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Abstract. Elasticity is the ability of a software system to dynamically scale the
amount of the resources it provides to clients as their workloads increase or de-
crease. Elasticity is praised as a key advantage of cloud computing, where com-
puting resources are dynamically added and released. However, there exists no
concise or formal definition of elasticity, and thus no approaches to quantify
it have been developed so far. Existing work on cloud computing is limited to
the technical view of implementing elastic systems, and definitions or scalability
have not been extended to cover elasticity. In this report, we present a detailed
discussion of elasticity, propose techniques for quantifying and measuring it, and
outline next steps to be taken for enabling comparisons between cloud computing
offerings on the basis of elasticity. We also present preliminary work on measur-
ing elasticity of resource pools provided by the Java Virtual Machine.

1 Introduction

In cloud computing [CA11], resources and services are made available over a net-
work, with the physical location, size and implementation of resources and services
being transparent. With its focus on flexibility, dynamic demands and consumption-
based billing, cloud computing enables on-demand infrastructure provisioning and “as-
a-service” offering of applications and execution platforms.

Cloud computing is powered by virtualization, which enables an execution platform
to provide several concurrently usable (and independent) instances of virtual execution
platforms, often called virtual machines (VMs). Virtualization itself is a decades-old
technique [CA11,ENO5], and it has matured over many generations of hardware and
software, e.g. on IBM System z mainframes [Spr10,TV04]. Virtualization comes in
many types and shapes: hardware virtualization (e.g. PR/SM), OS virtualization (e.g.
Xen, VMware ESX), middleware virtualization (e.g. JVM) and many more. Virtualiza-
tion is a technique which has become very popular in industry and academia, leading to
a large number of new products, business models and publications.

Mature cloud computing platforms promise to approximate performance isolation:
a struggling VM with saturated resources (e.g. 100% CPU load) should only minimally
affect the performance of VMs on the same native execution platform. To implement
this behaviour, a virtual execution platform can make use of a predefined maximum



allowed share of the native platform’s resources. Some platforms even provide facilities
for runtime adaptation of these shares, and Cloud computing platforms which feature
runtime and/or demand-driven adaptation of provided resources are often called elastic.

Elasticity is the feature of automated, dynamic, flexible and frequent resizing of re-
sources that are provided to an application by the execution platform. Elasticity can
be considered as a key benefit of the cloud computing. In our definition, “applica-
tion” can be an entire virtual machine and the corresponding execution platform would
then be the hypervisor respectively host OS. Elasticity carries the potential for opti-
mizing system productivity and utilization, while maintaining SLAs and QoS as well
as saving energy and costs. The aim of this report is to offer a clear definition of re-
source elasticity in the context of cloud computing. Current research literature (e.g.
[Chi10,CVRMT10,Wo0001,JW00]) does not provide a definition of elasticity for the
computing domain, and this report provides an initial step of doing so.

Our strategic goal is to use resource elasticity metrics for achieving comparability
between different cloud environments and offerings. The actuality and relevance of
researching this topic can be confirmed by the Gartner study “Five refining Attributes
of Public an Private Cloud Computing” [Gar09], where elasticity of virtual resources is
stated as one central highlight of the modern cloud computing technology. Also, while
the space of choices between cloud computing providers is getting wider, the means for
comparing their features and service qualities are not yet finally developed.

The term “elasticity” itself is already often used in advertisings of cloud infrastruc-
ture providers, as in Amazon’s “Elastic Compute Cloud - EC2” [vV11]. As an exam-
ple for automated resizing actions, Amazon offers an automated scaling API for their
EC2 clients, which is described in detail in [Amal0]. The client can control the num-
ber of virtual machine instances via policies, which observe the average CPU usage
in an scaling group of virtual machine instances. The usefulness of these scaling fea-
tures is demonstrated in a number of use cases within the manual, but Amazon has
not yet published any numbers on how fast scaling actions are executed. Additionally,
the scaling automatism is restricted to only control the number of VMs in a group
by observing CPU usage. From a customer’s point of view, a finer granularity of auto-
mated/programmable scaling actions could be useful in the Amazon cloud, like resizing
a VM’s virtual resources at runtime.

