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Modern IT system archi-
tectures are becom-

ing increasingly distributed, have 
loosely coupled services, and are often 
deployed on virtualized infrastruc-
tures that abstract physical layers to 
improve system efficiency. The ben-
efits of distributed architectures and 
virtualized infrastructures come at 
the cost of higher system complexity 
and dynamics; the inherent semantic 
gap between application- level metrics 
and resource allocations at the phys-
ical and virtual layers significantly 
increases the complexity of managing 
end-to-end application performance.

To tackle this challenge, tech-
niques for online performance prediction are needed 
that enable the continuous prediction of three per-
formance aspects: application workload changes, the 
effects of these changes on system performance, and the 
expected impact of possible adaptation actions. Online 
performance prediction can be the basis for designing 
systems that proactively adapt to changing operating 
conditions, thus enabling self-aware performance and 
resource management.1 (See the “Self-Aware Computing 
Systems” sidebar for more information.) 

We have developed a model-based approach to design-
ing self-aware IT systems along with the Descartes Mod-
eling Language (DML),3 an architecture-level language 
that is central to online performance prediction and pro-
active model-based system adaptation. We have applied 
our model-based design approach in several case stud-
ies with realistic environments and in cooperation 
with industrial partners.4,5 In an evaluation against a 
trigger- based approach (which relies on custom metrics 
and specified thresholds to execute predefined reconfig-
uration actions), our approach maintained acceptable 

Results of a five-year research project 

and several industrial collaborations have 

produced tools that model the individual 

effects and complex dynamic interactions 

between an IT system’s application workload 

and resource contention at multiple levels in 

the execution environment. An evaluation 

shows significant resource efficiency 

gains without sacrificing the performance 

specified in service-level agreements.
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resource efficiency and avoided 60 
percent of service- level agreement 
(SLA) violations.

DESCARTES  
MODELING LANGUAGE
Figure 1 is a high-level structural dia-
gram of DML (http://descartes.tools 
/dml), which consists of five meta-
models (from the bottom up): resource 
landscape, application architecture, 
usage profile, adaptation points, and 
adaptation process.

Resource landscape metamodel
The resource landscape metamodel de-
scribes the structure and properties of 
both the physical and logical resources 
that make up the IT system infra-
structure. A common pattern in mod-
ern IT infrastructures is the nested 

containment of system entities: for ex-
ample, data centers contain racks, racks 
contain servers, servers typically con-
tain a set of virtual machines (VMs), a 
VM contains an OS, an OS can contain a 
middleware layer, and so on. DML pro-
vides constructs to model this hierar-
chy of nested resources as well as their 
internal configuration.

In Figure 2, the core elements of 
the resource landscape metamodel are 
described as a Unified Modeling Lan-
guage (UML) class diagram.

A CompositeInfrastructure entity 
can be nested inside another Composite­
Infrastructure entity, which might be 
used to model the nesting of datacen-
ter resources (for example, datacenters 
contain server racks consisting of server 
and storage nodes). The central ele-
ment of each CompositeInfrastructure 

entity is the abstract entity Container, 
which has a containment relation to 
the RuntimeEnvironment entity. The lat-
ter is also a Container entity that can 
contain additional  RuntimeEnvironment 
entities. Thereby, it is possible to model 
the container nesting (OS, virtualiza-
tion platform, and middleware). To fur-
ther specify the resource- configuration 
properties of a Container entity, 
 Container refers to a Configuration­
Specification. Finally, the metamodel 
provides the ContainerTemplate entity 
to ease the modeling of containers with 
similar configurations.

Application 
architecture metamodel
We modeled the system’s application 
architecture after the principles of 
component-based software systems.  

