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ABSTRACT

Software-as-a-Service (SaaS) often shares one single applica-
tion instance among different tenants to reduce costs. How-
ever, sharing potentially leads to undesired influence from
one tenant onto the performance observed by the others.
Furthermore, providing one tenant additional resources to
support its increasing demands without increasing the per-
formance of tenants who do not pay for it is a major chal-
lenge. The application intentionally does not manage hard-
ware resources, and the OS is not aware of application level
entities like tenants. Thus, it is difficult to control the per-
formance of different tenants to keep them isolated. These
problems gain importance as performance is one of the major
obstacles for cloud customers. Existing work applies request
based admission control mechanisms like a weighted round
robin with an individual queue for each tenant to control the
share guaranteed for a tenant. However, the computation of
the concrete weights for such an admission control is still
challenging. In this paper, we present a fitness function and
optimization approach reflecting various requirements from
this field to compute proper weights with the goal to ensure
an isolated performance as foundation to scale on a tenants
basis.

Categories and Subject Descriptors

C.4 [Computer Systems Organization]: Performance of
Systems— Performance attributes, Modeling techniques
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1. INTRODUCTION

Cloud Computing increases in importance, because it of-
fers a huge potential for cost saving [14]. The NIST dif-
ferentiates between three general service models. One is
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Software-as-a-Service (SaaS), Platform-as-a-Service (PaaS)
and Infrastructure-as-a-Service (IaaS) [11].

A SaaS application is hosted centrally and customers ac-
cess it via a thin client such as a web browser. The com-
plete infrastructure, like storage, is managed by the appli-
cation provider. Examples for SaaS are web based email
services, Google Apps and SAP Business ByDesign. Shar-
ing of resources promises high cost savings by reducing one
time costs and increasing utilisation of the resources. Since
the highest level of sharing occurs on the application layer,
the highest potential of cost savings lies within the SaaS
level, where several users share a single application instance.
Multi Tenancy describes the approach where tenants, are
served and charged as an individual entity while running
on a single application instance with other tenants. A ten-
ant, typically a legal body, is defined as a group of users,
which share the same view onto an application. However,
this comes along with additional challenges like the isola-
tion of the tenants. In multi-tenant applications (MTA), it
is the application providers task to isolate the data, configu-
ration and the performance observed by the tenants. While
the isolation of data is primary an engineering task the iso-
lated control of performance is still an open research topic
and a reliable performance is one of the major obstacles for
potential cloud customers [2].

In multi-tenant scenarios typically service levels have been
agreed with tenants in advance and oblige the provider to
maintain a certain performance level for each tenant. This
is denoted with the term Service Level Agreements (SLAs)
which is specified individually for each tenant. The quality
depends mainly on its willingness to pay for a certain QoS.
In order to work with SLAs, performance needs to be mea-
sured. This is done using metrics like response time as the
guarantee to be achieved by the system as long as a certain
quota like the request arrival rate or amount of active users
is not exceeded by the tenant. A tenant’s willingness to pay
for service performance guarantees may change over time
e.g., if the business goes well it might result in an increasing
demand onto the systems. Therefore, a given quota might
not be able to fulfil the demands of a tenant. While the
tenant starts a renegotiation with the provider to increase
its quota the provider must be able to increase the share
a tenant is allowed to consume. Using elasticity/scalability
features of the application by adding additional resources
does not solve the problem, because the additional resources
would be shared among all tenants using the system. Conse-
quently, a mechanism is needed to assure that new resources



will only be used by the tenant who pays for them.

Thus, there is a need to isolate the performance differ-
ent tenants observe. In [7], performance isolation is defined
as follows: “A system is performance isolated, if for [ten-
ants] working within their quotas the performance is not
affected [even if] other [tenants| exceed their quotas”. By
changing the quota for a tenant, we can ensure that the
amount of resources they can use when the system is un-
der high load correspond to their SLA defined quota and
consequently maintain the guaranteed response time.

One approach to control the performance on a tenant’s
basis is to leverage a request based admission control. The
requests originating from different tenants have to pass a Re-
quest Admission Control (RAC). The RAC forwards, delays,
or even rejects requests based on the tenant it is originating
from to make sure a tenant does not exceed its quota in situ-
ations it would influence others. Our system uses a modified
version of a weighted fair queueing scheduler, whereby every
tenant has its separate queue. Our RAC ensures, that for
a given period of time the amount of admitted requests per
tenant corresponds to their weight, even in situations where
one tenant starts to send its requests late in a period. This
is ensured by a dynamic adoption of the weights within a
period. However, the reference values i.e. weights for each
period have to be derived by the SLAs. The controller’s task
is to derive these reference values.

