real system.

2) Tactic: A Tactic specifies a AdaptationPlan
with the purpose to adapt the system in a specific direc-
tion, e.g, to scale-up resources. The AdaptationPlan
describes how the tactic pursues this purpose, i.e., in
which order it applies actions to adapt the system. More
specifically, each AdaptationPlan contains a set of
AbstractControlFlowElements. The order of these
control flow elements is determined by their predecessor/suc-
cessor relations.

Implementations of the AbstractControlFlowElement
are Start and Stop as well as Loop and Branch. The
purpose of these abstract control flow elements is to describe
the control flow of the adaptation plan. For example, each
Branch has an attribute condition which contains a
condition directly influencing the control flow, e.g., by
evaluating monitoring data, the system/model state or OCL
expressions. Tactics can refer to Parameter entities to
specify input or output parameters. These parameters can be
evaluated to influence the control flow, e.g., by specifying
iteration counts. Actions are integrated into the control flow
by the ActionReference entity.

Example: In Figure 3, we show the three tactics
specified for the running example based on the previ-
ously presented actions. These tactics are addResources,
removeResources, and undoPreviousAction. The

first two tactics are used to scale the system up or down, the
third tactic can be applied to undo a previous action.

The adaptation plan of the tactic addResources imple-
ments a Loop action executed as many times as specified in
#iterations, which is an input parameter to this tactic.
With this parameter one can specify how many resources
should be added by executing the tactic. The adaptation
plan of the tactic chooses which resource type to add. This
is an example for separating technical from logical details.
The adaptation plan in the Loop action implements two
actions, addVCPU and addAppServer. Which action is
executed depends on the current system state. If there is no
possibility to add a vCPU (determined by an OCL expression
AllServersAtMaxCap), an application server is added.

The adaptation plan of the tactic removeResources ei-
ther removes an application server VM if there is a server run-
ning at minimum capacity (determined using an OCL expres-
sion ServerAtMinCapExists) or removes a vCPU from
an application server VM. The undoPreviousAction
tactic can be used in cases where the previous adaptation step
must be undone.

<<Tactic>>
removeResources

<<Action
Reference>>
removeVCPU

FALSETRUE

ServerAtMinCapExists

<<Action
Reference>>

removeAppServer

<<Tactic>>
undoPreviousAction

<<Action
Reference>>
addVCPU

FALSETRUE

PrevActionAddServer

<<Action
Reference>>
addAppServer

<<Tactic>>
addResources

<<Loop>>
counter=#iterations

<<ActionReference>>
addAppServer

FALSE

TRUE

<<ActionReference>>
addVCPU

AllServersAtMaxCap

Fig. 3. Actions and tactics for the running example.

3) Strategy: The purpose of a Strategy is to achieve
a high-level Objective. The objective of a strategy is
part of the OverallGoal specified, e.g., by the system
administrator. For example, an objective can be described
with goal policies or utility function policies. One could also
use any other type of description that can be automatically
checked by analyzing the model or monitoring data from the
real system (e.g., based on MAMBA [12]). Note that it is
explicitly allowed to have multiple alternative strategies with
the same objective because strategies might differ in their
implementation.

The execution of a strategy is triggered by a specific Event
that occurs during system operation, e.g., when an SLA is
violated or a adaptation to increase efficiency is scheduled.
Such an event triggers the execution of the respective strategy
with the target to ensure that the objective of the strategy
is achieved. In our approach, events can trigger only one
strategy. We assume that events occur sequentially to avoid
concurrency effects, e.g., two strategies operating at the same
time but with a conflicting objective. However, we do not
exclude situations where there are conflicting objectives. Such
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cases can be handled using strategies with objectives modeled
as utility function policies [11]. The respective strategy in such
a situation would try to apply tactics such that the objective
of the utility function is achieved.

To achieve its objective, a strategy uses a set of
WeightedTactics. A WeightedTactic is a decorator
for a Tactic. Weights are assigned according to the strat-
egy’s WeightingFunction. The strategy uses the weight
to determine which tactic to apply next. The weight depends
on the current state of the system, i.e., the weights can change
if the state of the system changes. Hence, the strategy might
choose a different tactic in the next adaptation step. Formally,
assume

T = {t1, t2, ..., tm} is the set of tactics and,
S = {s1, s2, ..., sn} is the set of all possible system

states.
Then one can think of a mapping WT ∈ [T×S → [0, 1] ⊆ R]
that assigns a weight to the given tactic t ∈ T in the
system state s ∈ S. It is not part of this work and it is
intentionally left open to actually specify this mapping in
more detail. The idea is to use existing and well-established
optimization algorithms or meta-heuristics to determine the
weights depending on the current state of the system possibly
also considering its previous states stored in a trace. The use of
weighted tactics introduces a certain amount of indeterminism
at this abstraction level. Having this indeterminism at the
strategy level provides flexibility to find new solutions if a
tactic turns out to be inappropriate for the current system state.

