
Julius–Maximilians–Universität Würzburg
Institut für Informatik

Lehrstuhl für Kommunikationsnetze (Informatik III)

Performance Assessment of
Service Migration Strategies in

Cloud Environments

Leistungsbewertung von
Migrationen von

Internet-Diensten in
Cloud-Umgebungen

Masterarbeit im Fach Informatik
vorgelegt von

Lukas Iffländer

Julius–Maximilians–Universität Würzburg
Institut für Informatik

Lehrstuhl für Kommunikationsnetze (Informatik III)

Performance Assessment of
Service Migration Strategies in

Cloud Environments

Leistungsbewertung von
Migrationen von

Internet-Diensten in
Cloud-Umgebungen

Masterarbeit im Fach Informatik
vorgelegt von

Lukas Iffländer
geboren am 26. April 1990 in Neustadt a. d. Waldnaab

Angefertigt am
Lehrstuhl für Kommunikationsnetze (Informatik III)

Julius–Maximilians–Universität Würzburg

Betreuer:
Prof. Dr.-Ing. P. Tran-Gia

Dr. rer. nat. Florian Wamser

Abgabe der Arbeit:
19.11.2015

Erklärung

Ich versichere, die vorliegende Masterarbeit selbstständig und unter ausschließlicher
Verwendung der angegebenen Literatur verfasst zu haben. Darüber hinaus ver-
sichere ich, die Arbeit bisher oder gleichzeitig keiner anderen Prüfungsbehörde zur
Erlangung eines akademischen Grades vorgelegt zu haben.

Würzburg, den 19.11.2015
(Lukas Iffländer)

Deutsche Zusammenfassung

Der Begriff Cloud ist derzeit in aller Munde. Cloud-Dienste werden jeden Tag be-
liebter. Jedes Smartphone benutzt die Cloud. Jedes Tablet und jeder Internet-fähige
Fernseher greifen darauf zurück. In gleicher Weise werden beim Arbeiten im Büro
der Zukunft, anstelle von Offline-Anwendungen, Online-Programme aus der Cloud
aufgerufen, die auf jedem Internet-fähigen Gerät weltweit nutzbar sind. Dadurch en-
twickelt sich die Cloud für die Hosting-Anbieter zu einem immer größeren Geschäft.
Amazon AWS beispielsweise erreicht inzwischen einen Umsatz von 1.57 Milliarden
Dollar pro Quartal, als einer der beliebtesten Anbieter. Der Dienst erwirtschaftete
in der selben Zeit einen Gewinn von 264 Millionen Dollar [1]. Die zugrunde liegende
Infrastruktur umfasst inzwischen zwei Millionen Server, die von über einer Million
Nutzer verwendet werden.

In dieser Arbeit konzentrieren wir uns auf persönliche Cloud-Dienste wie personal-
isiertes Video-Streaming, Online-Gaming oder Dienste zur netzgebundenen Daten-
speicherung. Ein Cloud-Dienst ist dabei ein virtuelles PC-Image, das beliebig in
Datenzentren oder Cloud-Hostern instanziiert werden kann. Insbesondere kann es
dynamisch in einem Datenzentrum und über Datenzentrumsgrenzen hinweg ver-
schoben und platziert werden.

Cloud-Dienste bieten den Nutzern nahezu unendlich viele Rechenressourcen, die
im Bedarfsfall flexibel ausgelastet werden können. Besonders für Anwendungen mit
unausgewogenem Lastprofil ist dies eine sehr attraktive Option, da die Ressourcen
nur gebucht und bezahlt werden müssen, wenn sie benötigt werden. Diese Dien-
ste können je nach verfügbaren Netzwerkressourcen, Anforderungen des Dienstes,
Qualitätserwartungen des Kunden und Kosten optimiert werden. Optimieren heißt
in diesem Fall den Dienst zu duplizieren, zu skalieren oder zu platzieren. Man nennt
diesen Prozess allgemein Ressourcenmanagement für Cloud-Dienste. Der Prozess
des Verschiebens von Cloud-Images innerhalb oder zwischen Rechenzentren nennt
man Migration.

Wenn auch die technischen Voraussetzungen für Migrationen in aktuellen Syste-
men gegeben sind, so bestehen doch weiterhin offenen Fragestellungen:

1. Unter welchen Netzwerk- und Umgebungsbedingungen ist es möglich einen
Dienst zu migrieren?

2. Was ist der Einfluss einer Migration auf den Dienst?

3. Wie wirken sich Netzwerkparameter und Netzwerkeinstellungen auf die Migra-
tionsdauer und die Dienstqualität aus?

4. Welche Informationen werden gebraucht, um eine Migration zuverlässig durch-
zuführen?

5. Wie kann man die Leistung einer Migration messen?

Greift ein Nutzer beispielsweise auf einen Cloud-Dienst zu, der in einem Rechen-
zentrum lokalisiert ist und erleidet die Netzwerkverbindung zwischen dem Nutzer
und dem Rechenzentrum einen signifikanten Qualitätseinbruch, so muss durch das
Ressourcenmanagement entschieden werden, ob eine Migration in ein anderes Rechen-
zentrum durchgeführt werden soll. Hierfür muss unter anderem abgewägt werden,
ob die bessere Dienst-Qualität den Migrationsaufwand rechtfertigt.

Mehrere Studien haben sich bisher mit den Thema Virtualisierung in Cloud-
Umgebungen beschäftigt. Ein Teilgebiet behandelt dabei die Platzierung von vir-
tuellen Maschinen innerhalb der Cloud-Infrastruktur, was die Grundlage für Mi-
grationen darstellt [2, 3, 4, 5]. Andere Studien behandeln die Realisierung von
Migrationen zwischen unterschiedlichen Cloud-Umgebungen [6] oder fokusieren sich
auf die Modellierung und Leistungsbewertung von Virtualisierungen beim Einsatz
in Cloud-Umgebungen [7, 8, 9, 10, 11].

In dieser Masterarbeit werden Dienst-Migrationen definiert, implementiert und
evaluiert. Die Arbeit leistet den folgenden Beitrag zu den zuvor genannten Themen
und Problemstellungen:

• Literaturrecherche zum Thema: Cloud-Dienste, Ressourcenallokation, Orches-
tration, Migration.

• Strukturierung eines Testbeds mit Cloud-Datenzentrum, Dienst-PCs, Netz-
werkemulatoren zur Emulation verschiedener Netzwerkbedingungen zwischen
den Komponenten.

• Erstellung eines Mess-Frameworks zum automatischen und wiederholten Durch-
führen von Experimenten im Testbed.

• Bewertung und Messung von verschiedenen Migrationsarten im Testbed.

• Bewertung der Leistung und Quantifizierung des Nutzens der Migration im
Hinblick auf den Nutzer (Quality of Experience, Applikationsparameter) und
das Netzwerk (Ressourcenausnutzung, Kosten).

iii

Contents

1 Introduction 1

2 Technical Background 3
2.1 Cloud Infrastructure Solutions . 3

2.1.1 Classification and Description 3
2.1.2 Existing Cloud Infrastructure Solutions 5

2.2 Cloud Service Migration Approaches 6
2.2.1 Migration Types . 6
2.2.2 Migration Modes for Virtual Hardware Migration 7

2.3 Quality of Experience Management for Internet Applications 11
2.3.1 Definition . 11
2.3.2 Modeling . 12
2.3.3 Monitoring . 13
2.3.4 Optimizing . 14

2.4 Representational State Transfer . 14
2.5 Logging Infrastructure . 15

3 Related Work 17
3.1 Selection of Migration Destination . 17
3.2 Migration Between Different Cloud Platforms 18
3.3 Modelling of Virtualized System Performance 18

4 OpenStack Cloud Computing 20
4.1 Project Objectives . 20
4.2 OpenStack Components . 20
4.3 OpenStack Architecture . 22

5 Testbed Definition for the Measurement of Cloud Migrations 24
5.1 Components in Testbed and Testbed Structure 24
5.2 Performance Indicators and Metrics 25
5.3 Signaling Overhead for Various Migrations 26

6 Performance Assessment of Service Migration Strategies 28
6.1 Measurement Parameters for the Evaluation 28
6.2 Impact of Network Characteristics on the Migration Performance . . 29

6.2.1 Impact of Network Throughput Limitations 29
6.2.2 Impact of Network Delays on the Migration Performance . . . 34
6.2.3 Packet Loss in the Network and Related Effects 39
6.2.4 Impact of Instance Flavor on the Migration Performance . . . 44
6.2.5 Summary and Conclusions . 49

Contents

6.3 Evaluation of Migration Performance from Application Perspective . 50
6.3.1 Assessment for File Downloads 50
6.3.2 Server-based Streaming Using Content in the Virtual Machine 52
6.3.3 Server-based Streaming of External Content 54
6.3.4 Dynamic Adaptive Streaming over HTTP (DASH) 55
6.3.5 Counter-Strike: Source Online Gaming 57
6.3.6 Summary and Overview of the Results 60

6.4 Application Aware Optimizations for the Migration Process 60
6.4.1 Optimizations for File Transfers 61
6.4.2 Server-based Video Streaming of Internal Content 61
6.4.3 Server-based Video Streaming of External Content 61
6.4.4 Dynamic Adaptive Streaming over HTTP (DASH) 62
6.4.5 Counter-Strike: Source Online Gaming 62
6.4.6 Summary and Lessons Learned 62

7 Conclusion and Outlook 63

A Appendix 66

List of Figures 71

List of Tables 72

Bibliography 73

v

1 Introduction

Nowadays everyone talks about the Cloud. Cloud services are becoming more and
more popular every day. Every smartphone uses the cloud. Every tablet and every
Internet capable television set is accessing it. In a similar fashion offline applications
are replaced by online services in the office of tomorrow. Such an office is accessible
everywhere and usable on every Internet capable device world-wide. This trend
translates to a lucrative business for the cloud hosting providers. Amazon AWS,
for example, has reached a turnover of US$1.57 billion as one of the most popular
providers. At the same time, the service generated a revenue of US$265 million [1].
The underlying infrastructure has grown to two million servers with over one million
customers.

In this work, we focus on personal cloud services like personalized video stream-
ing, online gaming and network storage services. A cloud service is a virtualized
PC image that can be arbitrarily instantiated in data centers or cloud platforms.
Especially, it is able to be placed and moved across data center borders.

Cloud services offer almost endless resources to the user, which can be flexibly al-
located when necessary. This is a very attractive option particularly for applications
that feature an unbalanced load profile since the users only need to book and pay for
resources when they are needed. This service allocation can be optimized accord-
ing to available network resources, application requirements, the customers’ quality
expectations or cost. Optimizing in this case means duplicating, scaling or placing
the service. This approach is called resource management for cloud services. The
process of moving a cloud service inside or between data centers is called migration.

Even though, the technical preconditions for migrations in current systems are
fulfilled, multiple open questions remain:

1. Under which network and environment conditions is it possible to migrate a
service?

2. What influence does the migration have on the performance of the migrated
service?

3. How do network parameters and settings influence the migration duration and
the service quality?

4. What information is required to reliably perform a migration?

5. How can the performance of a migration be measured?

Imagine, for example, a user that is accessing a cloud service in a data center.
Now the link between data center and user suffers a severe loss of quality. Then the
resource management must decide if a migration to another data center should be
performed. For this decision it is necessary to decide whether the increased service
quality justifies the migration effort.

Introduction

Multiple studies have engaged in the field of virtualization in cloud environments.
A particular research area covers the placement of virtual machines inside the cloud
infrastructure that is the basis for migrations [2, 3, 4, 5]. Other studies cover the
realization of migrations between different cloud environments [6] or focus on the
modelling and performance evaluation of virtualization when used in cloud environ-
ments [7, 8, 9, 10, 11].

In this master thesis service migrations are defined, implemented and evaluated.
The work has the following contribution to the aforementioned topics and problem
definitions:

• Literature research on the topics of cloud services, resource allocation, orches-
tration and migration.

• Structuring of a testbed with cloud data center, service hosts, network emula-
tors to emulated different network conditions between the components.

• Creation of a measurement framework for the automatic and repeated execu-
tion of experiments in the testbed.

• Evaluation and measurement of different types of migration in the testbed.

• Evaluation of the performance and quantification of the benefit of the migra-
tion in regard to the user (quality of experience, application parameters) and
the network (resource utilization, cost).

The remainder is structured as follows. After this introduction in Chapter 1,
an introduction to the technical background follows in Chapter 2. Afterwards, the
related work is summarized in Chapter 3, and in Chapter 4 the cloud solution open
stack is described. Then, the used testbed is defined in Chapter 5. Chapter 6 focuses
on the evaluation of service migration strategies in cloud environments. Finally in
Chapter 7, a conclusion is drawn and the work is summarized. In the Appendix
some tables can be found facilitating the understanding of some of the used figures.

2

2 Technical Background

This section provides the essential background information on the technologies and
concepts used in the thesis. It serves as a basic summary for the future understanding
of this work. It starts with a basic definition of cloud infrastructure solutions.
Afterwards, different types of cloud service migrations are presented. Then, the
description of quality of experience management for applications is introduced. Next,
representational state transfer is explained followed by the concept of a scalable
logging structure.

2.1 Cloud Infrastructure Solutions

A cloud infrastructure consists of multiple components to enable dynamic and flex-
ible management of the provided services. These components can be deployed in-
dependently on the same node as other modules as well as on dedicated nodes.
For redundancy and scalability reasons some of these components can be set up on
multiple machines. Typical cloud infrastructure solutions are OpenNebula, Apache
CloudStack and OpenStack.

2.1.1 Classification and Description

Cloud infrastructures like Amazon AWS consists of the following entities:

Virtual Machines are an emulation of a particular computer system. From the
perspective of the user, they function like normal non-virtual machines.

Hosts are the nodes are rung on the cloud services and especially where the virtual
machines managed by the cloud environment are located. Usually those are
hardware nodes but the hosts can also be virtual machines. Even cloud in a
cloud solutions are possible.

Hypervisors are a piece of software, hardware or firmware that is capable of creating
and running machines. A computer running a hypervisor is called a host
machine.

Services are different applications offered directly to the end user including com-
putation resources, databases or storage. The services usually are the base for
the billing process for the cloud usage where the common mode of billing is
utilization times duration of that utilization.

Virtualization hypervisors can be classified as

2.1. Cloud Infrastructure Solutions

Type-1 specifying bare-metal or native hypervisors. They run directly on the host’s
hardware to control the hardware as well as manage the guest operating sys-
tems. These run as a process on the host node. Common examples are Oracle
VM Server, Citrix XenServer, VMware ESX/ESXi and Microsoft Hyper-V
2008/2012.

Type-2 specifying hosted hypervisors. They run inside a conventional operating
system like any other program. They abstract the guest operating system from
the host operating system. VMware Workstation, VMware Player, VirtualBox
and QEMU are examples of type-2 hypervisors.

The distinction is not entirely clear since there are application like Linux’s Kernel-
based Virtual Machine (KVM) and FreeBSD’s bhyve are kernel modules effectively
converting the host operating system into a type-1 hypervisor while at the same
time competing for resources with any other non virtualization process running on
the system which is more typical for type-2 hypervisors.

Figure 2.1: Modes for hosted virtualization

4

2.1. Cloud Infrastructure Solutions

For the hosted virtualization there are multiple ways of realization as depicted in
Figure 2.1. One option is the operating system virtualization completely virtualizing
the guest operating system. Thus a full operating system is installed inside the
virtual machine. This has the advantage that a total separation between the host
and the guest system is achieved. The other option is to just provide so called
software containers. They provided a process with the before specified required
libraries but the process itself runs on the host operating system in an isolated
user-space instance. Common implementations of container virtualization are Linux
Container (LXC), OpenVZ, Docker and VMware ThinApp.

2.1.2 Existing Cloud Infrastructure Solutions

OpenNebula

OpenNebula is a cloud computing platform for managing heterogeneous distributed
data center infrastructures. It is designed to build private, public and hybrid imple-
mentations of infrastructure as a service. It is sponsored by OpenNebula Systems.
It considers itself filly enterprise ready. It focuses more on the task of data center
virtualization than infrastructure provision and is very flexible. Support is directly
provided by the developer team.

Apache CloudStack

Apache CloudStack is an open source cloud computing software for creating, man-
aging, and deploying infrastructure cloud services. It uses existing hypervisors such
as KVM, VMware vSphere, and XenServer/XCP for virtualization. It was originally
developed by Cloud.com and was released as free software in 2010 with about five
percent of the code base kept proprietary. In 2011 Cloud.com was purchased by Cit-
rix who released the remaining code. In 2012 the development finally switched to
the Apache Software Foundation (ASF). CloudStack is considered enterprise ready.
Compared to OpenNebula CloudStack offers less flexibility and shifts the focus
slightly more to infrastructure provision while still focusing on data center virtu-
alization. CloudStack offers interfaces for many of the OpenStack services allowing
mixed cloud environments. Direct support is offered from the Apache Foundation.

Eucalyptus

Eucalyptus is free and open-source computer software for building Amazon Web
Services (AWS)-compatible private and hybrid cloud computing environments mar-
keted by the company Eucalyptus Systems. Eucalyptus stands for Elastic Utility
Computing Architecture for Linking Your Programs To Useful Systems. It currently
is owned by Hewlett-Packard. Eucalyptus provides a simpler configuration than the
competing solution but at the same time suffers from a severe loss of flexibility.
The system in generally considered enterprise ready. It focuses complete on the
infrastructure provision. Direct support from the developer team is available.

