
ar
X

iv
:1

90
7.

06
77

5v
1

 [
cs

.C
R

]
 1

5
Ju

l 2
01

9

Hands Off my Database: Ransomware Detection in Databases through Dynamic

Analysis of Query Sequences

Lukas Iffländer
University of Würzburg

Alexandra Dmitrienko
University of Würzburg

Christoph Hagen
University of Würzburg

Michael Jobst
University of Würzburg

Samuel Kounev
University of Würzburg

Abstract
Ransomware is an emerging threat which imposed a $ 5 bil-

lion loss in 2017 and is predicted to hit 11.5 billion in 2019.

While initially targeting PC (client) platforms, ransomware

recently made the leap to server-side databases – starting

in January 2017 with the MongoDB Apocalypse attack, fol-

lowed by other attack waves targeting a wide range of DB

types such as MongoDB, MySQL, ElasticSearch, Cassandra,

Hadoop, and CouchDB. While previous research has devel-

oped countermeasures against client-side ransomware (e.g.,

CryptoDrop and ShieldFS), the problem of server-side ran-

somware has received zero attention so far.

In our work, we aim to bridge this gap and present

DIMAQS (Dynamic Identification of Malicious Query Se-

quences), a novel anti-ransomware solution for databases.

DIMAQS performs runtime monitoring of incoming queries

and pattern matching using Colored Petri Nets (CPNs) for

attack detection. Our system design exhibits several novel

techniques to enable efficient detection of malicious query se-

quences globally (i.e., without limiting detection to distinct

user connections). Our proof-of-concept implementation tar-

gets MySQL servers. The evaluation shows high efficiency

with no false positives and no false negatives and very mod-

erate performance overhead of under 5%. We will publish

our data sets and implementation allowing the community to

reproduce our tests and compare to our results.

1 Introduction

In today’s era of digital transformation, data has become

more critical than ever before. The amount of data we pro-

duce daily is astonishing – every day hundreds of millions

of people are taking photos, make videos and exchange mes-

sages. Furthermore, data is not only an asset for users nowa-

days, but has also become the key component of digitization

and transformation of today’s businesses globally – enter-

prises collect data on consumer preferences, purchases, and

trends and use it to optimize their business models and strate-

gies. Given such trends, the importance of database security

is hard to overestimate – the rapid growth of the data volume

stored in the databases of service providers, in cloud environ-

ments and enterprise data centers, as well as their increasing

importance, make them attractive attack targets.

Traditionally, attacks on data have aimed to undermine

confidentiality and authenticity. More recently, however, at-

tacks against the availability of data, services, and users have

become common as well – modern attackers deploy ransom-

ware, malicious software that encrypts data and holds the de-

cryption key until the victim pays a ransom. They still claim

the ransom pretending to have encrypted the data. The finan-

cial loss from ransomware is significant – it reached 5 billion

USD in 2017 and is predicted to hit 11.5 billion by 2019 [50].

The rise of server-side ransomware While the first ransom-

ware attacks targeted client platforms (information stored in

users’ files), recently such attacks made a leap to server-

side databases that store, accumulate and process (big)

data. In January 2017 tens of thousands of MongoDB

servers were hit in an attack called MongoDB Apocalypse [9,

10], followed by a second attack wave targeting MySQL

servers [60]. Since then, server-side ransomware attacks

spread to a wide range of server technologies, including Elas-

ticSearch [11], Cassandra [7], Hadoop and CouchDB [8].

Attack scenario The typical attack scenario of server-side

ransomware observed so far is as follows: First, an attacker

gains remote privileged access to the database database

through the exploitation of configuration vulnerabilities such

as the usage of default passwords 1. Once connected, they ex-

ecute commands for data enumeration (e.g., to learn names

of databases and tables hosted), then drop (delete) data and

insert the ransom message with instructions how to pay the

ransom. Remarkably, in contrast to client-side ransomware,

the new attack form wipes the data without making any plain-

text or encrypted copy, e.g., acting as a wiper. This strategy

has, on the one hand, more dramatic implications for the vic-

1Note that default passwords and other misconfiguration errors are preva-

lent real-world problems. For instance, Mirai botnet [1] used similar vulner-

abilities to take over more than 600,000 IoT devices arond the globe.

1

http://arxiv.org/abs/1907.06775v1

tim, since the data is unrecoverable even if the ransom is

paid. On the other hand, the attack is stealthier, since no

intensive and easily detectable operations required, such as

bulk encryption or massive data copying, and no back chan-

nel to the attacker needed (e.g., for delivering the decryption

key or recovered data) that could be used to trace them back.

Motivation for server-side ransomware to spread While

server-side ransomware is more recent and to this day less

widespread than client-side ransomware, there are reasons

why the situation might change quite soon. First, enter-

prises can afford to pay higher ransoms than private users.

As a comparison, the typical ransom amount for regular

users lies in the range of a few hundred dollars. However,

businesses can pay much more – for instance, in a recent

attack, a Los Angeles Hospital paid USD 17 000 of ran-

som to attackers [49]. Second, in recent years, researchers

and antivirus companies developed countermeasures against

client-side ransomware. However, to date, no solutions exist

against ransomware targeting database servers. This lack of

protection makes databases easy attack targets.

Do victims pay the ransom to a wiper? Note that there is

evidence that even though server-side ransomware is a wiper,

some desperate victims paid the ransom, nonetheless. We

identified that two known ransomware addresses involved

in MySQL attacks [60] received 0.6 BTC (equivalent to 3

payments). For the attacks against MongoDB, we identified

a total of 160 ransom payments to the addresses collected

in [9], totaling in 26.35 BTC. Moreover, the survey [9] re-

veals that even production systems lack sufficient protection

by strong passwords and sensible backup strategy: Among

123 surveyed ransom victims, only 11% had recent backups,

and 8% paid the ransom.

State of the art Existing anti-ransomware solutions are aim-

ing at detection of client-side ransomware only. They follow

two dominant strategies: Signature-based detection of mali-

cious binaries and runtime monitoring and behavioral analy-

sis for anomaly detection. The first one builds upon detec-

tion of malicious binaries and is typically used by anti-virus

vendors, while the second strategy originates from research

papers [12, 13, 37, 54] and relies on runtime monitoring of

file accesses and the detection of malicious activity based

on heuristics, such as access to multiple files, their modifi-

cation, and renaming. Unfortunately, both strategies are not

applicable for detection of database wipers. Since in server-

side ransomware attack scenario an attacker connects to the

database remotely, there is no malicious binary on the plat-

form that could be detected. Furthermore, monitoring at the

file system level for abnormal activity is not adequate either

since there is no direct correlation between an attacker’s ac-

tivity and file access patterns.

Our contributions In this paper, we aim to improve the se-

curity of database systems and propose DIMAQS (Dynamic

Identification of Malicious Query Sequences), signature-

based intrusion detection tool that can detect sequences of

malicious queries. Generally, the tool is not limited to ran-

somware detection and can potentially be applied to detec-

tion of other attack classes as long as they rely on malicious

sequences of queries (e.g., advanced SQL injections aiming

at removing code execution [15]). However, motivated by

the rise of server-side ransomware we apply it to the problem

of ransomware detection. We make the following contribu-

tions:

• We provide design and implementation of DIMAQS, a

framework that can detect sequences of malicious queries.

To keep track of queries and to perform detection, our solu-

tion leverages Colored Petri Nets (CPNs) to model the se-

ries of events used in attacks and to match them to known

malicious patterns. Our system design exhibits several

novel techniques (dynamic creation of colors, merging of

tokens and token expiration) to reduce the complexity of

the system representation and achieve better performance.

Our framework performs system-wide monitoring and as

such can detect malicious sequences injected through sev-

eral user sessions and interleaved with benign queries – a

quite interesting feature that eliminates most obvious eva-

sion strategies. Our implementation targets MySQL, one

of the most popular database management systems, and im-

poses only a very moderate performance overhead under

5%. We realize our solution in the form of a MySQL plu-

gin that is easily installable on existing MySQL servers,

thus preserving compatibility with legacy software. We

will publish the source code on GitHub along with the pa-

per.

