
Comparison of Request Admission Based Performance Isolation

Approaches in Multi-Tenant SaaS Applications

Rouven Krebs1, Manuel Loesch2
1SAP AG, Walldorf, Germany, rouven.krebs@sap.com

2 FZI Research Center for Information Technology, Karlsruhe, Germany, loesch@fzi.de

Keywords: Multi-tenancy; Performance; Isolation; SaaS; QoS

Abstract: In the Software-as-a-Service model one single application instance is usually shared between different

tenants to decrease operational costs. However, sharing at this level may lead to undesired influence from

one tenant onto the performance observed by the others. Intentionally, the application does not manage

hardware resources and the responsible OS is not aware of application level entities like tenants.

Consequently, it is difficult to control the performance of individual tenants to make sure they are isolated.

In this paper we present an overview and classification of methods to ensure performance isolation based on

request admission control. Further, informational requirements of these methods are discussed.

1 INTRODUCTION

In the cloud computing scenario the providers

leverage economies of scale and resource sharing to

reduce costs of their service offerings. Multi-tenancy

enables one application instance to be shared

between different tenants, including all underneath

layers. This architectural style is widely used in

Software-as-a-Service (SaaS) to decrease costs. A

tenant is defined as a group of users sharing the

same view on an application. A view includes the

data they access, the configuration, the user

management, particular functionality, and non-

functional properties (Krebs et al. 2012). Typically,

a tenant represents a legal entity like a company.

Thus, multi-tenancy provides every tenant a
dedicated view and share of the instance which is

isolated from other shares.

Since Multi-tenant Applications (MTA) share

the hardware, operating system, and application

instance there are potential performance influences

between different tenants and unreliable

performance is one of the major concerns for

potential cloud users. Consequently, one of the cloud

provider’s goals is to provide the best possible

isolation, with regards to the performance the

tenants observe.

Performance isolation exists if for customers

working within their quotas, the performance is not

affected when aggressive customers exceed their

quotas (Krebs et al. 2012).

Besides performance isolation, product

diversification is an important economic factor.

Diversification could be achieved by additional

functionality or tenant specific Quality-of-Service

(QoS), since customers have a divergent willingness

to pay for performance. At the application level the

guaranteed performance usually refers to response

time and throughput as long as a defined request rate

(quota) is not exceeded.

In MTAs where different tenants share one

single application instance, the intended abstraction

between the operating system that provides resource
management and the application that serves multiple

tenants makes performance isolation harder to

achieve. This is due to the fact that the operating

system is not aware of entities like tenants and the

application has no resource control, which is

essential for controlling performance.

Various approaches to ensure performance

isolation in MTAs were already discussed in the

literature (Li et al. 2008; Krebs et al. 2012). In this

paper we focus on approaches which apply a request

based admission control. These methods delay, or

reject requests from a certain tenant before they are

processed by the application server. Thus, it is

possible to influence the performance for each tenant

and to reduce the impact of one tenant’s requests

onto the others as the amount of competing requests

in the application server can be limited.

In this paper we present an overview of 5

generic methods which can be used to establish such

an admission control and estimate their capabilities

to ensure isolation. Further, we describe the concrete

information requirements that have to be fulfilled to
realize the different approaches. This helps

developers who aim for performance isolation to

find the most suitable approach for their scenario.

The reminder of this paper is structured as

follows. In Section 2 we provide an overview and

classification of potential methods to ensure

performance isolation in MT environments based on

admission control, and discuss their pros and cons.

Section 3 summarizes the informational

requirements of the introduced classes. An overview

about related work in the area of performance

isolation is presented in Section 4. Finally, Section 5

concludes with a summary and an outlook on future

work.

2 PERFORMANCE ISOLATION

METHODS

In this chapter, five different classes of admission

control measures for performance isolation and QoS

differentiation are presented. The separation into

classes is done based on the kind of required

information to make a particular method work.

