
Engineering of Next Generation Self-Aware
Software Systems: A Research Roadmap

Samuel Kounev

Institute for Program Structures and Data Organization (IPD)
Karlsruhe Institute of Technology (KIT)

76131 Karlsruhe, Germany
kounev@kit.edu

Abstract With the increasing adoption of virtualization and the tran-
sition towards cloud computing platforms, modern enterprise software
systems are becoming increasingly complex and dynamic. The lack of
direct control over the underlying physical hardware and the resulting
gap between logical and physical resource allocations pose some major
challenges in providing quality-of-service (QoS) guarantees. Due to the
inability to automatically keep track of the complex interactions between
the applications and workloads sharing the physical infrastructure, mod-
ern enterprise systems often exhibit poor QoS and resource efficiency, and
have high operating costs. In this paper, we present a research roadmap
and a long-term vision aiming to address these challenges. The presented
research agenda is pursued by the Descartes Research Group at KIT
which is funded by the German Research Foundation within the Emmy
Noether Programme. Our long-term goal is to develop a novel methodol-
ogy for engineering of next generation self-aware software systems. The
latter will have built-in QoS models enhanced to capture dynamic as-
pects of the system environment and maintained automatically during
operation. The models will be exploited at run-time to adapt the sys-
tem to changes in the environment ensuring that resources are utilized
efficiently and that QoS requirements are continuously satisfied.

1 Introduction

Modern enterprise systems based on the Service-Oriented Architecture (SOA)
paradigm have highly distributed and dynamic architectures composed of loosely-
coupled services that operate and evolve independently. Managing system re-
sources in such environments to ensure acceptable end-to-end application quality-
of-service (e.g., availability, performance and reliability) and efficient resource
utilization is a challenge. The adoption of virtualization and cloud computing
technologies, such as Software-as-a-Service (SaaS), Platform-as-a-Service (PaaS)
and Infrastructure-as-a-Service (IaaS), comes at the cost of increased system
complexity and dynamicity. The increased complexity is caused by the intro-
duction of virtual resources and the resulting gap between logical and physical
resource allocations. The increased dynamicity is caused by the complex inter-
actions between the applications and workloads sharing the physical infrastruc-
ture. The inability to predict such interactions and adapt the system accordingly

makes it hard to provide quality-of-service (QoS) guarantees in terms of avail-
ability and responsiveness, as well as resilience to attacks and operational fail-
ures. Moreover, the consolidation of workloads translates into higher utilization
of physical resources which makes the system much more vulnerable to threats
resulting from unforeseen load fluctuations, hardware failures and network at-
tacks.

Service providers are often faced with questions such as: What QoS would a
new service deployed on the virtualized infrastructure exhibit and how much re-
sources should be allocated to it? What would be the effect of migrating a service
from one virtual machine (VM) to another? How should the system configura-
tion be adapted to avoid QoS issues or inefficient resource usage arising from
changing customer workloads? Answering such questions requires the ability to
predict at run-time how the QoS of running services and applications would be
affected if the system configuration or the workload changes. We refer to this
as online QoS prediction. Due to the inability to automatically keep track of
dynamic changes in the system environment and predict their effect, SOA sys-
tems in use nowadays often exhibit poor QoS and resource efficiency, and have
high operating costs. To accommodate load fluctuations, services are typically
hosted on dedicated servers with over-provisioned capacity. Servers in data cen-
ters nowadays typically run at around 20% utilization [11] which corresponds to
their lowest energy-efficiency region [2]. The growing number of under-utilized
servers, often referred to as "server sprawl", translates into increasing data center
operating costs including power consumption costs, cooling infrastructure costs
and system management costs. To counter this development, novel methods for
online QoS prediction and autonomic resource management are needed.

Service A
Service B

Service C Service D Service E
Service F

1 2 3 4

Server Utilization

85% 55% 60% 70%25%

ShutdownService A
Service B

Service C
Service E

Service D
Service F

1 2 3 4

Server Utilization

85% 0%

Service A
Service B

Shutdown Service D

1 2 3 4

Service E
Service F
Service C

Server Utilization

85% 0%

Average Service Response Times (sec)

Service A B C D E F

Before Reconfiguration 2 3 1 2 2 3

After Reconfiguration 1 2 3

After Reconfiguration 2 2 3 2

Service Level Agreement 4 3 5 5 6 6

? ?

? ?

?

?

? ? ?

? ?

