
Autonomic QoS-Aware Resource Management in Grid
Computing using Online Performance Models

Samuel Kounev
University of Cambridge

Computer Laboratory
Cambridge, CB3 0FD, UK

skounev@acm.org

Ramon Nou
Technical University of

Catalonia
Computer Architecture Dept.

Jordi Girona 1-3
E08034 Barcelona, Spain

rnou@ac.upc.edu

Jordi Torres
Barcelona Supercomputing

Center
Jordi Girona, 29

E08034 Barcelona, Spain
jordi.torres@bsc.es

ABSTRACT

As Grid Computing increasingly enters the commercial do-
main, performance and Quality of Service (QoS) issues are
becoming a major concern. The inherent complexity, het-
erogeneity and dynamics of Grid computing environments
pose some challenges in managing their capacity to ensure
that QoS requirements are continuously met. In this paper,
an approach to autonomic QoS-aware resource management
in Grid computing based on online performance models is
proposed. The paper presents a novel methodology for de-
signing autonomic QoS-aware resource managers that have
the capability to predict the performance of the Grid com-
ponents they manage and allocate resources in such a way
that service level agreements are honored. The goal is to
make the Grid middleware self-configurable and adaptable
to changes in the system environment and workload. The
approach is subjected to an extensive experimental evalu-
ation in the context of a real-world Grid environment and
its effectiveness, practicality and performance are demon-
strated.

Categories and Subject Descriptors

D.4.8 [Operating Systems]: Performance—Modeling and

prediction; D.4.7 [Operating Systems]: Organization and
Design—Distributed systems; C.4 [Performance of Sys-

tems]: Modeling techniques

Keywords

QoS control, resource allocation, online performance models,
Grid computing, SOA

1. INTRODUCTION
Grid Computing emerged in the second half of the 1990s

as a new computing paradigm for advanced science and engi-
neering. It not only managed to establish itself as the major

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Valuetools ’07, October 23-25, 2007, Nantes, France
Copyright 2007 ICST 978-963-9799-00-4.

computing paradigm for high-end scientific applications, but
it is now becoming a mainstream paradigm for enterprise ap-
plications and distributed system integration [1,12]. By en-
abling flexible, secure and coordinated sharing of resources
and services among dynamic collections of disparate orga-
nizations and parties, Grid computing promises a number
of advantages to businesses, for example faster response to
changing business needs, better utilization and service level
performance, and lower IT operating costs [1]. However, as
Grid computing enters the commercial domain, performance
and QoS (Quality of Service) aspects, such as customer ob-
served response times and throughput, are becoming a major
concern.

Large scale grids are typically composed of large number
of heterogeneous components deployed in disjoint adminis-
trative domains, in highly distributed and dynamic envi-
ronments. Managing QoS in such environments is a chal-
lenge because Service Level Agreements (SLA) must be es-
tablished and enforced both globally and locally at the com-
ponents involved in the execution of tasks [22]. Grid compo-
nents are assumed to be autonomous and they may join and
leave the grid dynamically. At the same time, enterprise and
e-business workloads are often characterized by rapid growth
and unpredictable variations in load. These aspects of enter-
prise Grid environments make it hard to manage their capac-
ity and ensure that enough resources are available to provide
adequate QoS to both customers and enterprise users. The
resource allocation and job scheduling mechanisms used at
the global and local level play a critical role for the perfor-
mance and availability of Grid applications. To guarantee
that QoS requirements are satisfied, the Grid middleware
must be capable of predicting the application performance
when deciding how to distribute the workload among the
available resources. Prediction capabilities make it possible
to implement intelligent QoS-aware resource allocation and
admission control mechanisms.

Performance prediction in the context of traditional en-
terprise systems is typically done by means of performance
models that capture the major aspects of system behavior
under load [21]. Numerous performance prediction and ca-
pacity planning techniques for conventional distributed sys-
tems, most of them based on analytic or simulation models,
have been developed and used in the industry. However,
these techniques generally assume that the system is static
and that dedicated resources are used. Furthermore, the
system is normally exposed to a fixed set of quantifiable

workloads. Therefore, such performance prediction tech-
niques are not adequate for Grid environments which use
non-dedicated resources and are subject to dynamic changes
in both the system configuration and workload. To address
the need for performance prediction in Grid environments,
new techniques are needed that use performance models gen-
erated on the fly to reflect changes in the environment. The
term online performance models was recently coined for this
type of models [20]. The online use of performance mod-
els defers from their traditional use in capacity planning in
that configurations and workloads are analyzed that reflect
the real system over relatively short periods of time. Since
performance analysis is carried out on the fly, it is essential
that the process of generating and analyzing the models is
completely automated.

This paper proposes an approach to autonomic QoS-aware
resource management in Grid computing based on predic-
tive online performance models. A novel methodology is
presented for designing autonomic QoS-aware resource man-
agers that have the capability to predict the performance of
the Grid components they manage and allocate resources in
such a way that SLAs are honored. The goal is to make the
Grid middleware self-configurable and adaptable to changes
in the system environment and workload. QoS-aware re-
source reservation and admission control mechanisms are
employed to ensure that resources are only allocated if enough
capacity is available to provide adequate performance. Re-
source managers engage in QoS negotiations with clients
making sure that they can provide the requested QoS be-
fore making a commitment.

