
Model-based Autonomic and Performance-aware
System Adaptation in Heterogeneous Resource

Environments: A Case Study
Nikolaus Huber ∗, Jürgen Walter ∗, Manuel Bähr †, Samuel Kounev ∗

∗ University of Würzburg, Chair of Software Engineering, 97074 Würzburg, Germany
nikolaus.huber@uni-wuerzburg.de, juergen.walter@uni-wuerzburg.de, samuel.kounev@uni-wuerzburg.de

† Blue Yonder GmbH & Co. KG., 76139 Karlsruhe, Germany, manuel.baehr@blue-yonder.com

Abstract—Recent trends like cloud computing show that ser-
vice providers increasingly adopt to modern self-adaptive system
architectures promising higher resource efficiency and lower
operating costs. In this paper, we apply a holistic model-based
approach to engineering performance-aware system adaptation.
More specifically, we employ the Descartes Modeling Language
(DML), a domain-specific language for modeling the performance
behavior and run-time adaptation processes of modern dynamic
IT systems. The conducted case study evaluates the applicability
and effectiveness of our approach and demonstrates that DML
provides suitable modeling abstractions that can be used as a
basis for self-adaptive performance and resource management in
heterogeneous environments. We apply a holistic model-based
approach to build a self-adaptive system that automatically
maintains performance requirements and resource efficiency in
the heterogeneous resource environment of Blue Yonder. The
application of DML enables to automatically adapt service
infrastructures to changing customer workloads and service-level
agreements in heterogeneous environments.

I. INTRODUCTION

Recent trends like cloud computing and virtualization show
that more and more service providers are adopting self-
adaptive system architectures providing increased flexibility
and dynamics. They are driven by the pressure to improve
the efficiency of their systems, e.g., by sharing resources,
and to reduce their operating costs. However, to achieve
increased resource efficiency, the system must be adapted
continuously to changes in the system environment. For ex-
ample, the amount of resources allocated to each service
must be continuously adjusted to match the changing resource
demands resulting from variations in the customer workloads.
The challenge is how to perform such system adaptations in
an autonomic manner and at run-time without disturbing the
system operation.

To address this challenge, many researchers in the au-
tonomic computing and self-adaptive systems communities
are working on the systematic engineering of self-adaptive
software systems [7]. A promising approach to manage the
complexity of engineering such systems is to apply model-
driven techniques as the models can provide valuable infor-
mation to support adaptation decisions and the automation
of decision making [3]. However, current approaches in the
area of model-based performance engineering of self-adaptive
systems neglect modeling the dynamic context of systems,

explicitly [2]. Addressing this aspect, our prior work includes
the Descartes Modeling Language (DML) [?] and the S/T(A
(Strategies/Tactics/Actions) framework [12]. DML is a novel
architecture-level modeling language for modeling quality-of-
service (QoS) and resource management related aspects of
modern dynamic IT systems, infrastructures and services. In
connection with the adaption framework S/T/A a full end-to-
end adaption process can be modeled and automated. However,
the approach has never been applied in a realistic scenario.
In [12], we initially sketched our approach on an artificial
benchmark running on homogeneous hardware environment.

In this paper, we prove the real world applicability of
our approach holistic model-based approach by extension and
application in a realistic case study. In concrete, we address
real-world performance and resource management problems
of Blue Yonder, a leading service provider in the field of
predictive analytics and big data. For Blue Yonder it is
business critical to estimate how much resources are required
to sustain the workloads of their customers. Blue Yonder‘s
current manual resource provisioning uses dedicated resources
for each customer to fulfill their respective SLAs. The results
of this paper enable Blue Yonder to automate the resource
provisioning process and to improve resource efficiency via
shared resources while ensuring the SLAs.

For this case study, we first create a model of the Blue
Yonder system using DML as modeling formalism. We then
define an adaptation process at the model level that adapts
the system to changing customer workloads and performance
requirements while considering Blue Yonder’s heterogeneous
resource environment composed of low-cost desktop comput-
ers and high-end machines. The goal of the case study is to
demonstrate that DML provides suitable modeling abstractions
to describe the performance behavior and the degrees of
freedom of Blue Yonder’s system, as well as to specify
an adaptation process that can effectively maintain different
performance requirements and resource efficiency at run-
time. The contributions of this paper are: i) a refinement of
the classical MAPE-K adaption approach entirely based on
architectural performance models ii) an exemplary end-to-end
application of our holistic adaptation approach to a real-life
system with representative settings iii) an experimental evalu-
ation of our model-based adaptation process demonstrating its

effectiveness and practical applicability.
The paper is structured as follows: In Section III, we

introduce the major concepts of the DML and show how we in-
tegrate it into a framework to realize autonomic performance-
aware resource management. In Section IV, we first present
the performance and adaptation process models we created
for the Blue Yonder system. Then, we present and discuss the
evaluation results of our case study. In Section II we discuss
related work and conclude the paper in Section V.

II. RELATED WORK

According to [6], essential elements for building self-
adaptive systems are feedback loops, as they provide a generic
mechanism for self-adaptation. The software engineering
community conceptually distinguishes COLLECT, ANALYZE,
DECIDE, and ACT [7] whereas the autonomic computing
comunity refers to MAPE-K (Monitor, Analyze, Plan and
Execute based on Knowledge) [?] to describe the adaption
on an abstract level. With the adoption of virtualization and
cloud computing, many approaches for managing performance
properties and resource efficiency have been published, e.g.,
[14], [18], [20], [25], [28]. These approaches normally use
predictive performance models like queuing networks, layered
queuing networks, queuing Petri nets, stochastic process alge-
bras, and statistical regression models. However, the short-
coming of predictive performance models is that these models
do not explicitly model architectural information that can be
leveraged for specifying adaptation processes and improving
automated adaptation decisions. Although there already exist
approaches to model the performance behavior of software
systems at the architecture level [17], such approaches are
unsuitable for the model-driven performance engineering of
self-adaptive systems as they neglect the dynamic context of
systems or do not provide decision support for adaptation
strategies [2].

