
Resource Usage Control In Multi-Tenant
Applications

Rouven Krebs
SAP AG

HANA - Applied Research
69190 Walldorf

Germany
rouven.krebs@sap.com

Simon Spinner
Karlsruhe Institute of Technology

IPD
76131 Karlsruhe

Germany
simon.spinner@kit.edu

Nadia Ahmed
SAP AG

HANA - Applied Research
69190 Walldorf

Germany
nadia.ahmed@sap.com

Samuel Kounev
Karlsruhe Institute of Technology

IPD
76131 Karlsruhe

Germany
kounev@kit.edu

Abstract—Multi-tenancy is an approach to share one appli-
cation instance among multiple customers by providing each of
them a dedicated view. This approach is commonly used by SaaS
providers to reduce the costs for service provisioning. Tenants also
expect to be isolated in terms of the performance they observe
and the providers inability to offer performance guarantees is
a major obstacle for potential cloud customers. To guarantee
an isolated performance it is essential to control the resources
used by a tenant. This is a challenge, because the layers of the
execution environment, responsible for controlling resource usage
(e.g., operating system), normally do not have knowledge about
entities defined at the application level and thus they cannot
distinguish between different tenants. Furthermore, it is hard to
predict how tenant requests propagate through the multiple layers
of the execution environment down to the physical resource layer.
The intended abstraction of the application from the resource
controlling layers does not allow to solely solving this problem
in the application. In this paper, we propose an approach which
applies resource demand estimation techniques in combination
with a request based admission control. The resource demand
estimation is used to determine resource consumption information
for individual requests. The admission control mechanism uses
this knowledge to delay requests originating from tenants that
exceed their allocated resource share. The proposed method is
validated by a widely accepted benchmark showing its applica-
bility in a setup motivated by today’s platform environments.

I. INTRODUCTION

Cloud computing has attracted significant attention in industry
and academia [1], [2]. It enables resource sharing among dif-
ferent customers and economies of scale to lower IT costs [3].

Mell [4] differentiates between three service models.
Infrastructure-as-a-Service (IaaS) provides fundamental com-
puting resources that enable users to deploy and run arbitrary
software. Platform-as-a-Service (PaaS) provides a runtime en-
vironment for custom applications and Software-as-a-Service
(SaaS) allows customers to use a centrally operated software
accessible through a thin client interface. SaaS environments
often use multi-tenant software architectures (e.g., SAP Busi-
ness By Design [5], Salesforce [6]) to increase efficiency.
Multi-tenancy is projected to gain in importance in the next
years [7], [2]. Multi-tenancy shares an application instance
between multiple tenants by providing every tenant with a
dedicated share of the instance, which is isolated from other
shares [8], [9]. This isolation embraces, e.g., tenant-specific
customizations, tenant-specific data and tenant-specific Service

Level Agreements (SLAs).

Besides security and privacy issues, performance prob-
lems are one of the major obstacles for potential Cloud
consumers [10], [11], [12] and tenants of a multi-tenant SaaS
application also expect a reliable performance. If the guar-
anteed performance is maintained for tenants working within
their quotas, although other tenants exceed their quotas [13] a
system is performance-isolated. In [13], performance-isolation
is linked to application level SLAs like request rate for the
quota and response times for the guaranteed performance.
Elasticity dynamically controls the available resources for
the whole application and helps to maintain the applications
overall performance. However, it does not enable to control
the performance of single tenants and the isolation aspect [13].
Therefore, there is a need to control the performance a tenant
observes. The amount of resource available, influences the
response times and throughput of applications. Thus, resource
control on a tenant basis, and consequently the isolation of
tenant-specific shares of a resource, is an essential step to
guarantee a certain tenant-specific application performance.

Given that sharing in the context of multi-tenancy is
done at the application layer, resource usage control is a
challenge. The entity of a tenant is unknown in the lower
layers providing resource control mechanisms (e.g., operating
system) and the application is intentionally abstracted from the
resource control. Hence, hardware resources are not explicitly
allocated to a tenant. This leads to inferior performance
that is caused by disruptive tenants with high workloads.
Fluctuating resource requirements of tenants due to variable
load or changing request mixes and customized configuration
or increasing amount of persistent data further increase the
complexity. Furthermore, to efficiently utilize the available
system resources, they are usually over-committed. In over-
committed scenarios unused resources from one tenant can be
used by other tenants to fulfil their SLAs in case of high load.
Additionally, it is challenging to measure a tenant’s resource
consumption due to the inability to directly map tenant requests
to processing jobs at the lower system levels where monitoring
tools typically operate.

To the best of our knowledge, the approach described
in this paper, is the first that manages to ensure a defined
resource share for individual tenants sharing one application
instance. This approach could be used to maintain performance



isolation, or to provide various QoS for different tenants. To
realize this approach, we evaluated relevant resource demand
estimation techniques (RDE) regarding their accuracy and
time they need to obtain meaningful data when analyzing
a high amount of request types. The dynamic request-based
admission control, introduced as part of our solution, processes
the information provided by the RDE to enforce the configured
resource shares. A case study based on the widely accepted
TPC-W benchmark [14], which run in a PaaS motivated system
configuration, was used to evaluate the whole approach. The
results show that the resource demand estimates are accurate
enough to achieve a good isolation of resources which results
in a proper performance isolation. Furthermore, it shows how
the approach utilise unused resources from a tenant with
low load and a good ability to adapt to a changing system
state or load behaviour. This allows providers to run over-
committed systems. This approach allows providers of Multi-
tenant Applications (MTA) to offer SLAs of high quality and
enables new business models where a tenant buys shares of a
resource instead of paying for the amount of requests he sent.
The mapping of an application level SLA to a certain low level
resource metric is a research question in itself [15] and out of
scope for this work.

In summary, this paper presents three complementary con-
tributions. First, a general approach how resources for single
tenants can be controlled is presented. Second, an evaluation
on the feasibility of three existing resource demand estimation
techniques is done and for the most promising one we show
it is applicable in the context of MTAs. Third, a request based
admission control to enforce resource quotas for tenants is
presented. In a case study, we show how the first contribution
successfully uses the second and third to control resources on
a tenants base.

The reminder of the paper is structured as follows. Sec-
tion 2 introduces the general approach on how to achieve
resource control on per tenant basis. Section 3 discusses
solutions to estimate the resource demand per request type
for each tenant. Section 4 shows the request admission control
mechanism used to enforce resource control and its design
criterion. Further, in Section 5 we present a case study showing
the benefits of the approach. Section 6 discusses related work
and the last Section concludes the paper.