Our approach is the first one to combine QoS control with
fine-grained load-balancing making it possible to distribute
the workload among the available Grid resources in a dy-
namic way that improves resource utilization and efficiency.
The latter is crucially important for enterprise and com-
mercial Grid environments. Another novel aspect of our
methodology is that it is the first one that uses queueing
Petri nets as online performance models for autonomic QoS
control. The use of queueing Petri nets is essential since it
enables us to accurately model the behavior of our resource
allocation and load balancing mechanism which combines
hardware and software aspects of system behavior. More-
over, queueing Petri nets have been shown to lend them-
selves very well to modeling distributed component-based
systems [18] which are commonly used as building blocks
of Grid infrastructures [10]. As demonstrated in [5], queue-
ing Petri nets provide greater modeling power and expres-
siveness than conventional queueing networks and stochastic
Petri nets. Thus, being based on queueing Petri nets, our
methodology provides flexibility in choosing the level of de-
tail and accuracy at which Grid components are modeled.
Finally, although the methodology we propose is targeted at
Grid computing environments, it is not in any way limited
to such environments and can be readily used to build more
general QoS-aware Service-Oriented Architectures (SOA).

To validate our approach, we implemented a prototype of
a QoS-aware resource manager and deployed it in the con-
text of a real-world Grid environment based on the Globus
Toolkit [15]. We subjected the system to an extensive ex-
perimental evaluation comparing its behavior in two differ-
ent configurations - “with QoS Control” vs. “without QoS
Control”. The results demonstrate the effectiveness of our
approach and its applicability to QoS-aware resource man-

agement in Grid environments.
The rest of the paper is organized as follows. Section 2

introduces the Globus Toolkit discussing the protocols and
mechanisms it provides for resource management and QoS
control. Section 3 presents our methodology for autonomic
QoS-aware resource management in Grid environments. In
Section 4, the results of our experimental evaluation of the
proposed approach are presented. Finally, an overview of
some related work is given in Section 5 and the paper is
wrapped up in Section 6.

2. BACKGROUND
The main problem Grid Computing aims to address was

defined in [13] as the “coordinated resource sharing and
problem solving in dynamic, multi-institutional virtual or-
ganizations”. The goal of these dynamically created virtual
environments, referred to as virtual organizations, is to en-
able disparate groups of mutually distrustful participants
(organizations and/or individuals) to share resources in a
controlled fashion and benefit from non-trivial qualities of
service such as improved performance, availability, coordi-
nated fail-over, optimal resource management and utiliza-
tion, common security semantics, etc.

In [13] the authors present an extensible and open multi-
layered Grid architecture comprising five layers: fabric, con-
nectivity, resource, collective and application. The fabric

layer provides the resources to which shared access is me-
diated by Grid protocols, for example, computational re-
sources, data storage resources, network resources or sen-
sors. A resource may also be a logical entity, such as high-
performance cluster or distributed storage system. The con-

nectivity layer provides the core communication and secu-
rity protocols (authentication and access control) required
for Grid-specific transactions. The resource layer defines
protocols, APIs, and SDKs for secure negotiation, initia-
tion, monitoring, control, accounting, and payment of shar-
ing operations on individual resources. The collective layer
provides protocols and services that coordinate interactions
across collections of resources. Finally, the application layer
comprises the user applications that operate in the Grid en-
vironment.

An implementation of this multi-layered architecture is
found in the Globus Toolkit (GT) [15]. The latter is a
community-based, open-architecture, open-source set of ser-
vices and software libraries that support Grids and Grid
applications. The toolkit addresses issues of security, infor-
mation discovery, resource management, data management,
communication, fault detection, and portability. Globus
Toolkit mechanisms are in use at hundreds of sites and by
dozens of major Grid projects worldwide. The latest Web
Services-based GT 4 release provides significant improve-
ments over previous releases in terms of usability, robust-
ness, performance, standards compliance and functionality.
Below we look at some of the protocols and mechanisms the
Globus Toolkit provides for resource management (resource
reservation and allocation) and QoS control.

The Globus Resource Management Architecture [10] ad-
dresses the relatively narrow QoS problem of providing ded-
icated access to collections of computers in heterogeneous
distributed systems. The architecture consists of three main
components: an information service, local resource man-
agers, and various types of co-allocation agents, which imple-
ment strategies used to discover and allocate the resources

required to meet application QoS requirements. An applica-
tion that wishes to create a computation passes a description
of that computation to a co-allocation agent. This agent
uses some combination of information service queries, gen-
eral heuristics, and application-specific knowledge to map
application QoS requirements into resource requirements, to
discover resources with those requirements, and to allocate
those resources.

The General-purpose Architecture for Reservation and Al-
location (GARA) [11] generalizes and extends the Globus
Resource Management Architecture to support advance reser-
vation and co-allocation of heterogeneous collections of re-
sources (e.g. computers, networks or storage systems) for
end-to-end QoS. The GARA system comprises a number of
resource managers that each implement reservation, control,
and monitoring operations for a specific resource. Uniform
interfaces allow applications to express QoS requirements for
different types of resources in similar ways, hence simplifying
the development of end-to-end QoS management strategies.
In [14] an approach to managing QoS in Grid environments
is proposed that combines features of reservations and adap-
tation. In this approach, a combination of online control in-
terfaces for resource management, a sensor allowing online
monitoring, and decision procedures embedded in resources
enable a rich variety of dynamic feedback interactions be-
tween applications and resources.

The mechanisms discussed above provide a basic frame-
work for managing QoS in Grid applications which is based
on simple ad hoc procedures used to map application QoS re-
quirements into resource requirements. As such these mech-
anisms do not possess any sophisticated performance pre-
diction capabilities that are required to guarantee that ap-
plication SLAs are honored. Furthermore, being targeted
at high-end applications, they do not provide support for
fine-grained QoS-aware load-balancing which is essential for
commercial workloads.

3. GRID QOS-AWARE RESOURCE

MANAGEMENT
The allocation and scheduling mechanism used at the global

and local level play a critical role for the performance and
availability of Grid applications. To prevent resource conges-
tion and unavailability, it is essential that admission control
mechanisms are employed by local resource managers. Fur-
thermore, to achieve maximum performance, the Grid mid-
dleware must be smart enough to schedule tasks in such a
way that the workload is load-balanced among the available
resources and they are all roughly equally utilized. How-
ever, this is not enough to guarantee that the performance
and QoS requirements are satisfied. To prevent inadequate
QoS, resource managers must be able to predict the system
performance for a given resource allocation and workload
distribution. In this section, we present a methodology for
designing QoS-aware resource managers as part of the Grid
middleware. The methodology is meant to be applied at the
resource layer of the general Grid architecture outlined in
Section 2.