If we extend our scope and consider other QoS attributes
besides performance, we can find different approaches on self-
adaptive software as surveyed in [22]. In this area, examples
for approaches that explicitly use architectural models are [21],
[10]. In [21], the authors examine the role of software ar-
chitecture in self-adaptive systems and present an approach
for self-adaptive software based on architectural models. In
this approach, a software system is described as a dynamic
architecture, characterized as a graph of components and
connectors and architectural changes are regarded as graph-
rewrite operations. Another approach is Rainbow [10], a
framework that supports the development of self-adaptation
capabilities, based on an abstract architectural model. As in the
previous approach, the framework and the architectural model
are generic and do not explicitly model performance-related
properties that can be leveraged for autonomic performance
and resource management at run-time.

Regarding the specification of adaptation actions and pro-
cesses at the model level, there exist approaches that use well-
known methods from the area of graph grammars. An example
is Story Diagrams, a graph grammar language based on UML

and Java that can be used to model the evolution and dynamic
behavior of complex object structures [9]. Another example
is [1], also a UML-based approach to adapt architectural mod-
els using graph transformations. Although such approaches
support the specification of adaptations to models, they are
not designed for the specification of adaptation processes at the
model level to support engineering of self-adaptive systems. To
bridge this gap, the authors of Rainbow developed Stitch [8],
a programming language-like notation that can be used to
describe architecture-based repair strategies. Although this
approach provides useful concepts for describing adaptation
processes, it does not support the specification of adaptation
processes based on architecture-level performance models. A
generic, model-driven approach for engineering adaptation
engines is [26]. This approach provides a domain-specific
modeling language, EUREMA, to support the development
of adaptation engines by modeling the feedback loops of
the software at a higher level of abstraction. However, this
approach is targeted at engineering self-adaptive software in
general, whereas the approach we use in this case study is
focused on performance and resource management specific
aspects of the adaptation.

III. MODEL-BASED PERFORMANCE AND RESOURCE
MANAGEMENT

The model-based approach we apply in this work consists of
two major building blocks. The first is the Descartes Modeling
Language (DML), a novel modeling language to describe the
quality-of-service (QoS) properties of modern IT systems as
well as their dynamic context and adaptation process. The
second building block is a control loop in which we employ the
DML to achieve model-based self-adaptation. In Section III-A,
we present a brief overview of DML. More details about the
meta-modeling concepts can be found in [5], [11], [12]. In
Section III-B, we explain the model-based adaptation control
loop.

A. Overview of the Descartes Modeling Language

The Descartes Modeling Language is provided as a set of
meta-models with a modular structure, separated into several
sub-meta-models according to the major aspects relevant for
modeling performance and resource management of modern
IT systems. For these sub-models, which match to the headings
of the following subsections, Figure 1 provides an overview
and Figure 4 depicts an exemplary application.

The first aspect is the execution environment of the system
comprising its infrastructure and platform resources and their
distribution. This can be modeled with the resource landscape
meta-model introduced in Section III-A1. Two other important
aspects are the software system’s design and implementation
as well as the external services it uses. Such aspects can
be described with the application architecture meta-model
presented in Section III-A2. Finally, the deployment of the
hosted applications on the infrastructure (Section III-A3) and
the way the system is used (usage profile, Section III-A4)
also influence the performance and resource efficiency of

Application Architecture Model

Blue Yonder System

Monitoring
Data

Descartes Modeling Language Instance Managed System

Adaptation Points Model

Adaptation Process Model

B
A

C

Degrees of
Freedom

Resource Landscape Model

<<Container>>
Node1

<<Container>>
Node3

<<Container>>
Node2

Deployment
Model

Usage
Profile
Model

TacticsStrategies Actions

Adaptation
Actions

<<InternalAction>>

ResourceDemandX

Instances of VMx

Instances of VMY

Instances of VMz

Number of vCPUs of VMx

Number of vCPUs of VMy

Number of vCPUs of VMz

Allocation of VMx

Gbit
Switch

GW PS1
PSiPSi

PSn

DBMS

Fig. 1: Structure of a Descartes Modeling Language (DML) instance and its relation to the Blue Yonder system.

the system. Together, these models form an architecture-
level performance model, i.e., they capture the properties
of the system that are relevant for performance analysis at
the architecture-level [16]. Such analyses can be used for
reasoning at run-time to guide system adaptation processes.
Thus, this model can also be compared to a reflective model
[27]. Furthermore and in advance to existing architectural
performance modeling approaches, DML provides models to
capture the system’s adaption points and adaption processes
which are both essential for self-adaptive performance and
resource management at run-time. The system’s degrees of
freedom, i.e., the points where the modeled system can
be adapted as well as its possible valid system states are
captured by the adaptation points meta-model, described in
Section III-A5. The adaptation processes themselves, i.e., the
way the system adapts to changes in the environment, are
described with the adaptation process meta-model, presented
in Section III-A6.

1) Resource Landscape: The purpose of the resource land-
scape meta-model is to describe the structure and properties
of both physical and logical resources of modern distributed
IT service infrastructures. Therefore, the resource landscape
meta-model provides modeling abstractions to specify the
available physical resources (CPU, network, HDD, memory)
as well as their distribution within data centers (servers, racks,
etc). Furthermore, the resource landscape meta-model also
supports modeling the layers of the execution environment
and specifying the performance influences of the configura-
tion of each layer. In this context, resource layers represent
layers of the software stack on which software is executed
like virtualization, operating system, middleware, and runtime
environments (e.g., JVM). In addition, the meta-model also

considers the distribution of resources across data centers.
More details about the resource landscape meta-model can be
found in [11].

2) Application Architecture: We model the application ar-
chitecture of the managed system according to the principles
of component-based software systems. A software component
is defined as a unit of composition with explicitly defined
provided and required interfaces [24]. To describe the per-
formance behavior of a service offered by a component, the
application architecture meta-model supports multiple (pos-
sibly co-existing) behavior abstractions at different levels of
granularity. The behavior descriptions range from a black-
box abstraction (a probabilistic representation of the service
response time behavior), over a coarse-grained representation
(capturing the service behavior as observed from the outside at
the component boundaries, e.g., frequencies of external service
calls and amount of consumed resources), to a fine-grained
representation (capturing the service’s internal control flow,
considering performance-relevant actions). The advantage of
the support for multiple abstraction levels is that the model
is usable in different online performance prediction scenar-
ios with different goals and constraints, ranging from quick
performance bounds analysis to detailed system simulation.
Moreover, one can select an appropriate abstraction level to
match the granularity of information that can be obtained
through monitoring tools at run-time, e.g., considering to
what extent component-internal information can be obtained
by the available tools. Further details including a complete
specification of the application architecture meta-model can
be found in [5].