Several techniques for a RAC were already published (e.g.,
[7, 9, 10]). However, finding a suitable mechanism to find
good reference weights for the tenants used by the RAC is
still challenging. This problem is similar to mapping high
level SLAs to low level resource guarantees which is still an
open research question [3].

In this paper, we present a fitness function and optimiza-
tion approach with two configuration parameters based on
an analytical system model of the RAC and server to derive
suitable weights for the weighted fair queueing scheduler.
The proposed solution is independent of the concrete sys-
tem function which is individual for each application envi-
ronment. The mechanism could be applied in the controller
of the aforementioned system. The concrete realization of
the system model and the RAC are not in the scope of this
paper due to space limitations.

The reminder of the paper is structured as follows. In Sec-
tion 2, we conduct related work. Section 3 presents how to
derive the weights by a given SLA with the fitness function
and optimization developed. The following Section 4 dis-
cusses how various configuration parameters influence the
behaviour of the optimization and Section 5 concludes the

paper.

2. RELATED WORK

In the following, an overview of the most relevant literature
about performance isolation and multi-tenancy is presented.

Zhang [16] and Fehling [4] are representatives of approaches
where isolation is tried to be achieved by placing tenants
onto compute nodes in a way they do not influence each
other but maximizing the resource usage to increase effi-
ciency. The placement is based on the estimated resource
demands for a particular tenant as required to fulfil the
SLAs. These approaches are similar to traditional Bin Pack-
ing problems which are proofed to be NP-hard and therefore
heuristics to optimize the placement are necessary. Further-
more, a good estimation and forecast of the required re-

sources is needed which is difficult in cloud environments
and there is still an influence of tenants co-located on the
same node. In comparison the approach in this paper is
based on request admission control and derive an analyti-
cal model from the application which could be numerically
optimized.

Control theory in general [6] requires a time behaviour
analysis and models of the system to be controlled. This in-
formation is used to dynamically optimize the system which
is prone to need some time and comes along with the risk
of oscillating configurations. The most work in this area
does not consider multi-tenancy or admission control with
numerous configuration parameters like the weights for each
tenant. Furthermore, we do not need a dynamic adaptation
because the optimization is done on a response time model
and thus we avoid the mentioned drawbacks.

[10] is an example of an implementation using a two-
levelled approach based on control theory. On a higher level
(L1) a referential average response time is regulated by con-
trolling the admission rates of requests of individual tenants.
On an inner level (L0) a second controller, which is respon-
sible for service differentiation, i.e. performance isolation, is
employed. It enforces the SLAs of each tenant by controlling
the priorities to regulate the respective response times. In
order to do that, simplifying assumptions like linear correla-
tion between response time and priority are made. Although
overcommitted systems are prevented by the L1-controller,
the simplification used for the L0 controller probably fails to
describe an overloaded system, due to the highly non-linear
behaviour of queuing systems approaching maximum utili-
sation. Furthermore, queuing in front of the LO controller
is not possible, therefore the system will fail to deliver the
service although the response times including queuing would
be sufficient. The SPIN environment [9] interprets the ra-
tio of the mean arrival rate and mean service rate to de-
tect performance anomalies/overload of the system. In a
second step the aggressive tenant, that consumes the most
resources is identified and its request flow is adopted. This
approach concludes from the computed ratio the observed
performance, whereas our approach is directly based on the
SLAs.

In our former work [7], we introduced static request ad-
mission mechanisms like Round Robin or Black Lists. How-
ever, with static weights these mechanisms cannot react to
changing requirements. Furthermore, a service differentia-
tion between different tenants is not possible because the
optimization to find an optimal configuration for the admis-
sion control was not discussed.

Other approaches like [15] and [8] use statistical analysis
or fine grained measurements to estimate the resources used
by a tenant. Based on this knowledge they control the re-
quest flow/admission to prevent one tenant from allocating
more resource then he is allowed by the quota. Thus these
mechanisms isolate resources. However, they do not reflect
the SLA relevant response times. Furthermore, the estima-
tion of resource demand is challenging and a fine grained
measurement is often not possible.