The contribution of this report is the definition of resource elasticity based on the
more general term of scalability. Until now, research on system scalability did not con-
sider dynamic adaptation and also disregarded the temporal aspect. Our research builds
on existing scalability metrics by additionally observing reaction times, extent and be-
haviour of automated virtual machine resizing activities. Scalability metrics have al-
ready been proposed by M. Woodside et al. in 2000 [JWO0O0] by evaluating a system’s
productivity at different levels of scale. These proposed metrics cannot express elastic-
ity since they do not take the temporal aspect of automated scaling actions into account.
The viewpoint of dynamic and adaptive scalability demands further observation and
metrics on how often, how fast and how significantly scaling of a system’s provided
resources can be executed.

The remainder of this report is structured as follows: Sec. 2 introduces a more pre-
cise terminology for scalability and Sec. 3 defines elasticity. Sec. 4 presents our ap-



proach for measuring elasticity, with preliminary results shown in Sec. 5. Sec. 6 con-
cludes and presents future work.

2 Scalability

Scalability is a term that can be applied both to applications and to execution platforms.
In this section, we introduce a more precise terminology for scalability and discuss
existing approaches to measuring it.

Application scalability is a property which means that the application maintains its
performance goals/SLAs even when an its workload increases (up to a certain workload
bound). This upper workload bound defines a scalability range and highlights the fact
that scalability is not endless: above a certain workload, the application won’t be able
to maintain its performance goals/SLAs.

Application scalability is limited by application’s design and by the use of execution
platform resources by the application. In addition to a performance-savvy implemen-
tation (effective resource use, minimization of waiting and thrashing, etc.), application
scalability means that the application must be able to make use of more/additional re-
sources (e.g. CPU, network connections, threads in a thread pool) as the demand-driven
workload increases. For example, an application which is only capable of actively using
2 CPU cores will not scale to an 8-core machine, as long as the CPU core is the limiting
(“bottleneck™) factor.

Of course, to exercise its scalability, the application must be “supported” by the exe-
cution platform, which must be able to provide the resources needed by an application.
This means that when establishing metrics for quantifying scalability, the scalability
metric values are valid for a given amount of resources and a given amount/range of
service demand. One can then determine speedup for the same service demand with
additional resources and efficiency as a measure of how good the application is using
the provided resources.

Correspondingly, platform scalability is the ability of the execution platform to pro-
vide as many (additional) resources as needed (or explicitly requested) by an applica-
tion. In our terminology, an execution platform comprises hardware and/or software
layers that an application needs to run. An example application can be an operating
system (where the execution system comprises hardware and possibly a hypervisor) or
web shop (where the execution platform comprises middleware, operating system and
hardware). Other examples of execution platforms include IBM System z (for running
z/OS and other operating systems), cloud environment (e.g. IBM CloudBurst [Clo10])
or a “stack” encompassing hardware and software (e.g. LAMP [Lee03]). The execution
platform can be visible as a single large “black box” (the internal composition is not
visible from outside) or as a set of distinguishable layers/components.

There are two “dimensions” of platform scalability, and a system can be scalable in
none, one or both of them:

Scale vertically or scale up means to add more resources to a given platform node,
like CPU cores or memory in a way that the platform node can handle a larger
workload. By scaling up a single platform node, physical limits that impact band-
width, computational power etc. are often reached quite fast.



Scale horizontally or scale out means adding new nodes (e.g. virtual machine instances
or physical machines) to a cluster or distributed system in a way that the entire sys-
tem can handle bigger workloads. Depending on the type of the application, the
high I/0O performance demands of the single instances that work on shared data
often increase communication overheads and prevent the emergence of substantial
performance gains, especially when adding nodes at bigger cluster sizes. In some
scenarios, scaling horizontally may even result in performance degradation.