3) Deployment: To capture the interactions between the
resource landscape and the application architecture, one must

model the connection between hardware and software using
the deployment meta-model. It associates software component
instances of the application architecture meta-model with
container instances of the resource landscape meta-model.

4) Usage Profile: To model user interactions with the
system (i.e., the usage profile), DML provides a usage profile
meta-model. A usage profile model contains one or more
usage scenarios that can be seen as a combination of UML
use cases and UML activities. A usage scenario describes the
workload type (e.g., open or closed workload), the workload
intensity (e.g., request arrival rates or think times), and the user
behavior, i.e., which services are called and in what sequence.
Further details can be found in [11].

5) Adaptation Points: The adaptation points meta-model is
an addition to the resource landscape and application architec-
ture meta-models providing modeling constructs to describe
the elements of the resource landscape and the application
architecture that can be adapted (i.e., reconfigured) at run-
time (see Figure 4 for examples). Other model elements that
may change at run-time but cannot be directly controlled (e.g.,
the usage profile), are not in the focus of this meta-model.
The same holds for the adaptation process itself, i.e., how the
system is adapted in a given online scenario is specified in the
adaptation process meta-model described in Section III-A6. In
the terminology of [27], this model is an instance of the change
model. A more detailed description of the adaptation points
meta-model can be found in [11].

6) Adaptation Process: The adaptation process meta-
model describes the process that keeps the system in a state
such that its operational goals are continuously fulfilled, i.e.,
it describes the way the system adapts to changes in its
environment. The meta-model consists of three main elements
used to describe the adaptation process at three different
levels of abstraction. At the top level are the strategies where
each strategy aims to achieve a given high-level objective.
A strategy uses one or more tactics to achieve its objective.
Tactics execute actions that describe the actual adaptation
operations. The novelty and important advantage of this mod-
eling approach is that it distinguishes high-level reconfigu-
ration objectives (strategies) from low-level implementation
details (reconfiguration tactics and actions) and explicitly
separates platform specific adaptation operations from system-
independent adaptation plans.

Note that the adaptation process model is intended to specify
an adaptation process on the model level. However, the actual
execution of the process on the model instance, as well as
on the real system, is realized as part of a framework that
interprets the modeled adaptation process. More details on the
adaptation process meta-model and the framework interpreting
the process can be found in [12].

B. Adaptation Control Loop

Now that we have introduced DML, we explain how we
employ it to realize proactive model-based system adapta-
tion. Similar to MAPE-K [13] or [7], we distinguish four
main phases of the adaption process: COLLECT, ANALYZE,

DECIDE, and ACT. Central element of the adaptation control
loop depicted in Figure 2 is a DML instance. It represents the
KNOWLEDGE about the system and its adaptation processes
[15].

ANALYZEACT

DECIDE

Anticipate/Detect

Problem

Adapt System

Model

Predict

Adaptation

Impact

Problem

resolved

Problem

persists

Adapt System

COLLECT

Monitor

System and

Workload

KNOWLEDGE

DML Instance

Fig. 2: Model-based adaptation control loop.

In the COLLECT phase, we use monitoring data to extract
model instances or to update and calibrate existing instances
[4]. During the ANALYZE phase, we use the DML model to
support problem analysis, i.e., to reason about the correlation
of observed problems and their cause. Online adaptation of
software system is useless if the time needed to analyze is too
long as compared to the time of changes in the system and the
context. The advantage of DML, compared to predictive mod-
els (like QN or QPN) is that analysis granularity (black-box,
coarse-grained, or fine-grained) and solution technique (e.g.,
analytical or simulation-based analysis of QPNs or operational
laws) can be varied. This enables a tradeoff between solution
accuracy and runtime regarding the constraints of a concrete
scenario. In the context of the BlueYonder case study, we
apply —fully automated— a model-to-model transformation
to QPNs [19], a simulation based solution (using SimQPN)
and a result back propagation to solve the model. During
the DECIDE phase we use the modeled information about the
system’s adaptation points as well as the adaptation process to
adapt the model instance and find a system state that fulfills
the system’s operational goals. In this phase, we also use the
architecture-level performance model for performance analysis
to evaluate the impact of the adaptation actions on the system
performance. Especially during this phase it is beneficial to
have a model that also comprises structural information about
the architecture of the system such that it can be used for
detailed reasoning about the impact of changes in the system
environment as well as the impact of possible adaptation
actions.

IV. CASE STUDY

In this section, we apply and evaluate our previously pre-
sented approach in the context of our industrial partner Blue
Yonder.

A. Motivaiton

Blue Yonder is a leading service provider in the field of pre-
dictive analytics and big data. The company offers enterprise
software services that are based on predictions of, e.g., sales,
costs, churn rates etc. Blue Yonder employs machine learning
techniques to obtain accurate predictions based on historical
data provided by their customers. Usually supervised machine
learning can be applied, consisting of a training step that is
used to infer a mathematical model for the available historical
data. This model can then be used to calculate forecasts based
on a given input data set. Training the model and calculating
the forecasts requires a considerable amount of computational
resources depending on the amount of customers, their input
data, and their service-level agreements (SLAs).

Currently, Blue Yonder uses dedicated resources for each
customer to fulfill their respective SLAs. When acquiring new
customer projects, Blue Yonder normally has to estimate how
much resources are required to sustain the workloads of the
new customers and ensure adequate performance. This estima-
tion is based on the experience of Blue Yonder’s employees
and can range from a few low-budget desktop machines to
hundreds of cores on high-end servers, depending on the
customer’s amount of data to be analyzed and on the time
available for the analysis. More importantly, this estimation is
generally a worst-case estimation, i.e., the system capacity is
dimensioned to support the peak workload intensity.

Given the increasing number of servers and respective op-
erating costs, Blue Yonder is interested in increasing resource
efficiency by sharing resources among different customers. As
Blue Yonder has detailed information from their customers
about when, how many, and which type of requests are
expected to arrive (request schedule), a self-adaptive approach
that assigns the required amount of resources to new customers
and dynamically adapts the amount of resources according to
the actual customer demand appears to be promising.