2.1 Static Approaches

Static approaches make decisions without

considering further runtime information such as

perceived response times. Usually these approaches

have a constant behavior over time. The basic idea

for static approaches is illustrated in Figure 1.

A Parameterized Admission Control

mechanism uses static rules with constant priorities
per tenant for the decision of which request is

allowed to pass through to the Multi-Tenant

Application. Thus, the requests can be accepted,

refused, or delayed. The information used by such

approaches are the SLA guarantees given to a tenant

which are used to derive a constant priority for each

tenant. In order to provide QoS differentiation, static

priorities can be assigned to the tenants based on the

SLA-guaranteed response time and quota. The

benefit of such approaches is the rather simple

implementation. However, they do not work well

without feedback about the perceived performance

and quota used by the tenants due to the combination

of random load and a difficultly predictable system

behavior, combined with the aim of sharing idle

resources.

Figure 1: Static Approaches.

Different kinds of static isolation approaches and

there pros and cons have already been discussed

(Krebs et al. 2012). One concrete example is a

Round Robin with an own FIFO-queue per tenant. In

contrast to traditional, non-MTAs such an

implementation does not only use one single queue

for requests from all tenants, but one dedicated

queue for each tenant. The queues are queried one

after each other every time when a new request can

be processed.
The approaches provide a very good isolation

as long as the system is not over-committed;

however, it is possible that one queue holds plenty

requests and the respective tenant's average response

time cannot be reached although it could be. Such a

scenario is, e.g., given when a tenant has a small

amount of requests in his queue which results in a

low average response time for this tenant while other

tenants may have SLA violations due to longer

queues.

2.2 Response Time/Feedback Based
Approaches

Static approaches come along with the discussed

disadvantages in over-committed and high load

scenarios. It is possible that a tenant with a high

request rate perceives SLA violations although other

tenants could have an average response time

significantly below their SLA-guaranteed. In such a

case, the average response time of the tenant with a

high request rate could be reduced by degrading the

tenants that are significantly below their SLA-

guaranteed response times. To solve this issue

runtime information have to be considered to

dynamically adjust the priorities. According to our

SLA definition, the perceived response times and the
quota are of interest.

Hence, response time based approaches like

(Lin et al. 2009) introduce a control loop using

feedback about response times and the throughput as

depicted in Figure 2.

Figure 2: Response Time/Feedback Based approaches.

A Monitor offers the perceived response times per

tenant as well as the throughput per tenant. This

allows the AC Controller to dynamically adjust

priorities per tenant. They are enforced by the

Parameterized Admission Control. Since SLA

guarantees are known by the AC Controller, the

knowledge of the perceived response times allows a

more efficient operation by solving the above-

described issues.

2.3 Resource Demand Based
Approaches

Approaches like (Wang et al. 2012) (Krebs et al.

2014) try to directly control the resource

consumption of a tenant to ensure application level

performance guarantees. The entitled amount of

resources is derived from the SLA guarantees. It can

be expected that a higher quality of performance

isolation can be achieved since resource demand

approaches consider the root cause (consumption of

required resources) for the perceived performance,

rather than the implication (response times). The
mapping of high-level SLAs such as guaranteed

response times from the application layer to low-

level resource requirements on the resource layer is

a research topic that currently attracts a lot of

attention. The idea of these approaches is illustrated

in Figure 3.

Figure 3: Resource Demand Based Approaches.

The AC Controller gives a priority per tenant

based on the static SLA guarantees, the current

resource demand per tenant as well as the response

time and throughput per tenant. The AC Controller

has two major tasks. First, the mapping of a tenant's

SLA guarantee, its perceived response time and its

perceived throughput to a fair resources demand per

tenant. Second, to set priorities to enforce the

tenant's calculated fair resource demands based on

the deviation to his current resource demand.