SELF-AWARE COMPUTING SYSTEMS

The consensus at the 2015 Dagstuhl Seminar 
15041 (www.dagstuhl.de/15041) was that 

self-aware computing systems have two main 
properties. They

 » learn models, capturing knowledge about 
themselves and their environment (such 
as their structure, design, state, possible 
actions, and runtime behavior) on an  
on going basis; and

 » reason using the models (to predict, analyze, 
consider, or plan), which enables them to act 
based on their knowledge and reasoning (for 
example, to explore, explain, report, suggest, 
self-adapt, or impact their environment)

and do so in accordance with high-level goals, 
which can change.1

A major application domain for self-aware com-
puting is the runtime management of modern IT sys-
tems.1 In this context, an IT system is considered self-
aware if it possesses three properties or can acquire 
them at runtime—ideally to an increasing degree:

 » Self-reflective—is aware of its software 
architecture and execution environment, the 
hardware infrastructure on which it runs, and 

its operational goals, such as performance 
requirements.

 » Self-predictive—can predict the effects of 
dynamic changes, such as changing service 
workloads, and of possible adaptation actions, 
such as adding or removing resources.

 » Self-adaptive—proactively adapts as the 
environment evolves to ensure that it always 
meets its operational goals.

For the most part, existing research and indus-
trial approaches do not address these properties. 
Most state-of-the-art industrial approaches for per-
formance and resource management, like Amazon 
EC2 or Microsoft Windows Azure, are rule-based or 
heuristics- driven and have custom triggers. How-
ever, application-level metrics, such as response 
times, normally exhibit a nonlinear relationship to 
system load and typically depend on the behavior of 
multiple virtual machines (VMs) across several appli-
cation tiers. Therefore, it is hard to determine general 
thresholds for firing triggers to enforce service-level 
agreements at the application level, which violates 
the self-predictive and self-adaptive properties.

Most research approaches to performance and 
resource management are based primarily on coarse-
grained performance models that typically abstract 
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A software component is a unit of com-
position with explicitly defined inter-
faces. To describe the performance 
behavior of a service offered by a com-
ponent, the application architecture 
metamodel supports multiple (possi-
bly coexisting) behavior abstractions 
at different granularity levels—from 
black box to fine-grained behavioral 
descriptions. The novelty of the support 
for multiple abstraction levels is that 
the model is usable in different online 
performance prediction scenarios with 
different goals and constraints, from a 
quick analysis of performance bounds 
to a detailed system simulation.

Deployment and usage 
profile metamodels
The deployment metamodel captures 
the link between the resource landscape 

and the application architecture. It asso-
ciates software components with their 
allocated containers in the resource 
landscape. The usage-profile metamodel 
captures workload type (open or closed) 
along with a probabilistic description 
of workload intensity (such as request- 
arrival rates), user behavior, and which 
services are called and in what order.

Adaptation points and 
process metamodels
The adaptation points metamodel 
describes the elements of the resource 
landscape and the application architec-
ture that can be reconfigured at runtime. 
On the basis of this model, the adapta-
tion process metamodel enables design-
ers to describe the way the system adapts 
to environmental changes. This meta-
model has three main parts: actions, 

tactics, and strategies. Figure 3 shows 
the main DML metamodel elements for 
each part.

Actions. Actions capture an adapta-
tion operation’s execution at the model 
level. Examples include increasing or 
decreasing a VM’s processing resources, 
cloning or removing a VM, and migrat-
ing a software component.

Tactics. Tactics allow the description 
of more complex adaptations. A set of 
actions is composed to an Adaptation-
Plan through the use of control-flow ele-
ments, such as branches and loops. For 
example, a tactic to add resources might 
be: “if possible, increase a VM’s process-
ing resources; otherwise, start another 
VM.” Once the tactic is applied in the 
model, online prediction techniques 

systems and applications at a high level.2−4 As such, 
they cannot exhibit the self-reflective property 
because they do not explicitly model the software 
architecture and execution environment and there-
fore cannot distinguish performance-relevant 
behavior at the virtualization level versus at the 
level of applications hosted inside the running VMs. 
Their self-prediction capabilities are limited, which 
makes them ill suited for complex scenarios, such 
as predicting how application-workload changes 
propagate through the system architecture to the 
physical resource layer or the effect on different 
services’ response times of migrating a VM in one 
application tier to a different host type.