3.1 Resource Manager Architecture
The resource manager architecture we propose is com-

posed of four main components: QoS Broker, QoS Predic-
tor, Client Registry and Service Registry. Figure 1 shows a

high-level view of the architecture. A resource manager is
responsible for managing access to a set of Grid servers each
one offering some Grid services. Grid servers can be het-
erogeneous in terms of the hardware and software platforms
they are based on and the services they offer. Services can
be offered by different number of servers depending on the
user demand. The resource manager keeps track of the Grid
servers currently available and mediates between clients and
servers to make sure that SLAs are continuously met. For
a client to be able to use a service, it must first send a
session request to the resource manager. The session re-
quest specifies the type of service requested, the frequency
with which the client will send requests for the service1 (ser-
vice request arrival rate) and the required average response
time (SLA). The resource manager tries to find a distribu-
tion of the incoming requests among the available servers
that would provide the requested QoS. If this is not possi-
ble, the session request is rejected or a counter offer with
lower throughput or higher average response time is made.
Figure 2 shows a more detailed view of the resource manager
architecture and its internal components. We now take an
inside look at each component in turn.

Grid
QoS
-Aware

Resource Manager

Clie
nt

 S
es

sio
n

Neg
ot

ia
tio

n

Grid Server 1

Services
 CPUs

Grid Server
 N

Services
 CPUs
Client

Service
Request

Service Request

Dispatcher

Client

Registry

QoS

Broker

QoS

Predictor

Service

Registry

Figure 1: Resource manager architecture.

The service registry keeps track of the Grid servers the
resource manager is responsible for and the services they of-
fer. Before a Grid server can be used, it must register with
a resource manager providing information on the services it
offers, their resource requirements and the server capacity
made available to the Grid. For maximum interoperability,
it is expected that standard Web Services mechanisms, such
as WSDL [8], are used to describe services. In addition to
sending a description of the services, the Grid server must
provide a workload model that captures the service behav-
ior and resource requirements. Depending on the type of
services, the workload model could vary in complexity rang-
ing from a simple specification of the service demands at
the server resources to a detailed mathematical model cap-
turing the flow of control during service execution. Finally,
the server administrator might want to impose a limit on its
usage by the Grid middleware in order to avoid overloading
it. Some Grid servers have been shown to exhibit unstable
behavior when their utilization approaches 99% [24]. For
each server, the service registry keeps track of its maximum
allowed utilization by the Grid.

The QoS broker receives session requests from clients, al-

1Note that we distinguish between session requests and the
individual service requests sent as part of a session.

Grid
QoS
-Aware Resource Manager

QoS
 Predictor

Online Model

Generator

Online Model

Solver

Service Request Dispatcher

Session Service Queue

Concurrent Service Requests

QoS
 Broker

Negotiation

Policy

Client Registry

Client Session

 - Service Requested

 - Request Arrival Rate

 - Response Time
 SLA

Service Registry

Grid Server

 - Offered Services

 - Server Workload Model

 - Server Capacity and Utilization Constraints

Figure 2: Inside view of the resource manager architecture.

locates server resources and negotiates SLAs. When a client
sends a session request, the QoS broker tries to find an op-
timal distribution of the workload among the available Grid
servers that satisfies the QoS requirements. It is assumed
that for each client session, a given number of threads (from
0 to unlimited) is allocated on each Grid server offering the
respective service. Incoming service requests are then load-
balanced across the servers according to thread availability.
Threads serve to limit the concurrent requests executed on
each server, so that different load-balancing schemes can be
enforced. The QoS broker tries to distribute the workload
uniformly among the available servers to achieve maximum
efficiency. In doing so it considers different configurations in
terms of thread allocation and for each of them uses the
QoS predictor to predict the performance of the system.
The goal is to find a configuration that satisfies both the
SLAs of active sessions and the constraints on the maxi-
mum utilization of the Grid servers. If no configuration can
be found, the QoS broker must either reject the session re-
quest or send a counter offer to the client. At each point in
time, the client registry keeps track of the currently active
client sessions. For each session, information on the service
requested, the request arrival rate and the required average
response time (SLA) is stored.

If a session request is accepted, the resource manager sets
up a service request dispatcher for the new session, which is
a standalone software component responsible for scheduling
arriving service requests (as part of the session) for process-
ing at the Grid servers. It is ensured that the number of con-
current requests scheduled on a Grid server does not exceed
the number of threads allocated to the session for the respec-
tive server. The service request dispatcher queues incoming
requests and forwards them to Grid servers as threads be-
come available. Note that threads are used here as a logical

entity to enforce the desired concurrency level on each server.
Thread management is done entirely by the service request
dispatcher and there is no need for Grid servers to know
anything about the client sessions and how many threads
are allocated to each of them. In fact the only requirement
is that the request dispatcher sends no more concurrent re-
quests to a Grid server than the maximum allowed by the
active configuration. While the request dispatcher might use
a separate physical thread for each logical thread allocated
to a session, this is not required by the architecture and
there are many ways to avoid doing this in the interest of
performance. Service request dispatchers are not required to
run on the same machine as the resource manager and they
can be distributed across multiple machines if needed. To
summarize, service request dispatchers serve as light-weight
session load-balancers enforcing the selected workload dis-
tribution.