• We apply DIMAQS to the challenging problem of server-

side ransomware. To make detection of such attacks pos-

sible, we analyze previously observed attacks and extract

their distinctive properties that provide a basis for attack

detection. We then evaluate the effectiveness and practical-

ity of our solution using three data sets: Malicious data set

recorded by us, and benign query sets from a publication

management system and a MediaWiki server. The results

demonstrate the high efficiency of our approach with no

false negatives or false positives. We will publish our data

sets along with the paper to the benefit of the research com-

munity. To the best of our knowledge, our malicious data

set will be the first one publicly available.

Outline. The remainder of this paper is structured as follows.

In Section 2 we present the necessary background followed

by system design of DIMAQS in Section 3. In Section 4, we

reveal the details of our prototype implementation. Prototype

evaluation results are presented in Section 5. After a review

of the related work in Section 6, we conclude the paper and

outline future work in Section 7.

2

p1

p2

p3

t12

1

1

a) Transition disabled

p1

p2

p3

t12

1

1

b) Transition enabled

p1

p2

p3

t12

1

1

c) Transition fired

Figure 1: Demonstration of Petri net execution using a simple example

p1

2

1 2

p3

t1

(2,1)

(1,0)

a) Transition disabled

p1

2 2

1 1

p3

t1

(2,1)

(1,0)

b) Transition enabled

p1

2

p3

1

t1

(2,1)

(1,0)

c) Transition fired

Figure 2: Colored Petri Net example. In comparison to the regular Petri net depicted in Figure 1, the number of required places

is reduced from two to one without reducing functionality.

2 Background

In this section, we provide the necessary background on Petri

nets and their enhanced version, colored Petri nets.

Petri Nets are a commonly used mathematical modeling lan-

guage for the description of distributed systems [51] named

after their inventor Carl Adam Petri. They are a class of dis-

crete event dynamic systems. A Petri net is a directed bipar-

tite graph, in which nodes represent places and transitions,

while edges, called arcs, connect either a place to a transi-

tion or a transition to a place, but never connect two places

or two transitions directly. Transitions are events in the sys-

tem, and places are conditions that need to be satisfied for

the transition to fire.

Places may contain a discrete number of marks called to-

kens. Transitions fire if they are enabled, which is achiev-

able by placing enough input tokens on the input places –

i.e., places directly connected to the transition. The value

of the arc defines the number of tokens required per place.

Once a transition fires, it consumes the required number of

input tokens from the input places. The transition results in

creating the specified number of output tokens on the places

with arcs from the transition to them (output places).

Figure 1 shows a simple example of a Petri net. The de-

picted Petri net consists of three places (depicted as circles),

one transition (depicted as a bar), and three arcs. Enabling

the transition requires three tokens: Two tokens at place p1

and one token at place p2. In Figure 1a only one token is

available at p1. Regardless of the total count being three to-

kens, with only one token on p1, the transition is not yet

enabled. Adding another token to p1 in Figure 1b satisfies

the requirement and thus enables the transition. When the

transition fires, two tokens are subtracted from the token set

at p1 as well as one token from p2. At the same time, the

transition adds one token to p3. Figure 1c shows the state

after the transition firing.

Petri nets are a powerful tool for modeling [5] and allow

for extensions to suit various tasks like queuing Petri nets for

performance modeling. In this work, we use colored Petri

nets, an extension to ordinary Petri nets.

Colored Petri Nets (CPNs) enable support for tokens of dif-

ferent types, also known as token colors. Places can now con-

tain tokens of multiple colors. Arcs can define any combina-

tion of the colors for the number of input and output tokens.

This addition allows for making Petri nets more compact.

Figure 2 illustrates the reduction in representation com-

plexity by presenting a CPN derived from the previous ex-

ample. The places p1 and p2 depicted in Figure 1 are now

merged into a single place denoted as p1, while tokens are

now assigned different colors: Tokens formerly placed in p1

are now black (1) and those placed in p2 are red (2). The

transition now requires two black and one red token instead

of requiring two tokens from p1 and one from p2. The over-

all Figure 2 depicts the same process as before. In Figure 2a,

one black token is missing for the transition to be enabled.

In Figure 2b this token is added, thus enabling the transition.

Finally, in Figure 2c the transition has fired, subtracting two

black and one red token from p1 and adding a black token to

p3.

3 Design

DIMAQS is the first system that aims at the detection of ran-

somware attacks in databases. In a nutshell, it represents an

intrusion detection system that leverages knowledge about

3

the attack pattern (or signature) and performs real-time sys-

tem monitoring and pattern matching to detect intrusion at-

tempts. For pattern matching, we leverage a CPN to encode

the system states and their transitions inside the color infor-

mation to detect when the system transitions to the state as-

sociated with the attack description.

The usage of (colored) Petri nets is a known technique

for pattern matching, and their application to intrusion detec-

tion problems was investigated in previous works [26, 40].

However, typical application scenarios of CPN-based intru-

sion detection systems target other environments, e.g., net-

works [59] and operating systems [2].

The application of Petri nets for intrusion detection in

databases was only considered by Hu et al. [26], who aimed

at detection of anomalies of any sort, not specific to ransom-

ware. However, they use uncolored Petri nets and leverage

them to model benign states of a database system rather than

attack states. Hence, their solution requires a training phase

to gain knowledge about the underlying data structure as well

as about benign data update patterns. In contrast, our system

does not require similar training. Moreover, their work is the-

oretical. Hence, they did not provide any implementation or

evaluation results with which to compare.

In our work, we aim to fill the gap and address the prob-

lem of ransomware attacks targeting databases. As such, we

investigate the applicability of CPNs for ransomware attack

detection in databases. We observe that databases are com-

plex systems and modeling their state regarding dependency

relationships and update patterns, as, e.g., done in [26], may

lead to overly complicated system representations (for large

and complex databases) and non-trivial overhead. Hence, we

tackle the problem differently and choose to model malicious

query sequences – an approach which results in a much sim-

pler system representation, and independence from the struc-

ture of the underlying data and update patterns.

Our approach is system-centric and allows for detection of

attacks that are carried out over multiple sessions or multiple

user accounts. We also develop several novel techniques that

even further to simplify the system representation, namely

(1) dynamic color creation (creating an infinite color space),

(2) token merging and duplication, and (3) token expiration

making the use of CPNs practical.

The remaining part of this section is structured as follows:

We first describe a typical ransomware attack scenario (Sec-

tion 3.1). Next, we present our adversary model (Section 3.2)

followed by the system architecture description (Section 3.3).

Finally, we show the interaction of the system components

when handling incoming queries (Section 3.4).

3.1 Attack Scenario

Our attack scenario originates from an analysis of a large-

scale ransomware attack targeting MySQL servers that took

place in February 2017 [60]. The attacker performs the at-

tack remotely by connecting to the database using a TCP

connection. Once connected, an attacker gains root ac-

cess through, e.g., brute-forcing the ‘root’ password of the

database. Next, they enumerate the data in the database

through retrieval of the list of the databases present. After

that, the attacker creates a new table with an arbitrary name

(e.g., the table with the name ‘WARNING’), either in a new

database (e.g., named ‘PLEASE_READ’) or in an already

existing database. This table includes a ransom message con-

taining a contact email address as well as payment instruc-

tions to a bitcoin address. Finally, the attacker deletes (drops)

the databases on the server and disconnects.