Gupta et al. [5] is one of the authors developing mecha-
nisms to isolate VMs. Gupta determines the CPU overhead
for I/O of a XEN Domain onto Dom0 and adjusts the CPU
scheduler based on this to achieve lower inference. However,
all the approaches isolating virtual machines can directly
access the hardware and schedulers which is not possible in



our case.

3. DERIVATION OF WEIGHTS

In this section we develop a fitness function f : R} — R that
measures the degree by which the performance is isolated,
depending on the weight vector w of weights assigned to
tenants and a system function R; describing the response
time of the system for tenant ¢ based in the tenants weight
Ws .

In addition to w;, given through the weight vector w, the
system performance function R; might depend on system
parameters like the number of users m,; per tenant, amount
of work per request and think times which cannot actively
be controlled but influence the optimal weights. Thus these
parameters are assumed to be constant of the current con-
trol interval. Thus, we are optimizing the weight vector w
in a way every tenant achieves the optimal resource time
according to the fitness function introduced later. The sum
of all w; = 1. As a precondition for our optimisation R;
has to be convex in [0, 1] and unbounded for w — 0.

The fitness function is designed such, that it is low in
value for weight vectors w that isolate performance well, and
increasingly higher in value for tenant weights w that are
increasingly unsuited to isolate performance. This way, by
minimising f, the weight vector which isolates performance
best, can be determined for a given scenario.

In the following, the fitness function f is constructed in
such a way, that it reflect the definition of performance iso-
lation. This way, it can be handled analytically convenient
and can be used in different scenarios with varying system
performance functions. The fitness function f also allows
adjust-ability, by means of tuning parameters in order to al-
low further service differentiation where one tenant may be
allowed to consume more resource.

3.1 Optimization Problem Statement

Let M := {w = (w1,...,w,)T € R} | > w; = 1} be
the space of normed weight vectors. E.g. a weight vector
w € M denotes potential weights assigned to tenants.

Note that for each resource distribution mechanism, that
relies on non-negative numerical values w € R’} to assign
portions of resources to tenants, these values w can be map-
ped to M via normalisation, which is an affine transforma-
tion.

As outlined in the introduction performance guarantees
have to reflect tenants quotas. Let therefore g; be the guar-
anteed response time of ¢; and let ¢; be its quota.

As a first component of the fitness function f, a wviolation
function is defined, which measures the degree by which the
performance guarantees g; of a tenant t; is violated. This
function should be high in value if SLAs are violated that
is if R;(w;) > g; and it should be near zero if not, that is if
R(w;) < g;. For this purpose the function v; : Ry — Ry,
that maps weights to the degree of guarantee violation

Ri(w;) *gi> , (1)

gi

is defined, which has the aspired properties. The degree of
the guarantee violation of a tenant is measured relative to
its guarantee g;. It is relatively small (< 1) if the perfor-
mance guarantee of t; is not breached and high if that is the
case. The exponential trend enforces exponentially increas-
ing penalties for graver violations of guarantees of tenants,

vi(w;) := exp (cv

thus starkly prioritising the improvement of their perfor-
mance over the improvement of the violations of tenants,
that do no violate their guarantees so gravely.

The constant ¢, is a tuning parameter and determines
how strong a performance guarantee violation is weighted.
For high values of ¢, response time violations are stronger
penalised than for lower values. The constant ¢, can also
be made tenant specific (¢}), thus prioritising the fulfilment
of performance guarantees of tenants with higher values of
¢, over those with lower values. This way an additional dis-
tinction between customers, according to their payment level
can be achieved (e.g. gold-, silver- or bronze-customers).

The quota describes either the number of users of a tenant
or the number of users multiplied by the average amount of
work per user of a tenant. Therefore, let [; be the workload
of t;. Note, that the exact definition of [; is irrelevant for
the subsequent derivations and therefore other definitions
for the workload are applicable.