Note that this definition of platform scalability does not include the temporal aspect:
when scaling means that additional resources are requested and used, the definition
of scalability does not specify how fast, how often and how significantly the needed
resources are provisioned. Additionally, scalability is not a constant property: the state
of the execution platform and the state of the application (and its workload) are not
considered. In fact, scalability can depend on the amount of already provided resources,
on the utilization of these resources, and on the amount of service demand (such as
number of requests per second).

Fig. 1 sketches a simplified, synthetic example of how a fixed allocation of available
resources (i.e. no platform scalability) means that the response time rises with increas-
ing workload intensity and diminishes when the workload intensity does the same. In
Fig. 1, the response time rises monotonically with the workload intensity (and falls
monotonically while workload intensity diminishes), but the reality may be more com-
plicated.
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Fig. 1. Schematic example of a scenario where execution platform is not scalable: the (idealized)
correlation between application workload intensity and application response time

Fig. 2 in turn sketches how, on a scalable execution platform and with a fixed work-
load, the performance metric (response time) should be affected positively by addi-



tional resources. Note that in Fig. 2, the response time decreases monotonically with
additional resources.
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Fig. 2. Schematic example of a scenario with a fixed application workload and scalable execution
platform: the (idealized) correlation between amount of resources provided by the platform and
application response time

Jogalekar and Woodside [JWO0O] established a scalability metric based on produc-
tivity. To define scalability, they use a scale factor k (which is not further explained in
[JWO00]), and observe the three following metrics:

— A(k): throughput in responses/second at scale k,
— f(k): average value of each response, calculated from its quality of service at scale
k3

(k): costs at scale k, expressed as a running cost (per second, to be uniform with
A

Productivity F'(k) is calculated in [JWO0O0] as the throughput delivered per second, di-
vided by the cost per second: F'(k) = A(k)« f(k)/C(k). Then, Jogalekar and Woodside
postulate that “if productivity of a system is maintained as the scale factor k£ changes,
the system is regarded as scalable”. Finally, the scalability metric 1 relating systems
at two different scale factors is then defined as the ratio of their productivity figures:

(ki ko) = 752,

While this definition of scalability allows to compare the scalability from the work-
load (or application) view, it does not allow to compare execution platforms, as the
metric is specific for a given workload. Additionally, the definition assumes a “stable
state” and does not consider the actual process of scaling, where resource allocations

are being adapted.




Therefore, our definition of elasticity will not be based on the scalability definition
in [JWOO]. In the next section, we present a platform-centric definition of elasticity
which considers temporal and quantitative aspects of execution platform scaling.

3 Elasticity

When service demand increases, elastic cloud platforms dynamically add resources (or
make more resources available to a task). Thus, elasticity adds a dynamic component to
scalability - but how does this dynamic component look?

On an ideal elastic platform, as application workload intensity increases, the distri-
bution of the response times of an application service should remain stable as additional
resources are made available to the application. Such an idealistic view is shown by the
synthetic example in Fig. 3, which also includes dynamic un-provisioning of resources
as the application workload decreases. Note that the dynamic adaptation is a continuous
(non-discrete) process in Fig. 3.

workload
intensity

response
time

Fig. 3. Schematic example of an (unrealistically) ideal elastic system with immediate and fully-
compensating elasticity:

A 4

However, in reality, resources are actually measured and provisioned in larger dis-
crete units (i.e. one processor core, one page of main memory, etc.), SO a continuous
idealistic scaling/elasticity cannot be achieved. On an elastic cloud platform, the perfor-
mance metric (here: response time) will rise as workload intensity increases until a cer-
tain threshold is reached at which the cloud platform will provide additional resources.
Until the application detects additional resources and starts making use of them, the per-
formance will recover and improve - for example, response times will drop. This means
that in an elastic cloud environment with changing workload intensity, the response
time is in fact not as stable as it was in Fig. 3.