5

2.2. Cloud Service Migration Approaches

OpenStack

OpenStack is an open source platform for cloud computing. The project was initiated
by Rackspace Hosting and NASA. It is widely spread and offered by dozens of
hosting providers. Due to its massive number of modules OpenStack covers the
area of data center virtualization as well as the sector of infrastructure provision.
The high flexibility comes at the price of the massive complexity resulting in a
massive setup effort for the cloud environment. There are tools like dropstack or
devstack trying to assist in the creation of the environment. They usually come at
the disadvantage of either reducing the flexibility or are almost as complicated to
setup than the OpenStack environment itself. The complex setup makes OpenStack
prone to configuration errors leading to some hosters not considering it enterprise
ready. Another problem is, that no direct professional support from the developers is
available but instead provided by the providers that offer OpenStack based solutions.
Of the listed cloud solutions OpenStack is the most heavily developed. This means
on one hand that new features and technologies are quickly implemented but also
that the incompatibilities between major releases often require countless hours to
migrate or even a complete re-installation.

2.2 Cloud Service Migration Approaches

2.2.1 Migration Types

In cloud environments it is often necessary to move services from one host or even
one compute center to another. There are three different migration types:

Data Migration: Only the local data is moved to another host. The application
is already running on this host and continues operation with the migrated
data. This is the migration mode requiring the least amount of data but also
the most intelligence in the application to move the data. An exception are
stateless applications where switching between two hosts that are running the
same application requires no data migration.

Software-/Application Migration: The complete software is moved to the target
host. The target and the source keep their operating system as well as ap-
plications that do not depend on the migrated application running without
modifications. For state-full migrations this migration usually includes a data
migration.

Hardware migration: In case of the hardware migration the complete compute unit
is moved from one location to another. In the common scenarios that means
shutting down the machine, removing its hardware connections, transport it
to the target location, install the hardware and finally resume the machine
operation. Since the software and the data are left on the drive this includes an
application migration as well as a data migration. A special variant, commonly
used in cloud infrastructures is the migration of virtual machines. Since a
virtual machine simulates real hardware the movement of a machine from one

6

2.2. Cloud Service Migration Approaches

host to another can be described at virtualized hardware migration. It usually
requires the same steps as the regular hardware exception but the attached
connections are virtually disconnected and reconnected and the transport is
not done by hand but via the network.

2.2.2 Migration Modes for Virtual Hardware Migration

Different approaches exist to the virtual hardware migration. They require different
levels of software complexity and offer different levels of service quality regarding
migration duration and downtime.

Traditional Approach

Figure 2.2: Traditional Migration Approach

The classical approach as shown in Figure 2.2 follows a process similar to the
migration approach for physical hardware. After the migration is requested the
system checks whether the target host has enough resources (e.g. virtual CPUs,
Memory, Storage, . . .) available. If this is the case these resources are reserved.

7

2.2. Cloud Service Migration Approaches

Then the machine on the source host is then paused. The snapshot of the paused
machine is then moved to a central storage node. Afterwards it is moved to the target
host, where it is resumed. After the system is resumed it continues the operation
but has not yet access to the network which is attached in the next step. After this
the migration is complete.

The machine is down for the complete time it is transferred resulting in a very long
downtime depending on the network speed and link quality. The advantage of this
mode is that it is very simple. In optimized variations of this mode the transfer of
the snapshot image is not done over central storage but instead directly between the
two hosts in the best case cutting the transmission time in half. Still the migration
can take very long and most services will not survive a connection loss this long
without operation failures.

Pre-Copy Migration

Figure 2.3: Pre-Copy Migration

8

2.2. Cloud Service Migration Approaches

The Pre-Copy-Migration as shown in Figure 2.3 focuses on getting a fully work-
ing machine across the network while reducing the downtime. Therefore after the
reservation of the resources on the target host a snapshot of the virtual machine is
created and transferred while the machine is still operating on the source host. Since
the machine is continuing to perform workloads the system after the transmission
of the snapshot the hypervisor checks how large the accumulated delta is is. If the
delta is to high a new delta snapshot is transmitted. This process is repeated until
the delta falls under a preset threshold. When this is the case the machine is paused.
The remaining delta is transferred and the machine is resumed on the target host.
Finally the network connection is reattached.

The downtime of the machine is kept very short since it is only paused while
the remaining delta (if at all existing) is transfer ed. Therefore the duration of the
downtime depends of the preset value for the threshold. One disadvantage is the
recursive progress of sending delta snapshots creating additional network transfers
compared to the classical approach. Selecting the threshold is complicated. If it is
set to high the downtime takes to long and services fail. If set to low the delta might
be constantly to high and the migration never happens. Since this migration type
tries to do the migration en block it is also called the block migration.

Post-Copy Migration

Figure 2.4 depicts the process of the Post-Copy-Migration. The goal of the Post-
Copy-Migration is to get the virtual machine working on the target node as fast
as possible. Therefore the machine is stopped right after the resource reservation.
Then a minimal memory image is moved to the target node. It contains CPU state,
registers and optionally non-pageable memory. The VM is then resumed based on
this minimal subset of the execution state and the network is attached to the machine
on the target node. Concurrently the remainder of the complete machine image is
transferred over the network. If the VM at the target tries to access memory not
yet transferred it creates a page fault, also known as network fault. The network
faults are trapped and redirected to the source node which responds by sending the
faulted page. The migration is completed after the complete remainder of the image
is transferred.

The downtime is kept quite short and the goal of moving an operational machine
to the target as fast as possible is achieved. The quality of the operation is dependant
on the number of network faults. If the number of faults is to high, the application
running on the node can be massively impaired or even fail. Therefore this approach
requires a lot of intelligence in the migration mechanism predicting which parts of the
memory will be required and migrating them first as well as deducing access patterns
from previous faults and migrating memory located around the faulty blocks.

Live Migration via Central Storage

The last approach is the so called Live-Migration. The process is visualized in
Figure 2.5. Different to the aforementioned concepts the live migration does not

9

2.2. Cloud Service Migration Approaches

Figure 2.4: Post-Copy Migration

store the instances of the virtual machines running in the cloud environment on the
compute nodes themselves but instead on a central storage. After the reservation
of the target’s resources the VM is paused on the source node. Now, if caching of
the network storage was utilized, the network storage is synchronized at first for the
source node and at second for the target node. Then the machine is resumed on the
target node and the network is attached. If the system runs on a very fast network
(≥10Gbps) without cache the synchronization steps can be skipped.

The live migration is very fast and minimizes the downtime. Even though it
has its disadvantages. The usage of central storage increases the required network
bandwidth during normal operation while at the other hand reducing the transfer
required during the migration. Also the connection to the storage and the storage it
self can be a bottle neck since the network link is usually slower than locally attached
SAS drives and multiple VMs accessing the central storage can lead to the central
storage’s drives being used at full transmission capacity while still not being able
to handle all requests. Also the chosen type of network storage can influence the
performance. Either classical network file systems like NFS on CIFS can be used or
block storage services provided by the employed cloud environment.

10

2.3. Quality of Experience Management for Internet Applications

Figure 2.5: Live Migration

2.3 Quality of Experience Management for Internet
Applications

A central topic in today’s research in the field of network technologies is the Quality
of Experience (QoE). The overall goal of many publications is to offer ideas to
increase that factor in certain situation.

2.3.1 Definition

“Quality of Experience (QoE) is the degree of delight or annoyance of the user of an
application or service. It results from the fulfillment of his or her expectations with
respect to the utility and/or enjoyment of the application or service in the light of
the user’s personality and current state.[12]”

In the hourglass model the quality of experience provides the topmost layer as
show in Figure 2.6. Mapped to the IP hourglass model this would be the user layer.
It is visible from the figure that QoE is dependant on the quality levels of the lower

11

2.3. Quality of Experience Management for Internet Applications

layers. It depends on the Quality of Transmission (QoT), Quality of Service (QoS),
Quality of Delivery (QoD) and Quality of Presentation (QoP).

Quality of Transmission (QoT) is the bit error rate of the physical network link.

Quality of Service (QoS) “is the idea that transmission rates, error rates, and
other characteristics can be measured, improved, and, to some extent, guar-
anteed in advance[13].” In the modern Internet QoS is mainly done at the IP
level.

Quality of Delivery (QoD) is the concept that the selection and or modification
of the right transmission protocol and the handover between the protocol and
the application has a measurable influence on the users experience.

Quality of Presentation (QoP) is the quality the arrives at the medium the user
uses to consume the delivered content. It depends on the fact that the user is
presented with all the request data and in which way the data is displayed.

QoE is one of the most important metrics for resource management of end user
applications[14]. Utilizing this metric requires three steps: QoE modeling, monitor-
ing and optimizing[15].

2.3.2 Modeling

Integrating the QoE into the resource management requires a fundamental under-
standing of the varying application requirements as well as the impairment of the
quality perceived by the user from network disturbances. Therefore the QoE needs
to be modeled for every specific application with different network parameters[15].

Figure 2.6: Hourglass models of IP networks besides the model for the different qual-
ity layers.

12

2.3. Quality of Experience Management for Internet Applications

The modelling consists of two parts. One is quantifying the perceived quality by
the user and the second is measurement of application related metrics depending on
the network connection quality[14]. The second part can be turned into a model for
application layer QoS. Based on this a mapping to the user perceived quality has to
be done by subjective user studies.

2.3.3 Monitoring

Resulting from the modeling the parameters relevant to QoE are identified. To
monitor the QoE based on the model created before these parameters need to be
monitored. Usually the parameters include “(i) the network environment (e.g.,
fixed or wireless); (ii) the network conditions (e.g., available bandwidth, packet
loss[, latency]); (ii) terminal capabilities (e.g., CPU power, display resolution); (iv)
service and application-specific information (e.g. video bitrate, encoding, content
genre)[15].”

Whilst direct QoE monitoring has the advantage of being very precise it requires
very complex models and therefore creates either more computational load or makes
near real-time monitoring impossible when crowd sourcing is used for the QoE
quantification[16].

Monitoring the application state on the other hand in some cases may not be as
precise as QoE monitoring but the complexity is vastly reduced while keeping which
also reduces the level of computational load. In many cases the used QoE metric is
also an application state. In these cases no precision is lost.[17].

When monitoring only the application state it is necessary to use a state that is
either a QoE metric itself or is deductible to a QoE metric. Therefore, the application
state is directly correlated to the users’ QoE. The monitoring of this state can be done
by probing network parameters as well as directly getting application information.

The monitoring can be done at different locations. At the client it can be done by
modifying existing applications or appending an additional monitoring application to
the monitored one. Since the information is directly derived from the application this
approach is very precise and the additional processing requirements are negligible.

Distributed monitoring (e.g. at a Gateway) is still precise but requires a higher
amount of computing power. The slow hardware deployed in most internet gateway
devices and the remote detection of user interaction with the application increase
the level of complexity since the used algorithms must make do with the available
hardware and try to predict interactions such as canceling or pausing a video on the
client machine[18].

Moving the monitoring to a centralized point in the network (e.g. at the provider)
increases the the amount of data that has to be monitored requiring very high pro-
cessing power. It inherits the interaction problem from the distributed monitoring
approach. In the following concepts to tackle these problems are presented.

For reference a short comparison of the different location approaches is shown in
Table 2.1.

13

2.4. Representational State Transfer

Precision Processing Complexity
Requirement

Client accurate low application modification
Distributed good high slow hardware

(e.g. Gateway) user interaction
Centralized good very high huge amount of data

user interaction

Table 2.1: Comparison Application Monitoring Locations

2.3.4 Optimizing

After the modeling and the monitoring the final step is to use the learned information
from the model to optimize the QoE in the resource management with the goal of
minimizing the dissatisfaction upon the user base. The QoE control targets to
take action before the QoE declines. The QoE resource management addresses the
questions, “(a) where to react, i.e. at the edge, within the network or both; (b)
when to react and how often; and (c) how to react and where which control knobs
to adjust[15]”.

2.4 Representational State Transfer

The term REpresentational State Transfer (REST) was introduced by Roy Fielding
[19] in the year 2000. REST is defined as a network oriented architectural style,
with the objective to minimize the latency as well as the communication overhead
over the network and at the same time increase the components independence and
scalability.

Rest follows many different design principles. Goals are the support of caching, the
dynamical sustainability of components and the processing of actions at intermediate
nodes (e.g. gateways or load-balancers). This features are designed to enable high
scalability, expansion and success of the World Wide Web that is an interface of the
REST architecture style. Nevertheless REST is not tied to HTTP as a protocol and
only describes the abstract properties required for a REST-compliant system but
HTTP is the most commonly protocol used with REST APIs. REST corresponds
to the need of the Internet Engineering Task Force (IETF) for a behavioral model
of the Web. The format of the data transmission can vary too. While JSON is the
most common format there are also implementations using XML or CSV files.

CRUD REST Description
CREATE PUT/POST Create and set the state of a resource

READ GET Retrieve a resource’s current state
UPDATE PUT/PATCH Modifies a resource state
DELETE DELETE Removes a resource

Table 2.2: CRUD operations as implemented in REST

14

2.5. Logging Infrastructure

REST implements all CRUD (Create, Read, Update, Delete) operations necessary
for the interaction with other services as shown in Table 2.2. REST is view as a
simpler alternative to the competing SOAP and WSDL[20] based services.

An important characteristic of the REST approach is that it is stateless in the
client server interaction. No client context is stored at the server. Therefore a
successful request must contain all the required information needed for the processing
and if required any session state is handled by the client. This facilitates server side
scalability and the introduction of failure tolerance but increases the network load
due to the re-submission of already transferred information.

2.5 Logging Infrastructure

The Logstash book[21] describes log management with the following fitting words.
“Log management is often considered both a painful exercise and a dark art.“ The
understanding of a good log management is a slow and evolutionary process. Many
system administrators use tools like cat, tail or grep but these do not scale for
large scale environments with multiple servers. Analyzing log files on hundreds or
even thousands of servers to find the source of a failure is simply not feasible.

Addressing of this problem requires a centralized infrastructure concentrating the
log files. But still there is the problem of too much information and too little context
as well as different log formats (different time-stamps etc.) that make it hard to find
what one is looking for with the aforementioned tools.

Therefore the log management must be able to filter and parse the received log
files into a common format that is easily searchable by a searching and indexing
technology while at the same time being able to scale with growing network size and
number of log files processed.

The log management can be divided into several modules:

Shipper The shipper runs at the node where the log files are created. It collects
the log files and if necessary it can perform preprocessing (e.g. drop certain
log entries since they are not needed and would only create additional network
traffic) and then forwards them to the broker.

Broker the broker handles the transmission between the shipper nodes and the
indexer nodes (e.g. by providing a message queue).

Indexer the indexer processes the received log files converting them in the target
format while indexing the important information. The indexer then adds the
parsed information to the search cluster.

Search Cluster the search cluster consists of one or multiple nodes providing the
ability to sort and search the data entered by the indexer.

All these nodes on the way can be scaled to support scaling of the network or
to introduce fault tolerance. An example for this is shown in Figure 2.7. From
each shipper there are multiple ways of getting the information from the logs to the

15

2.5. Logging Infrastructure

Figure 2.7: Architecture of a scalable logging infrastructure. Dashed lines mark
backup links.

search cluster. This allows parallel processing of multiple logging sources as well as
continuous operation if one of the nodes on the way should fail.

16

3 Related Work

Many studies have been performed in neighbouring topics occasionally touching the
topic of the thesis. In the following a sample of these are described and their results
are summed up.

3.1 Selection of Migration Destination

In [2] “A Network-aware Virtual Machine Placement and Migration Approach in
Cloud Computing” is proposed. Since virtual machines in cloud infrastructures are
solely stand-alone applications they need to interact with each other over the net-
work. Therefore the network I/O performance often is a key factor to the application
performance. Therefore the authors suggest in their approach a placement of the
machines to minimize the data transfer time consumption. They validate their ap-
proach by simulation. The utilized approach is utilizes a data distribution matrix
accounting for the status of the data distribution of the applications. Based on this
matrix the distribution is minimized with regard to the available resources at certain
host nodes. The validation shows that indeed a gain is achieved with the duration
of certain network heavy tasks reduced up to 25%.

In [3] “A Novel Virtual Machine Placement in Cloud Computing” is presented.
Common to [2] the key problem definition is the minimization of the amount of data
transferred between different machines in the cloud environment. They use a similar
approach as before using matrices to characterize network parameters and available
resources. Unlike in [2] a larger number of characteristics is used and in a more
formal approach the optimization formula that can be fed into linear programming
is established. The authors also use simulation for their validation having similar
results to the previous source.

The paper in [4] discusses “Autonomic Virtual Machine Placement in the Data
Center” presenting a high level overview of a virtual machine placement system. A
controller is designed to map virtual machines to the host according to user-specified
policies. By monitoring the machine activity and employing advanced policies the
authors claim to be able to achieve substantial cost savings from better utilization
of computing resources and less frequent overload situations. The evaluation was
done by experiment as well as simulation. While at the beginning of the validation
setup the amount of imbalance exceeds the selected threshold by migrating the load
is balanced with equal load over all hosts for CPU, LAN as well as SAN. Where the
SAN load was balanced first and the other twos slightly later.