The scenario above describes the attack steps recorded

in real-world attacks. Additionally, we accept that attack

steps can deviate from this scenario: For instance, an at-

tacker could first perform the database deletion and only af-

ter that insert the ransom message. Also, attackers may use

arbitrary names for databases and tables and arbitrary pat-

terns for the ransom message. We, however, assume that

the attacker demands payments in cryptocurrency (such as

Bitcoin or Ethereum) since they provide at least some level

of anonymity in contrast to more traditional payment meth-

ods that involve banks2. We also assume that an attacker

continues to wipe data and does not aim to keep any data

copies, since this would slow down the attack significantly,

and would require storage on attacker’s side and a commu-

nication channel between the victim and the attacker, which

demands additional resources and increases chances of expo-

sure. We also assume an attacker does not perform on-site

database encryption since we did not identify any standard

SQL commands that could be used to do so.

3.2 Adversary Model

We make the following assumptions about the goal and the

capabilities of the attacker. The attacker’s goal is to destroy

the available data and claim the ransom. We assume the re-

mote attacker who is accessing the server over the Internet

has no physical access to it. The software running on the

server is trusted, i.e., the attacker has no malicious software

installed on the system. However, the attacker has full ac-

cess to the network and can communicate with the DBMS

without any restrictions. Furthermore, we assume an attacker

with administrator-level privileges to the DBMS. This as-

sumption is often fulfilled in practice since the problem of

weak or re-used passwords [33] is well known and not satis-

factory solved for over decades. For instance, findings show

that most of the MySQL servers had no root password set due

to using an insecure default configuration [14]. Alternatively,

an attacker might exploit a security vulnerability like [19] to

gain administrator privileges for the database.

We, however, do not assume administrator privileges of

the attacker to the operating system. Also, we leave DoS

2Since banks are obliged to follow "know your customer" policy.

4

Server

Database

Monitoring

Controller
Incident

Resolution

Query

Rewriter

NotifierClassifier
Security

Policy

DIMAQS Plugin

(1)

(2)

(3)

(4)

(5)

(6)
(7)

(8)
(9)

(10)

(11)

Figure 3: System architecture of DIMAQS. Dark grey boxes

are components provided by the database, light grey boxes

are components that interface between DIMAQS and the

database, and white boxes belong to DIMAQS itself.

attacks are out of our attacker model since an attacker with

administrator privileges to DBMS can always cause a denial

of service, e.g., through the creation of fake DBs or tables

and exhausting DB’s memory. The attacker wants to perform

a hit-and-run attack without considering other services and

ways of communication.

3.3 System Architecture

Figure 3 shows the DIMAQS system architecture. DI-

MAQS is comprised of six components: (i) Monitoring,

(ii) Classifier, (iii) Security Policy, (iv) Incident

Resolution, (v) Notifier, (vi) Query Rewriter and

(vii) Controller. The Monitoring and Query Rewriter

components use the query parser embedded in the database

server. Hence, the figure shows them as belonging to both,

DIMAQS plugin and the database server. In the following,

we describe the role of every component in more detail.

Monitoring The Monitoring component monitors all in-

coming queries for potentially malicious query sequences.

Note that this module monitors all queries arriving through

different connections, not specific to user sessions. Notifica-

tions on the occurrence of incoming queries result from the

database server’s audit functionality.

Classifier The Classifier component processes the incom-

ing queries and produces a verdict whether a query is benign

or malicious. For the classification, DIMAQS uses a CPN

with our extensions. The token colors are used to attach run-

time information to the tokens, such as time-stamps, table

names and modified cell values. Since such token colors are

dynamic and unbounded, conventional Petri nets would be

unable to represent all the possible states. This information

also provides additional information to the DIMAQS admin-

istrator in the case of an incident3.

Extensions to CPNs. For our purposes, we extend CPNs

with three new features. The first is the dynamic creation

of colors for storing information inside the tokens. The sec-

ond is the ability to merge tokens that are identical except

for their timestamps. This extension improves performance

and does not impede classification accuracy. The third ex-

tension allows for token expiration. Since each place in the

CPN can have timeout information, this feature can be used

to limit the time window of analyzed query sequences. It is

highly unlikely that a malicious query sequence spawns over

a long period (e.g., days), since this increases the risk of de-

tection and complicates the attack (the database can change

considerably over time). Large or absent timeouts can addi-

tionally result in a higher false positive rate since eventually

all transitions might be triggered by unrelated queries. The

timeout threshold is, therefore, a security parameter, which

enables a trade-off between effectiveness and false alerts. In

real-world attacks observed so far, attackers did not stretch

malicious query sequences over long periods. Hence, even

short timeouts (1-2 minutes) would work well against them.

Attackers might increase the attack time window to avoid de-

tection. However, the longer they stay connected, the higher

the burden for them (since the attacks are not generally au-

tomated), and the higher the risk of being uncovered, espe-

cially given the fact that they do not know the currently used

threshold parameter and, hence, have no understanding for

how long they should stay connected to remain undetected.

Security Policy The Security Policy component holds in-

formation about patterns of malicious query sequences (or at-

tack signatures). The CPN configuration represents it in our

system – it describes CPN’s places, place actions, transitions,

transition actions, transition conditions, and arcs.

All places and transitions are named, and the arcs are each

weighted with a value of 1 token. Each place can be assigned

several place actions executed upon CPN transitions to the

corresponding place. Transitions are used to check for the ex-

ecution of a (next) step in a malicious query sequence. They

become active when the source place contains at least one

token. Each transition is assigned one transition action, rep-

resenting conditions for incoming queries. For instance, they

may specify the query type (e.g., query that lists tables) and

the actual content of the query (such as a table name or a

typical ransom message).

A transition may also have an arbitrary number of tran-

sition conditions which are used to evaluate the token data

from the source place against the query values. Our policy

includes only one transition condition, ensuring ransom mes-

3Note that DIMAQS administrator and database administrator are differ-

ent entities

5

Initial1

Initial2

Initial3

DBListed

TabListed

ColListed

TabCreated

Ob jDel

MsgInserted

Noti f yAdmin

ListDB

ListTab

ListCol

CreateTab

DelDB

DelTab

ModTab

InsertMsg

Always

Figure 4: The CPN used to classify database transactions.

All arcs are weighted with a value of 1 token.

States: Initialx: initial states; Listx: objects listed, TabCreated :

table created; Ob jDel : object (database or table) deleted;

MSGInserted : ransom message inserted; Noti f yAdmin: noti-

fication sent

Transitions: ListDB: list databases; ListTab: list tables; ListCol

list columns; CreateTable: create table; DropTable: drop table;

Modi f yTable: modify table; InsertMsg: insert ransom mes-

sage

Place Description

DBListed Rewriting

TabListed Rewriting

ColListed Rewriting

TabCreated Trigger creation

Ob jDel Create backup

Noti f yAdmin Create notification

Table 1: Configured actions for the places inside the CPN in

Figure 4. When a token reaches a place, the specified action

can be executed.

sage insertion into a previously created or modified table.

We depict the CPN that was tailored to the observed at-

tacks configured according to our security policy in Figure 4.

Table 1 shows the place actions executed after putting a token

on the place.

Transitions fire when an action occurs that is specified as

malicious by the Security Policy component. Note, that

no single action alone is enough to transit the CPN to the

"attack detected" state. Typically, the sequence of actions

would be required, and their execution requires a specific or-

der (defined by the CPN configuration) to reach the state that

corresponds to attack detection.

The policy is easily adaptable to include new attack sig-

natures by modifying the Petri net. While reconfiguration is

a manual process, it is not cumbersome and can be accom-

plished in a reasonable amount of time4.

4Our estimate is 30 min.

Incident Resolution When an event in the Classifier com-

ponent issues an action, an action must be carried out by the

Incident Resolution module. Possible actions are “cre-

ate backup,” “rewriting” and “create notification.” Incident

Resolution performs the rewriting of malicious queries as

well as creates backups.