II. GENERAL RESOURCE ISOLATION APPROACH

In this Section, we describe our approach to resource usage
control in MTAs. The general idea is to quantify the resource
demands of each tenant in a first step. In a second step these
resource demands are used to control the resource usage of
individual tenants. This is done by throttling requests of a
tenant once it exceeded its predefined resource shares.

Traditional monitoring tools (e.g., top) are available to
continuously monitor the systems utilization in data centres.
However, they are not applicable for getting tenant related
information. Other approaches (e.g., ThreadMXBean) can
measure resource consumption on a per-thread basis, but
introduce additional overheads and are often unable to capture
the complete resource consumption (e.g., if the thread forks
other threads or communicates with other processes).

Fig. 1: General Approach

Existing methods for resource demand estimation (RDE),
such as [16], [17], [18] can be used to determine the resource
demands based on observation data from the running system
for an application level entity. The advantage of these methods
is that they do not require fine-grained instrumentation of
the application and therefore, the measurement overhead is
minimal. However, these methods also need to collect a
meaningful amount of data before they can provide reliable
estimates. If the load profile is highly variable, the controller
might react too slowly, because not enough data for resource
demand estimation is available. Changes to resource demands
of a particular request type are relatively infrequent (e.g.,
configuration change) and less disruptive/abrupt (e.g., cache
warm up at start or increasing database size) compared to
changes in the workload. Thus our approach estimates the
resource demands of particular request types and uses them
as basis of the resource control instead of directly estimating
the demands and resource consumptions of a tenant.

Once a request is accepted by the server, it is complicated
to restrict the resources it uses. However, the processing of a
request flow of a tenant could be preempted by stopping or
delaying the admission to the application, and consequently
the resource share of a tenant is limited.

Figure 1 depicts the proposed solution. The Application
Server hosts the MTA serving different request types which
vary in their resource demands. The Monitoring component
measures the throughput Xt,c and the time Rt,c a request
is being processed by the server for each tenant t ∈ T
and request type c ∈ C. It is worth mentioning that Xt,c

and Rt,c are measured between the application server and
the admission control. The measured data is sampled and
continuously forwarded to the Resource Demand Estimation
component. The application server is configured to continu-
ously forward samples of its utilization Ui of resource i to
the RDE component. Using existing RDE approaches (see
Section III) it estimates the demand dt,c,i per request type
and tenant. The Admission Control uses the estimated resource
demands to compute the consumption of a resource for each
tenant based on the accepted requests within a control interval.

In case the system consists of more than one application
server, each one has an individual admission control and
monitoring system to reflect the individual computing power.
One to n RDE component might be shared among all nodes.

We distinguish between three time intervals. (1) All re-



quests that are accepted by the admission control within a
control interval are used to determine the tenants utilization.
This needs to be done very often and it usually lies in the range
of one to a few seconds. (2) The estimation interval determines
how often the estimated resource demands are updated. This
can be configured depending on the workload characteristics,
but it is often also limited by the sampling intervals supported
by the monitoring tools. (3) The observation window is a
sliding window on the observed data which limits the data used
for resource demand estimation and it is typically in the range
of a couple of minutes to a few hours. A trade-off between the
estimation accuracy and the adaptation speed for the estimation
needs to be found for the observation window.

This generic approach closes the gap between the various
layers by (1) connecting the monitoring information from
lower layers using RDE techniques to gain knowledge about
the requests impact and (2) by controlling the request flow to
limit the resources used by a tenant. In the present solution
the current consumption is dynamically calculated at runtime
based on the admitted requests within the control interval in
which the guarantee should be assured. Though it can react
to load changes and variable composition of request types
at runtime. Due to the admission control, a smoothed load
arrives at the application server and an overloaded situation
for the application server can be avoided. This has a positive
impact onto the quality of the RDE. Furthermore, changes in
the resource demands for a particular tenant are registered
and lead to a modified behaviour of the admission control.
Nevertheless, a fast and accurate estimation method that can
work with a low amount of data is still beneficial.

In the following Sections we introduce a concrete solution
for the RDE and the admission control.

III. MULTI-TENANT RESOURCE DEMAND ESTIMATION

A resource demand specifies the processing time for a single
request at a dedicated resource. Each request belongs to a
certain request type according to predefined criteria depending
on the application (e.g., HTTP requests URL). In case of
MTAs, each request can be associated with a certain tenant.
Given that the resource demands for a request type may
vary significantly between two tenants (e.g., due to different
database sizes), the estimation needs to distinguish between
resource demands of request types originating from different
tenants.

Assuming an application with a set of request types C,
and serving a set of tenants T , we need to estimate |C| × |T |
resource demands. Previous work, such as [17], [16], [19], only
considers the estimation in scenarios with a low number of
resource demands (maximum of 16 different demands in [19]).
Therefore, we evaluate the behaviour of relevant existing
resource demand estimation methods with a high number of
request types in Section III-B.

Given that the resource demands may dynamically change
during system runtime, we need to re-run the estimation in
regular intervals to get updated values. Therefore, a fast-
converging resource demand estimation method is best suited
in our scenario. In this work, we consider three methods which
have been successfully used in [20], [21], [22] for the dynamic
estimation of resource demands at system runtime: linear

regression, Service Demand Law (SDL) and Kalman filter. We
did not consider methods based on general optimization, such
as [23], [17], due to their computational complexity which
limits their applicability during system runtime.

A. Methods for Resource Demand Estimation

In the following we discuss the three selected methods for
resource demand estimation.

Linear regression based approaches are used for resource
demand estimation in [16], [20], [24], [25]. The linear model
for the regression is based on the Utilization Law [26]:

Ui =

|C|∑
c=1

Dcλc,i + U0 (1)

Dc is the resource demand of each request type c ∈ C and
U0 represents the intercept term capturing any processing that
cannot be attributed to requests. In each monitoring interval i,
the aggregate CPU utilization Ui and the average arrival rates
of all request types λ1 . . . λ|C| are observed. By using non-
negative least squares (NNLS) regression, we can obtain the
coefficients D1 . . . D|C| representing the resource demand per
request type c.

The second approach is based on the Service Demand
Law [26], which allows computing the resource demand Dc

from the throughput λc and the utilization Uc: Dc = Uc

λc
.

The utilization Uc is the portion of the total utilization that
can be attributed to the processing of requests of type c.
However, monitoring tools commonly provide only the total
utilization U . Therefore, a method for partitioning the total
utilization between the request types is required. Assuming that
the response time of a request is approximately proportional
to its resource demand, the following partition scheme based
on weighted response times is proposed by Brosig et al. [27]:

Uc = U · Rc · λc∑C
d=1 Rd · λd

(2)

Where C is the number of request types, Rc is the response
time of request type c and λc its arrival rate.