In autonomic computing, software models play 
an important role in managing complexity and sup-
porting adaptation decisions.5,6 However, existing 
model-based approaches usually focus only on 
adaptation at the application level, excluding the 
system’s operational environment.7−9 Adaptation 
decisions typically depend on rule-based policies 
and heuristics without the ability to predict the 
effects of any adaptation actions on end-to-end 
system performance, which is essential to inform-
ing the adaptation process.
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evaluate its potential impact. If apply-
ing the tactic is likely to help achieve 
the stated adaptation goal, it is main-
tained as part of the adaptation plan. 
Otherwise, it is rolled back and another 
tactic is applied.

Strategies. Strategies capture the adap-
tation process’s logical aspects by defin-
ing objectives and conveying ideas for 
satisfying them. A strategy can be a 
simple one-tactic plan or a complex, 
multilayered plan that uses multiple 
tactics to accomplish an objective. The 
tactic applied depends on the system 
state and the tactic’s predicted impact 
on system performance. Because the 
tactical sequence is not predefined, 
the system can flexibly react with dif-
ferent tactics (defensive or aggressive) 
in unforeseen situations. A defensive 
strategy might be, “add as few resources 
as possible stepwise until response time 
violations are resolved.” An aggressive 
strategy might be, “add a large amount 
of resources in one step so that response 
time violations are eliminated, ignor-
ing resource inefficiencies.”

SAMPLE DML METAMODEL
A sample DML model instance illus-
trates these metamodels. Figure 4, 
which depicts the resource landscape 
model instance, shows the resource hier-
archy as well as resource-configuration 
templates and adaptation points. A full 
DML implementation of this instance is 
available from the DML website (http://
descartes.tools/dml). The root element 
is DataCenterA, which represents the 
local datacenter in the computer science 
department at the Karlruhe Institute 
of Technology (KIT). DataCenterA con-
tains CompositeInfrastructure, which 
relates to ServerCluster1, the DML label 
for a computing cluster, and a separate 
database server (DatabaseServer), which 
relates to a separate computing infra-
structure (CompositeInfrastructure). 
The cluster consists of five computa-
tional nodes (ComputeNodes) connected 
by a 1-Gbit Ethernet LAN. Each node 
runs the XenServer 5.5 as a hypervisor, 
and two VMs run on top of each Xen-
Server. The database server also con-
nects to the cluster through four 1-Gbit 
Ethernet connections.

The templates to specify the resource 
configuration for various container 
types are stored in the Container­

TypeA_Specs repository. The repository 
reduces modeling overhead by refer-
ring to templates instead of model-
ing each container’s details. For exam-
ple,  ComputeNodeTemplate specifies the 
hardware-resource configuration of 
the computational nodes in the clus-
ter. Each node has two ActiveResource­
Specification specifications, one for 
each of its CPUs. Each CPU, in turn, has 
four cores with 2.66 GHz and uses the 
PROCESSOR_ SHARING scheduling policy. 
XenServer5.5Template is a template for 
the runtime environment (Runtime­
Environment) of class HYPERVISOR. Finally, 
VMTemplate specifies the configuration of 
the VMs hosted by the XenServer.

The model instance in Figure 4 
also describes the system’s adapta-
tion points: the number of a VM’s CPUs 
(NrOfVcpus), the number of VM instances 
(VmInstances), and the VM’s location 
(VmHost). Corresponding to these vari-
able elements, the model instance con-
tains three adaptation points—one 
ModelVariableConfigurationRange and 
two ModelEntity ConfigurationRange—
the boundaries of which can be speci-
fied using the Object Constraint Lan-
guage (OCL; www.omg.org/spec/OCL). 
Figure 5 shows the code for the two 
ModelEntity ConfigurationRange points.

BUILDING MODELS IN DML
We have built a series of DML models 
to enable online performance predic-
tion and model-based self-adaptation, 
which is based on a modified control 
loop. We also developed an adaptation 
framework that takes a DML instance 
as input and interprets the adapta-
tion process, applying the modeled 
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FIGURE 1. High-level structural overview of the Descartes Modeling Language (DML). 
DML’s modular structure reflects the major aspects relevant for modeling IT system perfor-
mance and resource management, such as available resources, application architecture, 
points at which the system can adapt at runtime, and how adaptation will occur.
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changes on the application architec-
ture, resource landscape, and deploy-
ment models. Finally, we have con-
structed an open source tool chain 
(http://descartes.tools) to support the 
design of systems with self-aware 

performance and resource manage-
ment capabilities. The tools include 
editors and solvers for DML models, a 
workload classification and forecast-
ing tool, and a library for resource- 
demand estimation.