Create backup action. Whenever the system detects a po-

tential attack, the Incident Resolution component will

move the database, or the table dropped by an attacker to

a safe place instead of deleting it. The backup copy is invisi-

ble to users (and, hence, from the attacker) so that an attacker

cannot drop it again or even identify that such a backup ex-

ists. To hide backed up tables and databases from users,

Incident Resolution uses a "rewriting" action. While

performing such a move, Incident Resolution renames

the protected tables to avoid name collisions.

Rewriting Action. Rewriting actions rewrite queries to ex-

clude tables and databases created by DIMAQS. The Query

Rewriter component performs these actions.

Notification action. Notification actions are used by the

Incident Resolution component whenever there is a need

to notify an administrator about a detected attack. The

Notifier component performs this notification as described

below.

Notifier The Notifier component informs about security

incidents by sending an email to the DIMAQS administrator.

The gathered information relevant to the incident is attached

to the notification so that the administrator can evaluate the

incident and respond accordingly (e.g., restore the deleted

table).

Query Rewriter The Query Rewriter component rewrites

queries to exclude tables and databases created by DIMAQS

from query results. For a ‘rewriting’ action, the Query

Rewriter receives the name of the table and, if applicable,

the name of the database from the Incident Resolution

component. If the queries are nested, the Query Rewriter

extracts them into sub-queries, rewriting each sub-query sep-

arately. For instance, a query dropping a table will be rewrit-

ten to move the table to a safe storage space. This operation

happens without any indication to the attacker. Additionally,

some statements that list tables and databases will be rewrit-

ten to exclude the hidden information from query results.

Controller The Controller component connects all other

DIMAQS system segments. It is the central element that or-

chestrates the processing of incoming queries by other com-

ponents, e.g., through invocation of the Classifier com-

ponent to classify the query as malicious or benign, or the

Incident Resolution component to initiate incident reso-

lution upon attack detection.

6

3.4 Component Interaction

Figure 3 depicts the interaction between the components dur-

ing query processing. The database server first receives the

query and then notifies Monitoring (1). If Monitoring

raises an alert for a potentially malicious query type, the

Controller is notified (2). The Controller then forwards

the suspicious query to the Classifier (3) for evaluation.

The Classifier is configured using the security policy from

the Security Policy (4) and returns the classification re-

sult to the Controller (5). There are two possible outcomes:

the query’s classification is either benign or malicious. In

a former case, the Controller terminates its actions, and

the server executes the query as-is (10). In the latter case,

the query is considered malicious, and the Controller

calls Incident Resolution (6), which in turn backs up

dropped tables and rewrites the malicious query using Query

Rewriter (7). It then invokes the Notifier to inform

the administrator about an incident (8). The Controller

then receives the rewritten "disarmed" query from Incident

Resolution (9). The database server then executes the

query (10). The Controller informs Monitoring when ad-

ditional objects need to be observed (11), e.g., when a query

creates new tables.

4 Implementation

DIMAQS design is generic and can be applied to different

database technologies. For the sake of illustration, we have

chosen to prototype it for MySQL servers – our implementa-

tion is realized as MySQL plugin compatible with MySQL

server versions 5.7.x. To function, DIMAQS requires our

own Petri net implementation library libPetri as well as the

mysqlservices library provided by the MySQL server. We

chose the C++11 language for DIMAQS since it is the de-

fault language for MySQL plugins. DIMAQS consists of

4908 lines of code (LoC), while libPetri results in 1008 LoC.

4.1 Plugin Integration

The plugin is loaded during MySQL server start-up and reg-

isters itself as an auditing plugin.

The MySQL server plugin interface provides notifica-

tions [14] for the following useful events:

• MYSQL_AUDIT_CONNECTION_CLASS,

• MYSQL_AUDIT_CONNECTION_CONNECT,

• MYSQL_AUDIT_CONNECTION_DISCONNECT,

• MYSQL_AUDIT_PARSE_CLASS,

• MYSQL_AUDIT_PARSE_POSTPARSE.

Notifications of the MYSQL_AUDIT_PARSE_CLASS class

provide an event of a single to-be-executed query. Queries,

however, could also be nested.

Per default, the MySQL server does not provide any event

that returns the atomic values of database elements affected

by INSERT, UPDATE, and DELETE queries. These queries

are typical for the use in attacks like mimicry, e.g., for the

insertion of ransom messages. To allow us to access the

atomic values, we create triggers. We generate “before IN-

SERT/UPDATE” triggers for every table. In these triggers,

we execute a user-defined function. This function forwards

the values affected by the queries to the controller for evalu-

ation.

As detailed in the MySQL trigger syntax [14], a trigger be-

comes associated with a table named tbl_name. This name

must refer to a permanent table, which means that a trigger

does not applay to a temporary table or a view. This limita-

tion does not affect our solution since it is unlikely that an

attacker would attack data stored in temporary tables.

4.2 Component Implementation

In the following, we detail the implementation of DIMAQS

modules.

Monitoring Additional triggers are required to access infor-

mation that is not transparent to the DIMAQS plugin when

using MySQL’s audit features. Trigger creation occurs when

loading the plugin, and existing triggers are recreated af-

ter server startup since the database structure might have

changed. Trigger creation within so-called “stored proce-

dures” or “stored functions,” the conventional concepts sup-

ported by the MySQL server is not possible. Due to this lim-

itation, the creation must be within the plugin code. The

function dimaqs_plugin_init() performs the creation of

the additional triggers and is called directly after initializa-

tion of the server and before entering the listening state.

dimaqs_plugin_init() creates a trigger for every non-

virtual database. Virtual databases are databases that con-

tain read-only views rather than base tables and have no

database files associated with them. Hence, protection of vir-

tual databases is not necessary.

The INSERT and UPDATE triggers call eval_value(). Sev-

eral values are passed to that function, namely (1) schema

name, (2) table name, and (3) new column values. Using this

structure, we can identify inserted/updated values.

Classifier The Classifier is implemented using our library

libPetri. libPetri is a C++ library implementing the func-

tionality of colored Petri nets. It includes dynamic coloring,

token timeout and token merging features mentioned above.

Since libPetri has been developed explicitly for DIMAQS, it

carries no additional feature overhead. Thus, libPetri con-

tains all necessary functionality within around 1008 of LoC.

libPetri keeps track of all active transitions. Since all our

arcs in Classifier are weighted with the value one as seen

in Figure 4, active transitions have tokens on all input places.

If the to-be-classified query matches the action attributed to

an active transition, that transition fires. When transferring

7

a token to a place with an associated action, that action ex-

ecutes with the corresponding parameters. Until completion

of these actions, the Classifier does not accept additional

queries.

Security Policy The Security Policy is a database that

contains tables holding the information about the actions that

can fire transitions (e.g., the regular expression for detecting

the ransom message) and the places with their associated ac-

tions. Classifier processes this information on startup and

during classification.

Incident Resolution The Incident Resolution backs

up dropped databases and deleted values. The renaming

of databases is not trivial due to MySQL limitations.

MySQL added a command to carry out a database re-

naming called ’RENAME DATABASE <database_name>.’

However, this command was only active through a

few minor releases before its discontinuation. The

simplest way to rename a database is to move its ta-

bles to another database. Each moved table requires

recreation of the affected triggers. Table renaming fol-

lows the following schema “<storagespace>.<object

prefix>_<dbname>_<tablename>_<timestamp>” with

storagespace being a preconfigured variable of DIMAQS.

The function renameTable() performs this renaming.

If a database drop occurs, renameDatabase() calls the

renameTable() for every table.

For backup actions, a ’DROP DATABASE <db_name>’

does not require rewriting. However, before executing, re-

nameTable or renameDatabase is executed to back up the

database tables.

Notifier The Notifier sends an email with all transmit-

ted information about the suspected attack to the administra-

tor. The administrator’s address can be configured inside the

database or in a configuration file.

Query Rewriter The Query Rewriter rewrites a query by

adding a WHERE/AND condition to hide sensitive informa-

tion or rewrites it entirely, e.g., for backup operations.

