Self-Aware Software and Systems Engineering:

A Vision and Research Roadmap

Samuel Kounev
Institute for Program Structures and Data Organization (IPD)
Karlsruhe Institute of Technology (KIT)
76131 Karlsruhe, Germany
kounev@kit.edu

September 8, 2011

Abstract

With the increasing adoption of virtualization and the
transition towards cloud computing platforms, mod-
ern IT systems and services are becoming increas-
ingly complex and dynamic. The lack of direct con-
trol over the underlying physical hardware and the
complex interactions between the applications shar-
ing the physical infrastructure pose some major chal-
lenges in providing Quality-of-Service (QoS) guaran-
tees. In this paper, we present a research roadmap
and a long-term vision aiming to address these chal-
lenges. The presented research agenda is pursued by
the Descartes Research Group at KIT. Our long-term
goal is to develop a novel methodology for engineering
of next generation self-aware I'T systems and services.
The latter will have built-in service architecture mod-
els enhanced to capture dynamic aspects of the system
environment and maintained automatically during op-
eration. The models will be exploited at run-time to
adapt the system to changes in the environment en-
suring that resources are utilized efficiently and that
QoS requirements are continuously satisfied.

1 Introduction

Modern IT systems based on the Service-Oriented Ar-
chitecture (SOA) paradigm have highly distributed
and dynamic architectures composed of loosely-
coupled services that operate and evolve indepen-
dently. Managing system resources in such envi-
ronments to ensure acceptable end-to-end applica-
tion Quality-of-Service (QoS, e.g., availability, per-
formance and reliability) while at the same time
optimizing resource utilization and energy efficiency
is a challenge. The adoption of virtualization and
cloud computing technologies, such as Software-as-
a-Service (SaaS), Platform-as-a-Service (PaaS) and
Infrastructure-as-a-Service (IaaS), comes at the cost
of increased system complexity and dynamicity. The
increased complexity is caused by the introduction
of virtual resources and the resulting gap between
logical and physical resource allocations. The in-

creased dynamicity is caused by the complex interac-
tions between the applications and workloads sharing
the physical infrastructure. The inability to predict
such interactions and adapt the system accordingly
makes it hard to provide QoS guarantees in terms of
availability and responsiveness, as well as resilience to
attacks and operational failures [11]. Moreover, the
consolidation of workloads translates into higher uti-
lization of physical resources which makes the system
much more vulnerable to threats resulting from un-
foreseen load fluctuations, hardware failures and net-
work attacks.

Service providers are often faced with questions
such as: What QoS would a new service deployed on
the virtualized infrastructure exhibit and how much
resources should be allocated to it? What would be
the effect of migrating a service from one virtual ma-
chine (VM) to another? How should the system con-
figuration be adapted to avoid QoS issues or inefficient
resource usage arising from changing customer work-
loads? Answering such questions requires the abil-
ity to predict at run-time how the QoS of running
services would be affected if the system configuration
or the workload changes. We refer to this as online
QoS prediction. Due to the inability to automati-
cally keep track of dynamic changes in the system
environment and predict their effect, modern service-
oriented applications often exhibit poor QoS and re-
source efficiency, and have high operating costs. To
accommodate load fluctuations, services are typically
hosted on dedicated servers with over-provisioned ca-
pacity. Servers in data centers nowadays typically run
at around 20% utilization [16] which corresponds to
their lowest energy-efficiency region [1]. The growing
number of under-utilized servers, often referred to as
server sprawl, translates into increasing data center
operating costs including power consumption costs,
cooling infrastructure costs and system management
costs. To counter this development, novel methods for
online QoS prediction and autonomic resource man-
agement are needed.