Figure 1. Online QoS Prediction Scenario

To illustrate how online QoS prediction can help to improve the system re-
source efficiency, we consider a simple example depicted in Figure 1. A SOA
system made of four servers hosting six different services is shown including in-
formation on the average service response times, the response time service level
agreements (SLAs) and the server utilization. Now assume that due to a change
in the demand for services E and F, the average utilization of the fourth server
has dropped down to 25% over an extended period of time. To improve the re-
source efficiency, it is considered to shut down one of the servers migrating its
services to other servers. Two possible ways to reconfigure the system (shutting
down the second and the fourth server respectively) are shown. To ensure that
reconfiguring the system would not break the SLAs, the system needs a mech-
anism to predict the effect of the reconfiguration on the service response times.
Given that this must be done at run-time, online QoS prediction capabilities are
required.

In the rest of this paper, we present the research agenda and long-term vision
of a research project carried out by the Descartes Research Group at KIT aiming
to address the challenges described above.

2 Research Agenda and Long-Term Vision

The Descartes Research Group [1] at KIT was started in July 2009 and is funded
by the German Research Foundation (DFG) within the Emmy Noether Pro-
gramme. The group is working on novel approaches to software and systems
engineering that ensure that non-functional QoS requirements are continuously
satisfied during operation while at the same time infrastructure resources are
utilized efficiently lowering the system TCO (Total-Cost-of-Ownership). The re-
search areas and technology domains we are focusing on are depicted in Figure 2.

Our research is divided into three main areas: i) system design, measurement
and analysis targeted at understanding the system behavior and the way it is
influenced by the environment it is running in, ii) system modeling for QoS pre-
diction both at system design-time and during operation, and iii) autonomic and
self-adaptive system QoS management. The three areas are closely interrelated.
On the one hand, building representative models requires deep understanding of
the system behavior as well as measurement data to calibrate the models. On
the other hand, methods for self-adaptive QoS management rely on predictive
models that help to predict the effect of adaptation decisions at run-time.

Our long-term research agenda aims at developing a novel methodology for
engineering of so-called self-aware software systems [7]. The latter will have
built-in online QoS prediction and self-adaptation capabilities addressing the
challenges described in Section 1. This vision is the major topic of our re-
search group which is named after the French philosopher and mathematician
René Descartes. Self-awareness in this context is meant in the sense that systems
should be aware of changes that occur in their environment and should be able
to predict the effect of such changes on their QoS (“thought is what happens in
me such that I am immediately conscious of it” – René Descartes). Furthermore,

System Design,
Measurement,

and Analysis

Benchmarking

Workload
characterization

Instrumentation &
profiling

Experimental analysis

Online monitoring

System
Modeling and
Predictability

Meta-models for
dynamic software

systems

Analytical and
simulation-based
prediction models

Automatic model
extraction, calibration

and maintenance

Predictability at
design-time

Predictability at
run-time

Autonomic and
Self-Adaptive

System
Management

Dynamic resource
provisioning and

capacity management

Application
quality-of-service

management

Elastic scalability

Cost and efficiency
management

Power/energy
management

• Web services, SOA, ESB, SCA

Service-oriented Computing

• SaaS, PaaS, IaaS

Virtualization & Cloud Computing

• Java EE, MS .NET

Distributed Component-based Systems

• EDA, MOM, distributed pub/sub

Event-based Systems

• Service-oriented Grids

Grid Computing

Availability Performance Scalability Efficiency

Research Areas Technology Domains

Figure 2. Research Areas and Technology Domains

systems should automatically adapt as the environment evolves in order to en-
sure that infrastructure resources are utilized efficiently and QoS requirements
are continuously satisfied (“for it is not enough to have a good mind: one must
use it well” – René Descartes). To realize this vision, we advocate the use of
dynamic QoS models integrated into the system components and used at run-
time for online QoS prediction. The models will serve as a “mind” to the system
controlling its behavior, i.e., resource allocations and scheduling decisions. In
analogy to Descartes’ dualism principle (“the mind controls the body, but the
body can also influence the mind”), the link between the QoS models and the
system components they represent will be bidirectional.

The new dynamic QoS models will be designed to encapsulate all informa-
tion, both static and dynamic, relevant to predicting a service’s QoS on-the-fly.
This includes information about the service’s software architecture, its workload
and its execution environment. Current architecture-level1 performance models
for component-based architectures, surveyed in [8], (e.g., PCM [3], CBML [12],
CB-SPE [4]) will be used as a basis. The latter will be extended to capture the
performance influences of the platforms used at each layer of the service execu-
tion environment focusing on the virtualization and middleware layers. Resource

1 We distinguish between descriptive architecture-level QoS models and predictive QoS
models. The former describe QoS-relevant aspects of software architectures and ex-
ecution environments (e.g., UML models augmented with QoS-related annotations).
The latter capture the temporal system behavior and can be used for QoS predic-
tion by means of analytical or simulation techniques (e.g., Markov chains, layered
queueing networks or stochastic Petri nets).

allocations at the different layers will be modeled explicitly and benchmark re-
sults will be exploited to quantify the relative performance of different execution
platforms. This will make it possible to predict how the QoS of a running service
will be affected if resource allocations are modified or if the service is migrated
from one VM to another possibly running on a different platform.