For the purpose of differentiation of tenants by their dis-
ruptiveness, a penalty function is defined, which penalises
disruptive tenants, giving the fulfilment of their performance
guarantees a lower priority as compared to abiding tenants.
The penalty function assigns weights to tenants, whereas a
low weight corresponds to a high penalty. A tenant is pe-
nalized more, if that tenant is disruptive, that is if I; > ¢,
than when being abiding, that is if [; < ¢;. On the basis of
this criteria, the following penalty function p : Ry — R,
maps a tenants workload [; to its penalty

p(t) = (1t enp (g "0 (2)

This function is a flipped sigmoid function and will be used
in the following to weaken v;(w;), if ¢;’s workload exceeds
its quota. The function p; assumes values in (0,1) and has
the asymptotes 0 for I; — oo and 1 for [; — —o0o. Its value
is 1/2 for I; = ¢, thus ¢; marks the point where tenant i
becomes increasingly insignificant to the optimisation with
further increasing workload ;.

The constant c, determines how abrupt the transition
from 1 to 0 is. For high values of ¢, the transition is more
abrupt. Lower values of ¢, stretch the transition, thus im-
plicating a more gradual transition from one to zero than
higher values, whereby quota breaches have less impact.
Thus ¢, should be used to adjust the rigidity of quota en-
forcement.

The constant ¢, could again be made tenant specific (c})
and would thus become a tuning parameter to distinguish
tenants by their service level.

Note that p;(l;) is independent of the weight vector w.
Since l; is an operating parameter which is assumed to be
predetermined an thus fixed, p;(l;) is constant and thus sim-
ply used in the form p; in the following. For this reason the
following results will also remain unaffected if a different
definition of p; is used.

In case of a RAC described in the Introduction the op-
timisation would go the easiest way, and first increase the
weights of lighter tenants with smaller amounts of users, as
this results in the biggest return in response time and thus
fitness. This effect has to be reduced. An additional factor
is required to compensate this. Therefore, let



be the heaviness of t;. The heaviness describes how big
the workload I; of t; is, in relation to the average workload
(3°7—11j)/n of all tenants. A tenant ¢; is said to be heavier,
than a tenant ¢y if h; > hy.

Building on the previously defined terms, the following
tenant specific fitness function f; = [0,1] — Ry for t; is
defined as

Jilwi) := hq - pi - vi(w). (3)

In f;(w;) the violation function v;(w;) is normalised by the
penalty p; and the heaviness h; of t;. The performance of a
heavy tenant ¢; is more expensive to improve than that of
a lighter tenant ¢;. This means, that under otherwise equal
conditions, and increase of the heavier tenant t;’s weight w;
by a certain amount does not improve response time as much
as compared to a the lighter tenant t5. Thus, if the factor h;
were omitted, the optimisation would go the easiest way, and
first increase the weights of lighter tenants, as this results in
the biggest return in response time and thus fitness.

The following lemma shows that the described effect of
heaviness of tenants on the optimisation is avoided through
normalisation of the f; by h;.

LEMMA 1. Let t; and tr be two tenants in a Multi Ten-
ancy system, whose performance is given by differentiable
functions R;, Ry € C'(0,00), which are equal when dilated
by their respective workloads, 1i.e.

R;(ljw) = Ri(lxw), w € (0,00).

Further let their respective utilisation of quotas q;, qi be equal
and thus their penalties p; = pr. Additionally let their re-
spective guarantees be equal g; = gr. Then the derivatives
of the respective fitness functions f; and fi are equal, for
all weights, for which the respective performance functions
R;, Ry are equal, that is for all w € (0, 00)

filiw) = fr(lew),

where fj == -1 f; and fi, == L fi are the derivatives with
respect to w of the according fitness functions.

PROOF.
, d
fiw) = %hj “pj - vi(w)
_ . d Rj(w) —g;
dw Gk

d
= hj - pr - %Uk(wlk/lj)

lj~TL lk

=5 'T'pk'v;c(wlk/lj)
i=1% Y

= hi - pr - vi(wil/l;) = fi(wl/ly).

The substitution @ := w/l; concludes the proof. [J

Note that the performance functions Rj, R, must be con-
gruent when dilated for their respective workloads [;,) is
usually met for performance functions modelling real sys-
tems. This is due to the fact, that the input weights w;, wy
are normalised by their respective workloads [;, 1 in the ac-
cording performance functions Rj;, Ry.

Lemma 1 reveals the effect of h; on the fitness function f;.

By introducing the factor h; into (3), the gain of changes
in ¢;’s and t;’s weights w;, wy is equal, when they have equal
parameters despite their heaviness. That implies, that mini-
mizing f;(w;)+ fix(wr) must result weights w;, wy such that
the respective response times R;, R, are equal. This way the
effect, that tenants are disadvantaged due to their heaviness,
is circumvented.