[Dependability

Quality-of-Service

Elasticity

Efficiency

-

Systems Design,

Measurement,

Monitoring and
Analysis

Systems Modeling
for Predictability
at Design- and
Run-Time

Autonomic and
Self-Adaptive
Systems
Management

Benchmarking ‘

dynamic service-

Meta-models for }

oriented systems

Dynamic resource
provisioning &
capacity mgmt

Cloud Computing,
Virtualization & Green IT

* Saa$, Paas, laaS

Service-oriented Computing

* Web Services, SOA, ESB

J Uy g g

Workload _Analﬁical and A}'Jplication_
o simulation-based quality-of-service
characterization prediction models management Distributed
Instrumentation & Model extraction, . - Component-based Systems
- calibration & Elastic scalability
profiling maintenance
® Java EE, MS .NET
Experimental Predictability at Cost and efficiency
analysis design-time management
Event-based Systems
{Online monitoring} { Prez:lijcr:_atki)ri:;y at } { [::E‘:::g/znmeersr }
* EDA, MOM,, distributed publish/subscribe
{ Research Areas } { Technology Domains J

Figure 1: Research Areas and Technology Domains

2 Research Agenda and Vision

The Descartes Research Group! at KIT, named after
the French philosopher René Descartes, is working on
novel approaches to software and systems engineering
focusing on the research areas and technology domains
depicted in Figure 1.

2.1 Vision

A major part of our research is focused on the devel-
opment of novel methods, techniques and tools for the
engineering of so-called self-aware I'T systems and ser-
vices [10]. The latter are designed with built-in online
QoS prediction and self-adaptation capabilities used
to enforce QoS requirements in a cost- and energy-
efficient manner. The current focus is on performance,
availability and efficiency aspects, however, long-term
we are planning to consider further QoS properties
such as reliability and fault-tolerance. Self-awareness,
in this context, is defined by the combination of three
properties that IT systems and services should pos-
sess:

1. Self-reflective: aware of their software architec-
ture, execution environment and hardware infras-
tructure on which they are running, as well as of
their operational goals (e.g., QoS requirements,
cost- and energy-efficiency targets),

2. Self-predictive: able to predict the effect of dy-
namic changes (e.g., changing service workloads)
as well as predict the effect of possible adaptation
actions (e.g., changing service deployment and/or
resource allocations),

3. Self-adaptive: proactively adapting as the envi-
ronment evolves in order to ensure that their op-
erational goals are continuously met.

Lhttp://www.descartes-research.net

2.2 Approach

Our approach to the realization of the above vision
is based on the use of online QoS models integrated
into the system components and capturing all service
aspects relevant to managing application QoS and re-
source efficiency during operation [6, 15, 10]. In con-
trast to black-box models, the modeling techniques
we are working on are designed to explicitly capture
all relevant aspects (both static and dynamic) of the
underlying software architecture, execution environ-
ment, hardware infrastructure, and service usage pro-
files. In parallel to this, we are working on self-aware
service platforms designed to automatically maintain
models during operation to reflect the evolving system
environment. The online models are meant to serve as
a “mind” to the running services controlling their be-
havior, i.e., deployment configurations, resource allo-
cations and scheduling decisions. To facilitate the ini-
tial model construction and continuous maintenance
during operation, we are working on techniques for
automatic model extraction based on monitoring data
collected at run-time [4, 8, 7].

Current architecture-level? performance models for
component-based architectures, surveyed in [12], (e.g.,
PCM [2], CBML [17], CB-SPE [3]) are used as a basis.
The latter are being extended to capture the perfor-
mance influences of the platforms used at each layer
of the system execution environment focusing on the
virtualization and middleware layers. Resource allo-

2We distinguish between descriptive architecture-level QoS
models and predictive QoS models. The former describe QoS-
relevant aspects of software architectures and execution envi-
ronments (e.g., UML models augmented with QoS-related an-
notations). The latter capture the temporal system behavior
and can be used for QoS prediction by means of analytical or
simulation techniques (e.g., Markov chains, layered queueing
networks or stochastic Petri nets).

cations at the various layers are modeled explicitly
and benchmark results are exploited to quantify the
relative performance of different execution platforms.
This makes it possible to predict how the QoS of a
running service will be affected if resource allocations
are modified or if the service is migrated from one VM
to another possibly running on a different platform.
Unlike conventional architecture-level QoS models,
the developed online QoS models are dynamic in the
sense that they are maintained automatically at run-
time to reflect the evolving system environment. To
realize this, execution platforms are enhanced to au-
tomatically extract and maintain models during op-
eration. Depending on the type of system considered
and the availability of monitoring and instrumenta-
tion frameworks, the degree of automation of the ini-
tial model extraction will vary. For example, for a
newly developed system, the extraction could poten-
tially be completely automated, whereas for legacy
systems some manual steps might be necessary.