Besides more accurate performance isolation, such

approaches allow alternative billing options in which

tenants pay for the resources they are allowed to

consume.
It has to be considered that MTAs are typically

composed of three tiers (client, application,

database) (Koziolek 2011). Each tier could consist

of several instances (Loesch & Krebs 2013). This

has to be considered by resource demand based

approaches whereas in the previous approaches

these internal details could be ignored. Further,

different kinds of resources for both the application

and the database tier exist. It also is worth

mentioning that some resources such as RAM allow

determining a current demand represented in Byte

whereas resources like CPU only know the two

states busy and idle. For them, a well-defined time

frame has to be considered for specifying their

utilization.

Finally, resource demand based approaches

have to consider that the resource demand per
request type can vary between different tenants due

to tenant-specific customization of the application.

The resource demand is also not static over time. For

example, increasing database sizes or changing

configurations of the application might have an

impact.

2.3.1 Direct and Indirect Resource Demand
Estimation

For estimating a tenant’s resource demand, two

fundamental different approaches can be separated:

Direct and Indirect Resource Demand Estimation

(RDE).

Direct RDE leverages operating system /

platform functionality that allows monitoring the

resource demand on a tenant's basis at the

application-layer. It is the approach depicted in

Figure 3. The tenant-specific resource demand is

then directly reported to the AC Controller which in

turn is responsible for adjusting the admission

control parameters. This is based on the system's

capability to measure the resource demand on a fine-

grained level that delivers the amount of required

resources per user request (e.g., the service time
spent at CPU and required Bytes of RAM). If such

monitoring functionality is available it often comes

along with a significant overhead (Kuperberg et al.

2011) or lacks in monitoring capabilities among

different processes.

Indirect RDE uses algorithms to determine the

resource demand per tenant without internal

knowledge about tenants by using information that

can be measured from outside the tenant-aware

application. To estimate the resource demand,

indirect RDE approaches mostly make use of the

resource utilization, throughput and response time.
Since we are interested in the resource demand per

tenant, the throughput must be reported per tenant.

For implementing indirect RDE different techniques

can be applied such as linear regression or Kalman

filter as realized by (Wang et al. 2012). The control

loop for indirect RDE approaches is depicted in

Figure 4.

Figure 4: Indirect Resource Demand Estimation.

2.4 Enhanced Resource Demand
Approaches

It is possible that the perceived response time is bad

due to a high utilization of a single resource that has

to be used in order to complete a request. We

assume it is possible to build a system where the

resource demand of a certain request type is known

(Krebs et al. 2014). Together with information about

the resource utilization it may allow improving

admission decisions. This approach is illustrated in

Figure 5.

Figure 5: Control Loop for Enhanced Resource Demand

based Approaches using direct RDE.

In the previous presented Resource Demand
Approaches the resource utilization is only used in

case of indirect Resource Demand Estimation. In

this kind of approaches, the resource utilization is

always delivered to the AC Controller. Furthermore,

in the previous presented approach, the resource

demand was considered on a tenant-base (directly,

or indirectly via the Resource Demand Estimation

component). In this approach, the resource demand

can be gathered directly or indirectly as well,

however it has to be delivered per tenant-specific

request type. Using this information, the AC
Controller can make better admission decisions. By

knowing the resource demand per request type as

well as the current utilization of the available

resources, requests can be allowed to pass through,

even if other resources are highly utilized.

The subsequent scenario illustrates the benefit

of these kinds of approaches. For example, a

resource demand estimation mechanism may

determine that a certain request type requires no

resources on the database server. If the database

server's resources are high utilized and the

application server has a low utilization, the

controller can adjust the admission control

parameters in a way that this request type is accepted

since enough of the crucial resource is available. In

contrast to all previous approaches, this requires the

Admission Control to be not only tenant- but also
request type-specific. Depending on the variety of

resource requirements of different requests, this may

significantly increase the throughput but again

increases complexity.

2.5 Model-Based Approaches

Model-based approaches make use of performance

prediction models which are based on workload

forecasts. Foreseeing performance problems has two

major advantages. (1) Adaptation decision can be

made pro-actively before problems occur. (2) The

impact of different adaptation decisions can be

simulated which allows choosing the best adaptation

decisions.