Thus, the major goal of this case study is to evaluate if our
approach is applicable in Blue Yonder’s scenario and if it is
capable of increasing resource efficiency. Additionally, it is
crucial that the adaptation is capable of considering the dif-
ferent performance requirements of Blue Yonder’s customers.
The research question targeted in this scenario is whether
our approach is applicable in an environment with heteroge-
neous resources—low-cost desktop computers and high-end
servers—and whether it can be effectively used to trade-off
different performance requirements of multiple customers.

In the following, we first explain the architecture of Blue
Yonder’s system and present the respective architecture-level
performance model, modeled with the Descartes Modeling
Language (DML). Next, we specify an adaptation process
using DML’s adaptation process model to adapt the system
to changes in the environment considering the previous re-
quirements. Finally, we present the results when applying our
model-based self-adaptive performance and resource manage-
ment approach in Blue Yonder’s system.

B. Blue Yonder System Architecture

A typical Blue Yonder system consists of three main soft-
ware component types: the Gateway Server (GW), the Predic-
tion Server (PS), and a third party component, the database
(DB) (see Figure 3). The GW is the communication endpoint
to the Blue Yonder system. Users can invoke a set of different
services via HTTP. In the considered sample project, the
available services are train, predict and results. As
their names suggest, the train service initiates the training
step of the supervised learning algorithms. The predict
service initiates the calculation of the forecasts using the
trained prediction model. The results service makes the
final results available to the customer. To train the prediction
model, the train service accepts historical data. The GW
receives this data, parses it and generates a job, which is put
into the GW’s queue and scheduled for processing. Then, an
active PS takes the job from the queue, processes it (i.e., trains
the prediction model) and stores the results in the database.
After training, a user can invoke the predict service to
calculate a forecast based on the trained prediction model. The
user sends the data for which the forecast should be made to
the GW. The GW reads the data and generates one or several
jobs—depending on the size of the data—which are put into
its queue. These jobs are again processed by one or several
PS and the results are stored in the database for retrieval
by the user (results service). Technically, GW and PS are
independent operating system processes that can be started
and stopped on any machine in the resource landscape. The
database for our case study is a standard MySQL database.
Each customer has its own GW, PS, and DB instances, which
are deployed in Blue Yonder’s resource landscape. The number
of component instances and their distribution in the system
environment is called topology.

Blue Yonder System

Gateway

Server

Prediction

Server

Database
<<Interface>>

IGateway

 train()

 predict()

 results()

Low-Budget Desktop Computers

<<Interface>>

IDatabase

 write()

 query()

<<Interface>>

IPredictionServer

 train()

 predict()

High-End Servers

Fig. 3: Example topology of a Blue Yonder system with
heterogeneous hardware.

In the scenario evaluated at Blue Yonder, the resource
landscape consists of a heterogeneous hardware environment
comprising two low-budget dual-core machines (desc1 and
desc2) and two high-end quad-core machines with hyper-
threading (desc3 and desc4). The example topology is
depicted in Figure 3. In the depicted default setup, the database
runs on a dedicated high-end machine. GW and PS instances
can be distributed over the two low-budget machines and the
second high-end machine. All machines are connected with a

1 GBit Ethernet.
The usually experienced workload in the system can be

characterized by the service that is called (train, predict),
the execution type of the requests (sequential or in parallel),
and the requests’ size (the number of records in the request,
typically varying between 10,000 and 500,000). To react on
changes in the environment (changes in workloads of existing
customers, launching of new customer projects), additional
prediction server instances can be started on other machines.
Furthermore, prediction server instances can also be migrated
between machines at run-time. The challenge in such a setup is
that our approach is now faced with a heterogeneous hardware
environment and with different performance requirements of
multiple concurrent customers. For example, upon a workload
change of a given customer, the adaptation process has to
decide whether to start/stop a prediction server on a low-
budget or a high-end machine while taking into account the
performance requirements and topology of other customers.

C. Architecture-Level Performance Model

For our case study, we conducted multiple experiments
to construct an architecture-level performance model of the
Blue Yonder system. In this section, we first present the
implementation of the model and then discuss its performance
prediction accuracy. Even though efforts and knowledge to
build the model for this scenario where negligible, future
research will target a fully automatized extraction of structure
and parametrization based on trace data.

1) Model Structure: An overview of the DML instance we
created for the Blue Yonder system is depicted in Figure 4
in a UML-like notation. In summary, the figure depicts the
resource landscape, application architecture, usage profile, and
deployment of Blue Yonder’s system. The model also includes
parametric descriptions of the performance behavior of the
software components.

In the center of Figure 4, we see the resource landscape
model, consisting of a DataCenter BYDC that contains the
previously described hardware. The resource configuration
specifications of the ComputingInfrastructures are attached
as annotations. The ComputingInfrastructure nodes are con-
nected with a 1 GBit Ethernet.

On this resource landscape, we have deployed four different
component instances, one GW, two PS, and one DB. This
depicted deployment is only one instance of the possible
deployment variants of Blue Yonder’s system. During an
adaptation process, when the model is changed, the model
instance may look different, e.g., further PS instances might
be deployed on other machines.

Each of the depicted software components provides one or
more services. For some of these services, we have depicted
their resource demanding service effect specification (RD-
SEFF). As described in Section III-A2, an RD-SEFF is a
fine-grained description of the control flow and the resource
demands of the performance behavior of the modeled service.
For example, the top of Figure 4 depicts the RD-SEFF of the

<<DataCenter>>

BYDC

<<FineGrainedBehavior>>

IPredictionServer.predict()

<<ComputingInfrastructure>>

desc2

<<FineGrainedBehavior>>

IDatabase.write()

<<FineGrainedBehavior>>

IGateway.predict()

<<implements>>

<<ComputingInfrastructure>>

desc1

<<ComputingInfrastructure>>

desc4
Database

Gateway

Server

<<ComputingInfrastructure>>

desc3
Prediction

ServerA

Prediction

ServerB

IGateway

 train()

 predict()

 results()

IDatabase

 write()

 query()IPredictionServer

 train()

 predict()

<<ConfigurationSpecification>>

ResourceType="CPU"