Query Results

{ Online QoS Query }

4

S

Component Component
QoS Models QoS Models QoS

= = = Predictions
Model
‘ ‘ ‘ ﬁ Analysis
Model
Com;)oseition @
_ _ _ ModeI»To-Mo_deI
Transformation

Architecture-level
System QoS Model

Predictive
System QoS Model

Figure 2: Online QoS Prediction Process

The main purpose of the developed online QoS
models is to make it possible to answer QoS-related
queries during operation such as: What would be the
effect on the QoS of running applications and on the
resource consumption of the infrastructure if a new
service is deployed in the virtualized environment or
an existing service is migrated from one server to an-
other? How much resources need to be allocated to
a newly deployed application to ensure that Service
Level Agreements (SLAs) are satisfied while maximiz-
ing energy efficiency? What QoS would the system
exhibit after a period of time if the workload con-
tinues to develop according to the current trends?
How should the system configuration be adapted to
avoid QoS problems or inefficient resource usage aris-
ing from changing customer workloads? What oper-
ating costs does a service hosted on the infrastructure
incur and how does the service workload and usage
profile impact the costs? We refer to such queries as
online QoS queries.

Each time an online QoS query is executed, it is
processed by means of the online QoS models which
are composed dynamically after determining which
specific parts of the system are relevant to answering
the query. Figure 2 illustrates the process that is fol-
lowed in order to provide an answer to a query. First,
the online QoS models of all involved system compo-
nents are retrieved and combined by means of model
composition techniques into a tailored architecture-
level system QoS model encapsulating all informa-
tion relevant to answering the QoS query. Given the
wide range of possible contexts in which the online
QoS models can be used, automatic model-to-model
transformation techniques are used to generate tai-
lored predictive models on-the-fly depending on the
required accuracy and the time available for the anal-
ysis. Existing model-to-model transformations for
static architecture-level performance models are used
as a basis, e.g., [14, 2, 13]. The target predictive model
type and level of abstraction as well as the solution
technique are determined on-the-fly based on the re-
quired accuracy and the time available for the anal-
ysis. Multiple predictive model types (e.g., queueing
networks, stochastic Petri nets, stochastic process al-
gebras and general-purpose simulation models) and
model solution techniques (e.g., exact analytical tech-
niques, numerical approximation techniques, simula-
tion and bounding techniques) are employed here in
order to provide flexibility in trading-off between pre-
diction accuracy and analysis overhead.

Refine/Calibrate Forecast
Model(s) Workload
* Service Workloads
* Resource Utilization / \
* SLAs /" Collect A * SLA Violations
> Monitor * Inefficient Resource
| | Usage
e . System and ‘ -
/Act / Workload) / Analyze
|) | e | - 5 1
Reconfigure f 4| Anticipate/Detect | |
| System | Problem
S — B — = N\ N
Problem
resolved
<{ Problem persistw
/" Decide ‘ v
| Predict Generate i
|| Reconfiguration = Reconfiguration ||
Effect(s) Scenario
Analyze Query Online QoS Generate
- e
Results Prediction Query

Figure 3: Online Reconfiguration Process

The ability to answer online QoS queries during
operation provides the basis for implementing novel
techniques for self-aware QoS management [10, 6, 15].
Such techniques are triggered automatically during
operation in response to observed or forecast changes
in the environment (e.g., varying service workloads).
The goal is to proactively adapt the system to such

changes in order to avoid anticipated QoS problems,
inefficient resource usage and/or high system operat-
ing costs. The adaptation is performed in an auto-
nomic fashion by considering a set of possible system
reconfiguration scenarios (e.g, changing VM place-
ment and/or resource allocations) and exploiting the
online QoS query mechanism to predict the effect of
such reconfigurations before making a decision [6].
Figure 3 depicts the online reconfiguration process
and the self-adaptation control loop which is based
on the generic model of a control loop from [5] ex-
tended to integrate the use of the online QoS query
mechanism. In addition to the main control loop, two
additional loops are running in the background, one
for continuously refining and calibrating online mod-
els and one for forecasting the workload evolution.