A Kalman filter [28] is a stochastic filtering technique
for estimating the hidden state of a dynamic system based
on a series of noisy measurements. In our case, the resource
demands of a system are the hidden state. The Kalman filter
recursively updates its internal filter state and the resulting
estimates as soon as new observations become available. Dif-
ferent Kalman filter designs have been proposed for resource
demand estimation [18], [29], [22]. These filter designs differ
in the input observations they expect for the estimation. We
use the filter design used by Wang et al. [22] in a multi-tenant
scenario, which is based on the Utilization Law [26].

B. Evaluation

The goal of this evaluation is to assess the accuracy and the
convergence behaviour of the considered methods for resource
demand estimation in cases where a high number of resource
demands needs to be determined. Our implementations of
linear regression, Service Demand Law (SDL) and Kalman



filter methods are based on the descriptions in [20], [27],
[22]. We obtained the observation traces for evaluating these
implementations through simulation.

1) Experiment Design: The simulator, which has been used
successfully in [13], is based on a queuing network model with
a closed workload and a finite population of users. It contains a
queue for each tenant representing the think time of the users of
this tenant. The think times are exponentially distributed with a
mean value of 6 seconds. Additionally, there is one queue with
a first-come, first-served scheduling strategy representing an
application server. This queue contains N servers representing
the number of threads that can run simultaneously in the
application server. The resource demands are described by
randomly generated gaussian distributions with a mean value
between 10ms-120ms and up to 10% standard deviation.

We simulated the experiments with 5 tenants and 5, 25 and
100 request types. In low load scenarios the competition of the
tenants for the resource is low. Consequently the interference is
low and there is not much need to actively control the request
flow. Thus, for low load scenarios the accuracy of the estimator
is less important. Additionally, RDE methods are prone to
work less accurate for high utilizations. Thus, the workload
was adjusted for a utilization of around 95%.

For SDL, the resource demands were estimated every 30
simulated seconds using all observations from the beginning
of the steady state period. In case of NNLS and Kalman
filter the length of the required samples was adjusted for
each experiment to find an optimal value. In addition we used
different initializations of the Kalman filter.

2) Experiment Results: Figure 2 shows the total mean
relative errors for 5, 25 and 100 request types with the
best fitting sample lengths and initialization parameters. In
Figure 2a all methods continuously increase their accuracy.
NNLS becomes stable at an error twice as high as the other
two methods. The behaviour for 25 types is similar (see
Figure 2b). In Figure 2c an oscillation of the Kalman filter
is observed before it starts to converge to a similar accuracy
as the SDL. In case of 100 request types the NNLS increases
its accuracy only slowly. We had significant efforts to manually
find good settings for the sample length, actualization rate and
initialization values for the NNLS and Kalman filter which are
scenario specific. In general, the estimates are less accurate
for a high amount of types and need more time to converge.
It is remarkable that SDL always provides results better or as
good as the Kalman filter and both outperform NNLS. Further
experiments with 300 request types showed that NNLS is not
able to create a valid regression within a relevant observation
time. Additionally, SDL completed the actual computation in
less than 0.3ms for 100 request types.

As a consequence we identified SDL as the most appropri-
ate approach. It converges fast, has low error, has the lowest
complexity and has a low resource consumption.

IV. ADMISSION CONTROL ALGORITHM

This Section presents the design criteria for a concrete admis-
sion control and the controller we developed with respect to
our overall approach presented in Section II. The component
aims at controlling the resource usage level for each tenant,

so that they comply with their guarantees. Its input consists of
(1) the resource demand for each tenant’s request type, (2) the
resource guarantee/share per tenant, and (3) incoming requests.
The requests that are forwarded to the server are the output.
The algorithm focuses on active time sharing resources like
CPUs.

A. General Requirements and Design Decisions

The proposed admission control maintains one FIFO request
queue for each tenant. When a thread in the application
server becomes available, the admission control is triggered
to return the next request to be served. The goal is to
achieve a resource consumption for each tenant corresponding
to the preconfigured values and an efficient resource usage.
Efficiency in this context means, a resource should not idle
if pending requests exist. Furthermore, unused portions of
the resource from one tenant should be available for other
tenants to enable over commitment. Additionally, the approach
has to be of low complexity to avoid unnecessary delays in
the request processing. In general, the priority on how to
select requests from a set of queues could be statically or
dynamically. We compute the priorities periodically every time
the scheduler forwards a request. This allows to continuously
adjust the prioritized queue based on the actual consumption
in the control interval. In our case the priority reflects the ratio
of guaranteed vs. already consumed resources for a tenant.

We assume the thread pool size of the server is configured
in such a way, that it achieves an optimal throughput to avoid
overloaded situations.

B. Scheduling Algorithm

Algorithm 1 uses predefined functions. The dequeue function
returns the first elements from a FIFO queue and removes
it from the queue. The demand function returns the resource
demand of a particular request type based on the previous
estimations from the RDE.

The admission control component’s inputs are the resource
demand for each tenant/request type used in demand, and the
resource guaranties per tenant G. A guarantee g|g ∈ G ∧ 0 <
g < 1 expresses the fraction of time a tenant is allowed to
use the resource under investigation. The intrinsic parameters
of the admission control component used for the scheduling
algorithm are the configured duration of the control interval
tcontrolInterval for which the used resources have to converge
to the given guarantee, and a reference to the queues Q, with
pending requests for each tenant. The queues are continuously
updated.

The algorithm internal set P contains triples
(priority, queue, tenant) used to find the next request.
A lower value for the priority corresponds to a higher
probability to be selected. The variable t specifies timestamps
identified by the given index and ui represents the already
used amount of computing time for a tenant i.

In line 10 the method checks whether a new interval has
begun. If this is the case, tlastInterval is reset in line 11 to
have a trigger when the next interval will finish. P is reset
in line 12 and initialized with priority 0 in lines 13-16. In
lines 29-23, the entry p ∈ P is searched which has the lowest



0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0 60 120 180 240 300 360 420

M
e

a
n

 R
e

la
ti

v
e

 E
rr

o
r

Time (s)

SDL

NNLS

Kalman

(a) 5 Request Types

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0 60 120 180 240 300 360 420

M
e

a
n

 R
e

la
ti

v
e

 E
rr

o
r

Time (s)

SDL

NNLS

Kalman

(b) 25 Request Types

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0 60 120 180 240 300 360 420

M
e

a
n

 R
e

la
ti

v
e

 E
rr

o
r

Time (s)

SDL

NNLS

Kalman

(c) 100 Request Types

Fig. 2: Accuracy of RDE Methods in Dependency of the Measurement Time

Algorithm 1 Admission Control

1: INPUT:
2: Q = {q1, · · · , q|T |} set of FIFO request queues
3: G = {g1, · · · , g|T |} set of guaranteed fraction of resource
4: tcontrolInverval
5: GLOBAL VARIABLES:
6: tlastInterval = 0
7: u1 · · ·u|Q|
8: P = {(p1, q1, t1), · · · (p|Q|, q|Q|, t|Q|)}
9: FUNCTION:

10: if tcurrent − tlastInterval>tcontrolInterval then
11: tlastIntrval = tcurrent
12: P = ∅
13: for i = 1 to |Q| do
14: ui = 0
15: P = P ∪ {(0, qi, t)}
16: end for
17: end if
18: plow = (∞, null, null);
19: for all p ∈ P do
20: if p[1] ≤ plow[1] AND |p[2]| ̸= 0 then
21: plow = p
22: end if
23: end for
24: P = P \ {plow}
25: rreturn = dequeue(plow[2])
26: uplow[3] = uplow[3] + demand(rreturn)
27: P = P ∪ {( ui

(gplow [3]·tcontrolInterval)
, qi, p[3])}

28: return rreturn

value for the priority and is stored in the temporary variable
plow defined in line 18. In line 24, the current selection of p is
removed from the set of all P to update it later with a modified
priority. Line 25 gets the next request from the selected queue
which is returned later as a result of the execution of this
algorithm. In line 26, the consumed resources for this period
are re-computed based on the demand of the request selected.
The updated utilization ut for this tenant is used to update
the priority in line 27. The priority is the ratio of the already
used resource in this period and the maximum guaranteed
consumption. In a concrete implementation, the set P could be
replaced by a priority sorted set to improve the performance.

We discuss the design goals resource isolation/control and
efficiency in more detail in this paragraph. The control is
performed by delaying a tenant’s request processing when
he already used a larger proportion of his quota compared

to other tenants with pending requests. If all tenants have
always pending requests within a control interval the requests
are selected with the same probability during the complete
period, corresponding to the guaranteed share. If a tenant does
not have pending requests at the beginning of a period other
tenants are handled instead to maintain the resource utilized.
However, compared to the already active tenants, a tenant that
starts sending requests later is preferred due to its priority.
This again ensures the isolation aspect of the approach. In
cases where a tenant already exceeded its guarantee, it is still
selected if no other tenant has pending requests. In case several
tenants are exceeding their quota, the priority function selects
the tenant that exceeds its quota the least.

V. EVALUATION

The goals for the Evaluation are as follows. (1) Evaluation of
the SDL to estimate resource demands in a realistic context.
(2) Evaluation of the realized resource control containing
the complete feedback loop. The evaluation in both cases is
done in a realistic environment. In the following, we start
with the description of the system environment, followed by
two separate sections discussing more detailed questions and
outcomes for the evaluation goals. We focus on the control
of the CPU. Driven by increasing industry requirements we
assume a setup in which the MTA is hosted by a PaaS.

A. Experiment Environment

1) Multi-tenancy Benchmark: To perform the evaluation in
a realistic environment, the existing and widely accepted TPC-
W [14] benchmark was enhanced with multi-tenancy support
(MT-TPC-W) in [30]. TPC-W was already used before in
multi-tenant performance isolation scenarios (e.g.,[22]). MT-
TPC-W is an online book store emulating multiple online
browsers (EB), wherein the workload is dynamically generated
by accessing web pages. To support multi-tenancy, it differ-
entiates between requests originating from different tenants
by isolating their data. It generates a closed loop workload,
whereby one EB behaves like a user which is characterized by
a think time and a Markov Chain describing the request flow.

2) PaaS Runtime Environment: For the application server
hosting the MT-TPC-W we selected the JAVA-based runtime
container of the SAP Hana Cloud [31] environment which is
a PaaS offered by SAP. Several PaaS environments serve a
dedicated runtime container within a VM for each application
to ensure proper isolation between different applications [31],
[32]. However, this does not ensure isolation between tenants
sharing the application within the same VM. The runtime



container differentiates tenants by the hostname they use to
access the application.

Fig. 3: Experiment Environment

3) Environment Setup: Figure 3 depicts the test environ-
ment which consists of the 8 major components we discuss
subsequently. The Load Driver creates EBs that send requests
to the online store application (MT-TPC-W). It is separated
from the system under test (SUT) to avoid influence. MT-TPC-
W is hosted on a SAP Hana Cloud runtime container which is
hosted within a VM. A MySQL database is used to persist the
applications data and is hosted within the same VM. The VM
runs SLES11 SP2 and is hosted on the XEN hypervisor 4.1. It
hosts the SAP Hana Cloud Runtime Container, the application
and the database. The runtime container runs JAVA programs
and executes the MT-TPC-W and the Admission Control. In
the present solution the Admission Control is implemented
as a valve [33] and deployed together with the application
in the runtime container. It realizes the algorithm described
in Section IV and monitors throughput and average response
time. A CPU Monitor is installed in the hypervisor to collect
the CPU utilization of the CPU pinned to the VM. These
measurements are required as inputs for the resource demand
estimation. The RDE System receives metering information
from the CPU Monitor and the Admission Control, thus it has
a physical network connection to the Server 2 and a virtual
one to the VM.

The two servers are equipped with 4 cores providing
16 x 2.13 GHz and 16 GB memory each, and they are
connected with a 1 GBit/s Ethernet. The virtual machine in the
SUT is pinned to one CPU and has 2 GB memory. The RDE
runs on a standard desktop PC and was physically connected
with 100 MBit/s to Server 2.

B. RDE Evaluation

In the following we briefly discuss our observations concerning
the resource demand estimation approach presented in Section
III.

1) Scenario Details: The scenario defines 8 tenants, result-
ing in 112 request types. The databases content is randomly
generated, whereby tenant 1 to tenant 6 use an equally sized
small dataset and tenant 7 and tenant 8 an equally sized dataset
with 8 times more data. We collected the response time and
throughput for each request type of each tenant plus the overall
CPU utilization. The information was aggregated periodically
and sent to the RDE every 10 seconds. The experiment ran 17
minutes. The first 3 minutes are used to ramp up the emulated

browsers another 3 minutes are spent to warm up the system
which shows stable results from this point. In this scenario
each tenant serves 250 users in order to achieve a high CPU
utilization of around 95%.

2) Results: Table I shows the resource demands per request
type of tenant t1 including the 95% confidence interval.
In general, the observed confidence intervals reflect a high
precision. The average resource demand per request for the
tenants are: t1 = 3.2ms, t2 = 3.3, t3 = 3.5, t4 = 3.5, t5 =
3.1, t6 = 3.4, t7 = 5.1, t8 = 4.6. The obtained results show
considerably higher demands for tenant 7 and tenant 8 which
are caused by the larger dataset.