Example: Figure 4 depicts the two strategies of the algo-
rithm in our running example, PUSH and PULL, with the
objective to improve response times to maintain SLAs, and
to ensure efficient resource usage, respectively. The PUSH
strategy uses only one tactic, namely addResources, and
is triggered by the SlaViolated event. After the tactic has
been successfully applied at the model level, the architecture-
level system QoS model is analyzed to predict the impact

on the system’s QoS properties. If the prediction results still
reveal SLA violations, the strategy executes the tactic again
until all SLA violations are resolved and the strategy has
reached its objective. Determining the weight for the PUSH
tactic in this scenario is straightforward as it is always 1.0
because no other tactics are defined as part of the strategy.

<<Strategy>>
PULL

(Decrease Resources)

<<WeightedTactic>>
removeResources

<<WeightedTactic>>
undoPreviousAction

p=1.0 p=0.0

<<Strategy>>
PUSH

(Increase Resources)

<<WeightedTactic>>
addResources

p=1.0

<<Event>>
SlaViolated

<<Objective>>
MaintainSLAs

<<Event>>
Scheduled

Optimization

<<Objective>>
OptimizeResourceEfficiency

<<OverallGoal>>
Maintain SLAs using as 

little resources as possible

objective objective

hasObjectives hasObjectives

Fig. 4. Strategies using tactics and assigning weights.

The PULL strategy is triggered with the objective to
OptimizeResourceEfficiency, either based on a pre-
defined schedule or directly after the PUSH phase. The PULL
strategy has a tactic to reduce the amount of used resources
(removeResources). Again, after the execution of the
tactic, the model is analyzed to predict the effect of the tactic
on the system performance. If no SLA violation is detected,
the strategy can continue removing resources. In case an
SLA violation occurs, the last adaptation must be undone,
which is implemented by the undoPreviousAction tactic.
Which of these two tactics is chosen is determined based on
their weights. An example scenario of how to use weights is
described in the next section.

III. EVALUATION

We evaluate our presented adaptation language in three dis-
tinct representative scenarios to demonstrate that it provides a
generic and flexible formalism for modeling system adaptation
based on different architecture-level system QoS models. The



first and third scenario demonstrate the generality and flexi-
bility of our S/T/A adaptation language by applying it in the
context of dynamic resource allocation and run-time capacity
management. The second scenario demonstrates that the S/T/A
adaptation language can produce useful solutions in reasonable
amount of time by evaluating its usability in a framework for
multi-objective software architecture optimization. Finally, the
third scenario gives an example for decoupling the adaptation
process by using S/T/A model instances as adaptation plans.

A. Dynamic Resource Allocation

Figure 5 shows the results of one of our experiments
using the models of our running example to manage resource
allocations in a virtualized environment. The chart shows how
the number of application servers and the allocated vCPUs
change in the real system as the workload changes during
system operation over a period of one week. This demonstrates
how we can apply the adaptation language using the Descartes
Meta-Model to dynamically allocate resources at run-time in
a virtualized system. The advantage is that the hard-coded
logic of the algorithm is now encoded in a generic model
which is intuitive for software architects and can be easily
maintained, modified or reused. Since we abstract the actual
changes applied to the model and the real system as actions,
the modeled dynamic resource allocation algorithm can also
be reused in a different virtualized environment, e.g., based
on a different virtualization platform.
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Fig. 5. Dynamic resource allocations using the modeled algorithm.

B. Simulating S/T/A Adaptation

In this scenario, we integrate our approach into a framework
for improving software architectures by automatically trading-
off different design decisions, called PerOpteryx [13]. Thereby,
we show that our approach can find a suitable system con-
figuration within a reasonable amount of time. This scenario
also shows that our adaptation language can be applied to a
different architecture-level system QoS model (PCM [6]).

For a given architecture-level system QoS model, Per-
Opteryx searches the space of possible configurations for
candidates that fit given objectives. PerOpteryx starts from an
initial system configuration modeled with PCM and generates
new candidates according to the adaptation space sub-model.
These new candidates are evaluated w.r.t. the given objectives
and a new iteration starts with half of the best fitting candi-
dates.

2 4 6 8 10

10
00

15
00

20
00

25
00

Response Time [s]

C
os

t
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Threshold [5.0s]

Initial CandidateS/T/A solution

Fig. 6. Pareto optimal candidates found by PerOpteryx (O) and candidates
found when S/T/A is applied to guide the search process (∗).