In [5] an approach to “Migration-aware Optimization of Virtualized Computa-
tional Resources Allocation in Complex Systems is presented. The novelty is the
migration of application assigned to the resources of one machine can be migrated

3.2. Migration Between Different Cloud Platforms

to another during system lifetime. This is done by using the proposed heuristic op-
timization. Since the valid solutions are non-convex the procedure is decomposed in
a relax-and-round approach. The proposed decomposition facilitates fast algorithm
convergence while still guaranteeing the solution satisfies the assumed constraints.
The evaluation for multiple environments with between three and 80 nodes shows
that the approximation is near to the optimal solution.

3.2 Migration Between Different Cloud Platforms

In an the article [6] the topic of “Application Migration Effort in the Cloud - The
Case of Cloud Platforms” is discussed. They specify that a problem is the migra-
tion requiring development effort and open up new risks of vendor lock-in. They
present a cloud-to-cloud migration between seven different cloud platforms to make
applications more independent of the used cloud provider and the employed cloud
management software. They use a Docker-based deployment system enabling the
comparison of different platforms for particular applications. The approach is val-
idated by implementing it for the used platforms. The migration between vendors
requires trade-offs hand changes to the technology setup. With the developed tool
using container virtualization and migration it was possible to deploy onto differ-
ent cloud systems without making these trade-offs. The results show that major
differences between the cloud providers exist. VM-based platforms require more
effort than container based platforms. The results show that platform independent
development is a very complex topic taking a lot of resources.

3.3 Modelling of Virtualized System Performance

In the dissertation of Nikolaus Huber [7] introduces modeling technologies for for
“Autonomic Performance-Aware Resource Management in Dynamic IT Service In-
frastructures”. He argues for the need of sophisticated modeling technologies for
static and dynamic aspects of the managed system as well as the requirement to
be able to adapt these technologies at run time. He presents core concepts like a
process model for proactive model-based system adaption using the Descartes Mod-
eling Language (DML). He introduces modeling abstraction to describe complex IT
infrastructures like cloud environments as well as the degrees of freedom in such a
system and presents a method for the identification, classification, and automatic
quantification of performance-influencing properties. He specifies VM migrations as
one approach to the dynamic adaption of the resource management.

In [8] an “Analysis of the Performance-Influencing Factors of Virtualization Plat-
forms” is presented with the goal of establishing a generic approach to predict the
performance influences on virtualization platforms. Afterwards, a general method-
ology to quantify the influence of the identified factors is presented which is demon-
strated by a case study.

The paper in [9] evaluates and models virtualization performance overhead for
cloud environments. The problem is that virtualization and the sharing of resources
have direct effects on application performance making performance prediction of

18

3.3. Modelling of Virtualized System Performance

cloud deployed services very complex. The authors propose a generic performance
prediction model for the two different hypervisor types.

In [10] “Automated Modeling of I/O Performance and Interference Effects in Vir-
tualized Storage Systems” is discussed. Storage in virtualization environments can
quickly become a bottle neck. This topic has so far been avoided due to the com-
plexity of modern virtualized storage systems leading to the common deployment of
solution sized by guessing. The paper presents an automatic approach to modelling
this I/O performance. The model is validated in three case studies on real-world
hardware. The results are very precise with a mean prediction error of up to 7%.

The paper in [11] discusses“Predictive Performance Modeling of Virtualized Stor-
age Systems using Optimized Statistical Regression Techniques” presenting another
approach at I/O modeling. This approach uses a general heuristic search algorithm
optimizing the parameters of regression techniques. The approach is then validated
in a in-depth evaluation in a real-word environment. The optimizations are capable
of reducing the error from [10] by up to 74%.

In [22] the application of “Queuing Models for Large System Migration Scenarios”
is evaluated in “An Industrial Case Study with IBM System z”. The model is used
to predict the performance impact when migrating to a new environment in an
industrial context. At first a general modeling methodology is is presented and its
application to the migration scenarios is described. The influence of the application
performance is predicted with high accuracy.

19

4 OpenStack Cloud Computing

OpenStack is a fast growing cloud infrastructure as a service solution under heavy
development. Its open source approach results in many contributions to the software
increasing the flexibility with every release.

4.1 Project Objectives

The OpenStack Project aims “to produce the ubiquitous Open Source cloud comput-
ing platform that will meet the needs of public and private cloud providers regardless
of size, by being simple to implement and massively scalable [23].” The cloud should
provide on demand self-services broad network access, rapid elasticity, resource pool-
ing and measured services. It is capable of running private clouds (cloud services
only provided for the own organization), public clouds (offering services to others),
community clouds (offered to community members and also hosted by the members)
and hybrid clouds (cloud is partly public and partly private).

The objective of the OpenStack team is to increase the capabilities of open stack.
While at the beginning OpenStack was a mere Infrastructure-as-a-Service applica-
tion, it has more and more evolved to additionally provide Platform-as-a-Service
features which were basically realized in late 2014.

OpenStack is still a young project with the first release (Austin) made public in
October 2010 and the first production ready release finalized in September 2011.
The development team aims at delivery two releases every year with the current and
twelfth release Liberty released in October 2015. With every release new features
are added and many projects are currently being developed and competing for their
introduction in the stable releases like a DNS service or bare metal provisioning.

4.2 OpenStack Components

A cloud infrastructure consists of multiple modules to achieve the different parts of
handling the machines. These modules can be deployed independently on the same
node as other modules as well as on dedicated nodes. Some modules can be set
up on multiple machines. The module types currently supported by OpenStack are
listed below with the name of the OpenStack implementation of this module given
in parentheses.

Dashboard (horizon) provides a web-base self-service portal allowing interaction
with the underlying services of the cloud environment such as launching an
instance, assigning IP addresses and configuring access controls.

4.2. OpenStack Components

Compute (nova) manages the live-cycle of the compute instances provided by the
cloud environment and is responsible for the spawning, scheduling and decom-
mission of virtual machines on demand. The compute module is divided into
multiple independent sub-modules.

API (nova-api) provides the interface between the other modules and the
actual compute nodes.

Metadata (nova-metadata) injects important metadata like public keys to
allow secured remote access to the virtual machines.

Certification (nova-cert) provides certificates for the cloud environment to
ensure the identity of machines and users.

Conductor (nova-conductor) offers an abstraction layer so no database ac-
cess by the compute nodes is required.

VNC-Proxy (nova-novncproxy) forwards VNC signals to allow access via re-
mote management using the VNC protocol.

Console-Authentication (nova-consoleauth) ensures the remote environment
is only accessible to the users holding the necessary rights and group
memberships.

Scheduler (nova-scheduler) schedules the creation and deletion of virtual
machines.

Actual Compute (nova-compute) launches and decommissions virtual ma-
chines on the node it is running on.

Networking (neutron/nova-network) provides Network-Connectivity-as-a-Service
for the other services such as compute. It provides an api allowing the users to
define networks and attach machines to them. It can have a plug-able archi-
tecture to allow hot plug addition and removal of new machines. Depending
on the requirements different Layer 2 and Layer 3 protocols can be supported.

Object Storage (swift) allows to store and retrieve any unstructured data objects.
It can offer fault tolerance by duplicating and spreading the storage over mul-
tiple nodes. It can usually not be mounted like a file server but instead the
exact file to store or retrieve must be specified.

Block Storage (cinder) provides block drives to running instances that can added
or removed on demand during operation. It is usually mountable like storage
that is directly included in the instance images of the virtual machine.

Identity Service (keystone) provides authentication and authorization services for
all the other services. It also provides a catalogue providing users with a list
of all available services and their endpoints.

Image Service (glance) stares and retrieves virtual machine disk images that can
be used by the compute service to provision new virtual machines.

Telemetry (ceilometer) monitors and meters the cloud environment. The data can
be used for billing, benchmarking, scaling and statistical evaluations.

21

4.3. OpenStack Architecture

Orchestration (heat) allows the orchestration of composite cloud applications us-
ing templates.

Database Service (trove) provides scalable and reliable cloud Database-as-a-Service
functionality. Depending on the implementation relational as well as non-
relational database engines can be supported.

Data Processing Service (sahara) provides the capability to provision and scale
clusters by specifying topology and hardware details.

4.3 OpenStack Architecture

To provide the aforementioned services the modules need to interact to assemble the
services from the available sub-services.

Figure 4.1 shows the generalized architecture of the OpenStack cloud infrastruc-
ture. On top are the identity, telemetry and dashboard services that interlock with
every module in the Cloud Infrastructure. Since they are not necessarily required for
the infrastructure to continue running they are depicted outside the system. Around
the center the central services are depicted providing object and block storage, im-
age management, network access and compute node provision. Further outside the
more abstract services that offer a solution from one source for either orchestration,
data processing or database services. It is visible that many services interlock or
are chained to provide certain features. It is also visible that certain services like
the data processing or database service are just meta services to the base services
providing a simpler interface implementing the facade design pattern [24]. This
abstraction layer allows users without the knowledge of the base services to create
complex infrastructures and services with little effort.

22

4.3. OpenStack Architecture

Figure 4.1: Architecture of a cloud infrastructure

23

5 Testbed Definition for the
Measurement of Cloud Migrations

The aim of the testbed is the measurement of the performance of virtual machines
and their migrations performance. Therefor in the following an OpenStack testbed
is being structured.

5.1 Components in Testbed and Testbed Structure

Management
Node

Compute
Nodes

WWW

Automatic
Deployment

and
Configuration

Log Collection
Search Engine
Visualization

Figure 5.1: Architecture of the used testbed

The testbed consists of multiple nodes as shown in Figure 5.1. A minimal setup
of OpenStack, sufficient to create virtual machines with network access as well as
perform block and live migrations has been installed. The central management
node runs the horizon, nova-api, nova-metadata, nova-cert, nova-conductor, nova-
novncproxy, nova-consoleauth, nova-scheduler, glance and keystone services. The
compute nodes run the nova-network and the nova-compute service.

Additionally, a node running a Puppet server was configured. It allows the auto-
matic deployment and configuration of applications. Every node except the puppet

5.2. Performance Indicators and Metrics

server itself is completely configured by puppet allowing the quick replacement of
failed machines and fast addition of additional resources (e.g. compute nodes).

A smaller version of the logging infrastructure described in Section 2.5 has been
implemented. On every node an instance of Logstash is running as a shipper for-
warding log files from the OpenStack services as well as the results of puppet runs
and other key system log files to a central Logstash node using a Redis queue as a
broker. The Logstash at the central nodes than processes the sent log files indexing
the parsed values and grouping events that belong to the same process. This is then
forwarded to elastic search as a search cluster solution (in this case the cluster has
only one node). For simple access of the indexed data Kibana has been installed to
provide a web based graphical user interface with access to the stored information.
Kibana supports filtering and the creation of plots for key metrics.

Though the network is only connected to a single NIC per server there a five
virtual networks set up. The main network is the public network allowing the
communication with the outside. The second network is a network dedicated to
the inter process communication of OpenStack. A second network is reserved for a
possible future addition of the OpenStack volume service cinder. The third network
is used for the puppet deployment. The final network is set aside for the transmission
of the logs. This approach allows to define network parameters for each network
individually allowing to test the influence of network parameters on OpenStack
while still having real time logging capabilities.

For the measurements a script has been developed that performs a selectable num-
ber of migrations. The script can be parameterized to which flavor is used, whether
live or block migration was selected and which network parameters are desired for
a measurement. It can directly set a limit to the total throughput bandwidth, an
added latency and an artificial loss rate for network packets.

5.2 Performance Indicators and Metrics

The logging infrastructure collects multiple sets of data from different log files. For
each compute node it monitors

• Number of available and used CPUs

• Size of available and used memory

• Size of available and used local storage

From the information sent by the compute nodes the following information is
gathered about the virtual machines allowing the key factors to be calculated.

• Date of creating a virtual machine

• Date of destruction

• Date of pausing a virtual machine

• Date of being resumed

• Date of finishing postoperation phase

25

5.3. Signaling Overhead for Various Migrations

5.3 Signaling Overhead for Various Migrations

The proposed solution to monitor the migration in the network needs to be evalu-
ated in respect to its efficiency and impact on the network performance. Since the
signaling is done over the network the main characteristic is the additional traffic
generated by the monitoring solution.

Time [s]
0 200 400 600 800 1000 1200

B
an

dw
ith

 D
em

an
d

[k
bi

t/s
]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Four Parallel
Migrations

Three Parallel
Migrations

Average Signaling
Efort 0.95 kbit/s

Background
Operation

Two Parallel
Migrations

Single
Migrations

Figure 5.2: Average network load of the monitoring solution in different scenarios

To evaluate the created network load the virtual interface for the the Logstash
traffic was captured on the assigned virtual interface using TCPDump[25]. After-
wards offline processing of this dump file has been done using WireShark[26]. The
relative time stamp of the transferred packets as well as the size of these packets on
the network has been extracted from the logs. Different scenarios where evaluated
including migrations of between one and four virtual machines at the same time as
well as running only background operations.

Figure 5.2 shows the average bandwidth demand over time. It is visible that the
demand is rather low. The background operation only takes about 0.2 kBit/s of
bandwidth and even the migration of four machines at once only requires slightly
more than 1.6 kBit/s. The average over the complete duration of the different mi-
gration scenario is 0.95 kBit/s. Considering connection speeds between data centers
usually being above 100 MBit/s and the connections in the data centers are often
even faster than that the effect of the monitoring solution on the remaining traffic

26

5.3. Signaling Overhead for Various Migrations

should be negligible for a small to medium amount of compute nodes and migrations
running. Only in extremely large environment where it is a realistic scenario that
thousands of migrations would be running at the same time over dozens of compute
nodes a separate link would be required (e.g. switching the Logstash transmissions
from a virtual to a dedicated interface).

Therefore the monitoring solution is proven to have little overhead. Real time
applications would not be impaired by the parallel transmissions during their normal
operation.

27

6 Performance Assessment of
Service Migration Strategies

In the following chapter described testbed is used for the performance assessment
of service migration strategies. At first, the different measurement parameters for
the evaluation are described. Then, the influence of different network settings and
characteristics on the migration performance is quantified in multiple measurements.
Subsequently, multiple Internet applications are evaluated for their migratability. At
the end of this chapter optimizations are presented to improve that migratability.

6.1 Measurement Parameters for the Evaluation

Figure 6.1: Measurement Parameters

Figure 6.1 depicts the different measurement parameters used for the evaluation.
Basically the duration of a migration is examined. A migration consists of three
major steps. The relevance of each step depends on the requirements that the
migrated application and the migrating user pose at the migration process.

Preoperation Time: This time interval starts when the command to initiate the
migration is issued. It ends with the point of time at which the time the
migrated machine is paused. This includes the handling of the commands via
the REST API [27] as well as the synchronization of the file systems on source
and target servers, the post-migration generation and transfer of a snapshot of
the machine and the allocation of resources on the target system. During this
time the machine continues normal operation and is fully accessible through
the network.

Downtime: This specifies the time between the pausing of the machine on the source
node and the resuming on the target node. It includes the final copying of the
latest delta snapshot for block migrations and the terminal synchronization of

6.2. Impact of Network Characteristics on the Migration Performance

the file systems for live migrations. During this time the machine is paused
and can neither perform computing operations nor be accessed through the
network.

Postoperation Time: This is the time from the point of time when the machine is
resumed to the time the operations necessary after resuming are completed.
This mainly consists of the reattachment of the network to the machine and
the updating of the routes used in the internal network. During this time
the machine can perform computing operations but is not guaranteed to be
accessible through the network.

As described in the following sections the ratio of these three components varies
depending on the external circumstances. It depends on the selected instance flavor
as well as on the network parameters and settings.

6.2 Impact of Network Characteristics on the
Migration Performance

In the following section the results of the measurements taken for network charac-
teristic influence are presented and discussed. The network settings are modified
and measurements for the above specified parameters are taken for multiple types of
migration. For each combination of network parameters presented in this chapter at
least 15 measurement runs have been performed but in some cases up to 80 repeti-
tions have been done. The amount of runs was determined based on the confidence
intervals.

For the evaluation process a virtual image instance of a certain flavor is booted
at the testbed based on a CirrOS [28] image. Therefore (if not otherwise stated)
the storage of these machines is not artificially filled to the maximum and a lot
of free space remains inside the instance. Therefore optimization and compression
algorithms have a huge potential.

6.2.1 Impact of Network Throughput Limitations

A huge part of the migration time applies to the transfer of a large amount of data
across the network. Consequently we first evaluate the effect of limitations of the
throughput rate have on the migrations. Therefore migrations have been measured
with bandwidth restriction of 1000 MBit/s (native speed of the used NICs), 100
MBit/s and 10 MBit/s. The measurements have been performed for the m1.tiny,
m1.small, m1.medium and m1.large flavors to assess whether the results are appli-
cable across all flavors (The impact of the different flavors is detailed and discussed
in Section 6.2.4).

At first the the table showing the relevant factors is presented. Then the total
duration is analyzed followed by the preoperation time, the downtime and postop-
eration time. At the end of the subsection a short summary is drawn.