Controller The Controller is implemented using the visi-

tor design pattern. This visitor extracts the nested statements

from inside to outside. It then forwards each extracted query

to Classifier.

5 Evaluation

In this section, we describe our test setup and evaluate our im-

plementation with regards to effectiveness and performance.

We conclude by discussing security considerations.

5.1 Test Setup

Testbed To execute performance and security tests, we use

the following setup. For the database server, we use an HPE

ProLiant DL360 Gen9 server [16]. The server is equipped

with a single 8-core Haswell generation Xeon E5-2640 CPU

with a base clock of 2.60 GHz and a turbo clock of 3,40 GHz

and packaged with a total of 20 MB of cache [32]. Simul-

taneous multithreading is enabled allowing the execution of

16 threads in parallel. The server features 32 GB of DDR4

RAM at 2133 MHz with dual channel capability. A 500

GB 3.5-inch hard drive provides storage I/O turning at 7.200

rpm.

For the operating system, we chose Ubuntu 16.04.4 LTS

running Linux kernel 4.4.0-121. To provide a DBMS to eval-

uate against we install and run MySQL server 5.7.22 on this

server.

All tests are executed directly on this server. Thus, the

network is not a limiting factor for the benchmarks. Due to

the performance of the server, the resources consumed by

the client running in parallel to the server are expected to be

negligible, and their performance influence is therefore not

evaluated in this work.

Data Sets We employ three data sets during our evalua-

tion. The first set (malicious set) includes malicious query

sequences, which we generated ourselves using information

about real-world attacks collected at [60]. Our resulting

query set contains query sequence permutations with an ex-

pected malicious classification, as well as their possible per-

mutations (since an attacker may execute them in an arbitrary

order). The full test set contains 13 485 tests. Each test con-

tains nine queries. The first five queries of each test are to set

up two databases and a table at the beginning of the experi-

ment and remove them at the end. Relevant to the detection

are four queries: (i) listing all databases, (ii) creating a table,

(iii) inserting a ransom message into this table, and (iv) drop-

ping a table or database. Therefore, the set performs 53 940

queries in total.

The second set (Bibspace set) is from the publication man-

agement system Bibspace [53], which was gathered over 40

days from 13th of April 2018 to 22nd of May 2018 and

contains a total of 52 085 queries. Among them, 24 430

are CREATE_TABLE_IF_NOT_EXISTS queries, 8 357 INSERT

queries, and 38 DROP_TABLE_IF_EXISTS queries.

The third query set (MediaWiki set) is from a locally run

MediaWiki [47] with the Semantic MediaWiki [55] plugin en-

abled, collected for 50 days from 3rd of April 2018 to 22nd of

May 2018. Containing 2 514 764 queries, it includes 69 261

INSERT statements, 29 830 CREATE_TEMPORARY_TABLE

statements, and 29 797 DROP_TEMPORARY_TABLE statements.

We will publish the data sets along with the paper, to allow

third parties to reproduce our tests and to enable follow up

works to compare with our results.

5.2 Effectiveness

In the following, we evaluate the precision of the classifier

module. Thus, we evaluate whether a wrongful classification

8

Query set Initial1 Initial2 Initial3 DBListed TabListed ColListed TabCreated Ob jectDeleted Noti f yAdmin

Bibspace 1 1 1 2 2 0 24 0 0

MediaWiki 1 1 1 7 5 1 0 0 0

Table 2: Petri net state after execution of query sets

of benign queries as malicious (false positives) or malicious

query sequences as benign (false negatives) occurs.

Security Policy: The execution policy for the Classifier is

as described in Section 3.3. Our policy is quite generic in the

sense that we do not look for specific table or database names,

but instead detect the removal or renaming of any table or

database. However, we are looking for a specific pattern of

the ransom message. We search for the occurrence of a BTC

or Bitcoin string inside the inserted message since attackers

until now requested ransom in Bitcoins5. We used the regular

expression ’(\d*[.]){0,1}\d+\s*(BTC|Bitcoin)’ (case insensi-

tive). The matching expressions are, e.g., 5 BTC|Bitcoin, .5

BTC|Bitcoin, 20.1 btc|Bitcoin.

False Negatives: To test for false negatives, we used the at-

tack set described in Section 5.1. After processing all the

queries from the data set by our CPN, we achieved 100% at-

tack detection rate and received no false negative result. This

result confirms that our CPN correctly models each attack

from our malicious data set.

False Positives: To test for false positives, we choose to use

the Bibspace set and the MediaWiki set. The sets contain

a total of 2 566 849 benign queries. The Classifier per-

forms classification of every set. Afterward, the Classifier

state shows, if DIMAQS wrongfully detected attacks and

how many false detections occurred. If tokens reach place

N in Classifier, their number represents raised alerts. For

this evaluation, we disable the token timeout, to increase the

potential for false positives.

Table 2 shows the population of the CPN after running all

the queries from the Bibspace set through Classifier. No

token has reached the state N, that would have triggered an

alert to the administrator. Next, the Classifier processed

the queries of the MediaWiki set. Table 2 shows the state

of CPN from Figure 4 after classification. Again, no token

has reached the state N, and no ransom attack was detected,

which is a favorable result.

5.3 Performance Evaluation

To evaluate the performance of the DIMAQS plugin, we used

two data sets: The MediaWiki set described in Section 5.1

and the synthetic benchmark sysbench [38]. We use sys-

bench 0.4.12 with 16 active threads. We performed three

performance benchmarks: (1) without the plugin as a base-

line measure, (2) operating on a newly initialized Petri net,

and (3) with a fully occupied Petri net with tokens in each

5Our policy can be trivially extended to detect ransom messages request-

ing payments in other cryptocurrencies.

disabled initialized all active
0

20

40

60

80

100
100

95.3 95.4
100 98.2 96.1

plugin state

th
ro

u
g

h
p

u
t
in

%

sysbench
MediaWiki

Figure 5: Performance influence of DIMAQS for sysbench

and MediaWiki. Values are normalized to the respective

value for the disabled plugin.

Test Transactions relative to

per second baseline [%]

mean stdev conf mean stdev conf

int int

sysbench

disabled 9 245 28 ±9 100.0 0.3 ±0.1

initialized 8 806 30 ±11 95.3 0.3 ±0.1

full 8 823 19 ±7 95.4 0.2 ±0.0

MediaWiki

disabled 2 008 5 ±2 100 0.2 ±0.1

initialize 1 971 7 ±2 98.2 0.3 ±0.1

full 1 930 6 ±13 96.1 2.9 ±0.3

Table 3: Performance without the plugin, with the plugin en-

abled, and with tokens in each Petri net state.

state. Sysbench benchmarks were run for 60 seconds per it-

eration, while the MediaWiki set was classified entirely every

time. We performed every benchmark for over 50 iterations.

Table 3 shows the resulting measurements (database transac-

tions per second). We report average values with standard

deviation and confidence intervals (5% quantile according

to the Student’s t-distribution). Figure 5 visualizes these re-

sults.

The results show that the usage of the DIMAQS plugin re-

sults in performance degradation of about 5 % for sysbench.

There is no substantial difference whether the Petri net is only

initialized or entirely populated (overlapping confidence in-

tervals). This marginal difference suggests that the overhead

is not a result of querying the Petri net, but from analyzing

and parsing the queries themselves. For the MediaWiki set

9

performance degradation is about 2% for the initialized Petri

net and 4% for an entirely populated net. This time, the in-

fluence of the set population has a more significant impact.

Our proof-of-concept prototype is not yet optimized for

performance. Neither DIMAQS nor libPetri has received ex-

tensive profiling for potential bottlenecks. Also, no compiler

optimizations were enabled. Thus, performance improve-

ments are likely possible.

5.4 Security Considerations

In the following, we discuss potential attack scenarios

against DIMAQS itself and show, how our system defends

itself against them.