Requests type Demand (ms) Requests type Demand (ms)
Home interaction 2.2 [2.1—2.3] Execute 4.0 [3.9—4.1]
Admin request 3.6 [2.5—4.6] New products 4.3 [4.1—4.6]
Admin response 7.2 [5.7—8.7] Order display 2.6 [2.3—2.8]
Best sellers 5.8 [5.5—6.0] Product detail 2.0 [1.9—2.1]
Buy confirm 6.5 [6.0—7.0] Search request 1.9 [1.8—2.0]
Buy request 3.7 [3.5—4.0] Shopping cart 3.7 [3.4—4.0]
Customer registration 2.0 [1.2—2.7] Order inquiry 0.03[0.03—0.03]

TABLE I: MT-TPC-W Request Types and Demands

The resource demand estimates are continuously updated
by our solution. Thus, the values are estimated at a similar
state of the system where they are used by the admission
control. Therefore, samples are collected at a stable load of
95% utilization and used for a cross-validation. The set of
samples is randomly partitioned into a training and validation
set. The training set is used for the resource demand estimation.
The remaining set is used to compare the predicted utilization
with the measurement. The same process is repeated to get
different training and validation sets. The observed mean error
was 9%.

We assume that the cross-validation at the same load
fits well to our requirements, because the estimation is done
online at the relevant workload. To get an error estimate for
scenarios where the workload increases fast from a low to
a high utilization we considered a scenarios with different
utilization. We run an estimation for the requests demand at
60% utilization. The results were used for a prediction at 60%
utilization which result in an error of 19% and and error of
28% for 90% utilization. According to [34] the error rates
are acceptable values. Furthermore, SDL underestimated the
demands for all tenants. Thus the control mechanism still
maintains a similar ratio between tenants and consequently a
lower error compared to the real resource share.

The case study shows that the SDL approach is able to
deliver good results in scenarios with high loads and a huge
amount of request types.

C. End-to-End Evaluation

In this Section the results of the end-to-end resource control
mechanism are presented. The questions we discuss are (Q1)
the ability to achieve performance isolation with regards to
response times and throughput by applying resource control,
(Q2) the quality of the resource isolation, (Q3) the efficiency
of the approach for scenarios with over-commitment, (Q4) the
ability to reflect the demands of a tenant in the request process-
ing, (Q5) the ability to provide different resource guarantees



0

2

4

6

8

10

12

0 500 1000 1500 2000 2500

R
e

sp
o

n
se

 T
im

e
 (

s)

Time (s)

Tenant 1

Tenant 2

u
s
e

rs
 a

d
d

e
d

(a) Q1: Non-Isolated System Response Time

0

50

100

150

200

0 500 1000 1500 2000 2500

T
h

ro
u

g
h

p
u

t 
(R

e
q

/1
0

s)

Time (s)

Tenant 1

Tenant 2

u
s
e

rs
 a

d
d

e
d

(b) Q1: Non-Isolated System Throughput

0

2

4

6

8

10

0 500 1000 1500 2000 2500

C
o

n
su

m
p

ti
o

n
 (

a
v

g
 i

n
 1

0
s)

Time (s)

Tenant 1

Tenant 2

u
s
e

rs
 a

d
d

e
d

(c) Q2: Non-Isolated System Resource Consumption

0

2

4

6

8

10

12

0 500 1000 1500

R
e

sp
o

n
se

 T
im

e
 (

s)

Time (s)

Tenant 1

Tenant 2

u
s
e

rs
 a

d
d

e
d

(d) Q1: Isolated System Response Time

0

50

100

150

200

0 500 1000 1500

T
h

ro
u

g
h

p
u

t 
(R

e
q

/1
0

s)
Time (s)

Tenant 1

Tenant 2

u
s
e

rs
 a

d
d

e
d

(e) Q1: Isolated System Throughput

0

2

4

6

8

10

0 500 1000 1500

C
o

n
su

m
p

ti
o

n
 (

a
v

g
 i

n
 1

0
s)

Time (s)

Tenant 1

Tenant 2

u
s
e

rs
 a

d
d

e
d

(f) Q2: Isolated System Resource Consumption

Fig. 4: Isolation Capabilities of the Resource Control Mechanism

to individual tenants, and (Q6) the ability of the mechanism
to adapt to changing resource demands. To answer these
questions we defined 5 scenarios described in the following.

In the context of the evaluation the response time refers to
timespan observed by the end users between sending a request
and receiving a response. The control interval was configured
to 1s, the estimation interval is set to 15s, the observation
window to 300s and the monitoring information sample length
is set to 10s.

1) Scenario and Results for Q1, Q2: In order to answer
Q1 and Q2 a comparison between an isolated and a non-
isolated system is required. For answering Q1 a comparison is
performed based on the observed response time and throughput
behavior of each tenant. For answering Q2 a comparison is
performed based on the resource consumption of each tenant.
The first experiment uses a standard FIFO access mechanism
without admission control. In the beginning of the experiment
each tenant has 1000 users. After a warm-up phase 1000
additional users are added to tenant 1 to increase the load.

In the second experiment the proposed admission control
mechanism is implemented and each tenant is allowed to
allocate 50% of the resource. The reference workload is
composed of 1250 users for each tenant, and the disruptive
workload has 1000 users more for tenant 1.

a) Results Q1: At the beginning of the non-isolated
case (see Figure 4a) the response time for both tenants is
the same since both tenants have 1000 users. After adding
1000 users at 1600s the load for tenant 1 increased. Although
tenant 2 still works with the same load as previously its
response time increases in the same way as for tenant 1 because
the FIFO queue cannot distinguish between different tenants.
Figure 4b shows the complementary throughputs and how they
decrease for tenant 2 in response to the disruptive behavior of
the other tenant. In general, a slightly increasing response time
and decreasing throughput for both tenants is visible. This can
be explained with an increasing database volume during the
experiment run.

The isolated scenario (see Figure 4d and 4e) starts for both

tenants with response times at the same level. After adding
1000 users to tenant 1 at 900 seconds, the response time
of tenant 1 shows a strong increase. Despite, the increasing
database size the response time of the abiding tenant maintains
a significantly lower value.

The mechanism provides stable response times for the
tenant with stable load while another increases its load. Thus
it enforces performance isolation.

b) Results Q2: When tenant 1 increases its load in
a FIFO scheduled system, its resource consumption also in-
creases (see Figure 4c). This has a negative impact tenant 2
since the consumption of it decreases. In contrast, the con-
sumption of tenant 1 maintains the guaranteed level in the
isolated case (see Figure 4f) and the consumption of tenant 2
is not influenced. In conclusion, the method is able to ensure
resource isolation between individual tenants.