Composing (3) into a global fitness function, the following
optimisation problem is obtained

min!  f(w) =Y fi(wy),
j=1
subject to (4)

weM <— Ej:le:.L
w; >0, Vje{l,...,n}

3.2 Problem Analysis

In this section the tenant specific fitness functions f;(w;)
of t; given in (3) will be further analysed. This way new
perspectives of the parameters influencing f; are provided.
The function f;(w;) is composed of the violation function
vi(w;) given in (1), the penalty p; given in (2) and the heav-
iness factor h;. The following transformations reveal, how
the violation function v;(w;) and the values p;, h; interact.
fi(ws) = hi-pi-vi(ws)

— i pi-exp (cv M)

i

k3

— B - exp (cv Ri(w:) — gz'(lg; log(pi)/cv))

= hi-exp (cv m + log(pi))

Since the definition of (2) implies p; < 1, it follows that
log(p;) < 0. Thus the term (1 — log(pi)/cy) in the for-
mula above is strictly bigger than 1. This means, that
the performance guarantee of t¢; is shifted by a factor of
(1 — log(pi)/cv) > 1 to the right, hence shifting the point,
where the response time causes the violation function to be-
come noticeably big (> 1) further to the right.

If ¢; is abiding, then p; is near 1 (see (2)), which means
that log(p:;) =~ log(1) = 0. Therefore (1 — log(pi)/cv) =~ 1
and hence the shift of g; to the right is hardly noticeable.
Thus for abiding tenants performance isolation functions as
usual. However if ¢; becomes increasingly disruptive, then
p; moves even closer to 0 and hence (1 — log(p;i)/c,) tends
to oo quickly.

This means, that the more disruptive ¢; gets, the farther
its guarantee is shifted to the right, therefore “allowing” the
optimisation to assign ¢; a performance via its weight w;,
which is beyond its guaranteed performance g;, without ma-
jor increases of the violation function (1). Therefore ¢; is
treated as if its performance guarantee were fulfilled, even
though the actual performance of ¢; may be above g;. Only
when the performance of ¢; becomes so bad, i.e. the response
time become so large, that it increases beyond the shifted
guarantee g;(1 —log(p;)/cy), the violation function starts to
kick back in, becoming > 1.



Similarly as above the following transformation is obtained

Ri(wi) —gi(1 — 10g(hi)/0u))
gi '
From this transformation it becomes evident, that h; has
an effect similar to that of p;. However, since h; is the
relative portion of heaviness of ¢;, compared to the average
heaviness, it is valued in [0, 00). If for example if ¢; is twice
as “heavy” as the average heaviness, then h; = 2. If on the
other hand the tenant is half as heavy, then h; = 0.5.

If a tenants heaviness is h; = 1 then log(h;) = 0 and thus
h; has no effect. If h; > 1, i.e. t; is heavier than the average,
then (1 —log(hi)/cv) < 1 which means that t;’s guarantee is
decreased, thus improving it. If on the other hand h; < 1,
then (1 —log(hi)/cy) > 1, thus increasing t;’s guarantee,
in other words downgrading it. For the special case that a
tenant has no workload, i.e. [; = 0 then h; = 0 as well,
implicating f; = 0 as can be seen from equation (3).

Thus h; has a similar effect on the displacement of guar-
antees as p;, with the difference that a tenants guarantee
can even be improved by decreasing it. The reason why the
latter is done, is to compensate the effect of a tenants heav-
iness, as it was argued and proofed in lemma 1. Finally (3)
can be written in the following form

Ji(w:) = pi - exp <Cv

fi(ws) = exp (cv "
Evidently the effects of shifting of ¢;’s guarantees g; caused
by p; and h;, may strengthen each other or may cancel each
other out.

Following up on the equation above, the function f;(w;)
can be shortened to

filw:) = exp (a;Ri(wi) — Bi), (5)

with a; := ¢/gi and B; := ¢, (1 — log(hi)/cv — log(pi)/cv),
whereas «;,8; > 0. Furthermore the argument of the ex-
ponential function is subsumed into one variable, termed
violation value V;(w;) of t; which is thus given by

The violation value V;(w;) determines to what extent the
SLAs of t; are violated, in consideration of the heaviness h;
of t;. This means that the violation value V;(w;) determines
the size of f;(w;) = exp(V (w;)). If Vi(w;) < 0 then fi(w;) =
exp(V (w;)) is relatively small (< 1). If on the other hand
Vi(w;) > 0, then t;’s performance guarantees and so its SLAs
are violated and therefore f;(w;) = exp(V(w;)) is relatively
large (> 1) and also fast increasing for even greater violation
values.