Unlike conventional architecture-level QoS models, the developed models will
be dynamic in the sense that they will be maintained and updated automatically
to reflect the evolving system environment. To realize this, execution platforms
should be enhanced with functionality to automatically extract and maintain
the models during operation. Depending on the type of system considered and
the availability of monitoring and instrumentation frameworks, the degree of
automation of the initial model extraction will be different. For example, for a
newly developed system, the model extraction could potentially be completely
automated, whereas for legacy systems some manual steps might be required.

Component

QoS Models

Model

Composition

Component

QoS Models QoS

Predictions

Model-To-Model

Transformation

Architecture-level

System QoS Model

Predictive

System QoS Model

Online QoS Query

Model

Analysis

Query Results

Figure 3. Online QoS Prediction Process

The dynamic QoS models will be used during operation to answer QoS-
related queries such as: What would be the effect on the QoS of running ap-
plications if a new application is deployed in the virtualized environment or an
existing application is migrated from one server to another? How much resources
need to be allocated to a newly deployed application to ensure that service-level
agreements (SLAs) are satisfied? What QoS would the system exhibit after a
period of time if the workload continues to develop according to the current
trends? How should the system configuration be adapted to avoid QoS problems
or inefficient resource usage arising from changing customer workloads? We refer
to such queries as online QoS queries.

Figure 3 illustrates the process that will be followed in order to provide an
answer to a query. First, the QoS models of all involved system components
will be retrieved and combined by means of model composition techniques into

a single architecture-level QoS model encapsulating all information relevant to
answering the QoS query. This model will then be transformed into a predictive
QoS model by means of an automatic model-to-model transformation. Existing
model-to-model transformations for static architecture-level performance mod-
els will be used as a basis, e.g., [3, 9]. The target predictive model type and
level of abstraction as well as the solution technique will be determined on-
the-fly based on the required accuracy and the time available for the analysis.
Multiple model types (e.g., layered queueing networks, stochastic process alge-
bras, queueing Petri nets and general-purpose simulation models) and model
solution techniques (e.g., exact analytical techniques, numerical approximation
techniques, simulation and bounding techniques) will be used in order to provide
flexibility in trading-off between prediction accuracy and analysis overhead.

 Analyze Act

 Decide

Anticipate/Detect

Problem

Generate

Reconfiguration

Scenario

Predict

Reconfiguration

Effect(s)

Analyze Query

Results

Generate

Query

Problem

resolved

Problem persists

* SLA Violations

* Inefficient Resource

 Usage

Reconfigure

System

Forecast

Workload

 Collect

Monitor

System and

Workload

* Service Workloads

* Resource Utilization

* SLAs

Online

Performance

Prediction

Refine/Calibrate

Model(s)

Figure 4. Online Reconfiguration Process

The ability to answer online QoS queries during operation will provide the
basis for implementing techniques for self-aware QoS management. Such tech-
niques will be triggered automatically during operation in response to observed
or forecast changes in application workloads. The goal will be to proactively
adapt the system to such changes in order to avoid anticipated QoS problems
or inefficient resource usage. The adaptation will be performed in an autonomic
fashion by considering a set of possible system reconfiguration scenarios (e.g,
changing VM placement and/or resource allocations) and exploiting the online
QoS query mechanism to predict the effect of such reconfigurations before mak-
ing a decision. Figure 4 depicts the online reconfiguration process and the self-

adaptation control loop. The latter is based on the generic model of a control
loop from [6] which we have extended to integrate the use of the online QoS
query mechanism. In addition to the main control loop, two additional loops are
running in the background, one for continuously refining and calibrating online
models and one for forecasting the workload evolution.

As an initial step towards the described vision, we conducted two preliminary
case studies. In the first case study, we studied a complex Java EE application
showing how detailed architecture-level performance models can be extracted
and maintained automatically at run-time based on online monitoring data [5].
As a performance model we used the Palladio Component Model [3]. The ex-
tracted performance models provided performance predictions with less than
30% deviation from measurements on the real system. In the second case study,
we studied a SOA application running in a service-oriented Grid computing
environment [10] and showed how online performance models (based on hierar-
chical queueing Petri nets) can be used at run-time for autonomic QoS-aware
resource allocation. The case studies demonstrate that the existing gap between
architecture-level QoS models and run-time QoS management can be closed.