ProcessingRate=2.7GHz

Cores=2

<ConfigurationSpecification>>

ResourceType="CPU"

ProcessingRate=2.7GHz

Cores=8

<<UsageProfile>>

UserPopulation=10

ThinkTime=0.0

Service="train"

RecordSize=500,000

<<BranchAction>>

doLoadBalancing

Probability: 0.5

<<ExternalCallAction>>

PredictionServerA.predict

Probability: 0.5

<<ExternalCallAction>>

PredictionServerB.predict

<<InternalAction>>

parsePredictionJobs

<<ParametricResourceDemand>>

ResourceType="CPU"

Unit="CpuCycles"

Specfication="(0.04015 + (2.628 * 10^(-8) * recordsize)) * 2700

* (recordsize / bucketsize)"

<<InternalAction>>

schedulePredictionJobs

<<ParametricResourceDemand>>

ResourceType="CPU"

Unit="CpuCycles"

Specfication="(0.5506 + (7.943 * 10^(-8)

* recordsize)) * 2700"

<<implements>>

<<ExternalCallAction>>

predict_write

<<InternalAction>>

verify_results

<<ParametricResourceDemand>>

ResourceType="CPU"

Unit="CpuCycles"

Specfication="(1.225 + (1.827 * 10^(-7) *

recordsize)) * 2700 * (recordsize / bucketsize)"

<<implements>>

<<ModelEntity

ConfigRange>>

minInstances=1

maxInstances=16

1 Gbit Ethernet

<<InternalAction>>

writeData

<<ParametricResourceDemand>>

ResourceType="CPU"

Unit="CpuCycles"

Specfication="recordsize"

Fig. 4: DML instance describing a deployment of the Blue
Yonder system.

predict service offered by the GW component to the cus-
tomers. First, it consists of two InternalActions that require
a certain amount of CPU resources to parse and schedule the
prediction job (parsePredictionJobs and schedulePredic-
tionJobs, respectively). After parsing and scheduling the job,
it is passed to one of the available prediction servers. In this
example, as there are only two PS instances, the probability for
each branch is 50%. However, during the adaptation process,
when the number of PS instances changes, the respective
probabilities have to be adjusted accordingly.

Finally, we have to model the usage behavior of the
customers that use the system. An example usage profile is
depicted on the left where ten customers use the train
service with a record size of 500,000 in a closed workload
scenario with zero thinktime.

2) Parameterizing the Model: The derivation of the re-
source demands contained in the different RD-SEFFs is im-

portant for accurate performance predictions. To obtain an
accurate performance model, we have conducted a large set
of experiments varying different parameters to correlate the
dependencies of the resource demands on these parameters.
The parameters we varied in our experiment are mainly
induced by the parameters the users can vary: the called
service type (train vs. predict), the record size (10,000
to 500,000 records per user request), the execution type
of the requests (sequential or parallel), and the number of
parallel requests (1 to 10). Furthermore, to investigate the
impact of the heterogeneous hardware environment and the
mutual influences of multiple PS instances, we also varied the
PS deployment (high-end vs. low-budget machine) and the
number of PS instances (1 to 8).

The metrics we observed during our experiments to derive
the resource demands were average CPU utilization and av-
erage response time, i.e., the time the user request spends in
the system. To obtain these data, we wrote Python scripts that
measured the CPU utilization during the experiments using
sar and extracted the timing values from the log files of the
system. We then used the R framework for statistical comput-
ing 1 to derive a resource demand using linear regression. An
example parametric resource demand of the InternalAction
schedulePredictionJobs is

rd = (0.5506 + (7.943 · 10−8 · recordsize)) · 2700

In this example, the resource demand depends on an external
parameter recordsize that corresponds to the number of
records in the user request. Note that the additional multipli-
cation by 2700 is necessary to adjust the resource demand to
the processing rates of the hardware. We have derived such
parametric resource demands for all InternalActions in our
model.

3) Model Accuracy: To evaluate the accuracy of the perfor-
mance predictions provided by the model, we conducted sev-
eral experiments. In Figure 5, we compare the predicted with
the measured response times of the train and predict
services for five parallel user requests with a varying amount
of PS instances. The figure shows that the response time of the
train service improves when we increase the PS instances
up to a number of five, whereas the predict response time
improves further. The reason is that the five parallel train
requests can be load-balanced to five PS instances. In contrast,
the predict requests can be split into more than five jobs
which can be distributed over further PS instances to speed-up
performance. This confirms that the modeled behavior of the
Blue Yonder system is correct.

In another scenario we evaluated the prediction accuracy
for different workload mixes. Table I shows the absolute and
relative prediction error of the average response time and
Table II the absolute prediction errors for the CPU utilization
on different hardware nodes.

We also conducted further experiments to evaluate the
accuracy in situations where multiple customers use the system

1R project: http://www.r-project.org/

●

●

●

●

●
● ● ●

1 2 3 4 5 6 7 8

50
0

10
00

15
00

20
00

25
00

Number of Prediction Servers

R
es

po
ns

e
T

im
e

[s
ec

]

● 'predict' service measured
'predict' service predicted
'train' service measured
'train' service predicted

Fig. 5: Comparison of predicted and measured response times
for the train and predict service for five parallel requests
and a varying number of PS instances running on the high-end
machine desc4.

TABLE I: Measured and predicted average response times and
their relative errors for nine parallel predict requests for
varying mixed data record sizes with six PS instances allocated
on desc4.

Record Sizes Response Time [sec] Error
[in 1,000 records] measured predicted [in %]

50 & 100 194.50 175.26 -9.9
100 & 200 366.48 325.16 -11.3
150 & 300 545.05 485.65 -10.9
250 & 500 937.24 780.91 -16.7

in parallel or where we vary the amount and deployment of
the PS instances. All results showed a prediction error in
the range of approx. 30%. Due to space limitations, we omit
depicting detailed results here. More details about the Blue
Yonder model instance, its parameterization, and the prediction
accuracy evaluation can be found in a thesis developed in
parallel to this paper [23].

D. Adaptation Process

To apply our model-based performance-aware resource
management approach, we first have to define and model the
adaptation points of the system we want to adapt. Based on the
adaptation points, we can then model the adaptation process.