In this scenario, we implemented a strategy and a set
of tactics to focus the generation of candidates (i.e., sys-
tem configurations) within PerOpteryx to find a candidate
that fulfills the objective of the strategy as quickly as pos-
sible. For our experiments, we use the same models and
settings as in the Business Reporting System case study
used in [13] to evaluate PerOpteryx. The output after 100
iterations with a population of 60 is a set of Pareto-optimal
candidates marked by O in Figure 6. In our scenario, we
assume that the response time of the initial candidate (8.4
seconds) violates an SLA which must guarantee response
times below five seconds. This triggers our implemented
strategy with the objective to adapt the system such that
the response time is below five seconds. The strategy can
choose from the set of tactics T = {IncreaseResource,
LoopIncreaseResource, BalanceLoad}. Due to space
constraints, we omit a detailed depiction of the respec-
tive S/T/A model. The IncreaseResource tactic im-
plements one action, increasing the CPU capacity of the
server with the highest utilization by 10% w.r.t. its initial
capacity. LoopIncreaseResource implements the same
action but within a loop action repeating the increaseCPU
action as often as specified by the loops counter parameter.
BalanceLoad migrates a software component from the
server with the highest utilization to the server with the lowest.

For the initial system state s0 ∈ S, we set the weights
for the three tactics to wt0 = (1.0, 0.0, 0.0). We then use
the PerOpteryx framework to execute our strategy. The final
resulting candidate, i.e., system configuration, of this process
is depicted by a ∗ symbol in Figure 6.

As we can see, the configuration found using the S/T/A
model is not globally optimal. However, it fulfills the given
target and was found within eight iterations. The standard
evolutionary search of PerOpteryx provides the first SLA-
fulfilling candidate after ten iterations. Thus, using S/T/A
models can speed-up the process to find a close to optimal
solution. Furthermore, five out of the eight iterations using an
S/T/A model executed the LoopIncreaseResource tactic
which executes two nested adaptation actions. This results in
saving five (out of thirteen) model evaluations that would have
been necessary without S/T/A, thereby saving costly analysis
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replicateComponent

input
component:AssemblyComponent

output
component:DeploymentComponent

to:ExecutionContainer
<<Action>>

dereplicateComponent
input

component:DeploymentComponent

Fig. 7. Actions of the online capacity management scenario.

time.
We emphasize that the contribution of this paper is not a new

optimization algorithm. Instead, our goal in this scenario is to
focus system optimization such that a system configuration
that fulfills a given set of objectives is found as quickly as
possible. This system configuration must not necessarily be
globally optimal.

However, the evaluation results demonstrate that with the
knowledge about the system adaptation strategies modeled
using our adaptation language, it is possible to find suitable
candidates within a shorter amount of time reasonable for run-
time system adaptation.

C. S/T/A Adaptation Plans

This section demonstrates how we use the S/T/A approach
in the SLAstic framework for architecture-based online ca-
pacity management [14], [15]. SLAstic aims to increase the
resource efficiency of distributed component-based software
systems employing architectural run-time adaptations. SLAstic
also relies on architectural models describing a system’s QoS-
relevant aspects and adaptation capabilities. SLAstic’s purpose
is to determine required adaptations proactively, in order
to calculate and execute appropriate adaptation plans. In
this scenario, we show that our approach can be used as a
language to specify and execute architectural adaptation plans,
in order to bring a real or simulated system from a current to
a desired configuration using adaptation plans. This section
presents some of our results of a lab experiment, employing
SLAstic to control the capacity of a software system deployed
to an Eucalyptus-based IaaS cloud environment, which is
compatible with the Amazon Web Services (AWS) API.

The five S/T/A actions depicted in Figure 7 correspond to
the set of architectural run-time adaptation operations currently
supported by the SLAstic framework: allocate and deallocate
(typed) execution containers (i.e., physical or virtual servers),
as well as migrate, replicate, and dereplicate a given soft-
ware component to or, respectively, from a given execution
container. Input parameters refer to types from the SLAstic
meta-model. Note that these actions are the same regardless
of whether SLAstic is connected to an IaaS environment
or, for example, to a simulator for run-time adaptable PCM
instances [15]. In the cloud scenario, a adaptation manager
receives pre-calculated S/T/A AdaptationPlans and exe-
cutes them by interacting with the AWS API and the allocated
nodes according to the actions specified in Figure 7.
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Fig. 8. Online capacity management executing S/T/A adaptation plans.