Online performance prediction
Online predictions include both the 
effects of workload changes on system 
performance and the expected impact 
of adaptation tactics. The impact of a 
workload change or an applied tactic 
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at the model level can be predicted by 
using stochastic modeling and analy­
sis to evaluate the adapted DML model 
instance. One of DML’s novel aspects 
is that it supports different abstrac­
tion levels of service behavior as 
well as different stochastic analy sis 
 techniques—which, combined, allow 
tradeoffs between prediction accu­
racy and time to result (time from trig­
gering the prediction to obtaining its 
result). Our current DML version sup­
ports an approximate analytical tech­
nique based on mean­value analysis 
and two more detailed and accurate 
solving techniques based on discrete­ 
event simulation.4

Model-based self-adaptation
Both software engineers and the auto­
nomic computing community use the 
notion of a control, or feedback, loop 
as an essential generic concept to build 
adaptive and self­adaptive systems. The 
control loop generally specifies four 
phases—monitor, analyze, plan, and exe­
cute (MAPE)—and can add “with knowl­
edge” (MAPE­K).6

We refined this generic control loop to 
fit the requirements of our model­ based 
adaptation approach. The modified loop, 
shown in Figure 6, exploits DML’s online 
performance prediction capabilities to 
implement adaptation processes at the 
model level.

Observe/reflect. The system collects 
monitoring data (observations of the sys­
tem and its environment), which is used 
to extract, refine, calibrate, and continu­
ously update the DML models, providing 
the basis for online workload forecast­
ing and performance prediction.

Detect/predict. Monitoring data and 
online DML models are used to analyze 
the current system state so as to detect 
or predict performance problems, 
such as SLA violations or inefficient 
resource use. Proactive system adap­
tation requires anticipating perfor­
mance problems. To this end, we devel­
oped an approach for self­ adaptive 
workload classification and forecast­
ing that uses techniques from time­se­
ries analysis.7 When a change in the 
workload intensity is forecast, these 
techniques are applied to the online 
DML model using online prediction 
techniques to predict the impact on the 
system performance.

Plan/decide. The online DML models 
are used to find an adequate solution 
to a detected or predicted problem by 
adapting the system at runtime. Three 
steps are executed iteratively in this 
phase: selection of an adaptation tactic 
applied at the model level, prediction 
of the tactic’s impact, and incremental 
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FIGURE 4. Sample resource landscape instance annotated with adaptation points. The container repository (<<ContainerRepository>>) 
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points include the number of a VM’s CPUs (NrOfVcpus), the number of VM instances (VmInstances), and the VM’s location (VmHost).

context ModelEntityConfigurationRange

inv  minVmInstances:

       let similarContainers   :   Set(Container) = Container.allInstances()

           -> select(c | c.template = self.adaptableEntity)

     in similarContainers -> size() > 1; 

context ModelEntityConfigurationRange

inv  maxVmInstances:

       let similarContainers   :   Set(Container) = Container.allInstances()

           -> select(c | c.template = self.adaptableEntity)

     in similarContainers -> size() < 4;

FIGURE 5. Boundaries for two ModelEntityConfigurationRange adaptation points, which 
are specified in the Object Constraint Language.
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construction of an adaptation plan. The 
three steps are driven by the adaptation 
process model.

Act/adapt. The actual adaptation is 
performed on the real system by exe-
cuting the adaptation actions that 
have been successfully applied at the 
model level.

EVALUATION RESULTS
One of the industrial case studies in 
which we applied our approach was 
to model a representative business 
application (as defined by the SPEC-
jEnterprise  2010 benchmark). Figure 4 
shows the resource landscape and the 
adaptation points for the case study; 
the application architecture model 
instance can be seen at http://descartes 
.tools/dml/examples. The adaptation 
process is shown in Figure 7.