If Vi(w;) > 0 for a tenant ¢;, this means, that this tenant
is not assigned enough capacity k; in order to satisfy the
corresponding SLAs. Otherwise if V;(w;) < 0 the capacity
r; of t; can be reduced and still £;’s SLAs are met. The
capacity k; assigned to t; should thus be dimensioned such
that Vi(w;) = 0, in order not to violate ¢;’s SLAs and not to
waste resources by over-fulfilling them.

Thus the violation values V;(w;), j € {1,...,n} indicate,
how adequate the dimensioning of system capacity & is for
the handling of the given set of tenants together with their
SLAs. If 3%, Vj(w;) < 0 then system capacity x can be
dimensioned smaller, the number of tenants can be increased
or the SLAs can be defined in tighter bounds. If however
2271 Vi(w;) > 0, then either x should be increased, the

functions R; : (0,1] — Ry, j € {1,...

R;i(wi) — gi(1 —log(hs)/cv — log(Pi)/Cu)) _

number of tenants be decreased, or their SLAs be defined
within looser bounds.

3.3 Relevant Optimization Characteristics

In the following, we show that the underlying fitness func-
tion of the optimisation problem (4) is convex, and that the
unique minimum in M lies in the interior of M which al-
lows to solve the optimisation problem relatively convenient
using a numerical method. For this purpose, the following
theorem is proposed.

THEOREM 1. If the fitness function f(w), given through
the optimisation problem 4 is combined with performance
,n} that are convex
on [0,1], then f(w) is conver for w € M as well. Addi-
tionally, the unique solution W of the optimisation problem
4 lies in the interior of M if 1}JiLnO R;(w) = 0.

PRrROOF. First it is proofed, that f(w) is convex. For this
purpose it is shown, that for each tenant ¢; the tenant spe-
cific fitness functions f;(w;) are convex. Consider f;(w;) in
the form of equation 5. Since, according to the premise,
R;(w;) is convex a; R;(w;) — B; is convex, as well.

Since for each convex, function ¢ : R — R the composition
exp o is convex,

fi(w;) = exp (a; Ri(wi) — B;)

is convex as well. It is easily shown, that the sum h(z1, ..., %)
o1(z1)+. ..+ pn(xy) of convex functions @1,...,¢on : R = R
is again convex. Hence the global fitness function

flw) = ij(wj)

is convex. Since M is a compact, the extreme value theorem
applies, which implies that there exists a weight vector w
for which f attains its minimum. Due to the fact that f
is convex a local minimum must also be the unique, global
one.

It remains to be shown, that the unique minimum w lies
in the interior M of M. Suppose, for contradiction, that
the minimum lies on the boundary of M, i.e. w € OM. As
each weight vector in OM has a component which is zero,
it holds that for w = (w1,...,uW,) € OM there exists an
i € {1,...,n}, such that w; = 0. Since ininofj(w) = o0 it
holds that

fi(i) = 00 = f(W) = oc.

However for each w = (w1,...,wn) € M, it holds that

w; >0Vj € {1,...,n}, thus

filwj) <oo Vjie{l,...,n} = f(w)<oo = f(w).

This is a contradiction to the statement, that w is the min-
imum. Hence w € M. []

Consequently, if the fitness function f(w), given through
the optimisation problem 4 is combined with a valid response
time function Rj;, then f(w) is convex for w € M and the
unique minimum w lies in the interior M.

If a concrete optimisation method which converges to a
local minimum (like e.g. gradient descend) is used, together

with a starting point winit € 1\04 it will converge to the local



minimum in the interior M of M, since f(w) = oo if w; — 0
for any component w; of w. Thus an optimisation method
converging to a local minimum must converge to W, even
without the additional constraints.