Respective performance predictions are driven

by the transition towards Cloud Computing

platforms and are especially addressed by the

research area of self-aware systems engineering

(Kounev et al. 2010). Performance prediction

models are usually based on the detection of

workload patterns and Hidden Markov Models that

allow predicting variations in such patterns. Based

on such performance prediction models, Model-
based Approaches work as depicted in Figure 6. The

Performance Prediction Model allows the prediction

of response times based on the current AC

parameters.

This way, the AC Controller can make

adaptation decisions before performance problems

occur. Further, it is possible to simulate the impact

of different adaptation decisions. Therefore, the AC

Controller could create multiple adaptation

decisions (e.g., multiple sets of tenant priorities) that

are expected to optimize the performance isolation.

Figure 6: Control Loop for Model-Based Approaches

By using the Performance Prediction Model, the

influence of different options onto the performance

could then be simulated. The decision that comes

along with the best performance isolation can be

chosen based on a fitness function for the overall

SLA compliance and maybe resource utilization (cf.

Section 2.3 and Section 2.4).

3 OVERVIEW

Table 1 depicts an overview about the elaborated
informational requirements of the introduced classes
of performance isolations approaches. The specific
advantages that are reasoned by the increased
amount of information used have been discussed in
the previous sections as well as the increased effort
to gather this information and to implement the
presented classes.

 1 2 3 4 5

Informational Requirement

SLA guarantees, per tenant x x x x x

Response time, per tenant x x x x

Throughput, per tenant x x x x

Resource demand

 - per tenant

 - per request type

x

x

opt.

Resource utilization x opt.

Model for performance

predictions
 x

Admission Control Parameters

Specific to tenant x x x x x

Specific to request type x opt.

Table 1: Informational Requirements.

It can be recognized that Static Approaches (1) only
use static SLA information without considering
runtime information at all. To overcome the problem
of these approaches, we introduced Response Time
based Approaches (2) that use a control loop

leveraging response times and throughputs as
runtime information. Resource Demand based
Approaches (3) try to take advantage by making
admission decisions based on the tenant’s resource
demands which are the root cause for their perceived
performance. The table shows the informational
requirements for direct RDE approaches where the
resource demand is gathered through direct
measurements. If the resource demand should not be
measured directly, it can be estimated based on the
tenant’s throughput and the resource’s utilization (cf.
Section 2.3). The Enhanced Resource Demand
based Approaches (4) enable a performance
isolation that allows preferring requests that can be
processed by free resources. This will increase the
overall utilization and hence the economic
efficiency. Therefore, the resource utilization is
required and the resource demands have to be
specific for the tenant and the tenant-specific
request-type. It is worth to mention again, if the
resource demands should be estimated indirectly,
this can be done based on the request types’
throughputs, response times and the resource’s
utilization. Model-based Approaches (5) are able to
anticipate performance issues and simulate different
adaptation decisions. Therefore, they require a
model for performance predictions, usually based on
workload forecasts. For them, it is optional to
consider resource demands. When considering
resource utilization and the resource demands on
basis of request types, free resources can be utilized
more efficiently by giving precedence to respective
request types as in the case of Enhanced Resource
Demand based Approaches.

4 RELATED WORK

Lin et al. (Lin et al. 2009) focus on providing

different QoS for different tenants by regulating

response times. They make use of a regulator which

is based on feedback control theory to achieve this.

Li et al. (Li et al. 2008) first predict performance

anomalies and identify an aggressive tenant who is

responsible for the incident. Based on this, their

approach applies an adoption strategy reducing the

influence of the aggressive tenant on the others to

ensure isolation. Wang et al. (Wang et al. 2012)

developed a tenant-based resource demand

estimation technique using Kalman filters. This

approach predicts the current resource usage of a

tenant and uses this information to control the

admission of incoming requests based in a

predefined quota. Four static mechanisms to realize
performance isolation were described and evaluated

in (Krebs et al. 2012). One approach is based on

thread pool management and three other approaches

leverage admission control.