Efficiency gains
To demonstrate the efficiency gains of 
our model-based system adaptation—a 
proactive approach—we compared the 
total amount of allocated resources 
and the number of SLA violations when 
applying our approach against con-
ventional static resource allocation—a 
reactive approach—using data from an 
industrial partner to ensure that the 
workload was realistic.

Figure 8 shows the workload as the 
number of processed transactions from 
Monday to Sunday in 15-minute frames 
(a total of 575 frames). We assumed that 
the maximum workload would be eight 
times the standard workload (8× work-
load intensity).

The static approach required 2,300 
active nodes (575 time frames × 4 nodes). 
The reactive approach, which performs 
an adaptation action (to add or remove 

a node) when an SLA’s response time is 
violated or when a resource is not used 
efficiently, performed 109 adaptation 
actions and used 1,002 active nodes. The 
number of active nodes decreased—44 
percent of the resources used with the 
static assignment—but at the cost of 
109 SLA violations.

Our proactive approach, which 
adjusts resource allocation to the pre-
dicted workload before violations 
occur, used 1,040 active nodes, but had 
only 43 SLA violations. Thus, although 
our approach needs approximately 5 
percent more resources than the reac-
tive approach, it can avoid approxi-
mately 60 percent of the SLA violations 
for that approach.

Overhead analysis
To better understand efficiency, we 
divided the overhead of our proactive 
adaptation approach into overhead 

for workload classification and fore-
casting and overhead for the adapta-
tion process. Our experiments showed 
that workload classification and fore-
casting overhead ranged from seconds 
to a few minutes, depending on the 
data and configuration settings.5 The 
adaptation process overhead is sig-
nificantly higher because it depends 
on the number of iterations to find a 
solution at the model level and model 
performance− analysis overhead for 
each iteration. The number of itera-
tions to find a solution is application 
specific and relies on the adaptation- 
process specification. In general, 
the more clearly adaptation goals 
are specified within the process, the 
fewer iterations are required to find a 
solution. The overhead for analyzing 
model performance depends on the 
techniques used for online performance 
predictions and on model complexity. 
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FIGURE 6. Self-aware system adaptation loop in a real system. The system executes the 
DML models that implement the adaptation plan, which includes system architecture, oper-
ational goals and policies, dynamic system state, and adaptation strategies and process.
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Experiments revealed that the time 
to obtain prediction results varied 
between seconds and a few minutes in 
the worst case.4,5 As demonstrated in 
representative case studies, this is suf-
ficient for different scenarios such as 
business information systems and com-
putationally intensive applications.5

Our DML-based framework to de-
sign self-aware IT systems has 
advantages over trigger-based 

and black-box modeling in that it con-
siders the individual effects and com-
plex interactions between application 
workload profiles and resource conten-
tion at multiple levels and can describe 

dynamic aspects like adaptation pro-
cesses at the model level. Descriptions 
are easy to understand, can be machine 
processed, and are reusable. Validation 
in several case studies shows that sig-
nificant resource- efficiency gains are 
possible without sacrificing SLA perfor-
mance requirements. 
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FIGURE 7. A schematic representation of the adaptation process for the case study. The overall objective is to maintain service-level agree-
ments (SLAs) while using resources efficiently, which branches to MaintainSLAs (left) and OptimizeResourceEfficiency (right), each of 
which has an attendant strategy to either increase resources (ResolveBottleneck) or decrease them (ReduceResources). Each strategy has 
corresponding tactics and actions.
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FIGURE 8. Workload intensity as related to node use in the case study. (a) Forecast versus actual workload intensity for four nodes over 
time. Transactions are in 15-minute time frames for a total of 575 possible time frames over six days. (b) Same timeline with three pos-
sible node-allocation approaches. The peaks and valleys represent node use. In the static approach (red horizontal line), all nodes must be 
active for all 575 time frames. The reactive (green lines) and proactive (blue lines) approaches add and remove nodes more efficiently to 
cope with workload intensity, but the proactive approach avoids many more SLA violations.
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