Service request dispatchers play an essential role in our
framework since they completely decouple the Grid clients
from the Grid servers. This decoupling provides some im-
portant advantages that are especially relevant to modern
Grid applications. First of all, the decoupling enables us
to introduce fine-grained load-balancing at the service re-
quest level, as opposed to the session level. Second, ser-
vice request dispatchers make it possible to load-balance
requests across heterogeneous server resources without re-
lying on any platform-specific scheduling or load-balancing
mechanisms. Finally, since clients do not interact with the
servers directly, it is possible to adjust the resource alloca-
tion and load-balancing strategies dynamically. Thus, our
framework is geared towards making the Grid middleware
self-configurable and adaptable to changes in the system en-
vironment and workload. Taken together the above men-
tioned benefits provide extreme flexibility in managing Grid

resources which is essential for enterprise and commercial
Grid environments.

3.2 QoS Predictor
The QoS Predictor is a critical component of the resource

manager architecture since it is the basis for ensuring that
the QoS requirements are continuously met. The QoS Pre-
dictor is made of two subcomponents - model generator and
model solver. The model generator automatically constructs
a performance model based on the active client sessions and
the server workload models retrieved from the service reg-
istry. The model solver is used to analyze the model either
analytically or through simulation. Different types of per-
formance models can be used to implement the QoS Pre-
dictor. We propose the use of Queueing Petri Nets (QPNs)
which provide greater modeling power and expressiveness
than conventional modeling formalisms like queueing net-
works, extended queueing networks and generalized stochas-
tic Petri nets [5]. In [18], it was shown that QPN models lend
themselves very well to modeling distributed component-
based systems and provide a number of important benefits
such as improved modeling accuracy and representativeness.
The expressiveness that QPNs models offer makes it possi-
ble to model the logical threads used in our load-balancing
mechanism accurately. Depending on the size of QPN mod-
els, different methods can be used for their analysis, from
product-form analytical solution methods [6] to highly opti-
mized simulation techniques [19].

Figure 3 shows a high-level QPN model of a set of Grid
servers under the control of a QoS-aware resource manager.
The Grid servers are modeled with nested QPNs represented
as subnet places. The Client place contains a G/G/∞/IS
queue which models the arrival of service requests sent by
clients. Service requests are modeled using tokens of differ-
ent colors, each color representing a client session. For each
active session, there is always one token in the Client place.
When the token leaves the Client queue, transition t1 fires
moving the token to place Service Queue (representing the
arrival of a service request) and depositing a new copy of
it in the Client queue. This new token represents the next
service request which is delayed in the Client queue for the
request interarrival time. An arbitrary request interarrival
time distribution can be used. For each Grid server the re-
source manager has a Server Thread Pool place containing
tokens representing the logical threads on this server allo-
cated to the different sessions (using colors to distinguish
between them). An arriving service request is queued at
place Service Queue and waits until a thread for its session
becomes available. When this happens, the request is sent
to the subnet place representing the respective Grid server.
After the request is processed, the logical service thread is
returned back to the thread pool from where it was taken.
By encapsulating the internal details of Grid servers in sep-
arate nested QPNs, we decouple them from the high-level
performance model. Different servers can be modeled at
different level of detail depending on the complexity of the
services they offer. It is assumed that when registering with
the resource manager, each Grid server provides all the infor-
mation needed for constructing its nested QPN model. This
information is basically what constitutes the server work-
load model discussed earlier. In the most general case, Grid
servers could send their complete QPN models to be inte-
grated into the high-level model.

Client
 Service

Queue

Grid
 Server 1

Grid
 Server
 N

Server 1

Thread Pool

Server
 N

Thread Pool

t
1
 t
2
 t
3

QoS
-Aware Resource Manager

Figure 3: Generic performance model.

3.3 Resource Allocation Algorithm
The presented resource manager architecture is reliant on

an efficient algorithm for allocating resources in such a way
that both the QoS requirements and the Grid server utiliza-
tion constraints are honored. In this section, we present such
an algorithm that can be used to implement the QoS Bro-
ker component described in Section 3.1. Formally, the Grid
environment under the control of a QoS-aware resource man-
ager can be represented as a 4-tuple G = (S, V, F, C) where:

S = {s1, s2, ..., sm} is the set of Grid servers,

V = {v1, v2, ..., vn} is the overall set of services offered by
the Grid servers,

F ∈ [S −→ 2V]2 is a function assigning a set of services to
each Grid server. Since Grids are typically heteroge-
neous in nature, we assume that, depending on the
platform they are running on, Grid servers might offer
different subsets of the overall set of services,

C = {c1, c2, ..., cl} is the set of currently active client ses-
sions. Each session c ∈ C is a triple (v, λ, ρ) where
v ∈ V is the service used, λ is the rate at which re-
quests for the service arrive and ρ is the client re-
quested average response time (SLA).

We denote the number of processors (CPUs) of server s ∈ S
as P (s) and the server’s maximum allowed average utiliza-
tion as U(s). It is assumed that for each client session, a
given number of threads (from 0 to unlimited) is allocated
on every Grid server offering the respective service. Recall
that threads are used as a logical entity to limit the concur-
rency level on each server and they should not be confused
with physical threads allocated on the machines. The goal of
the resource allocation algorithm is to find a configuration,
in terms of allocated threads, that satisfies both the SLAs of
active sessions and the constraints on the maximum utiliza-
tion of the Grid servers. A configuration is represented by
a function T ∈ [C × S −→ N0 ∪ {∞}] which will be referred
to as thread allocation function. Hereafter, a superscript T
will be used to denote functions or quantities that depend
on the thread allocation function, e.g. XT (c).

2 2V denotes the set of all possible subsets of V , i.e. the
power set.

As discussed in Section 3.1, the QoS Broker examines a
set of possible configurations using the QoS Predictor to de-
termine if they meet the requirements. For each considered
configuration, the QoS Predictor takes as input the thread
allocation function T and provides the following predicted
metrics as output:

XT (c) for c ∈ C is the total number of completed service
requests from client session c per unit of time (the
overall throughput),

UT (s) for s ∈ S is the average utilization of server s,

RT (c) for c ∈ C is the average response time of an arriving
service request from client session c.