In our evaluation, we expose a Java-based application (JPet-
Store 5.0) to a probabilistic workload with varying intensity
based on a 24-hour workload profile obtained from an indus-
trial system. The profile was scaled to an experiment duration
of 24 minutes plus 2 minutes cooldown. In this setting, we
made the assumption that we have a good understanding of
the correlation between application-level workload intensity –
in this case, the number of requests to a software component
per minute – and the CPU utilization. For each software
component, we defined a rule set specifying the number
of component instances to be provided at certain workload
intensity levels, e.g., five instances in periods with a workload
intensity of 27, 000 requests per minute. Deviations between
the number of component instances specified in the rule set and
the number of instances actually allocated, trigger the adapta-
tion planner to create an S/T/A AdaptationPlan with the
goal to achieve the requested architectural configuration. This
plan is then sent to the adaptation manager for execution.

The experiment was executed with and without adaptation
being enabled. In the latter scenario, a fix number of 6 nodes
was allocated throughout the entire experiment. Figure 8
shows the measured CPU utilization and the varying number
of allocated nodes with adaptation enabled. The number of
allocated nodes varies between 1 and 6. Comparing the results
of both settings, the average CPU utilization increased with
adaptation enabled, while (average) response times were very
similar (5 ms measured at the application’s entry points).

This scenario demonstrates the generic applicability of our
adaptation language. Furthermore, we show that it is possi-
ble to exchange pre-calculated adaptation plans between the
planning and executing parties to achieve a desired system
configuration in a cloud scenario.

IV. RELATED WORK

In this section, we discuss the abstraction level employed by
other approaches, compare our approach to related languages
for defining adaptation (control flow), and other options to
express the adaptation space of software architecture models.

Architectural models provide common means to abstract
from the system details and analyze system properties. Such



models have been used for self-adaptive software before, e.g.,
in [3], [4], however, existing approaches do not explicitly
capture the degrees of freedom of the system configuration
as part of the models. The three-level abstraction of adap-
tation processes can be found in other approaches too, e.g.,
in [11] to specify policy types for autonomic computing or
especially in [5], defining an ontology of tactics, strategies and
operations to describe self-adaptation. However, to the best of
our knowledge, none of the existing approaches separates the
specification of the models at the three levels. By separating
the knowledge about the adaptation process and encapsulating
it in different sub-models, we can reuse this knowledge in
other self-adaptive systems.

In [16], Cheng introduces Stitch, a programming language-
like notation for using strategies and tactics. However, strate-
gies refer to tactics in a strictly deterministic, process-oriented
fashion. Therefore, the knowledge about system adaptation
specified with Stitch is still application specific, making it
difficult to adapt in situations of uncertainty. Other languages
like Service Activity Schemas (SAS) [17] or the Business
Process Execution Language (BPEL) [18]) are very domain
specific and also describe adaptation processes with pre-
defined control flows. Moreover, because of their focus on
modeling business processes, these approaches are not able
to model the full spectrum of self-adaptive mechanisms from
conditional expressions to algorithms and heuristics.

For modeling the adaptation space of a software archi-
tecture, we use PCM’s Degree-of-Freedom Meta-Model [9]
or the Adaptation Points Meta-Model which is an integral
part of DMM [7], allowing to capture different types of
adaptation changes, e.g., to add vCPUs, to add servers, and
to exchange software components, in a single model. In the
area of automated software architecture improvement, most
existing approaches use a fixed representation of the adaptation
space and thus do not allow to freely model an adaptation
space. Two notable exceptions are PETUT-MOO and the
Generic Design Space Exploration Framework (GDSE). The
PETUT-MOO approach [19] uses model transformations to
describe changes in the configuration of software architectures.
However, this idea has not been followed up in later works of
the authors, which focuses on architecture optimization and
does not describe adaptation space in detail.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we presented our novel S/T/A meta-model
for describing system adaptation in component-based system
architectures. Our approach is based on architecture-level
system QoS models, on the one hand, and the S/T/A model, on
the other hand, separating the knowledge about possible adap-
tation steps from the actual adaptation plans. This separation
allows to explicitly model adaptation processes in an intuitive
and at the same time machine-readable manner enabling the
reuse of plans in different autonomic or self-adaptive systems.

In an extensive evaluation, we applied our approach in
three distinctive and representative scenarios using different

architecture-level system QoS models. Thereby, we demon-
strated the use of the proposed adaptation language to model
dynamic resource allocation algorithms, online capacity plan-
ning and design-time system optimization. We showed how
our S/T/A models interact with the underlying system models
and how they improve system adaptation by focussing the
search for suitable configurations and reducing the number
of costly evaluations. Finally, we showed how S/T/A can be
used as an intermediate language by adaptation planners or
agents. Overall, our developed approach showed how the gap
between complex system adaptations and self-adaptation at
run-time can be closed.

In our future work, we plan to extend our framework such
that it can be used by third parties in further scenarios. More-
over, we are working on graphical editors to ease modeling
adaptation processes with S/T/A.
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