29

6.2. Impact of Network Characteristics on the Migration Performance

Migration Flavor Speed avg. Dur- avg. Pre- avg. Down- avg. Post-
Type m1. [MBit/s] ation [s] optime [s] time [s] optime [s]
block tiny 10 76.606± 5.324 74.580± 5.305 0.403± 0.075 1.623± 0.122
block tiny 100 14.200± 0.380 12.372± 0.354 0.188± 0.060 1.638± 0.123
block tiny 1000 12.333± 0.712 10.521± 0.694 0.214± 0.074 1.598± 0.127
block small 10 119.284± 3.917 117.307± 3.956 0.388± 0.055 1.588± 0.085
block small 100 18.513± 0.401 16.725± 0.374 0.181± 0.062 1.606± 0.115
block small 1000 14.443± 0.965 12.628± 0.865 0.228± 0.089 1.587± 0.154
block medium 10 172.856± 0.743 170.847± 0.778 0.393± 0.110 1.616± 0.121
block medium 100 24.375± 0.352 22.571± 0.326 0.206± 0.066 1.598± 0.178
block medium 1000 18.045± 1.004 16.138± 0.900 0.224± 0.074 1.683± 0.155
block large 10 271.278± 0.417 269.373± 0.375 0.352± 0.041 1.554± 0.137
block large 100 34.446± 0.806 32.656± 0.676 0.248± 0.078 1.541± 0.115
block large 1000 23.579± 0.983 21.766± 0.863 0.189± 0.061 1.624± 0.166
live tiny 10 65.628± 1.963 63.478± 5.305 0.390± 0.094 1.760± 0.105
live tiny 100 12.747± 0.295 10.940± 0.354 0.134± 0.014 1.673± 0.136
live tiny 1000 10.726± 0.423 8.967± 0.694 0.127± 0.023 1.630± 0.070
live small 10 107.791± 1.598 105.725± 3.956 0.414± 0.140 1.652± 0.128
live small 100 16.915± 0.401 15.149± 0.374 0.188± 0.100 1.578± 0.094
live small 1000 13.658± 0.499 11.921± 0.865 0.107± 0.022 1.630± 0.057
live medium 10 163.559± 0.647 161.413± 0.778 0.369± 0.061 1.777± 0.102
live medium 100 22.575± 0.332 20.797± 0.326 0.222± 0.082 1.556± 0.102
live medium 1000 16.393± 0.454 14.609± 0.900 0.140± 0.036 1.643± 0.069
live large 10 264.068± 3.818 261.961± 0.375 0.406± 0.080 1.702± 0.148
live large 100 32.670± 0.348 30.789± 0.676 0.228± 0.042 1.653± 0.121
live large 1000 22.389± 0.381 20.566± 0.863 0.154± 0.015 1.668± 0.066

Table 6.1: Migration duration sorted by flavor with ascending throughput limits with
confidence intervals with 95% confidence level

30

6.2. Impact of Network Characteristics on the Migration Performance

Table 6.1 shows the results of the measurements taken including confidence inter-
vals with 95% confidence level. The migration time increases when the throughput
is reduced. Therefore the initial assumption that the limitation of the throughput
influences the migration time is proven correct.

data rate [MBit/s]
10 100 1000

tim
e

[s
]

0

20

40

60

80

100

120

140

160

180

live
block

Figure 6.2: Migrations of the medium flavor using different throughput limits

Figure 6.2 shows the migration times for the medium flavor. As can be seen in
Table 6.1 these results are representative for the other flavors. Between 100 MBit/s
and 1000 MBit/s the difference is quite small compared to the difference between
100 MBit/s and 10 MBit/s, though both differ at a factor of ten. This leads to the
assumption that - especially for the smaller flavors - a large factor of the time spent
on the migration is not at all or only slightly dependant on network throughput.
This includes Memory allocation, the booting, pausing and resume processes of the
virtual machines, latency critical low throughput applications like the messaging
queues or the REST API used by OpenStack[27]. The factor affected the most is
the copying of the machine instance.

The average migration times of the live migration approach lie always below to the
block migration approach. While for the highest throughput level of 1000 MBit/s
the confidence intervals still overlap for some flavors, the increase is significant as
the throughput decreases.

As can be seen in Table 6.1 the majority of the time spent on the migration is
always spent on the preoperation time. Therefore it is considerably affected by the
throughput limit. As shown in Figure 6.3 the preoperation time is largely increased
when reducing the available bandwidth. Like the total duration of the migration the

31

6.2. Impact of Network Characteristics on the Migration Performance

data rate [MBit/s]
10 100 1000

tim
e

[s
]

0

50

100

150

200

250

300

live: tiny
block: tiny
live: small
block: small
live: medium
block: medium
live: large
block: large

Figure 6.3: Preoperation times for various flavors and migration types grouped by
throughput limit

preoperation time of the live migration is shorter than for the block migration with
the advantage becoming more significant with lower throughput. This is explainable
due to the fact, that one major factor of the preoperation phase is moving a snapshot
of the virtual machine from the source to the target server in block mode respectively
synchronizing the source machine with the central storage and that again with the
target machine. This process mainly consists of transferring a large amount of data
over the network and is therefore very sensitive to bandwidth limitations.

Figure 6.4 shows the downtimes from Table 6.1. The downtimes are slightly sen-
sible to the change of the throughput limits but the effect is very weak compared to
the preoperation times. This is due to the fact that because only a small part of the
downtime phase relies on network transport and consequently the bandwidth limita-
tions have little effect. Only the final sync of the storage (live migration) respectively
the transmission of the final delta snapshot (block migration) is performed over the
network. Other tasks like pausing the machine on the source node and resuming it
on the target node are not dependant on the network throughput.

It is visible that at higher speeds the live migration approach keeps the downtimes
on average up to half as short as the block migration approach. The latter has a large
confidence interval, so while slower on average there are single occurrences where the
block migration has a shorter downtime. For computational intensive applications
that might be a critical advantage for the live-migration since the interruption of
the computing process is only interrupted for a short time.

32

6.2. Impact of Network Characteristics on the Migration Performance

data rate [MBit/s]
10 100 1000

tim
e

[s
]

0

0.1

0.2

0.3

0.4

0.5

0.6

live: tiny
block: tiny
live: small
block: small
live: medium
block: medium
live: large
block: large

Figure 6.4: Downtimes for various flavors and migration types grouped by through-
put limitation

data rate [MBit/s]
10 100 1000

tim
e

[s
]

0

0.5

1

1.5

2

live: tiny
block: tiny
live: small
block: small
live: medium
block: medium
live: large
block: large

Figure 6.5: Postoperation times for various flavors and migration types grouped by
throughput limit

33

6.2. Impact of Network Characteristics on the Migration Performance

In Figure 6.5, the postoperation times from Table 6.1 are visualized. From the
depicted values and confidence intervals no effect of the throughput limits on the
postoperation times can be proven beyond reasonable doubt. There is no signifi-
cant difference between live migration and block migration. Therefore the effect of
throughput limitations on the postoperation time is negligible.

To sum up, the duration of a migration is highly dependent on the network speed.
The major part of the duration and also its increase is provided by the preoperation
time. For this factor and the total duration the live migration is always superior
to the block migration. The downtime is slightly sensitive to the available network
bandwidth. For high throughput values the live migration is faster than the block
migration but that effect is no longer significant for slower network speeds. The
postoperation time is not affected at all by the limitations and the different migration
types.

6.2.2 Impact of Network Delays on the Migration Performance

Migrations require communications between the involved nodes. Those vary from
REST API requests over message queue and interaction packets to the movement
of the virtual machine snapshots. The amount of communication requests varies
between the different migration strategies and therefore we evaluate the effect of
increased network latencies on those communications. Thus, migrations have been
measured for no extra delay, 10 ms, 50 ms and 100 ms delay. The measurements
have been performed for the m1.tiny, m1.small, m1.medium and m1.large flavors to
assess whether the results are applicable across all flavors.

Table 6.2 shows the results of the measurements taken including confidence in-
tervals with 95% confidence level. For increasing network delay the migration time
increases for all flavors. Therefore the assumption of the negative effect of increased
network delay on the migration duration is proven correct.

Figure 6.6 shows the migration times under different latency settings for the tiny
flavor. As can be seen in Table 6.2 these results are representative for the other
flavors. The difference between 0 ms and 10 ms delay is rather small while the
duration increase for latencies up to 50 and 100 ms is almost linear to the delay
increase. As discussed in Subsection 6.2.1, this can be explained by the fact that
that a lot of operations are performed that are not dependant on the network per-
formance. Also the mere transfer of the snapshot requires only a few connections
so it is only slightly affected. The increase between 10 and 100 mill seconds leads
to the assumption that the latency can probably be modelled by a first or second
degree polynomial function.

Contrary to the different throughput limits evaluated in Subsection 6.2.1 the live
migration loses its advantage in many cases. Was it faster for every bandwidth
limit in the last section, now it is only faster at no extra latency. At ten ms the
block migration brakes even with a slight advantage that significantly increases with
growing latency. The same applies for the other flavors but the relative advantage
for the block migration at high latencies is slightly smaller due to the higher amount

34

6.2. Impact of Network Characteristics on the Migration Performance

Migration Flavor Delay avg. Dur- avg. Pre- avg. Down- avg. Post-
Type m1. [MBit/s] ation [s] optime [s] time [s] optime [s]
block tiny 0 7.531± 00.116 5.913± 00.107 0.253± 0.025 1.365± 0.054
block tiny 10 10.894± 00.321 8.581± 00.437 0.308± 0.067 2.005± 0.204
block tiny 50 33.074± 02.396 27.778± 02.921 1.101± 0.313 4.195± 1.125
block tiny 100 56.068± 02.590 45.924± 02.331 1.222± 0.768 8.922± 1.656
block small 0 8.047± 00.193 6.457± 00.191 0.280± 0.063 1.310± 0.084
block small 10 11.569± 00.558 9.654± 00.474 0.226± 0.078 1.688± 0.274
block small 50 35.383± 02.954 30.326± 03.238 0.505± 0.261 4.552± 0.754
block small 100 62.779± 03.741 53.576± 03.688 1.112± 0.664 8.091± 0.936
block medium 0 8.741± 00.182 7.075± 00.185 0.299± 0.034 1.367± 0.029
block medium 10 12.910± 00.823 10.598± 00.886 0.332± 0.086 1.980± 0.202
block medium 50 41.581± 03.707 36.347± 03.830 0.652± 0.272 4.583± 0.796
block medium 100 73.490± 04.260 64.120± 04.004 1.426± 0.801 7.944± 1.322
block large 0 10.241± 00.274 8.594± 00.235 0.302± 0.049 1.345± 0.079
block large 10 14.342± 00.526 12.133± 00.577 0.321± 0.073 1.888± 0.241
block large 50 52.206± 04.972 46.664± 05.114 0.793± 0.247 4.750± 0.524
block large 100 86.144± 10.469 76.539± 10.288 1.420± 0.737 8.185± 1.392
live tiny 0 6.829± 00.237 5.076± 00.228 0.271± 0.049 1.482± 0.055
live tiny 10 11.864± 00.423 9.322± 00.325 0.263± 0.159 2.279± 0.454
live tiny 50 38.402± 02.483 32.889± 02.496 0.372± 0.093 5.141± 1.163
live tiny 100 69.905± 07.106 60.089± 07.093 0.809± 0.515 9.007± 1.120
live small 0 7.524± 00.204 5.779± 00.213 0.260± 0.059 1.485± 0.058
live small 10 12.790± 00.613 10.216± 00.589 0.187± 0.092 2.386± 0.140
live small 50 44.869± 03.322 39.080± 03.111 0.430± 0.058 5.359± 0.961
live small 100 79.181± 04.538 69.265± 05.341 0.665± 0.071 9.251± 1.798
live medium 0 8.228± 00.209 6.415± 00.219 0.343± 0.062 1.469± 0.029
live medium 10 13.618± 00.628 11.043± 00.596 0.203± 0.030 2.371± 0.278
live medium 50 49.298± 04.133 42.721± 04.234 0.519± 0.241 6.059± 1.577
live medium 100 84.653± 06.314 75.539± 06.050 0.677± 0.087 8.437± 1.615
live large 0 9.417± 00.207 7.686± 00.198 0.341± 0.051 1.390± 0.086
live large 10 16.069± 01.568 13.710± 01.662 0.191± 0.035 2.168± 0.365
live large 50 56.299± 08.190 50.608± 08.585 0.417± 0.117 5.274± 1.321
live large 100 96.000± 12.398 86.239± 11.989 0.585± 0.201 9.176± 1.411

Table 6.2: Migration durations sorted by flavor with ascending network packet delay
with confidence intervals with 95% confidence level

35

6.2. Impact of Network Characteristics on the Migration Performance

delay [ms]
0 10 50 100

tim
e

[s
]

0

10

20

30

40

50

60

70

80

live
block

Figure 6.6: Migrations of virtual instances with the tiny flavor using different laten-
cies

of snapshot data moved that is less vulnerable to network delay.
From Table 6.2, it is visible that the major component of the migration duration

is again the preoperation time. It is significantly increased by the additional delay
as shown in Figure 6.7. Similar to the total duration, the preoptime is smaller for
the live migration without added latencies but the block migration already catches
up and becomes faster at about 10 ms. This is probably related to the fact, that
the live migration requires permanent connections between the central storage node
and the compute nodes. Over this connections many smaller requests are made
when storing the changes of the instance to the central node and when retrieving
the files to restore the machine on the target node. The block migration on the
other hand usually transfers bigger chunks of data, namely the snapshots of the
machines, having fewer requests than the live migration and therefore less affected
by the increased delay. The benefit of the block migration increases with higher
added latency and for most flavors exceeds the range where the confidence intervals
overlap. Like the total duration, the increase above 10 ms is nearly linear which
hints at the possibility to model this effect with a simple polynomial function.

Though a relatively small part of the migration the downtime is important for
computationally intensive application being the only part the actual computing pro-
cess stops. Figure 6.8 presents the values listed in Table 6.2 depicting the effect of
increased latency on the downtime. The effect is relatively weak in contrast to the
preoperation time but still significant. From 0 to 10 ms of additional latency there

36

6.2. Impact of Network Characteristics on the Migration Performance

latency [ms]
0 10 50 100

tim
e

[s
]

0

10

20

30

40

50

60

70

80

90

100

live: tiny
block: tiny
live: small
block: small
live:medium
block: medium
live: large
block: large

Figure 6.7: Preoperation times for various flavors and migration types grouped by
latency

is little to none increase in downtime. In some cases the downtime even decreases.
This is probably due to optimizations in the OpenStack migration algorithm adapt-
ing for high or low latency networks. At higher latencies the downtime is creased
up to a factor of over two.

Contrary to the total duration and the preoperation time, the downtime favors
the live migration at higher latencies. The live migration still violates the 0.5 second
limit desired by the OpenStack standard configuration but is on average faster than
to the block migration. This can be explained by the fact that during the downtime
operation of the live migration the network shares are already synchronized while
for the block migration the transfer of the final delta snapshot is still required.
Additionally, the downtimes for the block migration are extremely varying explaining
the large confidence intervals. This is due to the fact that depending on the machine
operation (e.g. CirrOS performs logging events, etc.) the amount of data transferred
in the final delta snapshots varies and sometimes there is no need to transfer such a
snapshot at all.

The large jump for the tiny flavor at the step between 10 ms and 50 ms is possibly
accountable to a different optimization approach for the duration taking effect. This
would correlate with the relatively strong advantage of the block migration for the
duration with the tiny flavor. To model the downtime phase of this migration with
a high level of confidence, a detailed understanding of the internal mechanisms of
the different migration types is required.

While throughput limitations had no measurable effect on the postoperation time

37

6.2. Impact of Network Characteristics on the Migration Performance

latency [ms]
0 10 50 100

tim
e

[s
]

0

0.5

1

1.5

2

2.5

live: tiny
block: tiny
live: small
block: small
live:medium
block: medium
live: large
block: large

Figure 6.8: Downtimes for various flavors and migration types grouped by latency

nothing similar can be said in terms of additional network delay. The postoperation
time scales nearly linear with the increased delay as shown in Figure 6.9 again using
the values from Table 6.2. This effect occurs because the major task during the
postoperation time is the reestablishment of the network connections to the virtual
machine at the target host. This usually requires a large number of small consecutive
requests over the network that do not require a lot of bandwidth but are impaired
by the added delays. Since the postoperation phase is very similar for block and live
migration like for the throughput limits, no significant difference between block and
live migration can be proven beyond reasonable doubt.

Summing up, the migration duration strongly rises when increasing the network
delays at an almost linear manner with nearly the same factor as the delay increase.
Like for the throughput limitations the major part of the migration duration as well
as its increase is provided by the preoperation time. The fashion of the increase as
well as the factor are similar to the total duration. Regarding the latency better
overall durations of the live migration are no longer present. While at no extra
latency the live migration is still faster, the block migration catches up and becomes
faster than the live migration with rising network delay. The downtime is affected
by the increased latency to smaller extend than the preoperation time. But here the
live migration is still quite faster than the block migration. The postoperation time
is increased in a matter similar to the total duration. Here, no discernible advantage
for one of the migration types is visible.

Unlike the bandwidth limitation, for the latencies, it is harder to give a general
recommendation for the preferable migration mode in networks with higher latency.
We recommend to use block migration for the movement of machines where the

38

6.2. Impact of Network Characteristics on the Migration Performance

latency [ms]
0 10 50 100

tim
e

[s
]

0

2

4

6

8

10

12

live: tiny
block: tiny
live: small
block: small
live:medium
block: medium
live: large
block: large

Figure 6.9: Postoperation times for various flavors and migration types grouped by
latency

total duration of the migration is important (e.g. to get them off dying machines or
machines that suffer a very bad connection to the outside network). For machines
where the continuous computation is more important (e.g. machines that continu-
ously compute results from data which are periodically received over the network)
the live migration is more recommendable due to the shorter downtime. For ma-
chines that require a short postoperation time the only solution would be switching
the network between source, controller and target host for a network with shorter
delays.