1) Adaptation Points Model: In our case study, we consider
the following adaptation points for the Blue Yonder system
(see Figure 4 for an example). These adaptation points are
customer specific, i.e., they exist for each customer’s PS
instances deployed in the system. First, we can increase or
decrease the number of PS instances that are assigned to a
customer (adaptation points psInstances in Figure 4). The
minimal number of PS instances is one. The maximum number
of PS instances is limited by Blue Yonder to two times the
available cores, to avoid significant performance degradation
due to resource contention. In the adaptation points model,

TABLE II: Measured and predicted average CPU utilizations and their absolute errors for nine parallel predict requests for
varying mixed data record sizes with six PS instances allocated on desc4.

Record Sizes desc2 [%] desc3 [%] desc4 [%]
[in 1,000 records] meas. pred. err. meas. pred. err. meas. pred. err.

50 & 150 9.42 27.6 18.2 17.11 6.0 11.1 51.56 38.9 12.7
100 & 200 10.35 19.4 9.1 16.54 4.0 12.5 49.19 40.8 8.4
150 & 300 10.51 16.2 5.7 16.33 3.3 13.0 47.79 41.4 6.4
250 & 500 10.20 13.7 3.5 16.65 2.8 13.9 44.67 41.9 2.8

these numbers are specified as OCL constraints that can be
checked on the architecture-level performance model.

The second adaptation point is the deployment of PS
instances. By starting and stopping PS instances or by con-
solidating PS instances on fewer machines, we can improve
resource efficiency and lower operational costs. For example,
it can be beneficial to consolidate the PS instances of multiple
low-budget machines on a single high-end machine.

2) Adaptation Process Model: Input for and trigger of
the adaptation is an updated request schedule. As previously
mentioned, the request schedule specifies which customers
will request what service and with what amount of data.
Furthermore, it also contains the customer-specific SLAs. The
purpose of the adaptation process presented in the following is
to allocate available resources among Blue Yonder’s customers
such that their SLAs are fulfilled. Moreover, the resources
should be used as efficiently as possible to save costs. Thus, the
output of our adaptation process is a deployment model that
fulfills the required SLAs using resources as efficiently as pos-
sible. The found deployment model can then be transformed
into a topology configuration that can be used to reconfigure
the Blue Yonder system accordingly. In the following, we
describe an adaptation process that fulfills these requirements.
It is modeled using the adaptation process modeling language
presented in Section III-A6. To execute the adaptation pro-
cess, we use our adaptation framework [?] that interprets the
adaptation process model instance and adapts the previously
introduced architecture-level performance model accordingly.

Essentially, our adaptation process consists of the following
strategies: findDeployment, consolidateDeploy-
ment, reduceDeployment, and resolveResource-
Bottleneck. The first strategy findDeployment allo-
cates new PS instances on machines until all customer SLAs
are fulfilled. The second strategy consolidateDeploy-
ment migrates PS instances between machines to improve the
efficiency. The third strategy reduceDeployment removes
unnecessary PS instances from machines to save operating
costs, e.g., if the workload of a customer has decreased. All
these strategies exist for each customer. Furthermore, as the
process should be able to trade-off the requirements of dif-
ferent customers, we have also defined an additional strategy
resolveResourceBottleneck that aims at resolving
possible resource bottlenecks that may arise when customers
share resources. Figure 6 depicts a schematic representation
of these strategies for the two different customers A and B.

<<Strategy>>

ResolveResourceBottleneck

(CustomerA)

<<uses>>

<<Strategy>>

ResolveResourceBottleneck

(CustomerB)

<<Objective>>

response_time_B < SLA

<<Tactic>>

IncreaseResourcesOfCustomerA

weight=1.0

<<AdaptationPlan>>

<<Action>>

increasePsInstance

<<Tactic>>

IncreaseResourcesOfCustomerB

weight=1.0

<<AdaptationPlan>>

<<Action>>

increasePsInstance

<<Tactic>>

MigrateResourcesOfCustomerA

weight=0.5

<<AdaptationPlan>>

<<Action>>

migratePsInstance

<<Tactic>>

MigrateResourcesOfCustomerB

weight=0.5

<<AdaptationPlan>>

<<Action>>

migratePsInstance

<<uses>>

<<uses>><<uses>>

<<Strategy>>

ReduceDeployment

(CustomerB)

<<Strategy>>

FindDeployment

(CustomerA)

<<Objective>>

response_time_A < SLA

<<uses>>

<<Tactic>>

DecreaseResourcesOfCustomerB

weight=1.0

<<AdaptationPlan>>

<<Action>>

decreasePsInstance

<<uses>>

Fig. 6: Schematic representation of the modeled re-
solveResourceBottleneck strategies.

E. Evaluation

In this section, we present the evaluation results of our
case study. The focus of our evaluation was to investigate the
applicability and effectiveness of our approach. The following
scenarios show that with our model-based approach, Blue
Yonder is able to adjust the amount of used resources to
changes in the customer workloads. Furthermore, we show
that the approach is applicable in a heterogeneous resource
environment and that it can trade-off diverging performance
requirements of different customers.

1) Scenario 1: Adjusting resources to workload changes
considering a heterogeneous resource environment: The goal
of this scenario is to evaluate the effectiveness of our approach
in adapting resource allocations to workload changes such that
customer SLAs are fulfilled, considering the heterogeneous
hardware resources.

Our scenario starts with the default topology (one GW
on desc2, one PS on desc4, one DB on desc3) and
a customer that issues one predict request with 500,000
records. We assume that all records of this customer must

Request Size: 500000
 Request Type: predict, parallel

N
um

be
r

of
 P

re
di

ct
io

n
S

er
ve

rs

0
5

10
15

20

desc1
desc4
total

0
20

40
N

um
be

r
of

 R
eq

ue
st

sWorkload History

Fig. 7: Adaptation of the system environment to changes in
the workload of a customer.

be completed within 3600 seconds (one hour). The default
topology is able to handle this load without SLA violations.
However, if we increase the number of requests from one to 50,
the default topology is not able to handle the load within one
hour. This triggers the DECIDE phase in which our modeled
adaptation process suggests a deployment of 20 PS, four on
desc1 and 16 on desc4. This deployment is suitable to
handle the increased load and shows that our approach utilizes
the available capacity, but does not exceed Blue Yonder’s
specified resource limits. Blue Yonder recommends to limit
the maximum number of PS instances per machine to two
times the available cores to avoid significant performance
degradation due to resource contention. For example, for the
high-end machines with four cores and hyper-threading (which
is comparable to eight logical cores), 16 PS instances can
be executed in parallel with negligible resource contention.
However, if the algorithm tries to deploy more PS instances
on the machine, the performance decreases due to resource
contention.