2) Scenario and Results for Q3: To answer Q3, the guaran-
teed resources are uniformly distributed between both tenants.
At the beginning of the experiment each tenant has 1500 users,
and after 500 seconds 1000 users are removed from tenant 1.
Therefore, the request rate of tenant 1 is too low to allocate all
its guaranteed resources. As a consequence, the second tenant
should be able to use these resources in addition to its own
share.

In the first 210 seconds shown in Figure 5, the ramp
up time of the measurement is visible. Until 500 seconds

0

50

100

150

200

0 100 200 300 400 500 600 700 800

T
h

ro
u

g
h

p
u

t 
(R

e
q

/1
0

s)

Time (s)

Tenant 1

Tenant 2

u
s
e

rs
 r

e
m

o
v
e

d

Fig. 5: Q3: Efficiency of the System



both tenants have 1500 users and the same response time.
At 500 seconds the workload of tenant 1 is decreased. As
a consequence, the amount of available resources increases
and tenant 1 takes advantage of them. Although the resource
guarantees are assigned equally to both tenants, tenant 1
consumes more resources in this case. Both tenants observed a
reduced response time. Thus, the proposed mechanism ensures
an efficient resource usage and allows over-commitment.

3) Scenario and Results for Q4: In order to answer Q4,
tenant 1 is configured to access a small database, and tenant 7
by accessing a larger database. This results in different re-
source demands (cf. Section V-B2). This way, we can evaluate
if the first tenant is negatively influenced by the tenant with
higher demands, although the share of the resource is the same.
Both tenants run 1250 users.

Figure 6a shows that tenant 1 with low demand request has
a better response time than the tenant with high load requests.
In case of a non-isolated system the throughput would be the
same for both and thus the ratio of the share would be 0.39
for tenant 1 and 0.61 for tenant 7 which is an error of 22%
(cf. Section V-B2). In the given experiment the throughput
ratio was 0.58 for tenant 1 and 0.42 for tenant 7 (see Figure
6b) which results (cf. Section V-B2) in a resource share of
approximately 0.48 and 0.52 which is an error of 4%.

This shows the ability of the method to treat tenants with
different demands in a differentiated manner, and proves the
ability of the mechanism to use the estimated demands.

4) Scenario and Results for Q5: Answering Q5, different
resource shares are allocated to the tenants. Tenant 1 has 25%
of the resource and tenant 2 has 75%. The number of users
for both tenants is 1250.

The tenant with 75% of the resources has better response
times (see Figure 6c) and a higher throughput (see Figure 6d).
Thus, the proposed resource controller is able to differentiate
QoS by providing different shares to each tenant.

5) Scenario and Results for Q6: To identify the systems
ability to adapt to changing resource demands we set up two
tenants using the system at high utilization. After 1450 seconds
the resource demands for each request type of tenant 1 were
increased to a higher value, by adding artificially computa-
tional overhead, simulating a change in the tenant-specific
configuration. In a second experiment, we ran the system at
a utilization of around 30% and increased the load of one
tenant to achieve a utilization close to 100% after 3 minutes
to examine the impact of the estimation error found in V-B2
in a scenario with changing loads.

Figure 6f depicts the error of the resource demand esti-
mated in percent. At 1450 seconds the demand is 20% un-
derestimated and due to the sliding window approach it needs
some minutes to converge again to a good estimation. In total,
it took around 8 minutes before the estimated demands become
stable again due to the adaptation process which includes the
admission, that itself changes the load behaviour. A smaller
observation window can speedup the adaptation at the cost of
the prediction accuracy. Figure 6e depicts the difference of
the resource consumption between the two tenants in percent.
Once the demand increased the difference raises up to 50%
before the estimation and system becomes stable at around

2100 seconds. The experiment was repeated several times with
similar results. The seconds experiment presented a very good
resource isolation similar to Figure 4f with a negligible error.
This proves that the RDE error in various load scenarios has
only a small impact on the isolation and control mechanism.

6) Scalability: We ran experiments with up to 8 tenants.
In an exemplary manner, we describe the results from an
experiment based on the scenario used to answer Q4 and
Q5. In this scenario, tenants t5 and t6 have a larger dataset
compared to the other tenants. The CPU shares of the tenants
are set to (t1..t6= 2

30 ;t7..t8= 9
30 ). We observed that with a

higher number of tenants, a longer control interval and a
larger observation window are beneficial. Therefore, we set
the control interval to 3 seconds and the observation window
to 7 minutes. The observed response times show that the
system is capable to isolate the resource usage between the
tenants and to provide different QoS levels for different tenants
(t1 = 5.0s; t2 = 4.3s; t3 = 4.2s; t4 = 5.0s; t5 = 7.1s; t6 =
7.5s; t7 = 0.8s; t8 = 0.5s). Additionally, we observed that the
request response time without artificial delays was increased
by less than 5%.

VI. RELATED WORK

We primarily focus on work concerning performance isolation
and resource control. Additionally, a brief overview of relevant
work in the field of RDE is given.

A. Isolation and Resource Control

Fehling et al. [35] analysed challenges arising from multi-
tenant scenarios and provided a method to place tenants
onto locations with different QoS in a way resources are
used optimal without SLA violations. However, this approach
doesn’t cover isolation aspects nor uses knowledge of online
estimated resource demands. Abdelzaher et al. [36] present
an example of work where different requests/connections are
given different priorities on TCP level. Their approach focus on
differentiating QoS without knowledge or particular resource
demands. In our previous work [13], different static admission
control strategies like Round Robin were realized. However,
in this work no knowledge of resources or other feedback
was available. In several situations the solutions could not
provide proper isolation or efficiency. In [37], the authors
propose a feedback-control-based performance regulation for
MTAs to control QoS for different tenants. The focus is to
guarantee different quality of services to different tenants.
They indirectly provide measures for performance isolation.
However, in situations with high load it would fail to guarantee
isolation because the mechanism does not provide isolated
queues. Therefore, requests are rejected although the response
times would still be sufficient. Gupta et al. [38] is one rep-
resentative of authors developing mechanisms to performance
isolate VMs. In their particular case, they determine the CPU
overhead for I/O of a XEN Domain in Dom0 and leverage
this within the CPU scheduler to achieve lower interference of
VMs. However, all the approaches isolating virtual machines
can directly measure the resource consumptions and have
direct access to the hardware and schedulers. The work of [39]
aims to maximize the overall resource utilization of a resource
pool (set of computing nodes) with respect of guaranteed SLAs
for different tenants. The aim is to place a set of sequentially



0

5

10

15

20

0 200 400 600 800 1000

R
e

sp
o

n
se

 T
im

e
 (

s)

Time (s)

Tenant 1

Tenant 7

(a) Q4: Tenant Differentiation Response Time

0

20

40

60

80

100

120

140

0 200 400 600 800 1000

T
h

ro
u

g
h

p
u

t 
(R

e
q

/1
0

s)