6.2.3 Packet Loss in the Network and Related Effects

A third network parameter is the percentage of packets that are not successfully
transferred due to uncorrectable bit errors in the line. This percentage is called the
packet drop rate. The effect of the drop rate depends on the used algorithms and
the network protocol. Single and multiple acknowledgments can make a difference
as well as whether successful packets after the first lost packet have to be re-sent
or not like in TCP’s selective acknowledgment [29]. In an ideal scenario where only
the files that are dropped have to be re-sent and no ACK transmissions are lost the
required amount of data would be calculated by the formula in Equation 6.1 where
n is the factor of required data transferred and d is the drop rate.

n =
∞∑
i=0

di (6.1)

39

6.2. Impact of Network Characteristics on the Migration Performance

OpenStack uses different approaches in different modules making use of UDP or
TCP. Therefore measuring the effect of different loss rates is required to estimate
the effect of unstable links on the different subtasks of the migration duration. Thus
migrations have been measured without error as well as for one and five percent drop
rate. Higher drop rates have not been measured due to a rate of five percent already
being very high and cases where higher rates are the case would certainly not occur
in a data center. Links between two data center with such a loss rate would probably
be rerouted on a more stable path. The measurements have been performed for the
m1.tiny, m1.small, m1.medium and m1.large flavors to assess whether the results are
applicable across all flavors (The available flavors are detailed in Subsection 6.2.4).
For one percent packet loss the ideal factor would be 1.0101 according to Equation
6.1 and for five percent packet loss it would increase to 1.05263.

Table 6.3 shows the results of these measurements including confidence intervals
with 95% confidence level. For increasing drop rate in the network the migration
duration increases significantly throughout all flavors and migration types. The
assumption that the drop rate impairs the migration process is therefore proven
correct.

drop rate [%]
0 1 5

tim
e

[s
]

0

50

100

150

200

250

300

350

live
block

Figure 6.10: Migrations of the medium flavor using different drop rates

Figure 6.10 exemplarily shows the migration times for the medium flavor with
different drop rates. The values were taken from Table 6.3 where it can also be
seen that the medium flavor is representative for the other tested flavors which have
similar patterns with only the factors diverging. The increase between no and one
percent drop rate varies between 38 % for the tiny flavor and 77 % for the large

40

6.2. Impact of Network Characteristics on the Migration Performance

Migration Flavor Drop avg. Dur- avg. Pre- avg. Down- avg. Post-
Type m1. Rate ation [s] optime [s] time [s] optime [s]
block tiny 0 7.531± 00.116 5.913± 00.107 0.253± 0.025 1.365± 0.054
block tiny 1 10.403± 00.900 8.495± 01.021 0.400± 0.171 1.508± 0.201
block tiny 5 131.591± 08.414 128.283± 08.510 0.822± 0.457 2.485± 0.706
block small 0 8.047± 00.193 6.457± 00.191 0.280± 0.063 1.310± 0.084
block small 1 12.118± 00.555 10.191± 00.545 0.379± 0.173 1.548± 0.178
block small 5 198.495± 20.971 194.992± 20.814 1.493± 0.882 2.010± 0.542
block medium 0 8.741± 00.182 7.075± 00.185 0.299± 0.034 1.367± 0.029
block medium 1 13.988± 01.209 11.851± 01.321 0.709± 0.284 1.427± 0.112
block medium 5 302.444± 15.093 298.781± 15.550 1.535± 1.324 2.128± 0.731
block large 0 10.241± 00.274 8.594± 00.235 0.302± 0.049 1.345± 0.079
block large 1 18.116± 01.070 16.294± 01.229 0.379± 0.150 1.442± 0.184
block large 5 475.463± 10.323 471.767± 10.470 1.243± 0.961 2.453± 0.634
live tiny 0 6.829± 00.237 5.076± 00.228 0.271± 0.049 1.482± 0.055
live tiny 1 9.922± 00.745 7.808± 00.619 0.443± 0.273 1.671± 0.281
live tiny 5 111.702± 06.337 107.973± 06.263 1.106± 0.541 2.244± 0.367
live small 0 7.524± 00.204 5.779± 00.213 0.260± 0.059 1.485± 0.058
live small 1 11.097± 00.797 9.195± 00.731 0.156± 0.063 1.746± 0.154
live small 5 185.295± 09.448 182.002± 09.820 1.071± 0.826 2.222± 0.466
live medium 0 8.228± 00.209 6.415± 00.219 0.343± 0.062 1.469± 0.029
live medium 1 13.804± 00.948 11.769± 00.894 0.395± 0.255 1.640± 0.144
live medium 5 285.740± 08.375 282.120± 08.069 1.047± 0.611 2.574± 0.636
live large 0 9.417± 00.207 7.686± 00.198 0.341± 0.051 1.390± 0.086
live large 1 17.012± 01.053 15.005± 01.058 0.463± 0.171 1.544± 0.141
live large 5 452.638± 13.102 449.487± 12.706 0.914± 0.519 2.238± 0.589

Table 6.3: Migration duration sorted by flavor with ascending packet drop rate with
confidence intervals with 95% confidence level

41

6.2. Impact of Network Characteristics on the Migration Performance

flavor in the block migration. The increase between one and five percent drop rate
is even larger. The duration rises between 1164 % for the tiny flavor and 2525% for
the large flavor. Any of these factors is significantly larger than the optimal factors
calculated above which leads to the conclusion that a lot of packets are redundantly
transferred and the link does not operate at optimal speed. The increase is more
than linear and modelling would at least require a quadratic function.

Independently of the drop rate the live migration is slightly superior to the block
migration in the characteristic of duration. While the relative advantage is constant
the absolute advantage increases with instance flavor and drop rate culminating at
almost 23 seconds for the large flavor at five percent drop rate.

drop rate [%]
0 1 5

tim
e

[s
]

0

50

100

150

200

250

300

350

400

450

500

live: tiny
block: tiny
live: small
block: small
live:medium
block: medium
live: large
block: large

Figure 6.11: Preoperation times for various flavors and migration types grouped by
drop rate

As in the previous measurements for throughput limitations and delay once again
the preoperation time is the largest part of the total migration duration. Figure
6.11 depicts the values and confidence intervals from Table 6.3. Similar to the
duration the live migration has a slight advantage to the block migration. The
factor the preoperation time increases with the drop rate is even higher than for
the total duration. This leads to the assumption that the part influenced most
by the packet loss is the transmission of the snapshot for the block migration and
the synchronization of the network file system for the live migration. Like for the
duration the increase is more than linear but can probably be resembled by a simile
polynomial function.

Figure 6.12 shows the development of the downtime over the different network loss

42

6.2. Impact of Network Characteristics on the Migration Performance

drop rate [%]
0 1 5

tim
e

[s
]

0

0.5

1

1.5

2

2.5

3

live: tiny
block: tiny
live: small
block: small
live:medium
block: medium
live: large
block: large

Figure 6.12: Downtimes for various flavors and migration types grouped by drop rate

quotas using the values from Table 6.3. Ignoring singular exceptions the average
down time increases slowly with the drop rate. For the first step the only few
scenarios (e.g. block medium) reach and exceed the factor of two. A slightly larger
increase visible at the second step with all flavors and modes at least doubling.

Unlike for the throughput and latency measurements there is no clear winner
between block and live migration. On average the live migration is slightly superior
except for the tiny flavor but the confidence intervals are so large that the advantage
can not be confirmed beyond reasonable doubt. A modelling of the influence would
again require detailed modelling of the internal algorithms since the recorded values
don’t suggest any simple function to follow.

The behavior of the postoperation time is less sensitive to the increased drop
rate. Figure 6.13 shows the postoperation times from Table 6.3. There is a slight
increase between no and one percent drop rate and a slightly larger increase when
increasing the rate to five percent. The increase is very small at about sixty percent
between zero and five percent drop rate. Thus a modeling could be possibly done
by a polynomial function with small factors. As in the previous subsections for the
drop rate there is no significant advantage of a migration mode that can be proven
beyond reasonable doubt.

To sum up, the migrations are very sensitive to increases in the packet loss rate.
The increases affect the total duration as well as the preoperation time in a more
than linear manner to a high degree. Like for the throughput limitations but unlike
the network delays, the live migration is faster over all drop rate measurements.
The downtime is slightly influenced by the increase in packet loss. Unlike the other

43

6.2. Impact of Network Characteristics on the Migration Performance

drop rate [%]
0 1 5

tim
e

[s
]

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

live: tiny
block: tiny
live: small
block: small
live:medium
block: medium
live: large
block: large

Figure 6.13: Postoperation times for various flavors and migration types grouped by
drop rate

two measurement series, there is no clear advantage for the live migration when it
comes to the downtime aspect. The postoperation time is the least sensitive to the
increase in drop rate. Like with the other two experiments there is no advantage of
any type of migration.

When considering the choice of migration type in an environment with high packet
drop rate, live migration has a slight advantage and would be preferable. Since the
effect of data loss is very strong on the total duration the allocation of resources to
increase the link quality for this metric would be recommendable.

6.2.4 Impact of Instance Flavor on the Migration Performance

OpenStack provides five basic types of flavors as seen in Table 6.4. The flavors are
usually distinguished by the amount of main memory they allocate, the amount of
disk space they require and the number of virtual central processing units (VCPUs)
they utilize. Within the testbed measurements for the flavors m1.tiny, m1.small,
m1.medium and m1.large have been performed. No measurements for the m1.xlarge
flavor were possible since the host machines only run on 16 GB main memory and
with the memory needed by the host operating system not enough memory for an
xlarge instance remains.

In the following the influence of the instance flavor will be shown at first the effect
will be measured with fixed throughput limits and afterwards with a fixed network
delay.

44

6.2. Impact of Network Characteristics on the Migration Performance

Name Memory[MiB] Disk [GiB] VCPUs
m1.tiny 512 1 1

m1.small 2048 20 1
m1.medium 4096 40 2

m1.large 8192 80 4
m1.xlarge 16384 160 8

Table 6.4: Default flavors provided by OpenStack

Fixed throughput limit

Table 6.1 used in Subsection 6.2.1 also shows the measured duration, preoperation,
postoperation and downtimes for different flavors for every throughput setting. In
Section A the values from Table 6.1 can be found again sorted by speed instead of
flavor in Table A.1.

The effect of the flavor on the duration is exemplary shown for the fixed through-
put of 100 MBit/s in Figure 6.14. It is visible that the instance size has in fact some
influence on the migration duration. The effect is less than either disk size, memory
size or CPU number difference. This leads to the assumption that OpenStack per-

instance type
m1.tiny m1.small m1.medium m.1large

tim
e

[s
]

0

5

10

15

20

25

30

35

40

live
block

Figure 6.14: Migration duration for a throughput limit of 100 MBit/s with different
instance flavors

45

6.2. Impact of Network Characteristics on the Migration Performance

forms considerable optimizations for the empty space not occupied by the booted
images (see explanation at the beginning of Chapter 6).

As with the throughput limit the different parts of the migration do not scale in the
same way with the instance flavor. Again the preoperation time provides the largest
part of the duration and also scales the most. Figure 6.3 shows distinguishable
increases of the preoperation time with the increase in instance size. The grows
always exceed the confidence intervals. The effect especially becomes apparent at
lower speeds. At 10 MBit/s the migration of a large instance takes about five times
as long as the migration of a tiny instance. Like already detailed in 6.2.1 the live
migration is always superior to the block migration.

For the downtime no global conclusions can be drawn without reasonable doubt.
As seen in Figure 6.4 in most cases the confidence intervals overlap for the mea-
surements have large overlapping section often continuing the average value. This
is particularly the fact for migrations of the same type. So only conclusions for edge
cases like “at 100 MBit/s live migration for the tiny flavor is always faster than
block migration for the large flavor” can be drawn. These edge cases have only
none to little significance for scientific evaluation as well as for practical applica-
tions. Therefore the effect of the instance flavor on the downtime can be considered
negligible.

Figure 6.5 shows that the postoperation times are very close together. As detailed
for the throughput limit in Section 6.2.1 no significant influence of the instance flavor
can be shown beyond reasonable doubt. The same goes for the migration mode.

Fixed Network Delay

Table 6.2 used in Subsection 6.2.2 also shows the measured duration, preoperation,
postoperation and downtimes for different flavors for every throughput setting. In
Section A the values from Table 6.2 can be found again sorted by latency instead of
flavor in Table A.2.

Figure 6.15 shows how the migration durations change when the network delay is
kept constant (in this example 50 ms) and the flavor changes. The instance size has
a slight influence on the duration but the effect is much smaller than in case of the
throughput limitation. This is related to the fact that the instance flavor mainly
influences the amount of main memory and disk transferred (block) or synchronized
by the migration and to a lesser extend the number of connections and requests that
are used in the migration. The effect is therefore clearly below either CPU count,
memory or disk space increase between the flavors. The instance flavor has no effect
on the comparison of migration types. At any latency level (except zero ms) the live
migration is slower than the block migration.

Since the preoperation time is again the largest part of the duration it is also the
most affected by the different flavors as seen in Figure 6.7. The effect is slightly
stronger than for the total duration but still nowhere near the increase of CPUs,
main memory or disk storage. The confidence intervals between two flavors often
overlap but the increase to the second to next flavor usually corrects that problem.
Again the competition between live and post migration is not influenced by the

46

6.2. Impact of Network Characteristics on the Migration Performance

instance type
m1.tiny m1.small m1.medium m.1large

tim
e

[s
]

0

10

20

30

40

50

60

70

live
block

Figure 6.15: Migration duration for a network latency of 50 ms with different in-
stance flavors

flavor. For every flavor the block migration is faster with latency above zero. Only
when no latency is added the live migration is superior for all flavors.

As shown in Figure 6.8 the downtime shows no distinguishable difference between
flavors with the exception of the tiny flavor with block migration at 50 ms delay. Its
downtime exceeds all other downtimes which is surprising since it would be expected
that the tiny flavor would have the fastest migrations. This is possibly explainable
by OpenStack changing the migration optimization for the tiny flavor earlier than for
the other flavors (the other flavors perform the same jump in downtime at 100 ms).
Disregarding this singular exception the migration times are very similar between all
flavor with no distinct difference provable beyond reasonable doubt. Also the flavor
has no influence on the superiority of the live migration that has shorter downtimes
for all flavors and latencies.

As can be seen in Figure 6.9 the postoperation time is not significantly influenced
by the instance flavor. This is logical since in the postoperation phase most of the
data transfer is completed and the main part is the reattachment of the network.
These operations are not dependant of the network. Neither live nor block migrations
have significant advantages in this area and this does not change when varying the
instance flavor.

47

6.2. Impact of Network Characteristics on the Migration Performance

Fixed Loss Rate

Table 6.3 used in Subsection 6.2.3 also shows the measured duration, preoperation,
postoperation and downtimes for different flavors for every throughput setting. In
Section A the values from Table 6.3 can be found again sorted by latency instead of
flavor in Table A.3.

instance type
m1.tiny m1.small m1.medium m.1large

tim
e

[s
]

0

2

4

6

8

10

12

14

16

18

20

live
block

Figure 6.16: Migration duration for a network drop rate of one percent with different
instance flavors

Figure 6.16 shows the migration duration of different flavors for a network loss rate
of one percent. There is a slight but significant increase when switching to larger
flavors. Again the effect is much smaller than the increase of the number of CPUs,
the main memory or the disk space. While this is true for one percent the factor
increases for five percent drop rate where the increase is nearly at the factor at which
the main memory increases. The drop rate influences small connections as well as
the transfer of large files (e.g. the snapshots and the file system synchronization).
Therefore since larger flavors require more files to be transferred these operations
are directly affected by the loss rate. The different flavors have no influence on the
competition of live and block migration with the duration for the live migrations
always being smaller than for the block migrations.

The largest part of the duration as well as the increase is as for the other factors
the preoperation time as seen in Figure 6.11. Its increase is slightly higher than that

48

6.2. Impact of Network Characteristics on the Migration Performance

of the total duration. The increase is already significant between two flavors since
the configuration interval do not overlap. Live migration is faster than the block
migration for any flavor over all drop rates.

As shown in Figure 6.12 there is no significant influence of the flavor on the
downtime with the exception of the live migration of the small factor at the one
percent drop rate. There is no visible explanation of this exception. The only
possibility could be that the small flavor has a anomaly optimal packet distribution
for this scenario. A detailed understanding of this result would require a deeper
analysis of the migration process as well as the transferred content. In the drop rate
scenario there is no clear advantage of either live or block migration which is not
changed by the varying instance flavors. The confidence intervals are very large due
to the highly varying measurement results and therefore do not allow drawing safe
conclusions.

Figure 6.13 depicts the duration of the postoperation phase for different flavors
at different drop rates. IT is visible that there is no significant effect between the
flavors. Also there is no significant advantage of either migration mode for any
flavor.

6.2.5 Summary and Conclusions

The influence of different network characteristics on the migration has been analyzed.
This was done for limitations of the network throughput as well as for delays on the
network link and an increased chance of packet loss.

For the throughput limit it has been found, that the effect is significant for mod-
erate network speeds (10 MBit/s) but not as strong for differences in the higher
areas (100 MBit/s vs. 1000 MBit/s). The effect originates nearly completely from
the preoperation time and slightly from the downtime while the postoperation time
is not affected. The live migration is always faster than the block migration in the
disciplines of total duration, preoperation time and downtime while both modes tie
at the postoperation time.