Now that we have determined a major property of elastic systems, the next question
is: how to quantify elasticity of a given execution platform? The answer to this question
is provided by Fig. 4 - notice that it reflects the previously mentioned fact that the
performance increases at certain discrete points. When quantifying to define and to
measure elasticity, we have to quantify the temporal and quantitative properties of those
points at which performance is increased.
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Fig. 4. Schematic example of an elastic system

3.1 A Definition of Elasticity

Changes in resource demands or explicit scaling requests trigger runtime adaptations
of the amount of resources that an execution platform provides to applications. The
magnitude of these changes depends on the current and previous state of the execution
platform, and also on the current and previous behaviour of the applications running on
that platform. Consequently, elasticity is a multi-valued metric that depends on several
runtime factors. This is reflected by the following definitions, which are illustrated by
Fig. 5:

Elasticity of execution platforms consists of the temporal and quantitative properties
of runtime resource provisioning and unprovisioning, performed by the execution
platform; execution platform elasticity depends on the state of the platform and on
the state of the platform-hosted applications.

Reconfiguration point is a timepoint at which platform adaptation (resource provi-
sioning or unprovisioning for an application) becomes effective to that application.
A reconfiguration point is preceded by a reconfiguration phase, which may or may
not be visible to the application.
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Fig. 5. Three aspects of the proposed elasticity metric

Note that a reconfiguration point is different from (and later than) an eventual trigger-
ing point (which starts the reconfiguration phase), and also note that the effects of the
reconfiguration may become visible some time after the reconfiguration point, since an
application needs time to adapt to the changed resource availability. Also note that while
reconfiguraiton points and the timepoint of visibility of effects may be measurable, the
triggering points may not be directly observable.

There are several characteristics of resource elasticity, which (as already discussed
above) are parametrised by the platform state/history, application state/history and work-
load state/history:

Effect of reconfiguration is quantified by the amount of added/removed resources and
thus expresses the granularity of possible reconfigurations/adaptations.

Temporal distribution of reconfiguration points describes the density of reconfigu-
ration points over a possible interval of a resource’s usage amounts or over a time
interval.

Reaction time is the time interval between the instant when a reconfiguration has been
triggered/requested and until the adaptation has been completed. An example for
reaction time would be the time between the request for an additional thread and
the instant of actually holding it.

An example matrix describing elasticity characteristics of an execution platform is
given in Fig. 6 for a hypothetical cloud platform. Each resource is represented by a
vector of the three aforementioned key elasticity characteristics.

3.2 Possibilities of a single-valued Elasticity Metric

An open question is whether a single metric that captures the three key elasticity char-
acteristics is possible and meaningful. One challenge of defining such a metric would
be to capture state dependencies, as well as selecting a value range that would maintain
the applicability of the metric to future, more powerful and more complex systems.



reconf. points @ reaction effect availability range

Resource T : - v rang
(discrete) time /)
il

CPU cores 10s 1500 ms 1...12 cores

Memory 10s 2 500 ms 256 MB 512 MB ... 32 GB

1/0 Bandwidth 60 s 3 000 ms 50 MBit/s 100 Mbit/s ...
10 Gbit/s

Fig. 6. Elasticity matrix for an example platform

A unified (single-valued) metric for elasticity of execution platforms could possibly
be achieved by a weighted product of the three characteristics. To get intuitively under-
standable values, elasticity could be measured and compared on the basis of percentage
values.

0% resource elasticity would stand for no existing reconfiguration points, high or in-
finite reaction times (which would mean just manual reconfiguration) and very
high effects of resizing actions, e.g. new instantiations, when performance prob-
lems have already been discovered or reported)

near 100% resource elasticity would hint towards a high density of reconfiguration
points, low reaction time and small effects. In the optimal case the virtualized sys-
tem’s usage appears to be constant, while the number of users and resource demand
vary. This could achieve optimal productivity concerning costs or energy consump-
tion in a cloud environment.