DIMAQS disabling: An attacker may try to disable DI-

MAQS to avoid detection. However, such a scenario would

not be successful, since administrative privileges to the

database are insufficient to perform this task. One would

need to have administrative privileges to the file system to

manipulate corresponding config files. As an additional bur-

den, it is also non-trivial for an attacker to detect that the

system runs under DIMAQS observation because the Query

Rewriter component of DIMAQS rewrites the queries in

such a way that it excludes information about DIMAQS from

the results.

DIMAQS triggers removal: A next possible attack vector

is specific to MySQL implementation, which uses triggers.

An attacker may attempt to delete triggers, which are used to

deliver additional information to the DIMAQS plugin.

To defend against this attack vector, DIMAQS detects the

removal of DIMAQS-specific triggers. Their absence be-

comes obvious, whenever the plugin does not receive infor-

mation about atomic values affected by the queries. Upon de-

tection, DIMAQS generates a notification for the DIMAQS

administrator and backups all the databases and tables af-

fected by subsequent queries.

6 Related Work

In this section, we provide an overview of the related work in

three domains: (i) intrusion detection for databases, (ii) ran-

somware detection, and (iii) application of Petri Nets for in-

trusion detection in various application domains.

Intrusion Detection for Databases There is a plethora of

previous works on intrusion detection systems in databases,

but none of them explicitly focused on detection of ransom-

ware so far. The first line of works in this category con-

centrate on detection of SQL injections. Fonseca et al. [18]

and Kemalis et al. [34] detect anomalies in SQL commands

given a training set of known valid query structures or their

specifications. Buehrer et al. [21] and Bockermann et al. [4]

use tree structure when parsing SQL statements and then dy-

namically compare them with the intended queries. AMNE-

SIA [22,23] checks the application code for SQL queries gen-

erating automata for each query to match against dynamic re-

quests during operation. SQLCheck [57] validates queries by

adding a key at the beginning and the end of each user’s input

and validate syntactic correctness of the "augmented" queries

at runtime. In contrast to our work, all these approaches con-

centrate on the analysis of single queries, while we aim at

the detection of malicious query sequences.

Intrusion detection frameworks [3,6,58] analyze database

audit logs to detect anomalous queries by matching against

role profiles. In contrast to our work, their analysis con-

centrates on irregular access patterns of single SQL queries.

Moreover, their analysis is bound to user profiles, while DI-

MAQS performs global monitoring across user sessions.

DAIS [42] and the solution by Liu et al. [43] combine

intrusion detection with the dynamic isolation of malicious

and suspicious activities through rewriting of SQL state-

ments. As a result, potentially malicious modifications are

performed on a shadowed incremental copy of the database.

In our work, we use a similar approach to preserve copies of

the values affected by potentially malicious queries.

The most similar work to ours is by Hu et al. [26,27], who

proposed an intrusion detection system for databases using

(uncolored) Petri Nets. However, Hu et al. choose to model

data dependency relationships and regular data update pat-

terns and then detect anomalies, while we model malicious

query sequences and compare the sequences captured at run-

time with the derived model. As such, their system requires

knowledge about the legitimate state of the system, while

our approach represents a signature-based misuse detection

system and needs knowledge about attack patterns. As a re-

sult, our solution applies to databases of arbitrary complexity

and without the need to learn about underlying data structure

(which can be complex), while the solution by Hu et al. re-

quires a training phase to gain knowledge about the database

under protection. On a positive side, their approach is likely

to detect previously unseen malware. The feasibility of the

approach by Hu et al. however was not practically verified,

since authors concentrated on theoretical aspects and did not

provide any implementation and evaluation. Their concept

also relies on several assumptions that simplify the model but

might be too restrictive in practical scenarios. For instance,

they assume low database load and that users only update

the database through a limited number of fixed transactions

modifying the same data items. Our solution, in contrast, op-

erates on databases of arbitrary complexity and with good

performance.

Lee et al. [41] target real-time databases with regular ac-

cess patterns, which occur, e.g., in data collection from sen-

sors. They use time signatures to capture expectations about

update rates and flag unexpected and possibly malicious op-

erations. DIWeBa [52] is an anomaly-based intrusion clas-

sifier for web databases that works at the session level by

fingerprinting user sessions. DIDAFIT [44] models benign

10

query sequences and maps them to a directed graph, where

graph vertices represent query signatures. Enforcement of

sequence orders on the graph prevents anomalous queries.

In contrast to our work, solutions above require a training

phase to learn the benign behavior of users, manual setup and

knowledge of the database content, or to construct graphs of

benign queries.

Mathew et al. [46] argue that query classification based on

syntax is more error-prone than observing the accessed data

points since syntactically similar queries can produce signif-

icantly different results. Their system is another example of

observing anomalous database access patterns, which need a

training phase or some predetermined knowledge of accept-

able behavior.

It is also possible to perform intrusion detection through

complex event processing (CEP) [45]. Romano et al. [17]

propose a generic framework for intrusion detection through

CEP, where they examine different intrusions, including pol-

icy violations, buffer overflows and SQL injections. It should

be noted that CEP is not a single algorithmic concept, but

rather the more general idea to infer not directly observable

events from multiple, related events. In a way, our implemen-

tation with CPNs acts similarly, observing individual queries

that together form a ransomware attack. On the other hand,

CEP systems are mostly merely a monitoring and informa-

tion processing tool, while our solution includes active com-

ponents, such as the automatic table backup functionality.

Commercial solutions, such as IBM Guardium [29] and

IMPERVA SecureSphere [20], offer intrusion detection for

databases for detection of misbehaving users. While detailed

evaluation of these products is impossible due to their propri-

etary nature, we speculate that an attacker could easily evade

their detection, since their analysis is bound to user sessions.

Ransomware Detection Several solutions have been pro-

posed to detect and prevent ransomware at the file level.

CryptoDrop [54], ShieldFS [12, 13] and Redemption [36]

all monitor the file system to detect intrinsic ransomware be-

havior, such as file type changes, file entropy, and file sim-

ilarity. They differ by their choice of observed properties,

and by the mechanisms provided to prevent data loss, such

as providing shadowed copies of files to possibly malicious

processes. UNVEIL [35] tries to detect evasive ransomware

by generating artificial user environments for dynamic anal-

ysis. However, their approach does not apply to server-side

database ransomware. PayBreak [37] observes the use of

symmetric keys commonly used by ransomware to encrypt

files and holds them in escrow. This observation enables the

recovery of the decryption keys upon ransomware detection.

For the observed attacks on databases this approach hardly

applicable since the files were deleted instead of encrypted.

FlashGuard [28] and RWGuard [48] propose ransomware-

tolerant Solid-State Drives (SSDs) which are based on the

property of SSDs to perform out-of-place writes in order to

mitigate long erase latency. Both operate on the firmware

level and are effective in recovering encrypted files without

impacting performance or lifetime.

The related work presented in this section targets client-

side crypto-ransomware and is not applicable for detection

of wipers at databases, as those do not use crypto primitives

and do not access the file system directly.

Petri Nets and State Analysis Previous work has explored

the concept of state analysis and more specifically the use

of Petri nets for intrusion detection. Kumar et al. [39, 40]

present a generic model and a misuse detection system for

OS kernel audit logs using CPNs. This work is conceptu-

ally comparable to our work regarding the use of a Petri net

to match attack patterns but focuses on intrusions in UNIX

systems. Ilgun et al. [31] also focus on UNIX systems and

use states and transitions to identify the necessary steps for

penetrations, resulting in a flexible rule-based system to de-

tect intrusions. Similarly, Shieh et al. [56] propose a pattern-

oriented model with system states and transitions to iden-

tify context-dependent patterns of intrusion. USTAT [30]

is a similar state transition analysis tool for UNIX systems,

which describes penetrations as sequences of state changes

and uses rule-based analysis of audit trails to identify intru-

sions. Ho et al. [25] describe the use of Petri nets for intru-

sion detection through the example of privilege escalation,

again in UNIX systems. Helmer et al. [24] describe a general

approach using Software Fault Trees to create CPNs for intru-

sion detection. The work focuses on modeling of intrusions

and concentrates on the detection of FTP bounce attacks.