We define the following predicates:

P T
X (c) for c ∈ C is defined as (XT (c) = c[λ])

P T
R (c) for c ∈ C is defined as (RT (c) <= c[ρ])

P T
U (s) for s ∈ S is defined as (UT (s) <= U(s))

For a configuration represented by a thread allocation
function T to be acceptable, the following condition must
hold (∀c ∈ C : P T

X (c) ∧ P T
R (c)) ∧ (∀s ∈ S : P T

U (s)). We de-
fine the following functions:

AT (s)
def
= (U(s) − UT (s))P (s)

is the amount of unused server CPU time for a given con-
figuration taking into account the maximum allowed server
utilization,

IT (v, ǫ)
def
= {s ∈ S : (v ∈ F (s)) ∧ (AT (s) ≥ ǫ)}

is the set of servers offering service v that have at least ǫ
amount of unused CPU time. We now present a simple
heuristic resource allocation algorithm in mathematical style
pseudocode. It is outside the scope of this paper to present
complete analysis of possible heuristics and their efficiency.
Let c̃ = (v, λ, ρ) be a newly arrived client session request.
The algorithm proceeds as follows:

1 C := C ∪ {c̃}

2 for each s ∈ IT (v, ǫ) do T (c̃, s) := ∞

3 if
`

∃ c ∈ C : ¬P T
X (c)

´

then reject c̃

4 while
`

∃ ŝ ∈ S : ¬P T
U (ŝ)

´

do

5 begin

6 T (c̃, ŝ) := 1

7 while P T
U (ŝ) do T (c̃, ŝ) := T (c̃, ŝ) + 1

8 T (c̃, ŝ) := T (c̃, ŝ) − 1

9 end

10 if
`

∃ c ∈ C \ {c̃} : ¬P T
X (c) ∨ ¬P T

R (c)
´

then reject c̃

11 if
`

¬P T
X (c̃) ∨ ¬P T

R (c̃)
´

then

12 send counter offer o =
`

v, XT (c̃), RT (c̃)
´

13 else accept c̃

The algorithm first adds the new session to the list of
active sessions and assigns it an unlimited number of threads
on every server that has a given minimum amount of CPU
time available. If this leads to the system not being able
to sustain the required throughput of an active session, the
request is rejected. Otherwise, it is checked if there are
servers whose maximum utilization requirement is broken.

For every such server, the number of threads for the new
session is set to the highest number that does not result in
breaking the maximum utilization requirement. It is then
checked if the response time or throughput requirement of
one of the original sessions is violated and if that is the
case the new session request is rejected. Otherwise, if the
throughput or response time requirement of the new session
is broken, a counter offer with the predicted throughput and
response time is sent to the client. If none of the above
holds, i.e., all requirements are satisfied, the session request
is accepted.

4. EXPERIMENTAL ANALYSIS
The autonomic QoS-aware resource manager architecture

described in the previous sections was implemented in C++
and subjected to an extensive experimental analysis to eval-
uate its effectiveness. This section presents the results of
our study. For lack of space, we cannot include all config-
urations considered and what we do instead is present the
results from one representative scenario which illustrates our
findings.

Our test environment consists of two heterogeneous Grid
servers, the first one 2-way Pentium Xeon at 2.4 GHz with
2 GB of memory and the second one 4-way Pentium Xeon
at 1.4 GHz with 4 GB of memory. Both servers run Globus
Toolkit 4.0.3 (with the latest patches) on a Sun 1.5.0 06
JVM. Access to the Grid servers is controlled by our QoS-
aware resource manager, running on a separate machine with
identical hardware as the first Grid server. This machine is
also used for emulating the clients that send requests to the
Grid. The machines communicate over a Gigabit network.
The focus of our analysis is on the QoS negotiation and
resource allocation algorithms and not on the way individual
Grid servers are modeled.

As a basis for our experiments, we use three sample ser-
vices each with different behavior and service demands. The
services use the Grid to execute some business logic requiring
a given amount of CPU time. The business logic might in-
clude calls to external (third-party) service providers which
are not part of the Grid environment. The time spent wait-
ing for external service providers is emulated by introducing
some sleep time during the processing of service requests.
Table 1 shows the CPU service times of the three services
at the two Grid servers and the total time emulated waiting
for external service providers. The third service does not
use any external service providers.

Table 1: Workload services.
Service 1 Service 2 Service 3

CPU service time on
2-way server (sec)

6.89 4.79 5.84

CPU service time on
4-way server (sec)

7.72 5.68 6.49

External service
provider time (sec)

2.00 3.00 na

Both of the Grid servers offer all of the three services and
they provide the data on Table 1 as part of their server work-
load model when registering with the resource manager. The
resource manager uses this data to construct a performance

model of the Grid servers as discussed in Section 3.2. Each
Grid server is modeled using a nested QPN (see Figure 4).
The nested QPNs are then integrated into the subnet places
of the high-level system model in Figure 3. Service requests
arriving at a Grid server circulate between queueing place
Server CPUs and queueing place Service Providers, which
model the time spent using the server CPUs and the time
spent waiting for external service providers, respectively.
Place Server CPUs contains a G/M/m/PS queue where
m is the number of CPUs, whereas place Service Providers

contains a G/M/∞/IS queue. For simplicity, it is assumed
that the service times at the server CPUs, the request in-
terarrival times and the times spent waiting for external
service providers are all exponentially distributed. In the
general case this is not required. The firing weights of tran-
sition t2 are set in such a way that place Service Providers

is visited one time for Services 1 and 2 and it is not vis-
ited for Service 3. The QPN models of the two Grid servers
were validated and shown to provide accurate predictions
of performance metrics (with error below 10%). The model
solver component of the QoS Predictor was implemented
using SimQPN - our highly optimized simulation engine for
QPNs [19].