It is worth to mention, in practice an optimisation method
may jump outside of M, due to a step length, or due to an
optimisation method, which does not converge to the near-
est minimum, but attempts to optimise globally like e.g.
a genetic optimisation algorithm. Thus, depending on the
optimisation method used, it may still be necessary to con-
strain the feasible set of weights as follows

Wiy eooyWno1 2 €, W +...+wn-1<1—¢g,

for a small ¢ > 0 close to 0. The threshold of € proofed
to be necessary in some cases, since some optimisers allow
for a certain numeric tolerance in the constraints. If the
threshold of € were omitted and one of the constraints were
violated only by a very small value 6 > 0 close to 0, then
this would imply w; = —6 < 0 for one j € {1,...,n} and
thus the system function R might return unrealistic values
which in fact result in wrong optimizations.

4. OPERATIONAL BEHAVIOUR AND PA-
RAMETERS

In this section it will be determined, how changes in opera-
tional parameters (number of users m;), impacts weight dis-
tributions and performance. It will be shown how the tuning
parameters ¢, and ¢, influence the performance behaviour
which helps to find a suitable configuration for them.

For the optimisation, a computer algebra system [12] is
used. The response times presented are based on the sys-
tem performance function R which always had an steady-
state error below 20% for a test environment running an
enhanced version of the TPC-W Benchmark [1] on the ap-
plication runtime environment of the SAP Hana Cloud [13].
Consequently, the results are representative for a real sys-
tem.

Note that the plots given depend on operational param-
eters of the system (e.g., amount of users). Therefore, the
characteristic plots used in this section to obtain good values
for ¢, and ¢, might be different in other scenarios. However,
the general observations will be the same.

4.1 Influence of Varying Workload
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Figure 2: Response Time With Increasing Load

In Figure 1 a scatter plot of the weights and in Figure 2
the according response times are presented for an increas-
ing load. The blue diamonds marks an abiding tenant %1,
whereat the green circles mark a mildly disruptive tenant ¢».
The red boxes mark a tenant ¢3 that is increasing its work-
load from I3 = 0 to I3 = 4000 users. All other parameters
are kept fixed as follows m1 = ¢1 = 500, m2 = 900, g2 = 750,
g3 = 1000, seconds, g1, g2, g3 = 4 seconds ¢, = 0.1, ¢, = 5.

Each point in the scatter plots represents the result of
optimisation for a different workload of ¢3. The plot shows
how its changing penalty ps and heaviness hs influence the
weight vector w.

As depicted in Figure 1, t3 starts with a workload of 0
users, for which the respective heaviness hs is 0 as well. Thus
the fitness function is f3 = 0, which is why ¢35 is disregarded
by the optimisation method, hence given the weight ws = 0.
However, for an increasing workload ¢3 its assigned weight
ws strongly increase due to the increasing heaviness hz. The
additional weight of t3 is drawn from other tenants, therefore
their weights are decreasing.

The increase in ws continues until I3 approaches the quota
g3, at which the effect of the penalty ps becomes apparent.
That means, that ps gradually converges to 0, thus making
ts increasingly unimportant to the optimisation. The far-
ther the workload of t3 surpasses its assigned quota g3, the
more severe its penalty gets, and the farther ws deteriorates.
Note that the heaviness hs grows linearly in [3, whereas the
penalty ps declines hyperbolic exponentially, i.e. asymptot-
=)

That is an important feature, since it implies, that the
positive effect (from ¢3’s point of view) of increasing heavi-
ness hg, is at some point eclipsed by the counteractive effect
of the penalty ps which declines much faster, i.e. p3-hs — 0
for [3 — oo. Consequently, around I3 = ¢3, the weight w3 of
ts approaches 0, since it t3’s fitness f3 becomes increasingly
unimportant to the overall fitness f. This way it is ensured,
that a tenant cannot increase the amount of resources as-
signed to it indefinitely, by simply increasing its workload.

When t3’s workload reaches its quota, the two abiding
tenants t1,t3 have a lower response time then the medium
disruptive tenant ¢tz (cf. Figure 2). When t3 gets disrup-
tive, by surpassing its quota, the respective response time
rises significantly over the response time of the other ten-
ants, while theirs even decreases below their quotas, since

ically in O



resources of t3 become free.