In the next step, we reduce the workload from 50 to 40
parallel requests, i.e, less resources should be sufficient to
maintain the SLA of one hour. Figure 7 shows that our
approach reduces the number of PS instances in the system.
As a result of the adaptation, the four PS instances running
on the low-budget machine are released. This demonstrates
that our model-based adaptation approach effectively takes
into account the properties of the heterogeneous environment.
Removing PS instances from the high-end machine makes no
sense because after system adaptation, there would still be
two active physical machines. However, by releasing resources
from the low-budget machine, we can deactivate this machine.
Depending on the scenario, the machine can be put into stand-
by mode or it can be made available for other customer
projects.

2) Scenario 2: Trading-off resource allocations between
customers: In this scenario, we show that our approach is ap-
plicable in scenarios where changes of the workload behavior
of one customer affect the performance experienced by other
customers. The goal is to show that our approach, compared to
trigger-based approaches, can trade-off different performance

requirements of customers with different priorities.

R
es

po
ns

e
T

im
e

[s
ec

]

0
20

00
40

00
60

00
80

00

Allocation c1 Allocation c2 Allocation c3 Allocation c4

Customer A
Customer B
Customer C

Fig. 8: Response times for the different customers during the
adaptation process (SLAs are denoted by the dashed lines).

The initial Blue Yonder topology in this scenario comprises
four PS instances that are deployed on desc1 (see Figure 9).
Two of theses PS instances belong to customer A, which is a
gold customer. The other two PS instances belong to customer
B and C, respectively, which are silver customers. A gold
customer, in this scenario, is a customer with higher priority,
i.e., violating its SLAs causes higher penalties.

To minimize penalties, PS instances of gold customers must
not be executed on machines that are overcommitted, i.e.,
machines executing more PS instances than are executable in
parallel (see previous section). The trigger of the adaptation
is an SLA violation of customer B due to an increase in his
workload (see Figure 8). Our adaptation process first starts
another PS instance for customer B on desc1 to solve this
problem (topology c2). However, in this new topology, the
SLAs of the gold customer A are now violated. Therefore,
the adaptation process continues and migrates a PS instance
of customer A to desc4. The migration reduces response
times, but still does not eliminate the SLA violation. Therefore,
the adaptation process continues and migrates the second PS
instance of customer A to desc4 (topology c4). This resolves
the problem and the adaptation process completes.

This scenario shows how our model-based approach can
explicitly take into account the impact of an adaptation on
other applications (adding a new PS instance for customer B
affected customer A) and can automatically find a way to
resolve SLA violations at the model-level. In the considered
scenario, a conventional trigger-based approach would simply
add a PS instance. The problem that adding this further
instance leads to an SLA violation of customer A, would be
detected after the system has been adapted. Of course, then a
new trigger would start further adaptations to solve the new
problem, but penalty costs would arise due to SLA violations
that will most likely have already occurred.

This scenario demonstrates the contrast between reactive

PSA1

PSA2

PSB1

PSC1

PSA1

PSA2

PSB1

PSC1

PSB2

PSA1

PSA2

PSB1

PSC1

PSB2 PSA1

PSA2

PSB1

PSC1

PSB2

Topology c1 (initial) Topology c2

Topology c3 Topology c4

desc4
desc1

desc4
desc1

desc4
desc1

desc4
desc1

Fig. 9: Details of the different system configurations during the
adaptation to a workload change of a single customer affecting
other customers.

trigger-based adaptation approaches and our proactive model-
based approach that can predict the effect of possible adap-
tations. By using models we can avoid a “trial-and-error”
behavior and guide the adaptation to effectively ensure SLA
compliance while maximizing efficiency.

3) Scenario 3: Efficient Resource Usage: In this scenario,
we show that the allocation found by the modeled process
provides a valid solution that uses resources efficiently. Like
in the previous experiments, we use a workload of five
parallel predict service requests with 500,000 data records.
Moreover, the SLA with the customer states that the request
has to be processed within 800 seconds. For such a scenario,
our approach suggests to allocate five PS instances on desc4
to maintain the SLA.

of PredictionServers

1 2 3 4 5 6 7 8

5
15

25
35

45
55

65

C
P

U
 U

til
iz

at
io

n
[%

]●

●

●

●

●
●

● ●

50
0

10
00

20
00

30
00

R
es

po
ns

e
T

im
e

[s
ec

]

SLA

● measured
predicted

measured
predicted

Fig. 10: Comparison of predicted and measured metrics for
five parallel predict requests with a record size of 500,000.
Prediction servers have been started on the high-end machine
desc4.

To evaluate the quality of this solution, we compare mea-
sured and predicted average response time and CPU utilization
for this scenario with a varying amount of PS instances
deployed on a high-end machine (see Figure 10). As we can
see, four PS instances are not enough to meet our deadline of
maximum 800 seconds, since four instances need 974 seconds
to process the given workload. This figure also shows that
further PS instances would speed-up the processing of the
requests, but would also lead to a higher resource usage.

V. CONCLUSIONS

This paper presents a refinement of the classical MAPE-K
adaption approach entirely based on architectural performance
models. We apply an exemplary end-to-end application of
our holistic adaptation approach to a real-life system with
representative settings and provide an experimental evalua-
tion demonstrating its effectiveness and practical applicability.
More specifically, we presented the results of a case study
we conducted at our industrial partner Blue Yonder. We
applied the Descartes Modeling Language (DML) to describe
the system architecture and performance behavior of Blue
Yonder’s predictive big data analytics services infrastructure
and evaluated the performance prediction accuracy of the
created model instance. Moreover, we used DML to describe
an adaptation process leveraging the performance model to
adapt Blue Yonder’s system to changes in its workload.