Service

Providers

Input
 Output
Server

CPUs

Grid Server

t
1
 t
2

t
3

Figure 4: Grid server model.

4.1 Analysis Results
As a first step in validating our approach we conducted

an extensive evaluation of the accuracy of our model-based
QoS Predictor in predicting the performance of the Grid en-
vironment for a given configuration. A number of different
configurations under different session mixes, thread alloca-
tions and request arrival rates were analyzed and in each case
the model predictions were compared against measurements
of the real system. The results showed that the QoS Pre-
dictor provided very consistent and accurate predictions of
performance metrics. In all cases, the modeling error was
below 15%.

We now present the results from an experiment in which
16 session requests are sent to the resource manager each
with a given throughput and response time SLA. The ex-
periment is run until all accepted sessions complete. The
session length, in terms of the number of service requests
sent before closing a session, varies between 20 and 120 with
an average of 65. The response time SLA ranges between
16 and 30 seconds. We compare the behavior of the sys-
tem in two different configurations - “with QoS Control” vs.
“without QoS Control”. In the first configuration, the re-

source manager applies admission control using our resource
allocation framework to ensure that SLAs are honored. In
the second configuration, the resource manager simply load-
balances the incoming requests over the two servers without
considering QoS requirements. For both Grid servers, we
assume that there is a 90% maximum server utilization con-
straint. The experiment was repeated 10 times for each of
the two configurations to evaluate the variability of mea-
sured data.

Figure 5: Server utilization without QoS Control.

Figure 6: Server utilization with QoS Control.

Figures 5 and 6 show the measured CPU utilization of
the Grid servers during the experiment in the two config-
urations. The points at which sessions begin and end are
shown on the x-axis. As we can see, without QoS Con-
trol both servers are overloaded during the first half of the
experiment exceeding their targeted maximum utilization.
In contrast, when running with QoS Control enabled, some
session requests are rejected and the server utilization does
not exceed its target upper bound of 90%. The throughput
achieved for each session in the two configurations is de-
picted in Figure 7 (95% confidence intervals are given)3. In

3Note that in the case with QoS Control, the throughput is
only shown for sessions that were accepted by the resource
manager.

the case without QoS Control, the expected throughput of
session 3 and sessions 11-15 is not reached because the Grid
servers are overloaded. When QoS Control is enabled, all ac-
cepted sessions achieve their target throughput. Note that
the expected throughput is interpreted as an average value
over a longer period of time and therefore, due to the lim-
ited session length, the measured throughput is sometimes
slightly higher or lower than the expected average.

Figure 7: Throughput obtained with QoS Con-

trol vs. without QoS Control.

Figure 8: Response time obtained with QoS Con-

trol vs. without QoS Control.

Figure 8 shows the measured average response times of
sessions with and without QoS Control (95% confidence in-
tervals are given). As seen from the results, when QoS Con-
trol is enabled, response times are very stable and all SLAs
are fulfilled. The system exhibits very stable behavior from
one iteration of the experiment to the next and the confi-
dence intervals are very narrow given that they are com-
puted for the mean of a quantity which is itself an average
value (i.e. average request response time). In contrast, with-
out QoS Control, due to the fact that the Grid servers are
overloaded, the system exhibits very variable response times

and the client requested SLAs are broken. The confidence
intervals are by far much wider in this case.

An important goal of our resource management frame-
work is to minimize the overhead for evaluating alternative
configurations using the resource allocation algorithm and
the QoS Predictor when deciding whether to accept or re-
ject a new session request. A 95% confidence interval for
the time required to reach a decision was estimated to be
10.82 ± 0.14 seconds in the above experiment. The more
detailed the workload models, the higher the overhead for
QoS Control. Thus, there is a trade-off between the quality
of the resource allocation decisions and the efficiency of the
resource manager.

The above experiment was repeated for a number of dif-
ferent workload configurations varying the transaction mix,
the average session length, the Grid server utilization, etc.
The results were of similar quality as the ones presented
above and they confirmed the effectiveness of our resource
manager architecture in ensuring that QoS requirements are
continuously met. Figure 9 shows the response time results
from a longer experiment in which 99 sessions were executed
over a period of 2 hours. The average session duration was
18 minutes in which 92 service requests were sent on aver-
age. In this experiment, when running without QoS control,
the system was configured to automatically reject session re-
quests during periods in which both Grid servers were com-
pletely saturated. While this improved the average response
times of accepted sessions, the response times were still too
high when running without QoS control and the SLAs were
violated. In contrast, with QoS control, the response times
of accepted sessions were much lower and all SLAs were ful-
filled.

Figure 9: Response time obtained with QoS Con-

trol vs. without QoS Control.

We are currently conducting an in-depth evaluation of the
performance of our framework as the size and complexity of
the modeled Grid servers and their workload increase. In our
preliminary experiments the overhead of the QoS Predictor
was measured to be less than 60 sec for a scenario with 40
Grid servers and 80 sessions. Given that QoS Control is
done only in the beginning of a session, we believe this is
acceptable for a large class of applications. We will report
the detailed results of our evaluation in a follow up paper.

5. RELATED WORK
There is a large body of work on resource management and

QoS in Grid computing environments and service-oriented
architectures in general.

In [22] a framework for resource allocation in Grid com-
puting is presented. The authors consider the general case in
which applications are decomposed into tasks that exhibit
precedence relationships. The problem consists in finding
the optimal resource allocation that minimizes total cost
while preserving execution time service level agreements. A
framework for building heuristic solutions for this NP-hard
problem is developed. In [7] the authors show how ana-
lytic queueing network models combined with combinato-
rial search techniques can be used to develop methods for
optimal resource allocation in autonomic data centers. The
above works however do not deal with the problem of QoS
negotiation and enforcement.