Increasing the latency also increases the migration duration in a nearly linear man-
ner over all latency levels. Here, the largest part is again the preoperation time that
is strongly affected by the increase. The downtime is slightly increased. Contrary to
the throughput limitation measurements the postoperation time is also affected in
a nearly linear fashion. The live migration loses its advantage in the duration and
preoperation time disciplines as soon as the latency is increased and is overtaken by
the block migration. The live migration is still faster when the downtime metric is
used while both modes are equally fast or slow for the postoperation time.

If the network reliability suffers and the rate at which packets are dropped in-
creases, the total duration is significantly increased. Again most of the duration as
well as its increase is credited to the preoperation time. The downtime is increased
by a small factor. The postoperation time is growing by an even smaller factor. The
live migration is superior when it comes to the total duration and the preoperation
time. The high variations introduced by the higher drop rate prohibit the distinction
of a superior mode for the downtime. The postoperation time is again not influenced
by the migration mode.

49

6.3. Evaluation of Migration Performance from Application Perspective

Larger instance flavors increase the duration of a migration as well as the preop-
eration time for all modes and all the three previous measurements. The magnitude
of the effect depends on the circumstances provides by the previous setups. Since
network throughput and drop rate directly relate to the slower transmission of larger
files across the network, the flavors have the largest effect when either a bandwidth
limit is introduced or packets are dropped while the effect of the flavors in the sce-
nario of increased latency is still significant but relatively small. Optimizations done
by OpenStack allow to reduce the effect of the increased disk space of the virtual
machines if that space is not entirely used. For the factors modifiable on the cloud’s
controller node namely the flavor and the migration mode recommendations can be
given. Except for high latency networks the use of the live migration almost always
guarantees faster migration times, preoperation times and especially downtimes. For
the flavor the suggested guideline should be “As big as necessary, as small as possi-
ble.” to minimize VCPU and RAM utilization while at the same time reducing the
time spent on migrating.

6.3 Evaluation of Migration Performance from
Application Perspective

Applications have different requirements regarding the migration process. There are
less time critical applications like downloads of large files where most users would
not notice a short interruption of the file transfer. However there are also more time
critical application with different requirements. Normal video streaming requires an
acceptable quality with no stalling while live streaming requires a short transmission
time to user as well. Most critical are game servers running real time games where
a lapse of a few milliseconds can decide between the players victory or defeat.

The usability of some applications during migration has been tested to evaluate the
effect of the migration on the application and ultimately the QoE. The applications
have been selected to cover multi and single user applications as well as stateful and
stateless scenarios.

If not differently stated all applications are tested in two scenarios. The first
scenario features no extra latency and a throughput of 1000 MBit/s is similar to
the migration inside a data center. The migration at 100 MBit/s and 100 ms delay
resembles the migration over a link between remote data centers.

6.3.1 Assessment for File Downloads

For the first evaluation if any application relying on networking conditions can be
migrated a less time critical application was measured. The choice fell on a typical
download. The UNIX tool GNU Wget[30] was chosen. Wget is a simple command
line downloading tool. It is does not use optimization approaches like download-
ing multiple parts of a file at once or downloading from multiple servers. The
download was started on the client by the command wget --report-speed=bits

--append-output=/path/to/logfile <URL>. On the server side the nginx[31] has
been chosen which is very common in UNIX server environments and aims at re-

50

6.3. Evaluation of Migration Performance from Application Perspective

placing the wide spread Apache web server. The network speed to the download
client was limited to 100 MBit/s to prevent data transferred during the migration
from influencing the download speed since they share a physical link at the compute
node. For the download, a file of 10 GB size was chosen filled with random num-
bers to ensure no optimization or compression takes place. The virtual machine was
instantiated with an Ubuntu Linux image and the m1.small flavor. The instances
were migrated using the live migration mode.

During the running download the migration was initiated. The download speed
was logged by the Wget command and written into a file. This was done for multiple
latencies since as seen in Section 6.2 the latency has the most influence on downtime
and postoperation time which are the most important characteristics for the compute
and network operation.

time [s]
0 10 20 30 40 50

do
w

nl
oa

d
ra

te
 [M

B
it/

s]

0

20

40

60

80

100

0ms
10ms
50ms
100ms

Downtime
started

Postoperation
ending

Figure 6.17: Download speed over time for download processes running while migra-
tions are performed.

Figure 6.17 shows the development of the download speed over time. The differ-
ent measurements have been aligned so that the migration always starts at thirty
seconds. A this point in time the speed falls to zero. Since the speed is measured
at a precision of one second the second the transmission is lost has no zero value.
After downtime and postoperation time are passed the download resumes. The time
frames at which the speed is at zero MBit/s correlate to the expected sum of down-
time and postoperation time from Table 6.2. The maximum network speed is again
reached after a few moments. The speed of the convergence is related to the use
of Linux’s CUBIC TCP [32] that allows a very fast adaption to the network speed

51

6.3. Evaluation of Migration Performance from Application Perspective

after packet losses.
The download was able to resume in any case. Even though the web server was

guarded by a watch dog to resume it in case of a crash that was not necessary. The
download application can therefore be considered fully migratable.

6.3.2 Server-based Streaming Using Content in the Virtual
Machine

A more critical application is video streaming, especially live video streaming. The
latter requires the parallel encoding and distribution of the material. If both tasks
are to be performed one a single machine this puts high requirements on the CPU
to achieve the encoding in real time. For this application, the widely utilized ffm-
peg [33] a complete, cross-platform solution to record, convert and stream audio and
video was used. For the encoding, the actual ffmpeg application was used encoding
the source video into a buffer file for the streaming server. For the streaming itself
ffserver was used streaming from the aforementioned buffer file. As video the Sin-
tel [34] movie was chosen. The choice fell due to the free accessibility of the movie
so the results can easily be verified as well as due to the popularity of this movie
in demonstration in computer science publications. In this scenario, the streaming
intelligence is supposed to be on the server side. Therefore for playback the tool
MPlayer[35] has been chosen. MPlayer is an older but reliable and still maintained
player software. MPlayer does not automatically reconnect or adapt the streaming
quality but just plays the video from the provided URL. A cache can be set to
compensate for variations in the transmission speed.

52

6.3. Evaluation of Migration Performance from Application Perspective

time [s]
0 5 10 15 20

fr
am

es
 d

ro
pp

ed
 [m

s]

0

50

100

150

200

250

300

350

Figure 6.18: Frames dropped during the beginning of the migration process

To evaluate the migratability of this scenario a server of the m1. large flavor has
been setup up. The large flavor was necessary to provide enough computing power
to run the encoding since it provides four VCPUs.

After the migration is triggered some transmission errors occur when no cache is
enabled. These lead to a large number of frames dropped as seen in Figure 6.18. To
the user this is visible by stuttering of the stream and sudden jumps a few seconds
ahead in the video playback. If sufficient caching is enabled this problem is not
visible to the user but the filling level of the cache drops slightly. After most of the
machine is migrated OpenStack continues the server migration taking a lot of time
to transfer the larger part of the snapshot. The log file shows that the amount of
content to transfer permanently increases. This is due to the encoder permanently
encoding the video and writing to the buffer file. This effect is that serious strong
that the migration process is getting stuck permanently alternating between zero and
five percent remaining but can not complete the migration even after 20 minutes.
The moment the encoding is remotely terminated it takes but a few seconds to finish
the migration.

The experiment has been repeated with the settings for the inter data center
migration scenario. The only change was that it took longer to reach the state
around zero percent. Then the migration also stucked.

The fact that the migration not only noticeably impairs the playback quality but
in fact the migration can not be completed renders this application scenario not
migratable.

53

6.3. Evaluation of Migration Performance from Application Perspective

6.3.3 Server-based Streaming of External Content

time [s]
0 50 100 150 200

ca
ch

e
fil

le
d

[%
]

0

20

40

60

80

100

Migration
started

Postmigration
started

Figure 6.19: Percentage of buffer fill level over time before, during and after migra-
tion

Since the concept detailed in Subsection 6.3.2 fails the demand of migratability
the idea is to move the encoding to a separate node and migrate only the node that is
running the streaming server. On the new dedicated content server again ffmpeg was
used for encoding. The streaming was again done using ffserver inside the virtual
machine. The Sintel video was used as well as the MPlayer on the client. Since the
amount of processing power required was significantly reduced, it was possible to
switch to the m1.small flavor.

In the intra compute center scenario the migration is always performed - meaning
the virtual machine is moved to the other server and the ffserver Unix process does
not crash. Unfortunately in 48% of the migration runs the client disconnects during
the postoperation phase. If the cache is enabled, it plays till the cache is depleted
as seen in Figure 6.19. If no cache is enabled, it instantly crashes. Resuming
the stream is possible but needs the manual intervention of restarting the player
program. Therefore this scenario is only semi-migratable with a high chance of
failure making it inapplicable for productive use.

A very interesting behaviour occurs when migrating in the inter compute center
scenario with increased network delay. One might usually expect that under worse
condition the QoE during the migration would further decrease. This is not the
fact. The total migration takes longer especially due to the increase latency. The
machine is successfully migrated and the process continues to run. The connection
stays stable with the cache not filling for a short amount of time that correlates

54

6.3. Evaluation of Migration Performance from Application Perspective

with the lengths of downtime and postoperation time from Table 6.2. However if
no cache is selected the videos stalls that long and then continues where it was
suspended. This is a very surprising behaviour. The only possible explanation is
that the disconnect is not detected fast enough due to the already existing network
delays. In this scenario the migration is fully migratable.

6.3.4 Dynamic Adaptive Streaming over HTTP (DASH)

As a final scenario for video streaming, a client-based streaming application was
chosen. On the server side the material was provided in multiple quality levels by a
web server and a playlist file was provided to the client. No further intelligence or
optimization happened on the server side.

As a client the TAPAS (Tool for rApid Prototyping of Adaptive Streaming al-
gorithms) player was chosen using the MPEG DASH streaming protocol which is
a popular approach to video streaming. It implements an adaptive streaming con-
troller as described in [36] meaning it is capable of adapting the chosen quality to
environment parameters like the network speed and the current cache level. The
client can chose between six different quality levels between 360 pixels vertical res-
olution and 2160 pixels vertical resolution (commonly known as 4K).

Obviously, providing the video in multiple quality levels and at once makes this
scenario unattractive for the streaming of live transmissions like soccer matches.
Nevertheless, it is a viable alternative for the streaming of preproduced material
which makes out the larger part of the view content.

time [s]
0 50 100 150 200

bu
ffe

r
le

ve
l [

s]

0

5

10

15

20

25
Start of

Downtime

Connection
reestablished

Figure 6.20: Buffer development over time during migration in an intra compute
center scenario

In the first scenario with no speed limit or added latency depicting a migration
inside a compute center the migration is successfully performed. The web server

55

6.3. Evaluation of Migration Performance from Application Perspective

application survives the migration without crashing and the client successfully re-
connects and continues streaming the video. During the time where no network
operation is possible the clients cache level drops. With the preset cache level of 20
seconds the migration is possible without endangering the fluid playback of the video
stream as shown in Figure 6.20. If no cache or significantly less cache is configured
the video hangs until the transmission is resumed. In the tested configuration after
the first segment of the video the player constantly operates at the maximum quality
possible even during the migration.

time [s]
0 50 100 150 200 250 300 350

bu
ffe

r
le

ve
l [

s]

0

5

10

15

20

25

Connection
reestablished

Start of
Downtime

Figure 6.21: Buffer development over time during migration in an inter compute
center scenario

The experiment was repeated for the inter compute center scenario. The first ob-
vious change was the far prolonged migration duration as expectable from the results
described in the preceding section. The migration was again performed successfully
without any negative effects on the server application. Again the client reconnected
successfully but this time the the buffer level came closer to zero as seen in Figure
6.21. With the configured cache level it was only just possible to prevent stalling.
Also the server adapted due to the low buffer fill level and requested the first seg-
ment after reestablishment of the link at only the second best quality level to faster
fill the cache. This was the only occurrence except for the ramp up when beginning
playback where the quality was not at maximum level.

In conclusion the migrations for the client side streaming application were always
successful with no failures or total loss of connection like the server side applications.
This renders this solution complete migratable in the intra compute center scenario
as well as in the inter compute center scenario making it the only video streaming
scenario succeeding in both cases.

56

6.3. Evaluation of Migration Performance from Application Perspective

6.3.5 Counter-Strike: Source Online Gaming

As a classical scenario for a multi user application that has to store the internal state
a game server has been chosen. The selected game was Counter-Strike: Source[37].
Counter-Strike: Source is a so called first person shooter, a very popular game
type over two decades [38]. The game is played from the viewpoint of the selected
character which is moved via keyboard input and weapons and tools are aimed using
the mouse. The game was selected due to the excellent Linux support for client as
well as server, simple server setup and because an activated license was already
available.

The players are divided in two groups: The terrorists and the counter terrorists.
Depending on the selected type of gameplay the goal varies. There are four basic
modes. In the bomb defusal scenario the terrorists are tasked to either blow up one
of two possible locations by placing a bomb and preventing the counter terrorists
from defusing it or by eliminating the other team. The counter terrorists have to
either eliminate the terrorist team before the bomb is placed or defuse the bomb
before it explodes. In the hostage rescue scenario, the counter terrorists have to
rescue hostages or alternatively eliminate the terrorist team while the terrorists must
prevent the counter terrorists from rescuing all hostages or eliminate the opposite
team. In the VIP escort scenario, the counter terrorists have to escort one special
player to a rescue point. They win if they either reach that point or eliminate the
opposite team while the terrorists win once the VIP is killed. In the final deathmatch
mode the team wins which eliminates the other team. To achieve this goals the
players may equip themselves with different types of weapons, armor and tools.

In every mode, winning requires fast reaction paired with high precision when
aiming the weapons. In many cases a few milliseconds of reaction time can be a
matter of live or death. Therefore during the first introduction of ADSL due to
the higher latencies many professional and semi-professional gamers stayed with
the low latency ISDN technology until the introduction of FastPath[39] made DSL
competitive for that target group. Thus the target group is very critical when it
comes to lags and stuttering. Migrations would have to be performed without even
being noticed.

The dedicated game server was provisioned in a virtual machine of the m1.medium
flavor installed with an Ubuntu 64bit image. The migrations have been randomly
started during the gameplay so they occurred at different situations.

One of the first results was the realization that block migrations were not possible
since they were aborted after some time because the downtime would exceed the
internal limit set by OpenStack. Before the decision to abort, multiple seconds of
heavy lag are perceivable making the game unplayable. Especially when players
controlled by artificial intelligence (so called bots) were active on the server that
did not suffer from the latency issues the human players stood no chance because of
the severe lags. This rendered the block migration unusable for a real-time gaming
scenario since not only the goal of moving the machine to another server was missed
but also the game was unplayable while trying to do so.

Going on with the live migration the first test showed that the migration was
performed successfully. The migrations took about 60 seconds at 1000 MBit/s with

57

6.3. Evaluation of Migration Performance from Application Perspective

Figure 6.22: The netgraph shown by Counter-Strike: Source depicting the loss of
data transmission during the migration’s downtime and postoperation
phase

no extra latency added, which is much more than expected from the measurements
in the previous section. This can be explained to the fact, that the virtual machines
hard drive consumption is larger than in the previous section since the game server
had to be installed in the machine requiring about 2 Gigabytes of extra space.
Additionally due to the continuing game files on the disk as well as the main memory
where modified during the migration process requiring additional synchronization
iterations.

The effect on the gameplay actually depends on the situation. If the migration
entered the downtime and postoperation phase during a situation where the teams
were far apart the games interpolation algorithm continued the movement and the
players did not realize a migration has been performed. This fact was only visible
if the game’s internal netgraph was enabled as seen in Figure 6.22. Therefore in
such situation the migration had no effect on the players’ QoE. But if the downtime
and postoperation phase were entered during a combat situation the synchronization
between server and client led to stuttering and randomly moving the player to the
position he was a few moments ago. Under these circumstances, it was impossible
to even play somewhat effectively. Like for the stuttering of the block migration,
potential bots had a huge advantage since they only were stuck during the downtime

58

6.3. Evaluation of Migration Performance from Application Perspective

but were already active during the postoperation time while human players were still
waiting for the network to be reattached to the virtual machine.

time [s]
0 20 40 60 80 100 120

la
te

nc
y

[m
s]

 /
ch

ok
e

ra
te

 [p
er

ce
nt

]

0

20

40

60

80

100
latency
choke rate

Map
Initialization

Migration

Figure 6.23: Latency and choke rate plotted over the first 120 seconds of a Counter-
Strike: Source Match with a migration happening shortly after 60 sec-
onds.

Figure 6.23 shows the development of the latency and the choke rate over the first
120 seconds of a Counter-Strike: Source match. The choke rate is the percentage of
packages expected from the server that were not received. The game always chokes
at the beginning of every match during the phase where the server reinitializes the
map but this has no noticeable effect on the gameplay since the players’ movement is
prohibited for the first few seconds to allow for them buying equipment. The latency
in our scenario oscillates around 11 ms. When the migration occurs the choke rate
increases to 100 percent. The first and last second do not reach 100 percent since
in those seconds a part of the data comes through. The time frame of about three
seconds correlates to the estimated sum of downtime and postoperation time and a
short time span for the client to realize the connection is up again.