These papers focus on the concrete algorithms

and do not discuss the general approach nor classify

their approach or evaluate general informational

requirements.
Guo (Guo et al. 2007) discuss multiple isolation

aspects including performance isolation for MTAs

on a conceptual level. They propose Resource

Partitioning, Resource Reservation and Request-

based Admission Control as mechanisms to maintain

a certain QoS for each tenant. In comparison, we

provide a classification and potential solutions

within Request-based Admission Control which was

not covered in detail. In (Loesch & Krebs 2013) the

authors describe where a request-based admission

control has to be realized in a distributed MTA

scenario. However, a classification or concrete

measures to achieve performance isolation are not

described. Koziolek (Koziolek 2011) evaluated

several existing MTAs and derived a common

architectural style. However, Koziolek's

architectural style does not discuss performance
isolation at all.

5 CONCLUSION

Multi-tenancy is an architectural approach which

shares one single application instance between

several customers. This allows increasing the

efficiency of SaaS applications. However, due to the

abstraction of the application which is tenant aware,

from the actual resources, controlled by the non-

tenant aware OS, it is complicated to ensure the

isolation of the performance observed by different

tenants. In this paper we presented five conceptual

approaches with increasing capabilities to control
performance to the detriment of the complexity and

need for detailed information about the system at

runtime. All presented approaches overcome the

described layer discrepancy by applying a request-

based admission control. The simplest approach is

based on a static admission control like a Round

Robin which successively selects tenants’ requests

from tenant specific queues. In contrast, the most

complex approach uses performance prediction

models to find a suitable admission control method

by proactively reacting to forecasted performance

incidents that might happen in the future. We further

discussed specific advantages of these approaches,

followed by a list and comparison of their

information requirements. This helps developers of

multi-tenant applications to find an appropriate

method.

REFERENCES

Guo, C.J. et al., 2007. A Framework for Native

Multi-Tenancy Application Development and

Management. In: Proc. of the 9th IEEE Int.

Conf. on E-Commerce Technology and the 4th

IEEE International Conference on Enterprise

Computing, E-Commerce and E-Services.

Kounev, S. et al., 2010. Towards Self-Aware

Performance and Resource Management in

Modern Service-Oriented Systems. In:
Proceedings of the IEEE International

Conference on Services Computing.

Koziolek, H., 2011. The SPOSAD Architectural

Style for Multi-tenant Software Applications.

In: Proceedings of the 9th Working IEEE/IFIP

Conference on Software Architecture.

Krebs, R., Momm, C. & Kounev, S., 2012. Metrics

and Techniques for Quantifying Performance

Isolation in Cloud Environments. In: Proc. of

the 8th international ACM Conference on

Quality of Software Architectures.

Krebs, R. et al., 2014. Resource Usage Control In

Multi-Tenant Applications. In Proceedings of

the 14th IEEE/ACM International Symposium

on Cluster, Cloud and Grid Computing.
Kuperberg, M. et al., 2011. Defining and

Quantifying Elasticity of Resources in Cloud
Computing and Scalable Platforms. Karlsruhe

Institute of Technology.

Li, X.H. et al., 2008. SPIN: Service Performance

Isolation Infrastructure in Multi-tenancy

Environment. In: Proceedings of the 6th Int.

Conference on Service-Oriented Computing.

Lin, H.L.H. et al., 2009. Feedback-Control-Based

Performance Regulation for Multi-Tenant

Applications. In: Proceedings of the 5th

International Conference on Parallel and

Distributed Systems (ICPADS).

Loesch, M. & Krebs, R., 2013. Conceptual

Approach for Performance Isolation in Multi-

Tenant Systems. In: Proceedings of the 3rd

International Conference on Cloud Computing

and Services Science.

Wang, W. et al., 2012. Application-Level CPU
Consumption Estimation: Towards

Performance Isolation of Multi-tenancy Web

Applications. In: Proceedings of the IEEE 5th

International Conference on Cloud

Computing.