In [23], a framework for designing QoS-aware software
components is proposed. The authors introduce so-called
Q-components that negotiate soft QoS requirements with
clients (i.e., average response time and throughput) and use
online analytic performance models (more specifically closed
multiclass queueing networks) to ensure that client requests
are accepted only if the requested QoS can be provided.
The same approach was applied in [20] to the design of QoS-
aware service-oriented architectures. While these works pro-
vide some basic support for negotiating and enforcing QoS
requirements in loosely-coupled SOA environments, they do
not completely decouple service users from service providers
and therefore suffer from several significant drawbacks. For
example, fine-grained load-balancing at the service request
level is not provided. Moreover, the resource allocation and
load-balancing strategy of a client session cannot be dynam-
ically reconfigured. Finally, these methods being based on
product-form queueing networks are rather limited in terms
of modeling accuracy and expressiveness.

An alternative approach to autonomic resource allocation
in multi-application data centers based on reinforcement
learning is proposed in [29]. Instead of using explicit per-
formance models, this approach uses a knowledge-free trial-
and-error methodology to learn resource valuation estimates
and construct decision-theoretic optimal policies. In [30] the
authors extend their approach to support offline training
on data collected while an externally supplied initial policy
(based on an explicit performance model) controls the sys-
tem. An active learning approach to resource allocation for
simple batch workloads is proposed in [27]. This approach
uses performance histories gathered through noninvasive in-
strumentation to build predictive models of frequently used
applications. The approach however is focused on compute
batch tasks that run to completion at machine speed. Re-
quest arrivals and concurrency related behavior is not con-
sidered.

In [16] a QoS guided task scheduling algorithm for Grid
computing is proposed. The algorithm uses a long-term,
application-level prediction model to estimate the task com-
pletion time in a non-dedicated environment. Based on the
same model a performance prediction and task scheduling
system called Grid Harvest Service was developed [28]. The
focus of this work is on long-term (long-running) applica-
tions. In [26] a performance management system for cluster-
based web services is presented. The system supports mul-
tiple classes of web services traffic and allocates server re-

sources dynamically with the goal to maximize the expected
value of a given cluster utility function in the face of fluctuat-
ing loads. Simple queueing models are used for performance
prediction. This framework currently does not support QoS
negotiation and admission control.

Further related work in the area of resource management
and QoS in Grid computing and SOA environments can be
found in [17], [3], [2], [4], [31], [25], [9].

6. CONCLUSIONS AND FUTURE WORK
This paper presented a novel methodology for designing

QoS-aware Grid resource managers that have the capabil-
ity to predict the performance of the Grid components they
manage and allocate resources in such a way that SLAs are
continuously met. Our approach is the first one to combine
QoS control with fine-grained load-balancing making it pos-
sible to distribute the workload among the available Grid
resources in a dynamic way that improves resource utiliza-
tion and efficiency. Moreover, by completely decoupling the
Grid clients from the Grid servers, session resources can be
reallocated on the fly to reflect changes in the system envi-
ronment and workload. We exploited queueing Petri nets to
accurately model the resource allocation and load balancing
mechanism which combines hardware and software aspects
of system behavior. A major advantage of our approach is
that, being based on queueing Petri nets, it provides great
flexibility in choosing the level of detail and accuracy at
which system components are modeled. To the best of our
knowledge, this is the first application of queueing Petri nets
as online performance models for autonomic QoS control.
Although the methodology we propose is targeted at Grid
computing environments, it is not in any way limited to such
environments and can be readily used to build more general
QoS-aware service-oriented architectures.

A prototype of the proposed resource management frame-
work was implemented in C++ and subjected to an exten-
sive experimental evaluation in the context of a real-world
Grid environment based on the Globus Toolkit, the world’s
leading open-source framework for building Grid infrastruc-
tures. The results demonstrated the effectiveness of our ap-
proach and its applicability to QoS-aware resource manage-
ment in Grid environments.

The area considered in this paper has many different as-
pects that will be subject of future work. We plan to extend
our framework along several dimensions. First, we intend
to evaluate the overhead of the QoS Predictor as the size
and complexity of the modeled Grid servers and their work-
load increase. We envision a number of different ways in
which the resource allocation algorithm can be optimized
and plan to evaluate different approaches experimentally.
While, currently only soft QoS requirements (average val-
ues) are guaranteed, we intend to enhance the architecture
to support hard QoS requirements (e.g. guaranteeing 90%
percentiles of performance metrics). Another aspect we in-
tend to investigate is how our framework can be extended to
take into account the costs associated with using the Grid
resources when negotiating QoS targets.

7. ACKNOWLEDGEMENTS
This work was supported by the Spanish Ministry of Sci-

ence and Technology, the European Union under contract
TIN2004-07739-C02-01, and the German Research Founda-

tion under grant KO 3445/1-1. We acknowledge the support
of our colleague Ferran Julià from the Technical University
of Catalonia in resolving many technical issues.

8. REFERENCES

[1] Enterprise Grid Alliance. www.gridalliance.org.

[2] C. Adam and R. Stadler. A Middleware Design for
Large-scale Clusters Offering Multiple Services. IEEE

electronic Transactions on Network and Service

Management, 3(1), 2006.

[3] R. Al-Ali, K. Amin, G. von Laszewski, O. Rana,
D. Walker, M. Hategan, and N. Zaluzec. Analysis and
Provision of QoS for Distributed Grid Applications.
Journal of Grid Computing, 2(2), 2004.

[4] R. Al-Ali, O. Rana, G. von Laszewski, A. Hafid,
K. Amin, and D. Walker. A Model for Quality-of-
Service Provision in Service Oriented Architectures.
Journal of Grid and Utility Computing, 2005.

[5] F. Bause. ”QN + PN = QPN” - Combining Queueing
Networks and Petri Nets. Technical report no.461,
Dept. of CS, University of Dortmund, Germany, 1993.