3 Concluding Remarks

Modern enterprise systems based on the SOA paradigm have highly distributed
and dynamic architectures composed of loosely-coupled services often deployed
in virtualized computing infrastructures. Managing system resources in such
environments to ensure acceptable end-to-end application quality-of-service and
efficient resource utilization is a challenge. In this paper, we presented a research
roadmap and a long-term vision aiming to address this challenge. The presented
research agenda is pursued by the Descartes Research Group at KIT which is
working towards the development of a novel methodology for engineering of next
generation self-aware software systems. Such systems will be aware of their QoS
and the way it is affected by the environment they are running in. Moreover,
they will automatically adapt as the environment evolves ensuring that system
resources are utilized efficiently and QoS requirements are continuously satisfied.
The described approach raises several big challenges that represent emerging hot
topics in the software engineering community and will be subject of long-term
fundamental research in the years to come. The resolution of these challenges
promises to revolutionize the field of systems engineering and radically transform
the way enterprise systems are built and managed. The introduced self-awareness
and autonomous management will provide a number of benefits such as better
quality-of-service, lower operating costs and improved energy efficiency.

4 Short Biographical Sketch

Dr.-Ing. Samuel Kounev is head of the Descartes Research Group at Karlsruhe
Institute of Technology (KIT). He received a MSc degree in mathematics and
computer science from the University of Sofia (1999) and a PhD degree in

computer science from Technische Universität Darmstadt (2005). From Febru-
ary 2006 to May 2008, he was a research fellow at Cambridge University working
in the systems research group of Prof. Jean Bacon at the Computer Labora-
tory. In April 2009, he received the Emmy-Noether Career award from the Ger-
man Research Foundation (DFG) and started the Descartes Research Group at
KIT. Dr. Kounev’s research is focused on methods for autonomic management
of system quality-of-service (e.g., availability, performance and reliability) and
resource efficiency (e.g., energy consumption) throughout the system life-cycle.
Dr. Kounev is founder of the SPEC International Performance Evaluation Work-
shop (SIPEW) and co-founder of the ACM/SPEC International Conference on
Performance Engineering (ICPE). He served as a BEA Technical Director from
2004 to 2008 and as a release manager of SPEC’s Java Subcommittee from 2003
to 2009. During this time he led the development and standardization of several
widely adopted industry-standard benchmarks including SPECjAppServer2004,
SPECjms2007 and SPECjbb2005. He is a member of the ACM, IEEE, and the
GI e.V.

References

1. Descartes Project Website. http://www.descartes-research.net, 2010.
2. L. A. Barroso and U. Hölzle. The Case for Energy-Proportional Computing. IEEE

Computer, 40(12):33–37, 2007.
3. S. Becker, H. Koziolek, and R. Reussner. The Palladio component model for model-

driven performance prediction. Journal of Syst. and Softw., 82:3–22, 2009.
4. A. Bertolino and R. Mirandola. Software Performance Engineering of Component-

based Systems. In Proc. of WOSP-2004. ACM Press, 2004.
5. F. Brosig, S. Kounev, and K. Krogmann. Automated Extraction of Palladio Com-

ponent Models from Running Enterprise Java Applications. In Proc. of ROSSA-
2009. ACM, 2009.

6. B. H. C. Cheng, R. de Lemos, H. Giese, P. Inverardi, and J. Magee. Software Engi-
neering for Self-Adaptive Systems: A Research Roadmap. In Software Engineering
for Self-Adaptive Systems, LNCS 5525, pages 1–26, 2009.

7. S. Kounev, F. Brosig, N. Huber, and R. Reussner. Towards self-aware performance
and resource management in modern service-oriented systems. In Proceedings of
the 7th IEEE International Conference on Services Computing (SCC 2010), July
5-10, Miami, Florida, USA. IEEE Computer Society, 2010.

8. H. Koziolek. Performance evaluation of component-based software systems: A
survey. Perform. Eval., In Press, 2009.

9. H. Koziolek and R. Reussner. A Model Transformation from the Palladio Com-
ponent Model to Layered Queueing Networks. In Proc. of SIPEW-2008. Springer
LNCS 5119, 2008.

10. R. Nou, S. Kounev, F. Julia, and J. Torres. Autonomic QoS control in enter-
prise Grid environments using online simulation. Journal of Systems and Software,
82:486–502, 2009.

11. K. Parent. Server Consolidation Improves IT’s Capacity Utilization. Vol. 2006:
Court Square Data Group, 2005.

12. X. Wu and M. Woodside. Performance Modeling from Software Components. In
Proc. of WOSP-2004, pages 290–301. ACM Press, January 2004.