2.3 Preliminary Results

As an initial step towards the described vision, we
conducted several preliminary case studies. In [4], we
studied a complex Java EE application showing how
detailed architecture-level performance models can be
extracted and maintained automatically at run-time
based on online monitoring data. The extracted per-
formance models provided performance predictions
with less than 20% deviation from measurements on
the real system. In [8], we studied an enterprise data
fabric and developed a simulation-based tool for au-
tomated performance prediction and capacity plan-
ning. The tool, called Jewel, automates resource de-
mand estimation, performance model generation, per-
formance model analysis, and results processing. A
detailed experimental evaluation of the tool demon-
strated its effectiveness and practical applicability.
In [15], we studied a SOA application running in
a service-oriented Grid computing environment and
showed how online performance models can be used
at run-time for autonomic QoS-aware resource allo-
cation. Finally, in our most recent case study [6],
we showed how online architecture-level performance
models can be exploited for self-adaptive resource allo-
cation in virtualized environments. We explored the
use of such models to predict the effects of changes
in user workloads, as well as to predict the effects
of respective reconfiguration actions, undertaken dur-
ing operation to avoid SLA violations or inefficient
resource usage. The case study demonstrated the fea-
sibility of using architecture-level performance models
at run-time and the benefits they provide in terms of
cost savings.

3 Concluding Remarks

We presented a research roadmap and a long-term vi-
sion aiming to develop a novel methodology for the
engineering of next generation self-aware IT systems
and services. Such systems and services are charac-
terized by the combination of three properties: self-
reflective, self-predictive and self-adaptive. The de-

scribed approach raises several big challenges that rep-
resent emerging hot topics in the software and sys-
tems engineering community and will be subject of
long-term fundamental research in the years to come.
Self-Aware Software and Systems Engineering [9] is a
newly emerging research area at the intersection of
several computer science disciplines including Soft-
ware and Systems Engineering, Computer Systems
Modeling, Autonomic Computing, Distributed Sys-
tems, Cluster and Grid Computing, and more re-
cently, Cloud Computing and Green IT (see Figure 4).
The realization of the described vision calls for an in-
terdisciplinary approach considering not only techni-
cal but also business and economical challenges. The
resolution of these challenges promises to reduce the
costs of ICT and their environmental footprint while
keeping the high growth rate of IT services.

e Stochastic
models for QoS
prediction

 Service-
oriented
architectures &
modeling

techniques Software &

Systems
Engineering

Computer
Systems
Modeling

ar
SELF-AWARE SYSTEMS & SERVICES
W
Cluster, Grid
and Cloud
Computing,
Green IT

Distributed
Systems &
Autonomic
Computing

¢ Dynamic
virtualized
data center
infrastructures

s Control theory
and self-
adaptation
techniques

Figure 4: Self-Aware Software & Systems Engineering

References

[1] L. A. Barroso and U. Holzle.
Energy-Proportional Computing.
puter, 40(12):33-37, 2007.

The Case for
IEEE Com-

[2] S. Becker, H. Koziolek, and R. Reussner. The
Palladio component model for model-driven per-
formance prediction. Elsevier Journal of Systems
and Software, 82:3-22, 2009.

[3] A. Bertolino and R. Mirandola. Software Per-
formance Engineering of Component-based Sys-
tems. In Proc. of the 3rd International Workshop
on Software and Performance (WOSP 2004).
ACM Press, 2004.