Overall, all the works discussed above are intended for

intrusion detection in other environments, mostly in UNIX

systems, and are not explicitly aimed at anomaly detection

in databases or for ransomware detection.

7 Conclusion and Future Work

Ransomware attacks are an emerging threat, and their server-

side variance that appeared recently imposes a significant

threat to databases and stored data. In this work, we present

DIMAQS (Dynamic Identification of Malicious Query Se-

quences), the first solution against server-side ransomware.

In its heart, DIMAQS has colored Petri nets (CPN)-based

classifier, which models malicious query sequences and

matches them against query sequences captured at runtime.

We introduce several novel extensions for the CPN, which

allow us to reduce the complexity of the system representa-

tion and achieve better performance.

Our solution is implemented for MySQL servers and real-

ized as a MySQL plugin, which is easily installable on ex-

isting servers. We evaluated our solution with regards to the

precision of the attack detection as well as its performance

and report no false positives, no false negatives and perfor-

mance overhead under 5% for our non-optimized implemen-

tation.

In our future work, we plan to extend DIMAQS for de-

tection of other attack types, since generally the framework

11

can be used for detection of arbitrary malicious query se-

quences and thus not necessarily limited to ransomware de-

tection. Moreover, we will investigate possibilities for au-

tomated policy generation, which is potentially achievable

given more elaborate malicious data sets and by applying ma-

chine learning techniques. Furthermore, we plan to perform

performance optimization to decrease the imposed overhead

further. Finally, we plan to develop new prototypes that tar-

get other database technologies6.

References

[1] Manos Antonakakis, Tim April, Michael Bailey,

Matthew Bernhard, Elie Bursztein, Jaime Cochran, Za-

kir Durumeric, J. Alex Halderman, Luca Invernizzi,

Michalis Kallitsis, Deepak Kumar, Chaz Lever, Zane

Ma, Joshua Mason, Damian Menscher, Chad Seaman,

Nick Sullivan, Kurt Thomas, and Yi Zhou. Understand-

ing the Mirai Botnet. In USENIX Security Symposium,

2017.

[2] Stefan Axelsson. Intrusion Detection Systems: A Sur-

vey and Taxonomy. Technical report, Department of

Computer Engineering, Chalmers University of Tech-

nology, Goteborg, Sweden, 2000.

[3] E. Bertino, A. Kamra, E. Terzi, and A. Vakali. Intrusion

Detection in RBAC-administered Databases. In Annual

Computer Security Applications Conference (ACSAC),

2005.

[4] Christian Bockermann, Martin Apel, and Michael

Meier. Learning SQL for Database Intrusion Detec-

tion Using Context-Sensitive Modelling (Extended Ab-

stract). In Detection of Intrusions and Malware, and

Vulnerability Assessment (DIMVA), 2009.

[5] H. Chen, L. Amodeo, F. Chu, and K. Labadi. Modeling

and Performance Evaluation of Supply Chains Using

Batch Deterministic and Stochastic Petri Nets. IEEE

Transactions on Automation Science and Engineering

(T-ASE), 2005.

[6] Christina Yip Chung, Michael Gertz, and Karl Levitt.

DEMIDS: A Misuse Detection System for Database

Systems. In Integrity and Internal Control in Informa-

tion Systems (IICIS), 1999.

[7] Catalin Cimpanu. A Benevolent Hacker Is Warning

Owners of Unsecured Cassandra Databases. Bleeping

Computer, 2017. URL: https://bit.ly/2SiAnLz .

[8] Catalin Cimpanu. Database Ransom Attacks Hit

CouchDB and Hadoop Servers. Bleeping Computer,

2017. URL: https://bit.ly/2iVbas0.

6E.g., for Prolog databases the ransom message insertion and table dele-

tion could be mapped to the assert and the retractall commands.

[9] Catalin Cimpanu. Massive Wave of MongoDB Ran-

som Attacks Makes 26,000 New Victims. Bleeping

Computer, 2017. URL: https://bit.ly/2wAfq3X .

[10] Catalin Cimpanu. MongoDB Apocalypse: Profes-

sional Ransomware Group Gets Involved, Infections

Reach 28K Servers. Bleeping Computer, 2017. URL:

https://bit.ly/2idWSRn.

[11] Catalin Cimpanu. MongoDB Hijackers Move on

to ElasticSearch Servers. Bleeping Computer, 2017.

URL: https://bit.ly/2NX0SYk.

[12] Andrea Continella, Alessandro Guagnelli, Giovanni

Zingaro, Giulio De Pasquale, Alessandro Barenghi,

Stefano Zanero, and Federico Maggi. ShieldFS: The

Last Word in Ransomware Resilient Filesystems. In

Black Hat USA, 2017.

[13] Andrea Continella, Alessandro Guagnelli, Giovanni

Zingaro, Giulio De Pasquale, Alessandro Barenghi,

Stefano Zanero, and Federico Maggi. ShieldFS: A

Self-healing, Ransomware-aware Filesystem. In An-

nual Conference on Computer Security Applications

(ACSAC), 2016.

[14] Oracle Corporation. MySQL 5.7 Manual, 2018. URL:

https://bit.ly/2xQAe8F.

[15] Muhaimin Dzulfakar. Advanced MySQL Exploitation.

In Black Hat USA, 2009.

[16] Hewlet Packard Enterprise. HPE ProLiant

DL360 Generation9 (Gen9), 2014. URL:

https://bit.ly/2XL6iKt.

[17] Massimo Ficco and Luigi Romano. A Generic Intru-

sion Detection and Diagnoser System Based on Com-

plex Event Processing. In International Conference

on Data Compression, Communications and Process-

ing (CCP), 2011.

[18] José Fonseca, Marco Vieira, and Henrique Madeira.

Detecting Malicious SQL. In Trust, Privacy and Se-

curity in Digital Business (TrustBus), 2007.

[19] Dawid Golunski. MySQL-Exploit-Remote-Root-

Code-Execution-Privesc-CVE-2016-6662, 2017. URL:

https://bit.ly/2SjtMAC.

[20] Rob Gravelle. IMPERVA SecureSphere

Database Audit and Protection, 2018. URL:

https://bit.ly/2NZk2gm.

[21] Gregory T. Buehrer and Bruce W. Weide and Paolo A.

G. Sivilotti. Using Parse Tree Validation to Prevent

SQL Injection Attacks. In International Workshop on

Software Engineering and Middleware (SEM), 2005.

12

https://bit.ly/2SiAnLz
https://bit.ly/2iVbas0
https://bit.ly/2wAfq3X
https://bit.ly/2idWSRn
https://bit.ly/2NX0SYk
https://bit.ly/2xQAe8F
https://bit.ly/2XL6iKt
https://bit.ly/2SjtMAC
https://bit.ly/2NZk2gm

[22] William G. J. Halfond and Alessandro Orso. AM-

NESIA. In IEEE/ACM International Conference on

Automated Software Engineering (ASE), 2005.

[23] William G. J. Halfond and Alessandro Orso. Prevent-

ing SQL Injection Attacks Using AMNESIA. In Inter-

national Conference on Software Engineering (ICSE),

2006.

[24] Guy Helmer, Johnny Wong, Mark Slagell, Vasant

Honavar, Les Miller, Yanxin Wang, Xia Wang, and Na-

talia Stakhanova. Software Fault Tree and Coloured

Petri Net-based Specification, Design and Implementa-

tion of Agent-based Intrusion Detection Systems. In-

ternational Journal of Information and Computer Secu-

rity, 1(1/2), 2007.

