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ABSTRACT

Today, software engineering is challenged to handle more
and more large-scale distributed systems with guaranteed
quality-of-service. Component-based architectures have been
established to build such systems in a more structured and
manageable way. Modern architectures often utilize event-
based communication which enables loosely-coupled inter-
actions between components and leads to improved system
scalability. However, the loose coupling of components makes
it challenging to model such architectures in order to predict
their quality properties, e.g., performance and reliability, at
system design time. In this paper, we present an extension
of the Palladio Component Model (PCM) and the Palladio
software quality prediction framework, enabling the model-
ing of event-based communication in component-based ar-
chitectures. The contributions include: i) a meta-model ex-
tension supporting events as first class entities, ii) a mode-
to-model transformation from the extended to the original
PCM, iii) an integration of the transformation into the Pal-
ladio tool chain allowing to use existing model solution tech-
niques, and iv) a detailed evaluation of the reduction of the
modeling effort enabled by the transformation in the context
of a real-world case study.

Categories and Subject Descriptors

D.2.11 [Software]: Software Architectures—Domain-specific
architectures; C.4 [Computer Systems Organization]:

PERFORMANCE OF SYSTEMS—Modeling techniques; 1.6.5

[Computing Methodologies]: SIMULATION AND MOD-
ELING—Model Development
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1. INTRODUCTION

In event-based component-based systems, components com-
municate by sending and receiving events. Compared to
synchronous communication using, e.g., remote procedure
calls (RPCs), event-based communication among compo-
nents promises several benefits [10]. For example, being
asynchronous in nature, it allows a send-and-forget approach,
such that a component that sends an event can continue its
execution without waiting for the receiving component to
acknowledge the event or to react on it. Furthermore, the
loose coupling of components provides increased flexibility
and better scalability.

However, the event-based paradigm is more complex given
that application logic is distributed among multiple indepen-
dent event handlers making the control flow during execu-
tion hard to track. This increases the difficulty of modeling
event-driven component-based systems for quality predic-
tion at system design and deployment time. The latter is
essential in order to ensure that systems are designed and
sized to provide an adequate quality-of-service to applica-
tions at a reasonable cost.

Performance modeling and prediction techniques for com-
ponent-based systems, surveyed in [16], support the archi-
tect in evaluating different design alternatives. However,
most general-purpose performance meta-models for compo-
nent-based systems provide limited support for modeling
event-based communication. Furthermore, existing perfor-
mance prediction techniques specialized for event-based sys-
tems (e.g., [20]) are focused on modeling the routing of
events in the system as opposed to modeling the interactions
and message flows between the communicating components.

The Palladio Component Model (PCM) [5] is a mature
meta-model for component-based software architectures en-
abling quality predictions (e.g., performance and reliability)
at system design time. Architecture models are annotated
with quality attributes and a number of different analysis
techniques can be applied to evaluate the quality of the mod-
eled architecture. However, in its current version, PCM is
limited to synchronous point-to-point communication and
event-based communication can only be modeled using a
workaround approach, as demonstrated in [24]. The model-
ing effort incurred by this workaround approach is very high
and it provides limited flexibility to evaluate different design
alternatives. In [26], we briefly sketched a basic extension of



PCM to support the modeling of event-based communica-
tion. In a follow up poster paper [25], we described an idea
of using a model-to-model transformation to map the newly
introduced model elements to existing PCM model elements
allowing to use the available analytical and simulative anal-
ysis techniques, e.g., [5, 18, 17], while significantly reducing
the modeling effort.

In this paper, we present the complete and finalized PCM
extension, based on our preliminary ideas sketched in [26]
and [25], combined with a refined model-to-model transfor-
mation from the extended PCM to the original PCM al-
lowing to weave in middleware-specific components. The
contributions of the paper are: i) a complete meta-model
extension for modeling event-based communication support-
ing events as first class entities, ii) an automatic transforma-
tion from the extended to the original meta-model support-
ing the separation of platform-independent and platform-
specific aspects of the event-based communication, iii) an
implementation and integration of the PCM extension and
the proposed model-to-model transformation into the Pal-
ladio tool chain, iv) a case study evaluating the benefits of
the proposed transformation approach in terms of reduc-
ing the effort for modeling event-based communication in
component-based architectures.