[4] F. Brosig, N. Huber, and S. Kounev. Auto-
mated Extraction of Architecture-Level Perfor-
mance Models of Distributed Component-Based
Systems. In 26th IEEE/ACM International
Conference On Automated Software Engineering
(ASE 2011), November 6-11, Oread, Lawrence,
Kansas, 2011.

[5]

[10]

[11]

B. H. C. Cheng, R. de Lemos, H. Giese, P. In-
verardi, and J. Magee. Software Engineering for
Self-Adaptive Systems: A Research Roadmap. In
Software Engineering for Self-Adaptive Systems,
Springer LNCS 5525, pages 1-26, 2009.

N. Huber, F. Brosig, and S. Kounev. Model-
based Self-Adaptive Resource Allocation in Vir-
tualized Environments. In SEAMS’11: 6th In-
ternational Symposium on Software Engineering
for Adaptive and Self-Managing Systems, May
23-24, Waikiki, Honolulu, Hawaii, USA. ACM
Press, 2011.

N. Huber, M. von Quast, M. Hauck, and
S. Kounev. Evaluating and Modeling Vir-
tualization Performance Overhead for Cloud
Environments. In Ist International Confer-
ence on Cloud Computing and Services Science
(CLOSER 2011), May 7-9, Noordwijkerhout,
The Netherlands, 2011.

S. Kounev, K. Bender, F. Brosig, N. Huber, and
R. Okamoto. Automated Simulation-Based Ca-
pacity Planning for Enterprise Data Fabrics. In
4th International ICST Conference on Simula-
tion Tools and Techniques (SIMUTools 2011),
March 21-25, Barcelona, Spain, 2011.

S. Kounev, F. Brosig, and N. Huber. Self-Aware
QoS Management in Virtualized Infrastructures
(Poster Paper). In 8th International Conference
on Autonomic Computing (ICAC 2011), June
14-18, Karlsruhe, Germany, 2011.

S. Kounev, F. Brosig, N. Huber, and R. Reuss-
ner. Towards self-aware performance and re-
source management in modern service-oriented
systems. In Proceedings of the Tth IEEFE Interna-
tional Conference on Services Computing (SCC
2010), July 5-10, Miami, Florida, USA. TEEE
Computer Society, 2010.

S. Kounev, P. Reinecke, K. Joshi, J. Bradley,
F. Brosig, V. Babka, S. Gilmore, and A. Ste-
fanek. Providing Dependability and Resilience
in the Cloud: Challenges and Opportunities. In
A. Avritzer, A. van Moorsel, K. Wolter, and
M. Vieira, editors, Resilience Assessment and
FEvaluation, Dagstuhl Seminar 10292. Springer
Verlag, 2011.

H. Koziolek. Performance evaluation of
component-based software systems: A survey.
Performance Fvaluation, 67(8):634-658, 2010.

H. Koziolek and R. Reussner. A Model Trans-
formation from the Palladio Component Model
to Layered Queueing Networks. In Proc. of
the SPEC International Performance Evaluation
Workshop (SIPEW 2008). Springer LNCS 5119,
2008.

[14]

[15]

P. Meier, S. Kounev, and H. Koziolek. Au-
tomated Transformation of Palladio Compo-
nent Models to Queueing Petri Nets. In 19th
IEEE/ACM International Symposium on Mod-
eling, Analysis and Simulation of Computer and
Telecommunication Systems (MASCOTS 2011),
July 25-27, Singapore, 2011.

R. Nou, S. Kounev, F. Julia, and J. Torres. Au-
tonomic QoS control in enterprise Grid environ-
ments using online simulation. Journal of Sys-

tems and Software, 82(3):486-502, Mar. 2009.

K. Parent. Server Consolidation Improves IT’s
Capacity Utilization. Vol. 2006: Court Square
Data Group, 2005.

X. Wu and M. Woodside. Performance Modeling
from Software Components. In Proc. of the 3rd
International Workshop on Software and Per-
formance (WOSP 2004), pages 290-301. ACM
Press, January 2004.