We currently consider further research on a unified elasticity metric as future work.
If such a metric can be established, elasticity of cloud platforms could easily be com-
pared. A proactive system which implements resource provisioning techniques like de-
scribed in [CEM*10,HWIL09,KKK10,ZA10,MIK*10] should exhibit better values of
resource elasticity than a simple reactive system which triggers resource requests or
releases by events and which does not perform workload prediction or analysis.

4 Towards Measuring Elasticity

In general, the effects of scalability are visible to the user via observable response times
or throughput values at a certain system size. On the other hand, the elasticity, namely
the resource resizing actions, may be invisible to the user due to their shortness or due
to the transparency of resource provisioning in cloud computing. Therefore, measuring
resource elasticity from a client’s perspective is likely to require indirect measurements
and approximations, whereas measuring the resource elasticity on the “server side” (i.e.
directly on the execution platform) is more promising.

4.1 Need for Intelligently Designed Workloads

Intelligently designed workloads are extremely important when trying to witness elastic
effects. A constant workload for example will never produce elastic effects on its own.
In order to witness elastic effects workloads have to push the boundary of what already
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provisioned resources can offer them, only then will a drop in performance and after
that an increase be visible.

One important aspect of designing workloads for elasticity benchmarking is to un-
derstand in which way the targeted execution platform scales and the triggering events
which lead to elasticity. One example focusing on IBM Workload Manager (WLM)
application can be found in [TV04]: When a low-priority process pl is working alone
on the execution platform, it can consume (almost) all available resources. Yet when
a process p2 with a higher priority begins execution and demands resources currently
used by process p1, the execution platform will re-assign resources to p2. Thus, the
elasticity benchmark needs to explore the interplay between processes with different
priorities. Additionally, as the resource demands of p2 rises, p1 will also have to re-
lease more and more of its resources to be assigned to p2. In this case we can witness
elastic effects as p2’s service demand and performance rise at the same time when new
resources are provided to p2.

Until now, existing benchmarks did not provide the functionality of workloads with
the purpose of increasing workloads specifically to force resource reallocation.

4.2 An Approach for Measuring Resource Elasticity of Thread Pools

The evaluation concept of resource elasticity can be applied to various kinds of re-
sources, even to virtualized ones that are not directly mapped to hardware resources.

As a starting point and a proof-of-concept, we are now researching the elasticity
behaviour of Java thread pools. Thread pools are an implementation of the pooling pat-
tern, which is based on a collection (pool) of same-typed, interchangeable resources
that are maintained continuously. Thread pools are heavily used in databases, appli-
cation servers and other middleware/applications handling many concurrent requests.
Similar to thread pools, connection pools (in DBMS drivers, such as JDBC) implement
the pooling pattern with the same rationale.

In a resource pool, even when a given resource instance in the pool is not needed,
it is not released immediately because it is assumed that the instance may be needed
in the near future: the runtime costs of releasing and (later) re-acquiring that resource
are significantly higher than the costs of keeping an idle instance. After a certain time
interval, the resource can be released when it hasn’t been used - this “disposal delay”
can be often be set in the implementations of the pool pattern. Beyond “disposal delay”,
further configuration options are the minimum pool size (often called “core size”), the
maximum pool size and the length of the queue that resides “in front of” the pool.

For this report, we use the default thread pool implementation provided by the Java
SE platform API, and the threads have to perform non-communicating, CPU-bound
computation-only tasks in parallel. These task that form a configurable, multi-phased
workload which we describe further below. The tasks consist of carefully-defined Fi-
bonacci computation, with randomly-chosen starting values (to prevent function inlin-
ing as constant values), and with evaluation of the computation result (to prevent dead
code elimination).