The results of the case study show that using the trans-
formation the modeling effort can be reduced by more than
80% with prediction accuracy within 10% of the manual
workaround-based approach.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces PCM which is the basis of our work. Sec-
tion 3 presents the PCM extensions to enable the modeling
of event-based communication. Next, we present the model-
to-model transformation followed by an evaluation of our
approach in the context of a real-world traffic monitoring
case study. Finally, in Section 6, we present an overview
of related work and conclude with a brief summary and a
discussion of ongoing and future work in Section 7.

2. FOUNDATION

The Palladio Component Model (PCM) [5] is a design-
oriented meta-model for component-based software archi-
tectures with a focus on quality predictions (e.g., perfor-
mance, reliability). It supports automatic transformations
of architecture-level performance models to predictive per-
formance models including layered queuing networks [17],
stochastic process algebras [7], queuing Petri nets [18], and
simulation models [5, 4].

PCM includes domain specific meta-models for model-
ing the major aspects that have influence on the quality-
of-service provided by software components, including their
internal control flow, the allocation of resources, the used
external services, and the usage profile. The component
repository describes components in terms of their provided
and required interfaces. Furthermore, it contains Resource
Demanding Service Effect Specifications (RD-SEFFs) which
describe the internal processing of a component from a high-
level perspective with a focus on quality-of-service-relevant
aspects. The composition model describes the assembled
components that form the static architecture of the system.
In this model, components are connected based on their re-
quired and provided interfaces. The deployment of the com-
ponents is described in the allocation model. This links the
components to resource containers that are described in the

resource environment model. Finally, the usage model de-
scribes the usage behavior explicitly considering the input
parameters passed to the system when invoking services.

Each of the above described models encapsulates a specific
performance-relevant aspect. Thanks to this, it is possible to
change individual sub-models independently of one another
to evaluate different configurations. For example, one could
change the resource environment and deployment without
changing the component architecture or the usage profile.
For further details on PCM, we refer the reader to [5].

3. MODEL EXTENSION

The PCM is one of the most advanced meta-model for
component-based systems in terms of parameterization and
tool support. As described above, it allows to explicitly cap-
ture component context dependencies (e.g., dependencies
on the component usage profile and execution environment)
and provides support for a number of different performance
analysis techniques. However, in its current version, the
interfaces between components are limited to synchronous
operation calls and no means are provided to model event-
based communication. We have developed a meta-model
extension to satisfy this need. As previously mentioned, a
first sketch of the required meta-model extensions was pre-
sented in [26].

Our approach introduces an abstract interface and signa-
ture description to enable more explicit subtypes for various
component contracts. This enables the distinction between
operational and event-driven interfaces as well as signatures
and event types and respectively their event handlers. The
meta-model changes are described in more detail below.

3.1 Events

Interfaces describe the contract between two components.
In an operational, synchronous communication, interfaces
combine a set of signatures. These signatures describe oper-
ations that are required by one component and provided by
another. In event-based communication, the contract does
not describe a set of operations that can be called but rather
a set of event types one component might emit and one or
more components can handle. As shown in Figure 1, the
meta-model extension we propose contains an EventGroup
as a specific type of an abstract Interface. It represents a
contract which components can either require or provide. To
describe the individual events which can be produced or con-
sumed, our approach includes a meta-model element named
EventType. This specific type of an abstract Signature ref-
erences only one instance of the existing PCM Parameter
element that describes the event characteristics, and does
not reference any return values because of the asynchronous
invocation style. The Parameter element, referenced by an
EventType, allows to specify the performance-relevant char-
acteristics of the data included in an event. A parameter
can refer to either a simple or a complex data type.

3.2 Roles

Interfaces in general and EventGroups in event-driven sys-
tems are the contracts for component interactions. The pre-
sented approach aligns this requirement with the general
PCM concept for providing and requiring component func-
tionality. It introduces an abstract ProvidedRole and an
abstract RequiredRole element which describe the roles of
a component within a component connection.
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Figure 1: Event Groups and Types

In an event-driven interaction, the SourceRole is a Re-
quiredRole to identify a component which might emit events
of the types described by the referenced EventGroup and as-
sumes a middleware that handles any further processing.
The counterpart is the SinkRole. This is a ProvidedRole
to identify a component providing event handlers processing
the different EventTypes referenced by the EventGroup.

3.3 AssemblyEventConnector

Once component models are available as defined by the
component developers, the system architect defines com-
posed structures such as systems or composite components
based on these components. Therefore, the architect has to
specify the desired connections between sources and sinks of
the same EventGroups.