4.2 Influence of Violation Factor

Figure 3 depicts the weights and Figure 4 the according re-
sponse times determined via optimisation for different values
of the parameter ¢, on the x-axis. The value of the param-
eter ¢, is varied in the range from 0.001 to 10. All other
parameters are kept fixed as follows m1 = q1 = 500, ma =
900, g2 = 750, mz = 1500, g3 = 1000 seconds, g1,92,93 = 4
seconds, ¢, = 5.
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Thus the configuration is similar to the previous example
with changing values of ¢, instead of a flexible workload.
The weight distribution of tenants ¢; converges to values
that are proportional to their respective coefficients h; - p;.
This is due to the fact, that the derivatives of the according
violation functions a%j'l}j (w;) given in (1) converge to 1,
since

ii_r% agx exp(z) = il_r)r}) exp(z) = 1.
This means, that an increase in weight is equally rewarding
in terms of fitness, for all tenants for values of ¢, near to 0,
thus making it only dependent on the proportion respective
factors hj - p;.

In contrast to that, it can be observed, that for high values
of ¢, the factor h; -p;, is becoming increasingly insignificant.
The reason for that is, that the derivative of the respective

violation functions %Uj is becoming so large, that even
J

small differences in relative guarantee violations of tenants
become so tremendous in terms of those tenants fitness, that
it cannot be compensated by p; - h;j. Thus, differences in
guarantee violations are avoided by the optimiser, and hence
the weights converge to the same response time for each
tenant.

Summarized, one should avoid the extremes for very low
or very high values of ¢,. Thus a value for ¢, in the plots
given in Figure 3 and Figure 4 is chosen, where the effects of
the isolation via h; - p; and relative guarantee violation are
equal, therefore allowing for performance isolation the way
it was intended. In this specific scenario, a value between
0.1 and 1 would be a suitable choice for ¢, .

4.3 Influence of Penalty Factor

Figure 5 plots the weights and Figure 6 the according re-
sponse times for different values of the parameter c¢,. Pa-
rameter ¢, is varied in the range from 0.1 to 100. All other
parameters are maintained constant: mi = q1 = 500, ma =
900, g2 = 750, ms = 1500, g3 = 1000 seconds, g1, 92,93 = 4
seconds, ¢, = 0.1.
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Figure 5 depicts the trend of the weight distribution and
the according response times (cf. Figure 6) for different
values of ¢,. The plot shows, that for small a ¢,, the response



times of all tenants are aligned. This is due to the fact, that

— 1/2,

c£l§0 bi = :113}) 1+ exp(x)
which means, that the penalty p; of all tenants is approx-
imately 1/2. Thus, no performance isolation takes place
and the optimisation assigns weights, such that all response
times are equal.
If the value of ¢, becomes very large, i.e. ¢, — 00, then the
function p;(l;) converges towards the non-continuous func-
tion.

1 if l; < qi
pi(li) == ¢ 1/2 ifl; =g (6)
0 else.

This means, that the penalty p; of disruptive tenants, con-
verges towards O for large values of ¢,, whereas the penalty
p; of abiding tenants converges towards 1, if the according
workload ; is strictly below g;. Therefore, for very high val-
ues of ¢p, the resources are only divided among the abiding
tenants working within their quota.

Usually a more moderate value of ¢, is recommended, such
that tenants are penalised more gradually as they get dis-
ruptive and where the effect of the penalty is noticeable,
but not too extreme. For the given scenario a value of ¢,
between 1 and 10 seems to be suitable.

S. CONCLUSION

Software-as-a-Service offerings are often based on multi-ten-
ancy where several customers share one single application
instance. This leads to significantly decreasing operational
costs. However, due to the tight coupling the resources are
shared among all tenants which leads to undesired perfor-
mance influence and hinders the SaaS Provider to scale ten-
ants individually by means of the quality of their service.
For example, in case one tenant is willing to pay additional
fees for extra resources to cover an increasing demand, the
provider has to ensure, these resources are only used by the
tenant who requested them. Nowadays solutions often lever-
age request based admission control to ensure that a tenant
can use the share they pay for in situations with high load.
However, mapping the guaranteed response time for a given
quota (e.g., max request rate) to a certain share is often a
challenge in itself.

We present a fitness function which computes a numerical
value based on the response time violation for each tenant.
These results are used in a numerical optimizer to find a
setup of weights which can be used to adjust the request ad-
mission control. A second part of the function decreases the
result of the fitness function for the tenant who exceeded
its quota. We proofed that this function is suitable for a
numerical optimization and discussed the impact of tuning
parameters. The contribution is one important step to en-
able performance isolation and scalability on a tenants basis.

The future work will integrate the approach in a real envi-
ronment and discuss how to obtain the system performance
function.
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