[25] Yuan Ho, Deborah Frincke, and Donald Tobin. Plan-

ning, Petri Nets, and Intrusion Detection. In National

Information Systems Security Conference (NISSC),

1998.

[26] Yi Hu and B. Panda. Identification of Malicious

Transactions in Database Systems. In International

Database Engineering and Applications Symposium

(IDEAS), 2003.

[27] Yi Hu and Brajendra Panda. A Data Mining Approach

for Database Intrusion Detection. In ACM Symposium

on Applied computing (SAC), 2004.

[28] Jian Huang, Jun Xu, Xinyu Xing, Peng Liu, and Moin-

uddin K. Qureshi. FlashGuard: Leveraging Intrin-

sic Flash Properties to Defend Against Encryption Ran-

somware. In ACM SIGSAC Conference on Computer

and Communications Security (CCS), 2017.

[29] IBM. IBM Security Guardium, 2018. URL:

https://ibm.co/2ShttWW.

[30] K. Ilgun. USTAT: A Real-time Intrusion Detection Sys-

tem for UNIX. In IEEE Computer Society Symposium

on Research in Security and Privacy, 1993.

[31] K. Ilgun, R. A. Kemmerer, and P. A. Porras. State

Transition Analysis a Rule-based Intrusion Detection

Approach. IEEE Transactions on Software Engineer-

ing, 21(3), 1995.

[32] Intel®. Xeon® Processor E5-2640 v3 Specifications,

2014. URL: https://intel.ly/2qFbGJX .

[33] Blake Ives, Kenneth R. Walsh, and Helmut Schneider.

The Domino Effect of Password Reuse. Communica-

tions of the ACM, 47(4), 2004.

[34] Konstantinos Kemalis and Theodores Tzouramanis.

SQL-IDS: A Specification-based Approach for SQL-

Injection Detection. In ACM Symposium on Applied

Computing (SAC), 2008.

[35] Amin Kharaz, Sajjad Arshad, Collin Mulliner, William

Robertson, and Engin Kirda. UNVEIL: A Large-scale,

Automated Approach to Detecting Ransomware. In

USENIX Security Symposium, 2016.

[36] Amin Kharraz and Engin Kirda. Redemption: Real-

Time Protection Against Ransomware at End-Hosts. In

International Symposium on Research in Attacks, Intru-

sions, and Defenses (RAID), 2017.

[37] Eugene Kolodenker, William Koch, Gianluca Stringh-

ini, and Manuel Egele. PayBreak: Defense Against

Cryptographic Ransomware. In ACM Asia Confer-

ence on Computer and Communications Security (ASI-

ACCS), 2017.

[38] Alexey Kopytov. akopytov/sysbench, 2018. URL:

https://bit.ly/2jjeuf4.

[39] Sandeep Kumar and Eugene Spafford. A Software Ar-

chitecture to Support Misuse Intrusion Detection. Tech-

nical report, Department of Computer Science, Purdue

University, 1999. URL: https://bit.ly/2Sij6C6.

[40] Sandeep Kumar and Eugene H. Spafford. A Pat-

tern Matching Model for Misuse Intrusion Detection.

Technical report, Purdue University, 1994. URL:

https://bit.ly/2YVb3xA.

[41] V. C. S. Lee, J. A. Stankovic, and S. H. Son. In-

trusion Detection in Real-time Database Systems Via

Time Signatures. In IEEE Real-Time Technology and

Applications Symposium (RTAS), 2000.

[42] P. Liu. DAIS: A Real-Time Data Attack Isolation Sys-

tem for Commercial Database Applications. In Annual

Computer Security Applications Conference (ACSAC),

2001.

[43] Peng Liu. Architectures for Intrusion Tolerant

Database Systems. In Annual Computer Security Ap-

plications Conference (ACSAC), 2002.

[44] Wai Lup Low, Joseph Lee, and Peter Teoh. DIDAFIT:

Detecting Intrusions in Databases Through Fingerprint-

ing Transactions. In International Conference on En-

terprise Information Systems (ICEIS), 2002.

[45] David C. Luckham and Brian Frasca. Complex

Event Processing in Distributed Systems. Tech-

nical report, Stanford University, 1998. URL:

https://bit.ly/2YUIa4J.

[46] Sunu Mathew, Michalis Petropoulos, Hung Q. Ngo,

and Shambhu Upadhyaya. A Data-Centric Approach

to Insider Attack Detection in Database Systems. In

Lecture Notes in Computer Science, RAID, 2010.

13

https://ibm.co/2ShttWW
https://intel.ly/2qFbGJX
https://bit.ly/2jjeuf4
https://bit.ly/2Sij6C6
https://bit.ly/2YVb3xA
https://bit.ly/2YUIa4J

[47] MediaWiki. MediaWiki/de — Medi-

aWiki, The Free Wiki Engine, 2018. URL:

https://bit.ly/2XROloW.

[48] Shagufta Mehnaz, Anand Mudgerikar, and Elisa

Bertino. RWGuard: A Real-Time Detection System

Against Cryptographic Ransomware. In Research in

Attacks, Intrusions, and Defenses (RAID), 2018.

[49] Steve Morgan. Los Angeles Hospital Pays

Hackers $17,000 After Attack, 2016. URL:

https://nyti.ms/2GrlIt1 .

[50] Steve Morgan. Cybersecurity Business Report. Ran-

somware Damage Costs predicted to hit USD 11.5B by

2019, 2017. URL: https://bit.ly/2VNjsB1.

[51] James Lyle Peterson. Petri Net Theory and the Model-

ing of Systems. Prentice Hall PTR, 1981.

[52] Alex Roichman and Ehud Gudes. DIWeDa - Detecting

Intrusions in Web Databases. In Annual IFIP WG 11.3

Working Conference on Data and Applications Security

and Privacy (DBSEC), 2008.

[53] Piotr Rygielski. vikin91/BibSpace, 2018. URL:

https://bit.ly/2JBr07c.

[54] Nolen Scaife, Henry Carter, Patrick Traynor, and Kevin

R. B. Butler. CryptoLock (and Drop It): Stopping

Ransomware Attacks on User Data. In IEEE Interna-

tional Conference on Distributed Computing Systems

(ICDCS), 2016.

[55] semantic mediawiki.org. Semantic MediaWiki, 2018.

URL: https://bit.ly/30tny3U.

[56] Shiuh-Pyng Shieh and V. D. Gligor. On a Pattern-

oriented Model for Intrusion Detection. IEEE Transac-

tions on Knowledge and Data Engineering, 9(4), 1997.

[57] Zhendong Su and Gary Wassermann. The Essence of

Command Injection Attacks in Web Applications. In

SIGPLAN-SIGACT Symposium on Principles of Pro-

gramming Languages (POPL), 2006.

[58] Fredrik Valeur, Darren Mutz, and Giovanni Vigna. A

Learning-Based Approach to the Detection of SQL At-

tacks. In Detection of Intrusions and Malware, and

Vulnerability Assessment (DIMVA), 2005.

[59] Theuns Verwoerd and Ray Hunt. Intrusion Detection

Techniques and Approaches. Computer Communica-

tions, 25(15), 2002.

[60] Ofri Ziv. 0.2 BTC strikes back, now attacking MySQL

databases, 2017. URL: https://bit.ly/2JImQsR .

14

https://bit.ly/2XROloW
https://nyti.ms/2GrlIt1
https://bit.ly/2VNjsB1
https://bit.ly/2JBr07c
https://bit.ly/30tny3U
https://bit.ly/2JImQsR

	1 Introduction
	2 Background
	3 Design
	3.1 Attack Scenario
	3.2 Adversary Model
	3.3 System Architecture
	3.4 Component Interaction

	4 Implementation
	4.1 Plugin Integration
	4.2 Component Implementation

	5 Evaluation
	5.1 Test Setup
	5.2 Effectiveness
	5.3 Performance Evaluation
	5.4 Security Considerations

	6 Related Work
	7 Conclusion and Future Work