In the existing PCM meta-model this requirement already
existed for the operation calls between components. In the
existing operational case, only one-to-one connections were
allowed. In the new event-driven scenario, SinkRoles are
able to handle events that are emitted by one or more Source-
Roles and the events of one SourceRole can be handled by
zero, one or many SinkRoles.

The presented approach introduces an AssemblyEvent-
Connector to represent the connection between a sink and a
source component. This AssemblyEventConnector is aligned
to the design of an operational AssemblyConnector with the
enhancement that an arbitrary number of AssemblyEvent-
Connectors can start at the same SourceRole or end in the
same SinkRole.

3.4 EmitEventAction

From a quality prediction perspective, the software archi-
tect needs to model the static structure of the components
and the processing inside the components. The latter in-
cludes the point in time when events are emitted and their
quality-related characteristics. According to the PCM ser-
vice effect specification concept, a new action class has been
designed to be placed in the RD-SEFF. A new EmitEvent-
Action is introduced and able to emit events of a specific
type identified by the referenced EventType class.

3.5 Event Handler

When a source emits a new event, all connected sinks are
informed automatically. Each sink will individually process
the event. With our approach, the architect is able to spec-
ify the quality-related behavior of the processing with the
existing (RD-SEFF) facilities.

4. TRANSFORMATION

The meta-model changes described in the previous section
enable software architects to model asynchronous, many-to-
many event-based interactions in their systems. This re-

flects a high-level, conceptual representation of the inter-
component communication as known from OMG’s specifica-
tion of a platform-independent model (PIM [21]).

To make use of the existing prediction facilities provided
by the PCM, the model passes two modification steps as
shown in Figure 2. In the first step, a transformation of
the high-level model with the new event-related elements is
performed to match the capabilities of the existing simu-
lation and prediction techniques. In the second step, this
platform-independent model is transformed to a platform-
specific model. The latter transformation step weaves a mid-
dleware model into the platform-independent model to take
the platform’s quality properties into account.
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Figure 2: Overall Transformation Process

Surveying the high-level, event-based connection in the
meta-model leads to a chain of processing steps involved in
reality. Some of the steps are optional, while others are
required. As our approach should support centralized as
well as peer-to-peer middleware systems, the derived process
chain is generic for both of them.

4.1 Platform-Independent Components

In reality, software communication at the protocol level
is often implemented with synchronous interactions. These
systems carry out their asynchronous behavior with interme-
diate components such as queues and hubs. In the presented
approach the same strategy is applied. This concept enables
the representation of the intermediate communication chain
with components and processing descriptions already sup-
ported by the predictions provided by the PCM workbench.

4.1.1 Event Processing Pipeline

As shown in Figure 3, a generic event processing mecha-
nism includes six steps. First the event is processed on the
sender-side. This processing is usually performed by a lo-
cal library, which encapsulates the communication with the
middleware server and might perform additional processing
like compression or encryption. In the second step, the event
is received and processed by the middleware system. Follow-
ing this, the event is replicated for each receiving component.
The fourth step represents the processing within the middle-
ware which is done once for each receiving component. An
example for such a processing is the filtering of events. As a
last step the event is processed on the client-side. This step
can again consist of decompression or decryption. It has to
be mentioned, that by default the described steps do not
include any processing. However, different processing activ-
ities can be integrated depending on the used event-based
middleware. Such platform-specific processing activities are
modeled within the middleware repository, which is later
woven into the prediction model.

To facilitate a realistic quality prediction of the compo-
nent communication, a set of intermediate components has
been derived from the processing chain as described in the
following.
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Figure 3: Generic Event Processing

4.1.2  Source Transformation

Figure 4 presents the mapping between a high-level source
element and its low-level counterparts. Sources are trans-
formed to a set of components. Each of those components
is responsible for a different concern in the event processing
chain.
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Figure 4: Source to Intermediate Model Transfor-
mation

The deployment of these components depends on the com-

munication style of the underlying platform. There are two
groups of components in relation to the deployment. The
first group includes only the SourcePort. Individual in-
stances of this component are deployed with each of the
original source components.
The second group includes the DistributionPreparation, the
EventDistribution and the EventSender. In a system with a
centralized middleware node, there is only one centralized in-
stance of each of these components deployed on the middle-
ware resource container. If no such centralized middleware
node exists, separate instances of these components are de-
ployed with every source as done with the source port. For
example, the latter concept applies to peer-to-peer event-
based systems.

Source.