Time (s)

Tenant 1

Tenant 7

(b) Q4: Tenant Differentiation Throughput

0

2

4

6

8

10

12

0 200 400 600 800 1000

R
e

sp
o

n
se

 T
im

e
 (

s)

Time (s)

Tenant 1

Tenant 2

(c) Q5: Different Resource Guarantees Response Time

0

50

100

150

200

0 200 400 600 800 1000

T
h

ro
u

g
h

p
u

t 
(R

e
q

/1
0

s)

Time (s)

Tenant 1

Tenant 2

(d) Q5: Different Resource Guarantees Throughput

-10

0

10

20

30

40

50

60

1100 1600 2100 2600

D
if

f.
 C

o
n

su
m

p
ti

o
n

 (
%

)
Time (s)

d
e

m
a

n
d

 c
h

a
n

g
e

(e) Q6: Resource Consumption while Demands Change

-30

-20

-10

0

10

20

30

1100 1600 2100 2600

R
D

E
 E

rr
o

r 
Te

n
a

n
t 

2
 (

%
)

Time (s)

d
e

m
a

n
d

 c
h

a
n

g
e

(f) Q6: Resource Demand Estimation Error

Fig. 6: Evaluation Results of the Resource Control Mechanism

on-boarding tenants to a set of available resources without
violating the SLAs. It is assumed, that, while a certain response
time is guaranteed, the consumption of a particular resource,
is linear on the number of the tenant’s active users. However,
tenants allocating the same node still influence each other and
variable demands are not covered.

In [22], a Kalman filter is used to estimate the CPU
consumption of tenants sending different request types. The
isolation strategy checks if the current CPU utilization exceeds
a predefined CPU threshold. If this is the case it identifies the
tenant and request type that causes the largest CPU utilization.
As a consequence, the allowed request rate for this transaction
type of the disruptive tenant is decreased by rejecting requests.
Their approach assumes that the same request type sent by
different tenants have the same demand. Furthermore, the
demand estimation is only used to identify malicious workload
but not to define individual shares. Incoming malicious request
types are rejected. Our approach supports various resource
demands, it enables resource shares and still handles requests
with some delay instead of rejecting them.

B. Resource Demand Estimation

Previous evaluations of methods for resource demand estima-
tion are limited to a low number of request types. To the best
of our knowledge, there is no previous work considering 20
and more request types. There are case studies with linear
regression [25], [40], or Kalman filters [22] using the TPC-W
application benchmark, which has 14 different request types.
However, the number of request types is not varied in these
case studies. Kraft et al. [17] evaluate the influence of the
number of request types (between one and five) on different
linear regression and maximum-likelihood resource demand
estimation methods. In [16], Rolia et al. describe experiments
using linear regression and varying the number of request types
between three and ten. In [19], several methods for resource
demand estimation are evaluated for up to 16 workload types.

VII. CONCLUSION

This paper describes an approach that supports Multi-tenant
Applications to guarantee a performance for each tenant.
Resource control is required to manage performance. The
layers with direct access to resources (e.g., operating system)
have no knowledge of the application-level entity of a tenant.
Consequently it is one of the major challenges to overcome
the applications decoupling from the hardware.

The presented approach is based on resources demand
estimation methods to quantify the resource consumption of
a tenant at runtime. This allows to control the amount of
requests admitted to the application for each tenant to ensure
a certain share of the resource. Three different promising
resource demand estimation methods based on Kalman filter,
linear regression and the Service Demand Law (SDL) were
evaluated. The best approach for our scenario, based on the
SDL, was combined with a request admission control. The
chosen approach can be used for high utilized scenarios, with
a huge amount of request types.

The request admission control dynamically computes a
tenant’s priority. While the consumed resources of a tenant
converge to a predefined share, the tenant’s priority is reduced
compared to the others. Thus, other tenants will be preferred
and the resources used by a tenant are isolated. The evaluation
based based on TPC-W showed the ability of the mechanism
to isolate the CPU time for each tenant. In addition, over-
committed systems and differentiation of the QoS different
tenants experience can be handled.

The contribution was threefold. (1) We presented a general
approach how resource isolation could be achieved on the
application level. (2) We analysed three resource demand esti-
mations methods with regards to the expected applications re-
alizing 1. (3) A concrete admission control to enforce resource
isolation based on the evaluation in 2. These contributions
allow providing better SLAs guarantees in the area of SaaS,
realized by multi-tenant applications.

Our future work will focus on the combination of several
resources of different type, and distributed systems where



several computing nodes host the Multi-tenant Application.
Furthermore, we plan to contribute in the field of resource
demand estimation methods.

ACKNOWLEDGMENT

Research leading to these results has received funding from the
European Union Seventh Framework Programme (FP7/2007-
2013) under grant no 317704 (CloudScale).

REFERENCES

[1] bitcurrent, “Bitcurrent cloud computing survey 2011,” bitcurrent, Tech.
Rep., 2011.

[2] D. Smith, “Hype cycle for cloud computing, 2011,” Gartner, Tech. Rep.,
July 2011, iD Number: G00214915.

[3] Optimal Multivariate Control for Differentiated Services on a Shared
Hosting Platform. 46th IEEE Conference on Decision and Control,
2007.

[4] P. Mell and T. Grance, The NIST Definition of Cloud Computing,
National Institute of Standards and Technology Std. Special Publication
800-145, 2011.

[5] SAP, “SAP business bydesign? innovations and key capabilities,” SAP
AG, Walldorf, Tech. Rep., 2012.

[6] C. D. Weissman and S. Bobrowski, “The design of the force.com
multitenant internet application development platform,” in Proceedings
of the 35th SIGMOD International Conference on Management of Data.
New York, NY, USA: ACM, 2009, pp. 889–896.

[7] Y. Natis, “Gartner reference model for elasticity and multitenancy,”
Gartner, Gartner Report, June 2012.

[8] H. Koziolek, “The SPOSAD architectural style for multi-tenant software
applications,” in Workshop on Architecting Cloud Computing Applica-
tions and Systems (procedings of WICSA’11). IEEE, 2011.

[9] R. Krebs, C. Momm, and S. Kounev, “Architectural Concerns in Multi-
Tenant SaaS Applications,” in Proceedings of the 2nd International
Conference on Cloud Computing and Services Science (CLOSER 2012).
SciTePress, April 2012.

[10] E. Packman, P. Taylor, L. Rachitsky, S. Rejali, S. Power, I. Rae,
and D. Koffler, “Bitcurrent: Cloud comuting performance,” bitcurrent,
bitcurrent, Tech. Rep., June 2010.

[11] IBM, “Dispelling the vapor around cloud computing,” IBM, New
Orchard Road Armonk, NY 10504 U.S.A., Tech. Rep., 2010.