The tests were also conducted for lower bandwidths resulting only in longer pre-
operation times while the actual downtime and postoperation time stayed about
the same as shown in the previous sections. When migrating with higher latencies
in the inter data center scenario, the time increases similar to the increase of the
sum of downtime and postoperation time from Table 6.2. This leads to the delays
being more recognizable to the player as well as the server automatically kicking
the player for high latency after the third migration, rendering this scenario unmi-

59

6.4. Application Aware Optimizations for the Migration Process

gratable. Since different networks are used for the migration and the connection
between the game server and the client the network transfer of the migrations had
no influence on the players link quality.

Concluding the assessment of this application in the intra data center scenario it
can be stated that the effect on the QoE is acceptable in some situations in the game
but absolutely an unreasonable handicap for the users in others. As long as there
is no way to exactly define the moment, the downtime and postoperation occur the
only scenario where a migration would be acceptable is when the latency of the link
between client and server is already so bad, that a short downtime would not make it
any worse and afterwards the connection to the target server would be much better.
The application is therefore at best semi-migratable in this scenario.

6.3.6 Summary and Overview of the Results

Application Scenario 1 Scenario 2
Download 3 3

Server Side Streaming + Content 7 7

Server Side Streaming w/o Content 7∗ 3

Client Side Streaming 3 3

Video Gaming 7∗ 7

Table 6.5: Summary of the migratability of different applications. Where 3means
the migration is possible and works reliable and 7means that it does not.
7∗ means that the migration is successful some times but fails at others
or causes non tolerable impairments. Scenario 1 resembles intra com-
pute center migrations while Scenario 2 resembles inter compute center
migrations.

In this section multiple applications have been analyzed for their migratability
as shown in Table 6.5. As expected the more complicated the applications are and
the more they rely on short reaction times they become harder to migrate without
impairments or at all. While some applications become unusable others can not at
all migrated. This shows that the simple migration approach is only usable for a
small set of applications.

6.4 Application Aware Optimizations for the
Migration Process

In the previous section, we have tested various applications for their migratability.
It has been found that many of these applications can either not be migrated in their
current state or they suffer such heavy impairments that they become unusable due
to the migrations. To fix this shortcomings, it is necessary to optimize the process
of migration with respect to the application state or find other solutions to ease the
effect of the migration.

60

6.4. Application Aware Optimizations for the Migration Process

6.4.1 Optimizations for File Transfers

As seen before the download task is already migratable with only a short stop of
the transmission. If for some reason even this drop needs to be minimized a load
balancer must be added switching the download to backup server before the source
server’s downtime starts. If required the download could be switched back to the
original server afterwards. For this the state of the download must be synchronized
between the servers.

6.4.2 Server-based Video Streaming of Internal Content

The main problem in this scenario was on one hand the initial frame drop when
starting the migration process. This could be generally resolved by reducing the
migrations priority level so that no resources are taken away from the streaming
process.

To circumvent the problem of the migration not taking place at all but stalling at
a few percent remaining requires actual awareness of the application to still allow the
migration without losing quality for the user. The key to the successful continuation
of the streams transmission after the migration is that the buffer is not depleted.
This is currently ensured by the encoding processes but exactly this process is the one
keeping the migration from completing. Therefore this process must be halted for
the migration to complete and resume afterwards. The time needed for the migration
to complete the downtime and postoperation phase can be estimated from the tables
in Section 6.2. The buffer must be at least filled with enough frames to cover that
time span. In some scenarios this could mean increasing the buffer or switching to a
lower quality setting to fill the buffer fast enough. A special problem occurs in the
case of live streaming where the streaming server might be streaming an event only
moments after it is happening in real life. To compensate for this an artificial delay
must be introduced. This could be done during an advertisement block. After the
migration this delay becomes unnecessary or can even cause bad QoE (e.g: During
the soccer world cup in 2014 the ZDF live stream of the game Germany vs. Brazil
led to many complaints since due to a sub optimal implementation the stream was
up to two minutes behind the television signal.). Thus the added delay could be
removed in another advertisement block.

6.4.3 Server-based Video Streaming of External Content

The main weakness of this scenario was that almost half of the time the client lost its
connection to the server and required manual reconnecting. This could be solved by
adding additional intelligence to the client telling it to automatically reconnect. The
time frame for the reconnection could be estimated by taking the tables from Section
6.2. In the best case there would be a protocol where the server would tell the client
that it is soon going down allowing the client to increase its cache level if possible
and then telling the client that the downtime begins now and in how many seconds
the resume is expected. Being aware of the surrounding network characteristics the
server could already tell the client at the beginning that migrations are possible and

61

6.4. Application Aware Optimizations for the Migration Process

the client should adjust its cache size accordingly to the expected downtime and
postoperation time.

6.4.4 Dynamic Adaptive Streaming over HTTP (DASH)

As shown before this approach is already migratable without significant losses in
quality. As written about the server based streaming by increasing the clients in-
telligence and adding information about the estimated migration factors as well as
currently scheduled migrations could increase the quality even further. This can be
optimized to an amount where the user is guaranteed not to realize the migration
taking place.

6.4.5 Counter-Strike: Source Online Gaming

As written before, the user acceptance of the migration is very dependant on the
situation in which it takes place. In the case of Counter-Strike: Source, migrations
during the spawn, buy and initial phase where not at all visible to the players.
Therefore a migration should be performed in this phase. A first approach with only
information from the game would be to trigger a migration so that the estimated
time for the migration phases where no network transmission is available falls on the
tolerant phases of the game. In the case of Counter-Strike: Source such an estimation
is nearly impossible since games can take anywhere between over five minutes and
under thirty seconds. There are games that are more predictable. For these that
approach would be practical. For unpredictable games a useful approach must not
only predict when the migration should happen but must be able to control when it
happens. Therefore an application aware module would have to be introduced into
OpenStack performing the complete preoperation phase of the migration and then
halt the migration (only continuously updating the deltas) until a situation appears
where a short loss of transmission is acceptable and the trigger the switch to the
downtime and postoperation phase. With such an approach it would be possible to
perform migrations in the intra data center scenario without the players noticing. A
successful migration in the inter data center scenario is not possible even with this
optimization since the duration of the non responsive migration phases is too long
and would reach into the critical phases of the game.

6.4.6 Summary and Lessons Learned

In this section approaches to improve the migratability of different applications have
been shown. The approaches vary depending on the application so no general all-
purpose solution can be given. The improvements would require more intelligence
from the applications themselves making them aware of them being migrated and
then warning the clients about that or even modifications of the cloud software to
control the migration process based on the state of the used application.

62

7 Conclusion and Outlook

This chapter concludes the thesis and presents the most important findings. Due
to the increasing popularity of cloud services, resource management with respect
to the users’ perceived quality, as well as in terms of energy efficiency and cost,
is becoming more and more important in a cloud infrastructure. A fundamental
part within this resource management process in the cloud is the migration of cloud
services. The decision whether the benefits of a migration justify the migration effort
requires addition information and studies. This includes in particular the influence
of the migration on the actual service performance, the duration of the migration,
and influences of different network parameters on these two factors.

In this thesis at first a literature research on the topics of cloud services, resource
allocation, orchestration and migration has been performed. Additionally modeling
for cloud services and the placement of resources has been considered.

A testbed for the measurement of cloud migrations has been defined and real-
ized. It features a basic OpenStack cloud environment with a central control node
as well as two dedicated compute nodes. The testbed is provided using automatic
orchestration with the software tool puppet allowing for the fast addition of more
compute nodes or other OpenStack services. Additionally, a log management solu-
tion based on Logstash, Redis and ElasticSearch has been introduced to collect as
much information as possible about the cloud environment. The solution is a scal-
able architecture making it applicable for larger systems with hundreds of nodes.
The overhead of the logging has been proven to be negligible for the used setup
as well as for larger systems. The system features virtual networks splitting the
traffic of the different services to allow the independent modification of the network
parameters for each virtual link. An automatic benchmarking algorithm has been
implemented allowing for a preselect number of migrations to be performed with
configured network parameters. It allows for batch processing, running multiple
different measurements consecutively.

Using this testbed we measured and evaluated the impact of network character-
istics as well as different virtual machine instance flavors on the migration perfor-
mance. Reduced bandwidth, added latency and increased packet loss rate have been
evaluated for their influence. While all of these increase the total duration signifi-
cantly, the influence of latency and drop rate on the downtime is more severe than
the influence of the bandwidth limitation. The postoperation time is only increased
significantly when increasing the network latency. The most significant increase in
total migration duration was generated by the loss rate. For the loss rate and the
bandwidth limitation scenarios the live migration proved to have the shorter migra-
tion period while with limited throughput also providing the shorter downtime. In
the delay scenario the scales are tipped making the live migration the slower migra-
tion while still having the shorter downtime. Larger instance flavors led to longer

Conclusion and Outlook

migration duration. The effect is more significant for the bandwidth limitation and
drop rate experiments, that directly influence the network transmission speed, than
for the latency scenario.

Next, the migration performance was analyzed from application perspective. To
assess this performance multiple applications have been chosen and migrated in-
side the testbed while clients were connected and using the provided services. The
assessed applications include file transfers, server-based video streaming with and
without content inside the virtual machine, adaptive streaming using DASH, and
online gaming. While the applications with little server side intelligence had few
problems with the migrations the more complex applications failed to migrate at all
or suffered severe impairments to the usability. More precisely the server side video
streaming with included content did not migrate at all while on the other hand, the
DASH streaming and the file transfer migrated without problems.

Based on the application evaluation of the migration performance, multiple opti-
mizations using application awareness have been suggested that optimize the service
quality when migrating. Additional intelligence is required either timing the migra-
tion based on an internal application state or telling the client or server to perform
certain actions shortly before the migration is scheduled to occur.

The results give a detailed overview of the effects of network parameters on the
migration performance. Additionally, it has been proven that migrations of complex
applications still result in a strong impairment of the service quality.

Future work may deal with the realization of the proposed application-aware mi-
gration solutions. While this work focuses on the network parameters, the evaluation
of the effect of other parameters like hard disc I/O load and memory utilization could
yield interesting results. Leaving the path of deducting correlations from measure-
ments but instead switch to an analytic approach, the modelling of the algorithms
behind the different migration types would be required.

64

Acknowledgement

I would like to thank my thesis supervisor Florian Wamser for spending countless
hours at night and at the weekend performing benchmarks together and discussing
our further work.

I would also like to thank my girlfried Anja Razinskas for tolerating me not seeing
her for multiple weekends to finish the thesis in time.

I want to thank my boss Prof. Samuel Kounev for being understanding when I
once again completed a work asignment at the last possible minute due to being
entangled in the thesis.

I finally want to thank my parents and my friends who supported me during this
time and wished me luck and success.

This work was partialy supported by German Research Foundation (DFG) under
Grant No. KO 3445/11-1. and the H2020 INPUT (Call H2020-ICT-2014-1, Grant
No. 644672).

A Appendix

Additional Tables with Different Grouping

This section shows several table already existing in the main part of the thesis but
with different sorting strategies to facilitate the comparison of different scenarios.

Appendix

Mode Flavor Speed avg. Dur- avg. Pre- avg. Down- avg. Post-
m1. [MBit/s] ation [s] optime [s] time [s] optime [s]

block tiny 10 76.606± 5.324 74.580± 5.305 0.403± 0.075 1.623± 0.122
block small 10 119.284± 3.917 117.307± 3.956 0.388± 0.055 1.588± 0.085
block medium 10 172.856± 0.743 170.847± 0.778 0.393± 0.110 1.616± 0.121
block large 10 271.278± 0.417 269.373± 0.375 0.352± 0.041 1.554± 0.137
block tiny 100 14.200± 0.380 12.372± 0.354 0.188± 0.060 1.638± 0.123
block small 100 18.513± 0.401 16.725± 0.374 0.181± 0.062 1.606± 0.115
block medium 100 24.375± 0.352 22.571± 0.326 0.206± 0.066 1.598± 0.178
block large 100 34.446± 0.806 32.656± 0.676 0.248± 0.078 1.541± 0.115
block tiny 1000 12.333± 0.712 10.521± 0.694 0.214± 0.074 1.598± 0.127
block small 1000 14.443± 0.965 12.628± 0.865 0.228± 0.089 1.587± 0.154
block medium 1000 18.045± 1.004 16.138± 0.900 0.224± 0.074 1.683± 0.155
block large 1000 23.579± 0.983 21.766± 0.863 0.189± 0.061 1.624± 0.166
live tiny 10 65.628± 1.963 63.478± 5.305 0.390± 0.094 1.760± 0.105
live small 10 107.791± 1.598 105.725± 3.956 0.414± 0.140 1.652± 0.128
live medium 10 163.559± 0.647 161.413± 0.778 0.369± 0.061 1.777± 0.102
live large 10 264.068± 3.818 261.961± 0.375 0.406± 0.080 1.702± 0.148
live tiny 100 12.747± 0.295 10.940± 0.354 0.134± 0.014 1.673± 0.136
live small 100 16.915± 0.401 15.149± 0.374 0.188± 0.100 1.578± 0.094
live medium 100 22.575± 0.332 20.797± 0.326 0.222± 0.082 1.556± 0.102
live large 100 32.670± 0.348 30.789± 0.676 0.228± 0.042 1.653± 0.121
live tiny 1000 10.726± 0.423 8.967± 0.694 0.127± 0.023 1.630± 0.070
live small 1000 13.658± 0.499 11.921± 0.865 0.107± 0.022 1.630± 0.057
live medium 1000 16.393± 0.454 14.609± 0.900 0.140± 0.036 1.643± 0.069
live large 1000 22.389± 0.381 20.566± 0.863 0.154± 0.015 1.668± 0.066

Table A.1: Migration durations sorted by throughput limits with ascending flavor
with confidence intevals with 95% confidence level

67

Appendix

Mode Flavor Delay avg. Dur- avg. Pre- avg. Down- avg. Post-
m1. [MBit/s] ation [s] optime [s] time [s] optime [s]

block tiny 0 7.531± 00.116 5.913± 00.107 0.253± 0.025 1.365± 0.054
block small 0 8.047± 00.193 6.457± 00.191 0.280± 0.063 1.310± 0.084
block medium 0 8.741± 00.182 7.075± 00.185 0.299± 0.034 1.367± 0.029
block large 0 10.241± 00.274 8.594± 00.235 0.302± 0.049 1.345± 0.079
block tiny 10 10.894± 00.321 8.581± 00.437 0.308± 0.067 2.005± 0.204
block small 10 11.569± 00.558 9.654± 00.474 0.226± 0.078 1.688± 0.274
block medium 10 12.910± 00.823 10.598± 00.886 0.332± 0.086 1.980± 0.202
block large 10 14.342± 00.526 12.133± 00.577 0.321± 0.073 1.888± 0.241
block tiny 50 33.074± 02.396 27.778± 02.921 1.101± 0.313 4.195± 1.125
block small 50 35.383± 02.954 30.326± 03.238 0.505± 0.261 4.552± 0.754
block medium 50 41.581± 03.707 36.347± 03.830 0.652± 0.272 4.583± 0.796
block large 50 52.206± 04.972 46.664± 05.114 0.793± 0.247 4.750± 0.524
block tiny 100 56.068± 02.590 45.924± 02.331 1.222± 0.768 8.922± 1.656
block small 100 62.779± 03.741 53.576± 03.688 1.112± 0.664 8.091± 0.936
block medium 100 73.490± 04.260 64.120± 04.004 1.426± 0.801 7.944± 1.322
block large 100 86.144± 10.469 76.539± 10.288 1.420± 0.737 8.185± 1.392
live tiny 0 6.829± 00.237 5.076± 00.228 0.271± 0.049 1.482± 0.055
live small 0 7.524± 00.204 5.779± 00.213 0.260± 0.059 1.485± 0.058
live medium 0 8.228± 00.209 6.415± 00.219 0.343± 0.062 1.469± 0.029
live large 0 9.417± 00.207 7.686± 00.198 0.341± 0.051 1.390± 0.086
live small 10 12.790± 00.613 10.216± 00.589 0.187± 0.092 2.386± 0.140
live tiny 10 11.864± 00.423 9.322± 00.325 0.263± 0.159 2.279± 0.454
live medium 10 13.618± 00.628 11.043± 00.596 0.203± 0.030 2.371± 0.278
live large 10 16.069± 01.568 13.710± 01.662 0.191± 0.035 2.168± 0.365
live tiny 50 38.402± 02.483 32.889± 02.496 0.372± 0.093 5.141± 1.163
live small 50 44.869± 03.322 39.080± 03.111 0.430± 0.058 5.359± 0.961
live medium 50 49.298± 04.133 42.721± 04.234 0.519± 0.241 6.059± 1.577
live large 50 56.299± 08.190 50.608± 08.585 0.417± 0.117 5.274± 1.321
live tiny 100 69.905± 07.106 60.089± 07.093 0.809± 0.515 9.007± 1.120
live small 100 79.181± 04.538 69.265± 05.341 0.665± 0.071 9.251± 1.798
live medium 100 84.653± 06.314 75.539± 06.050 0.677± 0.087 8.437± 1.615
live large 100 96.000± 12.398 86.239± 11.989 0.585± 0.201 9.176± 1.411

Table A.2: Migration durations sorted latency with ascending flavor with confidence
intevals with 95% confidence level