The source is the original component emitting the events.
To model the described operational communication chain,
the source is modified by replacing the event-based commu-
nication with synchronous operation calls. Strictly speaking,
the component is now synchronously calling the SourcePort
which takes care of any further processing.

SourcePort.

When a source emits a new event it has to be passed to the
middleware. Depending on the platform, there is a wrapper
component deployed with the source which takes care of the
processing on the client-side. Such processing can include
marshaling, queuing or similar actions. The intention of
the source port component is to represent this wrapper and
include any processing and quality-related demands. It is
therefore deployed on the same ResourceContainer as the
source component it belongs to.

To finally deploy the component, an AllocationContext

is created for it in the same resource environment as the
source component.

DistributionPreparation.

When a new event arrives at the middleware some pro-
cessing might be required at this point. This processing
takes place once per event and is independent of the num-
ber of recipients interested in it. The processing can in-
clude middleware-side marshaling, security-checks, compres-
sion and others. This varies with the underlying platform.
To trigger the specific resource demands, the Distribution-
Preparation component is located as the first process on the
middleware-related component chain.

In the case of a centralized middleware which is not run-
ning on the same infrastructure as the source component,
the DistributionPreparation is deployed on the same server
as the centralized middleware. This is done to analyze any
resulting network traffic at the right point of the communi-
cation process.

If no centralized middleware exists, the component is de-
ployed on the same ResourceContainer as the source com-
ponent.

EventDistribution.

The event-based communication is often used in asyn-
chronous and many-to-many relationships between compo-
nents. On the one hand the EventDistribution component
handles the replication and the decoupling on the other

hand. Its internal processing triggers a new and indepen-
dent control flow for each downstream sink to realize the

asynchronous behavior.
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Figure 5: Fork-Based Event Split

{4

As shown in Figure 5 the internal processing of the event
distribution component makes use of a ForkAction element
specified by the PCM meta-model. This action includes
multiple ForkBehaviors to describe separate sub-flows tak-
ing care for the event replication. Without a synchroniza-
tion element, this ForkAction decouples the individual sub-
flows from the overall processing flow and permits the asyn-
chronous behavior. The EventDistribution component is de-



ployed with the same concept as the DistributionPrepara-
tion.

EventSender.

When the middleware has performed the event replica-
tion it forwards the event to the recipients. This step might
include additional processing such as compression, transfor-
mation, filtering or others. The sending itself can therefore
have quality-related resource demands for every connected
recipient. To reflect this in the model, separate EventSender
components are placed in the chain per recipient.

4.1.3  Sink Transformation

The second part of the intermediate model creation is the
transformation of sink elements. As with the sources, each
connected sink role is replaced with a set of components. All
of these components are deployed once per sink and do not
depend on the existence of a centralized middleware node in
the resource environment. Figure 6 provides an overview on
the mapping described in the following paragraphs.
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Figure 6: Sink to Intermediate Model Transforma-
tion

EventReceiver.

When an event arrives at a sink it first needs to be ac-
cepted. This might involve processing like de-marshaling or
require a passive resource such as a thread pool. An Event-
Receiver component is placed in the communication chain
and deployed with every sink component.

SinkPort.

Finally, the event needs to be passed to the original sink
component. Depending on the platform this might have
resource demands related to this final step. Even if this is
often in smooth transition with the event receiving step, it
is separated in this approach to not limit the flexibility for
different platforms at this point.

Sink.

The original sink component is modified to handle the in-
coming operation calls instead of the emitted events. The
existing RD-SEFFs of the component are now linked with
the Signatures of the OperationInterface instead of the
EventTypes. The name of the event content parameter is
still the same as in the original EmitEventAction in the
source component and does not change in the event pro-
cessing chain. Due to this fact, the RD-SEFFs of the sink
do not require any modifications in their internal processing
and are still valid for the new incoming calls.

4.2 Platform-Specific Components

The available middleware products for event-based com-
munication provide a wide range of event transmission ar-
chitectures. This includes centralized message hubs, peer-to-
peer systems and numerous architectures in between. The
communication style and the concrete platform used for it
can have a reasonable impact on the quality properties of
the overall system. To decide on a platform and to find the
right configuration for it, a software architect might need to
select, configure, and test many different setups.

From a modeling point of view, the general event-based
connection between components and the specific middleware
used for the technical implementation are on two different
levels of abstraction. To prevent unnecessary work, the ar-
chitect does not want to change the high-level model for
every platform he would like to test. To support the archi-
tect’s work in this area, the presented approach enables him
to use separate middleware models without any modifica-
tions of his high-level architecture. The presented approach
contains a transformation that automatically weaves the ad-
ditional middleware model into the event processing chain
described above.