This paper shows that our architectural model based adap-
tion process can be effectively used to trade-off different
performance requirements of multiple customers in an envi-
ronment with heterogeneous resources consisting of low-cost
desktop computers and high-end servers.

As future work, we want to refine the adaptation process
and implement more sophisticated adaptation strategies. Fur-
thermore, we plan to integrate a cost function such that we can
allow SLA violations in cases where the benefit of resource
savings would compensate incurred penalty. Even though the
effort for model creation was negligible, the automation could
be further improved towards full automation. Additionally, it
would be interesting to evaluate if this case study and its results
are reusable in the context of other approaches working on
engineering self-adaptive software systems.

REFERENCES

[1] A. Agrawal, G. Karsai, and F. Shi. A UML-based graph transforma-
tion approach for implementing domain-specific model transformations.
Journal on Software and Systems Modeling, pages 1–19, 2003.

[2] M. Becker, M. Luckey, and S. Becker. Model-driven performance
engineering of self-adaptive systems: a survey. In QoSA, 2012.

[3] G. Blair, N. Bencomo, and R. France. Models@Run.time. Computer,
42(10):22–27, 2009.

[4] F. Brosig, N. Huber, and S. Kounev. Automated Extraction of
Architecture-Level Performance Models of Distributed Component-
Based Systems. In Intl. Conf. On Automated Software Engineering,
2011.

[5] F. Brosig, N. Huber, and S. Kounev. Architecture-Level Software
Performance Abstractions for Online Performance Prediction. Elsevier
Science of Computer Programming Journal (SciCo), Vol. 90, Part B:71–
92, 2014.

[6] Y. Brun, G. Marzo Serugendo, C. Gacek, H. Giese, H. Kienle, M. Litoiu,
H. Müller, M. Pezzè, and M. Shaw. Engineering self-adaptive systems
through feedback loops. In Software Engineering for Self-Adaptive
Systems. Springer-Verlag, 2009.

[7] B. H. C. Cheng, R. Lemos, H. Giese, P. Inverardi, and J. Magee.
Software Engineering for Self-Adaptive Systems: A Research Roadmap.
volume 5525 of Lecture Notes in Computer Science. 2009.

[8] S.-W. Cheng and D. Garlan. Stitch: A language for architecture-based
self-adaptation. Journal of Systems and Software, 85(12):2860 – 2875,
2012.

[9] T. Fischer, J. Niere, L. Torunski, and A. Zündorf. Story Diagrams: A
New Graph Rewrite Language Based on the Unified Modeling Language
and Java. Theory and Application of Graph Transformations, pages 296–
309, 2000.

[10] D. Garlan, S.-W. Cheng, A.-C. Huang, B. Schmerl, and P. Steenkiste.
Rainbow: Architecture-based self-adaptation with reusable infrastruc-
ture. Computer, 37(10):46–54, 2004.

[11] N. Huber, F. Brosig, and S. Kounev. Modeling Dynamic Virtualized
Resource Landscapes. In Intl. Conf. on the Quality of Software
Architectures, 2012.

[12] N. Huber, A. van Hoorn, A. Koziolek, F. Brosig, and S. Kounev.
Modeling Run-Time Adaptation at the System Architecture Level in
Dynamic Service-Oriented Environments. Service Oriented Computing
and Applications Journal (SOCA), 8(1):73–89, 2014.

[13] IBM Corporation. An architectural blueprint for autonomic computing
(White Paper, 4th Ed.), 2006.

[14] G. Jung, M. Hiltunen, K. Joshi, R. Schlichting, and C. Pu. Mistral:
Dynamically managing power, performance, and adaptation cost in cloud
infrastructures. In ICDCS, 2010.

[15] J. O. Kephart and D. M. Chess. The vision of autonomic computing.
Computer, 36(1):41–50, 2003.

[16] S. Kounev, F. Brosig, N. Huber, and R. Reussner. Towards self-aware
performance and resource management in modern service-oriented sys-
tems. In IEEE SCC, 2010.

[17] H. Koziolek. Performance evaluation of component-based software
systems: A survey. Performance Evaluation, 2009.

[18] J. Li, J. Chinneck, M. Woodside, M. Litoiu, and G. Iszlai. Performance
model driven QoS guarantees and optimization in clouds. In ICSE
Workshop on Softw. Eng. Challenges of Cloud Computing, 2009.

[19] P. Meier, S. Kounev, and H. Koziolek. Automated Transformation of
Component-based Software Architecture Models to Queueing Petri Nets.
In Intl. Symp. on Modeling, Analysis and Simulation of Computer and
Telecommunication Systems, 2011.

[20] M. N. Bennani and D. A. Menascé. Resource Allocation for Autonomic
Data Centers using Analytic Performance Models. In Proc. of the 2nd
Intl. Conf. on Automatic Computing , 2005.

[21] P. Oreizy, M. Gorlick, R. Taylor, D. Heimhigner, G. Johnson, N. Med-
vidovic, A. Quilici, D. Rosenblum, and A. Wolf. An architecture-
based approach to self-adaptive software. Intelligent Systems and their
Applications, IEEE, 14(3):54–62, 1999.

[22] M. Salehie and L. Tahvildari. Self-adaptive software: Landscape and
research challenges. ACM Transactions on Autonomous and Adaptive
Systems, 4(2):14, 2009.

[23] W. Schott. Automated model-based system reconfiguration: A case
study. Master’s thesis, KIT, 2013.

[24] C. Szyperski, D. Gruntz, and S. Murer. Component Software: Beyond
Object-Oriented Programming. ACM Press and Addison-Wesley, 2002.

[25] G. Toffetti, A. Gambi, M. Pezzè, and C. Pautasso. Engineering auto-
nomic controllers for virtualized web applications. In Web Engineering,
volume 6189 of LNCS. 2010.

[26] T. Vogel and H. Giese. A language for feedback loops in self-adaptive
systems: Executable runtime megamodels. In SEAMS, 2012.

[27] T. Vogel, A. Seibel, and H. Giese. The Role of Models and Megamodels
at Runtime. In Models in Software Engineering, pages 224–238, 2011.

[28] Q. Zhang, L. Cherkasova, and E. Smirni. A Regression-Based Analytic
Model for Dynamic Resource Provisioning of Multi-Tier Applications.
In Intl. Conf. on Autonomic Computing, 2007.