[12] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski,
G. Lee, D. id Patterson, A. Rabkin, I. Stoica, , and M. Zaharia, “A view
of cloud computing,” Communications of the ACM, vol. 53, no. 4, pp.
50–58, 2010.

[13] R. Krebs, C. Momm, and S. Kounev, “Metrics and Techniques for
Quantifying Performance Isolation in Cloud Environments,” Elsevier
Science of Computer Programming Journal (SciCo), 2013.

[14] TPC BENCHMARK W, Transaction Processing Performance Council
Std., 2002, transaction Processing Performance Council.

[15] V. C. Emeakaroha, I. Brandic, M. Maurer, and S. Dustdar, “Low level
Metrics to High level SLAs - LoM2HiS framework: Bridging the gap
between monitored metrics and SLA parameters in cloud environ-
ments,” in High Performance Computing and Simulation (HPCS) 2010,
2010.

[16] J. Rolia and V. Vetland, Parameter estimation for performance models
of distributed application systems. IBM Press, 1995, p. 54.

[17] S. Kraft, S. Pacheco-Sanchez, G. Casale, and S. Dawson, Estimating
service resource consumption from response time measurements. ICST
Institute for Computer Sciences, Social-Informatics and Telecommuni-
cations Engineering, 2009.

[18] T. Zheng, C. M. Woodside, and M. Litoiu, “Performance model
estimation and tracking using optimal filters,” Software Engineering,
IEEE Transactions on, vol. 34, no. 3, p. 391?406, 2008.

[19] S. Spinner, “Evaluating Approaches to Resource Demand estimation,”
Master’s thesis, Karlsruhe Institute of Technology (KIT), Am Fasanen-
garten 5, 76131 Karlsruhe, Germany, July 2011.

[20] G. Pacifici, W. Segmuller, M. Spreitzer, and A. Tantawi, “Cpu demand
for web serving: Measurement analysis and dynamic estimation,” Per-
formance Evaluation, vol. 65, no. 6-7, p. 531?553, 2008.

[21] F. Brosig, N. Huber, and S. Kounev, “Automated Extraction of
Architecture-Level Performance Models of Distributed Component-
Based Systems,” in 26th IEEE/ACM International Conference On
Automated Software Engineering (ASE 2011), 2011.

[22] W. Wang, X. Huang, X. Qin, W. Zhang, J. Wei, and H. Zhong,
“Application-Level CPU Consumption Estimation: Towards Perfor-
mance Isolation of Multi-tenancy Web Applications,” 2012 IEEE Fifth
International Conference on Cloud Computing, pp. 439–446, 2012.

[23] Z. Liu, L. Wynter, C. H. Xia, and F. Zhang, “Parameter inference
of queueing models for it systems using end-to-end measurements,”
Performance Evaluation, vol. 63, no. 1, p. 36?60, 2006.

[24] G. Casale, P. Cremonesi, and R. Turrin, “Robust Workload Estimation in
Queueing Network Performance Models,” 16th Euromicro Conference
on Parallel, Distributed and Network-Based Processing (PDP 2008),
pp. 183–187, Feb. 2008.

[25] Q. Zhang, L. Cherkasova, and E. Smirni, A Regression-Based Analytic
Model for Dynamic Resource Provisioning of Multi-Tier Applications.
IEEE Computer Society, 2007, p. 27ff.

[26] R. Jain, The Art of Computer Systems Performance Analysis: techniques
for experimental design, measurement, simulation, and modeling. Wi-
ley, 1991.

[27] F. Brosig, S. Kounev, and K. Krogmann, Automated extraction of
palladio component models from running enterprise Java applications.
ICST (Institute for Computer Sciences, Social-Informatics and Telecom-
munications Engineering), 2009.

[28] R. E. Kalman, “A new approach to linear filtering and prediction
problems,” Transactions of the ASME-Journal of Basic Engineering,
vol. 82, no. Series D, pp. 35–45, 1960.

[29] D. Kumar, A. Tantawi, and L. Zhang, “Real-Time Performance Mod-
eling for Adaptive Software Systems,” Proceedings of the 4th Interna-
tional ICST Conference on Performance Evaluation Methodologies and
Tools, 2009.

[30] R. Krebs, A. Wert, and S. Kounev, “Multi-Tenancy Performance Bench-
mark for Web Application Platforms,” in Proceedings of the 13th
International Conference on Web Engineering (ICWE 2013), Aalborg
University, Denmark. Springer-Verlag, July 2013.

[31] SAP, “SAP HANA Cloud Platform,”
https://account.hanatrial.ondemand.com/, [accessed 31-Oct-2013].

[32] Amazon, “AWS Elastic Beanstalk,”
http://aws.amazon.com/elasticbeanstalk/, [accessed 31-Oct-2013].

[33] Apache, “Apache Tomcat Configuration Reference - The Valve Com-
ponent,” http://tomcat.apache.org/tomcat-5.5-doc/config/valve.html, [ac-
cessed 31-Oct-2013].

[34] D. A. Menascé and V. A. F. Almeida, Scaling for E-Business: Tech-
nologies, Models, Performance, and Capacity Planning, 2000.

[35] C. Fehling, F. Leymann, and R. Mietzner, “A framework for optimized
distribution of tenants in cloud applications,” in CLOUD 2010 IEEE 3rd
International Conference on Cloud Computing, 2010, pp. 252 –259.

[36] T. Abdelzaher, J. Stankovic, C. Lu, R. Zhang, and Y. Lu, “Feedback
performance control in software services,” Control Systems, IEEE,
vol. 23, no. 3, pp. 74–90, 2003.

[37] H. Lin, K. Sun, S. Zhao, and Y. Han, “Feedback-Control-Based Per-
formance Regulation for Multi-Tenant Applications,” in Proceedings of
the 15th International Conference on Parallel and Distributed Systems,
ser. ICPADS ’09. IEEE Computer Society, 2009, pp. 134–141.

[38] D. Gupta, L. Cherkasova, R. Gardner, and A. Vahdat, “Enforcing perfor-
mance isolation across virtual machines in Xen,” in Proceedings of the
ACM/IFIP/USENIX 2006 International Conference on Middleware, ser.
Middleware ’06. Springer-Verlag New York, Inc., 2006, pp. 342–362.

[39] Y. Zhang, Z. Wang, B. Gao, C. Guo, W. Sun, and X. Li, “An effective
heuristic for on-line tenant placement problem in SaaS,” Web Services,
IEEE International Conference on, vol. 0, pp. 425–432, 2010.

[40] J. Rolia, A. Kalbasi, D. Krishnamurthy, and S. Dawson, Resource
demand modeling for multi-tier services. ACM, 2010.