The separate middleware model has to provide predefined
interfaces as presented in Figure 7. There are individual
middleware interfaces for each component of the communi-
cation chain. How many components are used to provide
those interfaces in the middleware is up to the architect and
depends on the specific middleware product. This could in-
clude individual components for each interface or only one
component for all of them. Figure 7 contains three possible
alternatives for the middleware model.

| Platform-specific
i
i

| Platform-specific | Source
' |

Figure 7: Middleware Model Weaving Alternatives

The middleware weaving is part of the transformation pro-
cess developed for this approach. Figure 8 presents the re-
quired steps of this weaving sub-process.

In the first step a lookup for the middleware interfaces
based on naming conventions is performed.

In a second step, required roles for these interfaces are
added to the appropriate components of the platform-inde-
pendent component chain. If this is done, an External-
CallAction is added as the first action of the service effect
specifications of these components. The ExternalCallAc-
tion includes a VariableUsage and VariableCharacteri-



sations to forward the characteristics of the currently pro-
cessed event to the middleware.

Middleware Add Required Deploy Assemble
Interface Roles to Middleware Comunication Chain
Lookup Component Chain Components and Middleware

Figure 8: Middleware Weaving Process

As mentioned in the introduction to this paper and al-
ready applied during the deployment of the platform-inde-
pendent components, the middleware components are de-
ployed depending on the selected resource environment. If
the selected environment contains a ResourceContainer with
a name equals “Middleware”, instances of the middleware
components providing the middleware interfaces for the Dis-
tributionPreparation, the EventDistribution and the Event-
Sender are deployed centrally on this ResourceContainer.
If this centralized middleware container does not exist, in-
dividual instances of these components will be deployed for
every source component. With this automatic deployment
concept, the architect can choose between a source infras-
tructure deployed as singleton or once per source. From his
perspective he can simply specify a middleware container
and let the transformation take care of the distribution.

As soon as AssemblyContexts are in place for all speci-
fied middleware components, the transformation creates the
connectors between the platform-independent and the ap-
propriate middleware components.

The specification of the middleware internals is completely
up to the architect and can be modeled with the classical
PCM model elements. For example, the software architect
can model simple resource demands, control flows or passive
resources. This separate middleware model can encapsulate
enhancements in the future such as research results as men-
tioned by Happe [8] and others.

4.3 Implementation

To perform the evaluation described below, we imple-
mented our approach in the PCM workbench. We applied
the meta-model extension to the ecore-based PCM meta-
model and generated the according code and tree-editors.
Furthermore, we integrated the new modeling capabilities in
the graphical editors using the Eclipse Graphical Modeling
Framework (GMF). We implemented the model-to-model
transformation with the QVTO transformation language.
Finally, we extended the PCM Eclipse plug-ins to provide
the middleware model selection to the user and to execute
the transformation as part of the prediction workflow.

The goal of introducing the new meta-model elements to
the PCM was to ease the modeling of event-based commu-
nication in the PCM while the model-transformation pre-
sented in Section 4 integrates platform-specific behavior and
enables the use of existing prediction techniques. To eval-
uate our approach we use a real-world case study based on
the traffic monitoring system developed by the University of
Cambridge. After introducing this case study, we describe
the different evaluation aspects following the Goal-Question-
Metric (GQM) approach introduced by Basili et al. [3]. Fi-
nally we present the results of the evaluation combined with
a short discussion.
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Figure 9: Components of the TIME System
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S. EVALUATION

The goal of our approach is an improved modeling and
prediction of event-based communication in component-based
software architectures. To validate its applicability and its
improvement, the new approach and the previously avail-
able Palladio version have been applied on the real-world
case study presented in the following subsection. The new
approach and the advantages it provides are assessed in com-
parison to the previously existing Palladio approach. To
validate the prediction accuracy we evaluated 4 different de-
ployment scenarios with different workload specifications.
The evaluation of the modeling effort is based on a set of
5 different potential evolution scenarios as they can be ob-
served in nearly all event-based system.

5.1 Case Study

The system we study is developed within the TIME project
(Transport Information Monitoring Environment) [2] at the
University of Cambridge. The system is based on a novel
component-based middleware called SBUS (Stream BUS) [12]
which supports peer-to-peer event-based communication in-
cluding both continuous streams of data (e.g., from sensors),
asynchronous events, and synchronous RPC. In SBUS each
component is divided into a wrapper, provided by the SBUS
framework, and the business logic that makes up the compo-
nent’s functionality. The wrapper manages all communica-
tion between components, including handling the network,
registration of endpoints and event sinks, or marshaling of
data.