[6] F. Bause and P. Buchholz. Queueing Petri Nets with
Product Form Solution. Performance Evaluation,
32(4):265–299, 1998.

[7] M. N. Bennani and D. A. Menascé. Resource
Allocation for Autonomic Data Centers using Analytic
Performance Models. In Proc. of the 2nd Intl.

Conference on Automatic Computing, 2005.

[8] R. Chinnici, J.-J. Moreau, A. Ryman, and
S. Weerawarana. Web Services Description Language
(WSDL) Version 2.0. Technical report, W3C, Mar.
2006. http://www.w3.org/TR/wsdl20.

[9] Y. Diao, J. L. Hellerstein, S. Parekh, H. Shaikh,
M. Surendra, and A. Tantawi. Modeling Differentiated
Services of Multi-Tier Web Applications. In 14th

IEEE Intl. Symposium on Modeling, Analysis, and

Simulation, 2006.

[10] I. Foster and C. Kesselman. The Grid 2: Blueprint for

a New Computing Infrastructure. Morgan Kaufmann,
second edition, Nov. 2003. ISBN: 1558609334.

[11] I. Foster, C. Kesselman, C. Lee, R. Lindell,
K. Nahrstedt, and A. Roy. A Distributed Resource
Management Architecture that Supports Advance
Reservations and Co-Allocation. In Proc. of the Intl.

Workshop on Quality of Service, 1999.

[12] I. Foster, C. Kesselman, J. M. Nick, and S. Tuecke.
Grid Services for Distributed System Integration.
Computer, 35(6):37–46, 2002.

[13] I. Foster, C. Kesselman, and S. Tuecke. The Anatomy
of the Grid: Enabling Scalable Virtual Organizations.
Intl. J. High Perform. Comput. Appl., 15(3), 2001.

[14] I. Foster, A. Roy, and V. Sander. A quality of service
architecture that combines resource reservation and
application adaptation. In Proc. of the 8th Intl.

Workshop on Quality of Service, pages 181–188, 2000.

[15] I. T. Foster. Globus Toolkit Version 4: Software for
Service-Oriented Systems. In Proc. of the 2005 IFIP

Intl. Conference on Network and Parallel Computing,
pages 2–13, 2005.

[16] X. He, X. Sun, and G. Laszewski. A QoS Guided
Scheduling Algorithm for Grid Computing. In Proc. of

the Int’l Workshop on Grid and Cooperative

Computing, 2002.

[17] N. H. Kapadia, J. A. B. Fortes, and C. E. Brodley.
Predictive Application-Performance Modeling in a
Computational Grid Environment. In 8th IEEE Intl.

Symposium on High Perform. Distr. Comput., 1999.

[18] S. Kounev. Performance Modeling and Evaluation of
Distributed Component-Based Systems using
Queueing Petri Nets. IEEE Transactions on Software

Engineering, 32(7):486–502, July 2006.

[19] S. Kounev and A. Buchmann. SimQPN - a tool and
methodology for analyzing queueing Petri net models
by means of simulation. Performance Evaluation,
63(4-5):364–394, May 2006.

[20] D. Menascé, M. Bennani, and H. Ruan. Self-Star

Properties in Complex Information Systems, volume
3460 of LNCS, chapter On the Use of Online Analytic
Performance Models in Self-Managing and
Self-Organizing Computer Systems. Springer, 2005.

[21] D. A. Menascé, V. A. Almeida, and L. W. Dowdy.
Performance by Design. Prentice Hall, 2004.

[22] D. A. Menascé and E. Casalicchio. A Framework for
Resource Allocation in Grid Computing. In Proc. of

the The IEEE Computer Society’s 12th Annual Intl.

Symposium on Modeling, Analysis, and Simulation of

Computer and Telecommunications Systems, 2004.

[23] D. A. Menascé, H. Ruan, and H. Gomaa. A
Framework for QoS-Aware Software Components. In
Proc. of the 4th Intl. Workshop on Software and

Performance, 2004.

[24] R. Nou, F. Julià, and J. Torres. Should the grid
middleware look to self-managing capabilities? In
Proc. of the 8th Intl. Symposium on Autonomous

Decentralized Systems, 2007.

[25] A. Othman, P. Dew, K. Djemamem, and I. Gourlay.
Adaptive Grid Resource Brokering. In Proc. of the

2003 IEEE Intl. Conference on Cluster Computing,
pages 172–179, 2003.

[26] G. Pacifici, M. Spreitzer, A. Tantawi, and A. Youssef.
Performance Management of Cluster-Based Web
Services. IEEE Journal on Selected Areas in

Communications, 23(12):2333–2343, Dec. 2005.

[27] P. Shivam, S. Babu, and J. Chase. Learning
Application Models for Utility Resource Planning. In
Proc. of the 3rd Intl. Conference on Autonomic

Computing, 2006.

[28] X.-H. Sun and M. Wu. Grid Harvest Service: A
System for Long-Term, Application-Level Task
Scheduling. In Proc. of the 17th Intl. Symposium on

Parallel and Distributed Processing, 2003.

[29] G. Tesauro, R. Das, W. Walsh, and J. Kephart.
Utility-Function-Driven Resource Allocation in
Autonomic Systems. In Proc. of the 2nd Intl.

Conference on Autonomic Computing, 2005.

[30] G. Tesauro, N. Jong, R. Das, and M. Bennani. A
hybrid reinforcement learning approach to autonomic
resource allocation. In Proc. of the 3rd Intl.

Conference on Autonomic Computing, 2006.

[31] D. Xu, K. Nahrstedt, A. Viswanathan, and
D. Wichadakul. QoS and Contention-Aware
Multi-Resource Reservation. In Proc. of 9th IEEE Intl.

Symposium on High Perform. Distr. Comput., 2000.