We are especially interested in situations where the thread pool size increases in a
“preventive” way, i.e. a pool where all threads are busy, and one arriving tasks triggers
the addition of two new threads to the pool, even though just one new thread would be
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sufficient. We are also interested in situations with a “fully-busy” where the arrival of a
new task and the finish of another task’s execution are temporally close, to see whether
the pool immediately “overreacts” by allocating a new thread instance and accepts the
task from the queue, rather than waiting for a (short) time in the hope that another task
will be finished.

In line with the elasticity metrics defined in Sec. 3.1, we want to measure the de-
creases/increases of the thread pool size (effects of reconfiguration) and the temporal
aspects of the adaptation (delays, provisioning duration, etc.).

At the beginning of each measurement, we run a warmup period of the task and
measurement methods to avoid effects of Java Just-In-Time compiler (JIT) optimisa-
tions and method inlining. Once the maximum thread pool size has been reached, if
all instances in the pool are busy performing work and the queue is full, rejection of
incoming tasks will occur. In our implementation, rejections of tasks are logged and
taken into account when interpreting measurement results.

Our tooling includes the functionality to calibrate the problem size of a single Fi-
bonacci task so it takes a certain duration (e.g. 50 ms). The calibration allows us to
run the same workload on several with (approximately) same duration of the task.
The workload is composed from tasks by specifying inter-task arrival times, as well
as grouping tasks in batches (with separate specification of intra-batch and inter-batch
arrival times).

We measure and protocol task arrival times and task finish times using fine-granular
wall-clock timer (selected in a platform-specific way using [KKR09]). A separate “mea-
surer” thread outside of the thread pool runs with the maximum priority, and records
the state of the thread pool and the state of its queue. While the measurer runs in a
loop, only changes in the thread pool state are recorded, keeping the logs small. One
of the challenges consists in capturing the changes in the thread pool state - this re-
quires a tight measurer loop and short (or no) intervals between measurements, while
eliminating longer pauses (e.g. those caused by the Java Garbage Collection).

5 Preliminary Results

In this section, we present our results of measuring elasticity of the thread pool re-
source, following the approach presented in Sec. 4.2. We used the high-resolution time
provided by the sun.misc.Perf class, which has an accuracy of 1 ns on the used
computer. We permitted the benchmark to allocate up to 900 MB of Java heap memory
to minimize interference, and used the standard thread pool implementation of the Java
platform APIL, found in the java.util.concurrent package. The Java thread pool
is set up with a synchronous blocking queue of length 2, a core size of 2 threads and a
maximum pool size of 80.

The core size of the thread pool is not equal to the minimum or initial pool size: even
if the core size is set to 2, the JVM may initialize the pool to have 1 active thread. The
official Java platform API documentation explains that when “a new task is submitted
[...], and fewer than corePoolSize threads are running, a new thread is created to handle
the request, even if other worker threads are idle. If there are more than corePoolSize
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but less than maximumPoolSize threads running, a new thread will be created only if
the queue is full” [Oral0].

The measured workload is a series of batches and is designed as follows: the initial
batch size is 2 tasks, with inter-task wait time of 10 ms. After an inter-batch wait time
of 40 ms, the second batch with three tasks and the same inter-task wait time is started.
For each next batch, the number of tasks increases by one, the inter-batch wait time
increases by 4 ms, and the inter-task wait time stays the same. The workload intensity
reaches its peak when the batch contains 12 tasks, and afterwards decreases again. Each
decrease is characterised by making the batch size less by one, and decreasing the inter-
batch wait time by 4 ms. The last batch of the workload again contains two tasks. Recall
that by design of the thread pool, the number of actively processed tasks is equal to or
smaller than the number of the threads in the pool.

Fig. 7 show the results of measurements on a computer with a 2.8 GHz Intel Core 2
Duo CPU (T9600), 4 GB of RAM, running Mac OS X 10.6.4 and Apple Java HotSpot™
64-Bit Server VM (build 19.1-b02-334, mixed mode). The individual measurements
(“dots”) have been connected by a line to improve readability, even though the measure-
ments are of course non-continuous. Correspondingly, in Fig. 7, the number of threads
in the pool is the upper (red) line and the number of tasks processed by the pool is the
lower (blue) line.