The traffic monitoring system is used to estimate the speed
of buses that are near traffic lights when they turn red. It
requires information describing the current state of traffic
lights alongside location information of buses. These two
sources of data are, in many cases, not maintained by the
same organization. This means that the application must
combine data provided by multiple organizations. The im-
plementation of this application uses four classes of SBUS
components (see Figure 9) described below. Due to the mid-
dleware SBUS, it is possible to distribute these components
over several computing nodes as well as centralize them on
one node without any changes to the components’ imple-
mentation. Finding the maximal processable event rate for
a given deployment option or a resource-efficient deployment
scenario that still meets all requirements regarding the event
processing time or resource utilization is a complex task.
Furthermore, the influence of newly integrated components
on the other components is almost impossible without spe-
cialized evaluation techniques. Using performance predic-
tion techniques eases the analysis of performance attributes
for different deployment scenarios and event rates without
prototypical implementations or test environments.



e Bus location provider (the “ACIS component”)
The bus location provider uses sensors to detect the
locations of buses and reports any changes as a stream
of events.

e Location Storage
The location storage component maintains the state
that describes for a set of objects, the most recent loca-
tion that was reported for each of them. The location
state is not conceptually a stream of events so, in the
evaluated implementation, it is stored in a relational
database that other components may query.

e Traffic light status reporter (the “SCOOT component”)
The traffic lights in the City of Cambridge are con-
trolled by a SCOOT system [11], designed to schedule
green and red lights to optimize use of the road net-
work. SCOOT knows the status of each traffic light
and provides a stream of events identifying that a light
switches to red respectively to green. It further pro-
vides an RPC endpoint to retrieve location information
about the traffic lights.

e Proximity Detector
This component receives the event stream about traf-
fic light status changes, uses the SCOOT component’s
RPC facility to determine the location of the traffic
light and correlates this with the location information
of the buses.

5.2 Evaluation Goals

A software prediction process includes a wide range of
tasks ranging from system modeling to the interpretation
of the prediction results. In order to focus on the crucial
criteria of the presented approach, a Goal Question Met-
ric (GQM) plan, as proposed by Basili et al. [3], has been
developed to assess the quality of our approach. The overall
goal of the work we presented in this paper is the improve-
ment of the modeling capabilities and the reduction of the
modeling effort related to event-based communication in the
PCM quality prediction framework while keeping the perfor-
mance prediction accurate. This goal can be split up into
three questions:

e Is the modeling effort reduced by the new approach?
e Are the prediction results acceptable?

e Is the evaluation of different middleware settings/setups
simplified?

While the improvement is always evaluated in compari-
son to the existing version of the PCM, the metrics for the
questions are surveyed in comparison to the existing PCM
capabilities. We use the results of our first manual case
study [24], in which we also used the presented traffic mon-
itoring system as case study. This allows us to compare
the modeling effort as well as the prediction accuracy of the
manually implemented model using classical PCM elements
with those of a model based on the extended PCM combined
with the presented transformation.

The first question targets the reduction of the modeling
effort. We count the number of required element changes
and creations within the model to analyze whether the re-
quired effort is reduced or not. This metric is independent

of the individual velocity of the modeler who performs the
model modifications.

The second question covers the accuracy of the prediction
result. While the presented approach should simplify the
modeling, the prediction results should provide at least the
same quality as in the first case study. The applied metrics
compare the new prediction results with the measurements
of the real system as well as the existing prediction results.

The last question concerns the capabilities to extend the
model to predict additional systems and setups. The metrics
used to answer this question include the number of required
steps to change the middleware configuration and to change
the middleware at all.

5.3 Results and Discussion

For the evaluation, we modeled the traffic monitoring sys-
tem with the new modeling facilities and analyzed the same
scenarios as already done and validated in the previous man-
ual case study [26]. Afterwards, we compared the two sets
of prediction results against measurements on the existing
system. Furthermore, we analyzed evolution scenarios to es-
timate required modification efforts. Additionally, we con-
sidered different evolution scenarios which require changes
on the model such as adding new components or changing
connections. We analyzed the required modeling steps to
implement these changes.