68

Appendix

Mode Flavor Delay avg. Dur- avg. Pre- avg. Down- avg. Post-
m1. [MBit/s] ation [s] optime [s] time [s] optime [s]

block tiny 0 7.531± 00.116 5.913± 00.107 0.253± 0.025 1.365± 0.054
block small 0 8.047± 00.193 6.457± 00.191 0.280± 0.063 1.310± 0.084
block medium 0 8.741± 00.182 7.075± 00.185 0.299± 0.034 1.367± 0.029
block large 0 10.241± 00.274 8.594± 00.235 0.302± 0.049 1.345± 0.079
block tiny 10 10.894± 00.321 8.581± 00.437 0.308± 0.067 2.005± 0.204
block small 10 11.569± 00.558 9.654± 00.474 0.226± 0.078 1.688± 0.274
block medium 10 12.910± 00.823 10.598± 00.886 0.332± 0.086 1.980± 0.202
block large 10 14.342± 00.526 12.133± 00.577 0.321± 0.073 1.888± 0.241
block tiny 50 33.074± 02.396 27.778± 02.921 1.101± 0.313 4.195± 1.125
block small 50 35.383± 02.954 30.326± 03.238 0.505± 0.261 4.552± 0.754
block medium 50 41.581± 03.707 36.347± 03.830 0.652± 0.272 4.583± 0.796
block large 50 52.206± 04.972 46.664± 05.114 0.793± 0.247 4.750± 0.524
block tiny 100 56.068± 02.590 45.924± 02.331 1.222± 0.768 8.922± 1.656
block small 100 62.779± 03.741 53.576± 03.688 1.112± 0.664 8.091± 0.936
block medium 100 73.490± 04.260 64.120± 04.004 1.426± 0.801 7.944± 1.322
block large 100 86.144± 10.469 76.539± 10.288 1.420± 0.737 8.185± 1.392
live tiny 0 6.829± 00.237 5.076± 00.228 0.271± 0.049 1.482± 0.055
live small 0 7.524± 00.204 5.779± 00.213 0.260± 0.059 1.485± 0.058
live medium 0 8.228± 00.209 6.415± 00.219 0.343± 0.062 1.469± 0.029
live large 0 9.417± 00.207 7.686± 00.198 0.341± 0.051 1.390± 0.086
live small 10 12.790± 00.613 10.216± 00.589 0.187± 0.092 2.386± 0.140
live tiny 10 11.864± 00.423 9.322± 00.325 0.263± 0.159 2.279± 0.454
live medium 10 13.618± 00.628 11.043± 00.596 0.203± 0.030 2.371± 0.278
live large 10 16.069± 01.568 13.710± 01.662 0.191± 0.035 2.168± 0.365
live tiny 50 38.402± 02.483 32.889± 02.496 0.372± 0.093 5.141± 1.163
live small 50 44.869± 03.322 39.080± 03.111 0.430± 0.058 5.359± 0.961
live medium 50 49.298± 04.133 42.721± 04.234 0.519± 0.241 6.059± 1.577
live large 50 56.299± 08.190 50.608± 08.585 0.417± 0.117 5.274± 1.321
live tiny 100 69.905± 07.106 60.089± 07.093 0.809± 0.515 9.007± 1.120
live small 100 79.181± 04.538 69.265± 05.341 0.665± 0.071 9.251± 1.798
live medium 100 84.653± 06.314 75.539± 06.050 0.677± 0.087 8.437± 1.615
live large 100 96.000± 12.398 86.239± 11.989 0.585± 0.201 9.176± 1.411

Table A.3: Migration durations sorted by drop rates with ascending flavor with con-
fidence intevals with 95% confidence level

69

List of Figures

2.1 Modes for hosted virtualization . 4
2.2 Traditional Migration Approach . 7
2.3 Pre-Copy Migration . 8
2.4 Post-Copy Migration . 10
2.5 Live Migration . 11
2.6 Hourglass models of IP networks besides the model for the different

quality layers. 12
2.7 Architecture of a scalable logging infrastructure. Dashed lines mark

backup links. 16

4.1 Architecture of a cloud infrastructure 23

5.1 Architecture of the used testbed . 24
5.2 Average network load of the monitoring solution in different scenarios 26

6.1 Measurement Parameters . 28
6.2 Migrations of the medium flavor using different throughput limits . . 31
6.3 Preoperation times for various flavors and migration types grouped

by throughput limit . 32
6.4 Downtimes for various flavors and migration types grouped by through-

put limitation . 33
6.5 Postoperation times for various flavors and migration types grouped

by throughput limit . 33
6.6 Migrations of virtual instances with the tiny flavor using different

latencies . 36
6.7 Preoperation times for various flavors and migration types grouped

by latency . 37
6.8 Downtimes for various flavors and migration types grouped by latency 38
6.9 Postoperation times for various flavors and migration types grouped

by latency . 39
6.10 Migrations of the medium flavor using different drop rates 40
6.11 Preoperation times for various flavors and migration types grouped

by drop rate . 42
6.12 Downtimes for various flavors and migration types grouped by drop

rate . 43
6.13 Postoperation times for various flavors and migration types grouped

by drop rate . 44
6.14 Migration duration for a throughput limit of 100 MBit/s with different

instance flavors . 45

List of Figures

6.15 Migration duration for a network latency of 50 ms with different in-
stance flavors . 47

6.16 Migration duration for a network drop rate of one percent with dif-
ferent instance flavors . 48

6.17 Download speed over time for download processes running while mi-
grations are performed. 51

6.18 Frames dropped during the beginning of the migration process 53
6.19 Percentage of buffer fill level over time before, during and after migration 54
6.20 Buffer development over time during migration in an intra compute

center scenario . 55
6.21 Buffer development over time during migration in an inter compute

center scenario . 56
6.22 The netgraph shown by Counter-Strike: Source depicting the loss of

data transmission during the migration’s downtime and postoperation
phase . 58

6.23 Latency and choke rate plotted over the first 120 seconds of a Counter-
Strike: Source Match with a migration happening shortly after 60
seconds. 59

71

List of Tables

2.1 Comparison Application Monitoring Locations 14
2.2 CRUD operations as implemented in REST 14

6.1 Migration duration sorted by flavor with ascending throughput limits
with confidence intervals with 95% confidence level 30

6.2 Migration durations sorted by flavor with ascending network packet
delay with confidence intervals with 95% confidence level 35

6.3 Migration duration sorted by flavor with ascending packet drop rate
with confidence intervals with 95% confidence level 41

6.4 Default flavors provided by OpenStack 45
6.5 Summary of the migratability of different applications. Where 3means

the migration is possible and works reliable and 7means that it does
not. 7∗ means that the migration is successful some times but fails at
others or causes non tolerable impairments. Scenario 1 resembles intra
compute center migrations while Scenario 2 resembles inter compute
center migrations. 60

A.1 Migration durations sorted by throughput limits with ascending flavor
with confidence intevals with 95% confidence level 67

A.2 Migration durations sorted latency with ascending flavor with confi-
dence intevals with 95% confidence level 68

A.3 Migration durations sorted by drop rates with ascending flavor with
confidence intevals with 95% confidence level 69

Bibliography

[1] “Amazon web services ’growing fast’,” Apr. 2015. [Online]. Available:
http://www.bbc.com/news/business-32442268

[2] J. T. Piao and J. Yan, “A network-aware virtual machine placement and migra-
tion approach in cloud computing,” in Grid and Cooperative Computing (GCC),
2010 9th International Conference on. IEEE, 2010, pp. 87–92.

[3] E. Mohammadi, M. Karimi, and S. R. Heikalabad, “A novel virtual machine
placement in cloud computing,” Australian Journal of Basic and Applied Sci-
ences, vol. 5, no. 10, pp. 1549–1555, 2011.

[4] C. Hyser, B. Mckee, R. Gardner, and B. J. Watson, “Autonomic virtual machine
placement in the data center,” 2008.

[5] P. Rygielski and A. Gonczarek, “Migration-aware optimization of virtualized
computational resources allocation in complex systems,” in Systems Engineer-
ing (ICSEng), 2011 21st International Conference on. IEEE, 2011, pp. 212–
216.

[6] S. Kolb, J. Lenhard, and G. Wirtz, “Application Migration Effort in the Cloud–
The Case of Cloud Platforms.”

[7] N. M. Huber, “Autonomic Performance-Aware Resource Management in Dy-
namic IT Service Infrastructures,” Ph.D. dissertation, Karlsruhe, Karlsruher
Institut für Technologie (KIT), Diss., 2014, 2014.

[8] N. Huber, M. Von Quast, F. Brosig, and S. Kounev, “Analysis of the
performance-influencing factors of virtualization platforms,” in On the Move
to Meaningful Internet Systems, OTM 2010. Springer, 2010, pp. 811–828.

[9] N. Huber, M. von Quast, M. Hauck, and S. Kounev, “Evaluating and Modeling
Virtualization Performance Overhead for Cloud Environments.” in CLOSER,
2011, pp. 563–573.

[10] Q. Noorshams, A. Busch, A. Rentschler, D. Bruhn, S. Kounev, P. Tuma, and
R. Reussner, “Automated Modeling of I/O Performance and Interference Effects
in Virtualized Storage Systems,” in Distributed Computing Systems Workshops
(ICDCSW), 2014 IEEE 34th International Conference on. IEEE, 2014, pp.
88–93.

[11] Q. Noorshams, D. Bruhn, S. Kounev, and R. Reussner, “Predictive performance
modeling of virtualized storage systems using optimized statistical regression

http://www.bbc.com/news/business-32442268

Bibliography

techniques,” in Proceedings of the 4th ACM/SPEC International Conference on
Performance Engineering. ACM, 2013, pp. 283–294.

[12] K. Diepold, “The Quest for a Definition of Quality of Experience,” Qualinet
Newslet, pp. 2–8, Oct. 2012. [Online]. Available: www.cost.eu/download/34536

[13] J. Rinne, M. Liljeberg, and J. Jouppi, “Quality of service definition for
data streams,” Jan. 15 2008, uS Patent 7,320,029. [Online]. Available:
https://www.google.com/patents/US7320029

[14] T. Hoßfeld, R. Schatz, M. Varela, and C. Timmerer, “Challenges of QoE Man-
agement for Cloud Applications,” IEEE Communications Magazine, vol. April
issue, Apr. 2012.

[15] F. Wamser, “Performance Assessment of Resource Management Strategies
for Cellular and Wireless Mesh Networks,” Ph.D. dissertation, University
of Würzburg, Jan. 2015. [Online]. Available: https://opus.bibliothek.uni-
wuerzburg.de/files/11151/wamser florian resourceallocation.pdf

[16] T. Hoßfeld, R. Schatz, M. Seufert, M. Hirth, T. Zinner, and P. Tran-Gia,
“Quantification of YouTube QoE via Crowdsourcing,” in IEEE International
Workshop on Multimedia Quality of Experience - Modeling, Evaluation, and
Directions (MQoE 2011), Dana Point, CA, USA, Dec. 2011.

[17] F. Wamser, T. Zinner, L. Iffländer, and P. Tran-Gia, “Demonstrating the
Prospects of Dynamic Application-Aware Networking in a Home Environment,”
Chicago, IL, USA, Aug. 2014.

[18] F. Wamser, L. Iffländer, T. Zinner, and P. Tran-Gia, “Implementing
Application-Aware Resource Allocation on a Home Gateway for the Exam-
ple of YouTube,” in Mobile Networks and Management, Lecture Notes of the
Institute for Computer Sciences, Social Informatics and Telecommunications
Engineering, Würzburg, Germany, Sep. 2014.

[19] R. T. Fielding, “Architectural styles and the design of network-based software
architectures,” Ph.D. dissertation, University of California, Irvine, 2000.

[20] F. Curbera, M. Duftler, R. Khalaf, W. Nagy, N. Mukhi, and S. Weerawarana,
“Unraveling the Web services web: an introduction to SOAP, WSDL, and
UDDI,” IEEE Internet computing, no. 2, pp. 86–93, 2002.

[21] J. Turnbull, Dec. 2013.

[22] R. Vaupel, Q. Noorshams, S. Kounev, and R. Reussner, “Using Queuing Mod-
els for Large System Migration Scenarios–An Industrial Case Study with IBM
System z,” in Computer Performance Engineering. Springer, 2013, pp. 263–
275.

[23] “OpenStack FAQ.” [Online]. Available: https://www.openstack.org/projects/
openstack-faq/

74

www.cost.eu/download/34536
https://www.google.com/patents/US7320029
https://opus.bibliothek.uni-wuerzburg.de/files/11151/wamser_florian_resourceallocation.pdf
https://opus.bibliothek.uni-wuerzburg.de/files/11151/wamser_florian_resourceallocation.pdf
https://www.openstack.org/projects/openstack-faq/
https://www.openstack.org/projects/openstack-faq/

Bibliography

[24] E. Freeman, E. Freeman, B. Bates, and K. Sierra, Head First Design Patterns.
O’ Reilly & Associates, Inc., 2004.

[25] “TCPDump.” [Online]. Available: http://www.tcpdump.org/

[26] “WireShark.” [Online]. Available: https://www.wireshark.org/

[27] S. Oberste-Vorth, “Measurement-based Performance Comparison of SDN-
related Northbound APIs,” Master’s thesis, University of Würzburg, Mar. 2015.

[28] “CirrOS.” [Online]. Available: https://launchpad.net/cirros

[29] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow, “TCP Selective
Acknowledgment Options,” RFC 2018 (Proposed Standard), Internet
Engineering Task Force, Oct. 1996. [Online]. Available: http://www.ietf.org/
rfc/rfc2018.txt

[30] “GNU Wget.” [Online]. Available: https://www.gnu.org/software/wget/

[31] “nginx.” [Online]. Available: http://nginx.org/

[32] S. Ha, I. Rhee, and L. Xu, “CUBIC: a new TCP-friendly high-speed TCP
variant,” ACM SIGOPS Operating Systems Review, vol. 42, no. 5, pp. 64–74,
2008.

[33] “ffmpeg.” [Online]. Available: https://www.ffmpeg.org/

[34] “Sintel.” [Online]. Available: https://durian.blender.org/download/

[35] “MPlayer.” [Online]. Available: http://www.mplayerhq.hu/

[36] L. De Cicco, V. Caldaralo, V. Palmisano, and S. Mascolo, “TAPAS: a Tool for
rApid Prototyping of Adaptive Streaming algorithms,” in Proceedings of the
2014 Workshop on Design, Quality and Deployment of Adaptive Video Stream-
ing. ACM, 2014, pp. 1–6.

[37] “Counter-Strike: Source.” [Online]. Available: http://store.steampowered.
com/app/240/

[38] M. Hitchens, “A Survey of First-person Shooters and their Avatars,”
The International Journal of Computer Game Research, vol. 11, no. 3,
December 2011. [Online]. Available: http://gamestudies.org/1103/articles/
michael hitchens

[39] R. Voith and S. Sudhaman, “Method and apparatus for interleaving data in an
asymmetric digital subscriber line (ADSL) transmitter,” Apr. 7 1998, uS Patent
5,737,337. [Online]. Available: https://www.google.com/patents/US5737337

75

http://www.tcpdump.org/
https://www.wireshark.org/
https://launchpad.net/cirros
http://www.ietf.org/rfc/rfc2018.txt
http://www.ietf.org/rfc/rfc2018.txt
https://www.gnu.org/software/wget/
http://nginx.org/
https://www.ffmpeg.org/
https://durian.blender.org/download/
http://www.mplayerhq.hu/
http://store.steampowered.com/app/240/
http://store.steampowered.com/app/240/
http://gamestudies.org/1103/articles/michael_hitchens
http://gamestudies.org/1103/articles/michael_hitchens
https://www.google.com/patents/US5737337

	Introduction
	Technical Background
	Cloud Infrastructure Solutions
	Classification and Description
	Existing Cloud Infrastructure Solutions

	Cloud Service Migration Approaches
	Migration Types
	Migration Modes for Virtual Hardware Migration

	Quality of Experience Management for Internet Applications
	Definition
	Modeling
	Monitoring
	Optimizing

	Representational State Transfer
	Logging Infrastructure

	Related Work
	Selection of Migration Destination
	Migration Between Different Cloud Platforms
	Modelling of Virtualized System Performance

	OpenStack Cloud Computing
	Project Objectives
	OpenStack Components
	OpenStack Architecture

	Testbed Definition for the Measurement of Cloud Migrations
	Components in Testbed and Testbed Structure
	Performance Indicators and Metrics
	Signaling Overhead for Various Migrations

	Performance Assessment of Service Migration Strategies
	Measurement Parameters for the Evaluation
	Impact of Network Characteristics on the Migration Performance
	Impact of Network Throughput Limitations
	Impact of Network Delays on the Migration Performance
	Packet Loss in the Network and Related Effects
	Impact of Instance Flavor on the Migration Performance
	Summary and Conclusions

	Evaluation of Migration Performance from Application Perspective
	Assessment for File Downloads
	Server-based Streaming Using Content in the Virtual Machine
	Server-based Streaming of External Content
	Dynamic Adaptive Streaming over HTTP (DASH)
	Counter-Strike: Source Online Gaming
	Summary and Overview of the Results

	Application Aware Optimizations for the Migration Process
	Optimizations for File Transfers
	Server-based Video Streaming of Internal Content
	Server-based Video Streaming of External Content
	Dynamic Adaptive Streaming over HTTP (DASH)
	Counter-Strike: Source Online Gaming
	Summary and Lessons Learned

	Conclusion and Outlook
	Appendix
	List of Figures
	List of Tables
	Bibliography