5.3.1 Reduced Modeling Effort

The original PCM meta-model did not provide any ele-
ments specific to events and event-based communication. As
shown in the previous case study [26], using a workaround
enables the architect to setup performance equivalent struc-
tures, however, this modeling is semantically incorrect as
it directly uses forks and synchronous interfaces to emulate
asynchronous behavior. With the presented approach, we
introduce new meta-model elements for explicit modeling of
EventTypes, EventGroups, Sinks, Sources, EventConnec-
tors and EventEmittingActions for the processing flow.
While there is no numerical quality index for such a differ-
ence, it can be clearly stated that there is an improvement
on the coverage of event-related elements. Figures 10 and
11 present the same connection between an ACIS and a Lo-
cationStorage component. While in the old approach it was
not clear that this represents an event-driven connection,
the new approach makes it explicit.

] sBUSSource oC 2 seussink GO &1 Location

v
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Figure 10: Source Sink Connection - Old Case Study

5 ACISBus Line 1

7 | LocationStorage

Figure 11: Source Sink Connection - New Case

Study

In addition to the semantically correct modeling of event-
based communication the new elements reduce the modeling



effort. We tracked the effort for three different scenarios.
In the first scenario a complete new connection between a
source and a sink was created. In the second and third sce-
narios, an additional sink respectively source were added to
an existing connection. We tracked the effort in terms of el-
ement creations and did not consider the time consumption
to create the different elements. This was done to remove
the influence of the individual experience and training of the
architects in the usage of Eclipse modeling tools in general
and the PCM tools in particular. For a completely new con-
nection, the required effort was reduced from 59 to only 11
new elements with the new approach. Adding an additional
sink is reduced to only one new element instead of 14 with
the old approach. And the effort for adding an additional
source is reduced from 35 to 6 elements.

Change Scenario New Old Effort
#elements | #elements | Reduction
New Connection 11 59 81,3%
Add Sink 1 14 92,8%
Add Source 6 35 82,8%

Table 1: Reduction of Modeling Effort

These results (see Table 1) are clear indicators for the re-
duced effort to model event-based communication between
components. Even without the specific effort per event cre-
ation, the results of the metric highlight the benefits of the
new approach.

5.3.2  Accuracy of Prediction Results

Beside the improved modeling capabilities when compared
to the old approach, it is also necessary to provide a quality
prediction which at least meets the previous accuracy level.
To validate this statement, the 4 scenarios of the manual
case study [26] have been analyzed again with a performance
model using the presented extensions. The new prediction
results were compared to those of the manual case study
as well as to the original measurements that were part of
the first case study. In Figure 12, we present exemplary
prediction results of Scenario 4. The results show that in
this scenario the prediction based on the presented approach
is even more accurate than the manually created model. For
all scenarios the prediction error between measurements and
the new prediction model did not exceed 8.3%. For the sake
of brevity we cannot present all evaluation results and refer
to [14] for more details.

5.3.3 Testing Different Middleware Setups/Settings

In addition to the improvement in modeling and predict-
ing existing solutions, the process to model new configura-
tions and architectures to predict changes before their im-
plementation should be simplified. To answer the related
GQM question, the same metrics as for the second question
were used.

Two different scenarios were investigated to analyze the ef-
fort required to change the middleware. In the first scenario,
the configuration of the existing middleware was changed.
In the second scenario, the middleware was replaced com-
pletely. As a test case for the first scenario, the SBUS mid-
dleware should be changed from a single-threaded to a multi-
threaded processing. With the old approach this required 15
modifications on the model but with the new approach the
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Figure 12: Scenario 4 - CPU Utilisation

effort is reduced to 6 modifications. In the second scenario
we replaced the complete middleware. To focus on the re-
placement effort, we assume that the new middleware model
is already in place and only the connection between the mid-
dleware components and traffic monitoring components are
considered. With the old approach 22 modifications are re-
quired to release the old middleware and integrate the new
one. This dramatically changes with the new approach while
the only modification is to select the new middleware repos-
itory for the prediction.

6. RELATED WORK

Over the last fifteen years a number of approaches have
been proposed for integrating performance prediction tech-
niques into the software engineering process. Efforts were
initiated with Smith’s seminal work on Software Performance
Engineering (SPE) [27]. Since then a number of architecture-
level performance meta-models have been developed by the
performance engineering community. The most prominent
examples are the UML SPT profile [22] and its successor
the UML MARTE profile [23], both of which are exten-
sions of UML as the de facto standard modeling language
for software architectures. Architecture-level performance
models are built during system development and are used
at design and deployment time to evaluate alternative sys-
tem designs and/or predict the system performance for ca-
pacity planning purposes. In recent years, with the in-
creasing adoption of component-driven software engineer-
ing, the performance evaluation community has focused on
adapting and extending conventional SPE techniques to sup-
port component-driven systems which are typically used for
building modern systems. A recent survey of approaches
to performance evaluation of component-based systems was
published in [16]. Examples of common meta-models used
in this context include PCM [5], SAMM [1] and CBML [31].
Existing meta-models, however, currently do not provide
support for modeling events and event-based communica-
tion using first class entities.

In the following, we present an overview of existing per-
formance modeling and analysis techniques specialized for
event-driven systems including systems based on message-
oriented middleware (MOM) considering both centralized
and distributed environments. Event-based communication
has been of research interest in the software engineering com-
munity for years. This has led to a wide range of approaches
to analyze the characteristics of event-based communica-



tions. However, most of them (e.g., [20] or [6]) are focused
on analytical models for the event distribution infrastructure
and do not consider the entire system architecture.

A recent survey of techniques for benchmarking and per-
formance modeling of event-driven systems was published
in [15]. In [9], an analytical model of the message process-
ing time and throughput of the WebSphereMQ JMS server
is presented and validated through measurements. Several
similar studies using Sun Java System MQ, FioranoMQ, Ac-
tiveMQ, and BEA WebLogic JMS Server were published. A
more in-depth analysis of the message waiting time for the
FioranoMQ JMS server is presented in [19]. However, these
publications only consider the overall message throughput
and latency and do not provide any means to model event-
driven interactions and message flows.

There are existing approaches to model high-level archi-
tectures and to add platform-specific characteristics as part
of the prediction. [28] presents a framework to automati-
cally include the impact of CORBA middleware on the per-
formance of distributed systems but they completely ignore
the influence of service parameters like the amount of data to
be processed. There are some existing approaches to apply
this to the Palladio Component Model. For example, Happe
et. al. [8] took advantage of an approach recommended by
Woodside et. al. [30] to automatically include details about
a message-oriented middleware into a model. However, this
approach is limited to 1-to-1-connections and does not sup-
port modeling of systems following the publish-subscribe
paradigm. Kapova and Goldschmidt [13] presented an ap-
proach to use higher order transformations to generate trans-
formations that refine the architecture model itself. How-
ever, this approach is also limited to 1-to-1-connections and
does not support an encapsulated and selectable repository
for the middleware-specific components.

7. CONCLUSION AND OUTLOOK

In this paper, we presented an extension of the Palla-
dio Component Model, which enables a semantically cor-
rect modeling of event-based communication. Combined
with the presented automated model-to-model transforma-
tion, the modeling effort for event-based communication could
be reduced significantly while still supporting all existing
prediction techniques such as simulation, LQNs or QPNs.
The transformation is partitioned into a platform-independent
and a platform-specific part. In the first part, a mapping
from the new elements to a set of elements already sup-
ported by the prediction facilities has been defined, which
follows a generic event processing chain as it can be found
in centralized as well as in decentralized messaging systems.
In the second step, platform-specific components located in
a separate middleware repository are woven into the predic-
tion model. Due to this separation, the influence of using
different middleware systems can be analyzed by simply se-
lecting another middleware repository and the system itself
can be modeled independent of the underlying middleware.

We integrated the presented model extension as well as
the transformation in the PCM workbench. In a real-world
case study, based on a traffic monitoring system developed
at the University of Cambridge, we evaluated the accuracy
of the performance predictions. The prediction error did not
exceed 8.5%. Considering different potential change scenar-
ios, we estimated the required modeling effort by tracking
the required changes in model elements. With the presented

approach, the modeling effort could be reduced by more than
80%.

The results presented in this paper form the basis for sev-
eral areas of future work. In the current version of the pro-
posed PCM extension, filtering of events has to be modeled
manually in the behavior model of the sink. We plan to
further extend the PCM to specify filtering rules by using
the stochastic expression language, which is already part of
the PCM. These expressions combined with a BranchAction
are then automatically published to the EventDistribution-
Component. Additionally, we are working on a larger case
study with more components and different design and de-
ployment alternatives. With this case study, we plan to
demonstrate the benefits of having a separate platform mid-
dleware repository which can be easily substituted. Further-
more, we are working on the integration of the Performance
Cockpit [29] to automatically derive the platform-specific
middleware repositories from existing middleware products.
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