In Fig. 7, elasticity is characterized by the space between the two curves (the number
of threads in the pool and the number of tasks processed by the pool). The elasticity
of the thread pool is clearly visible, since the size of the pool grows and decreases
depending on the workload, i.e. on the number of tasks to be processed.

At the beginning (until around 500 ms on the x axis), the pool contains just one
thread and a few tasks are coming in, with enough time between them for the single
thread to finish them so that no concurrent task processing is needed. Shortly after
500 ms, two tasks are to be processed by the pool at the same time, so that the number
of the threads in the pool increases.

Note that the thread pool size increases from one thread to two threads before the
second task starts being processed - here, it can be seen that it takes the pool some
time between the pool size increase and the second task’s acceptance - it should be
noted that the second task was staying in the pool queue until the second thread became
available. Since we record the timestamp of a task’s initialisation and submission to the
thread pool, we know the timepoint of the triggering action and we are able to measure
both the time between the triggering point and the reconfiguration point, and the time
between the reconfiguration point and the timepoint of visibility (when the second task
starts to be processed by the pool).

Another important thing to note from Fig. 7 is that the thread pool is not overly
elastic: between 500 ms and 1,000 ms, we see several recordings of the number of
actively processed tasks in the pool falling from two to one, while the thread pool size
stays at two.

Also, note that the “scaling down” of the pool is not strictly a delay-determined
behaviour. For example, compare the very first time when the number of tasks falls
from two to one (at ca. 700 ms), and the very first time when the number of tasks falls
from four to three (at ca. 1,100 ms). When the number of tasks falls from four to three,
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Fig. 7. Elasticity of a Java thread pool on a MacBook laptop. Legend: the upper (red) line is the
number of threads in the pool; the lower (blue) line is the number of tasks processed by the pool.
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the thread pool size follows after a certain delay - however, even after the same delay
has passed in the case where the number of tasks falls from two to one, the thread pool
keeps its size at 2, and does not “scale down”.

The delayed “scaling down” is visible over the entire course of the measurement.
Considering “scaling up”, the conservative and economical thread pool size adjustment
is clearly visible: the thread pool size grows only by one thread, never by two or more
threads. Also, with the exception of the “overallocation” of 11 threads (at ca. 3,500 ms,
where 10 threads would have sufficed), the thread pool size is always “matched” by the
number of tasks. In other words, the overallocation only occurs at that instant, which is
happens to be the maximum pool size.

In Figure 8, the same workload has been measured on an IBM z10 mainframe [z1010],
running in a z/OS 1.12 logical partition (LPAR). The LPAR makes use of 5 CPUs (run-
ning at 3,5 GHz) and 5120 MB of main memory, and the thread pool code was the only
workload in this LPAR during measurements. It can be seen in Figure 8 that not only the
total running time changes (due to a faster CPU), but also the thread provisioning beha-
viour is different. For example, the maximum number of threads on z10 is 22, whereas
on the MacBook laptop it is only 11.

It remains to be researched whether increasing the degree of concurrency by “flood-
ing” the pool with more task would lead to a more “generous” (over-)allocation of
threads in the pool. Likewise, we will present statistics on the elasticity metrics in fu-
ture work.

6 Conclusion and Future Work

In this report, we have presented a definition of resource elasticity in the context of
cloud computing and virtualization. Starting with a definition of scalability, we have
added temporal and quantitative aspects to define elasticity, and have presented the
challenges of measuring elasticity in real-world scenarios. Finally, we have used thread
pools as an elastic resource of the Java Virtual Machine, and presented preliminary
results of running a novel elasticity benchmark which showcases the elastic behaviour
of the thread pool resource.

As follow-up on the presented initial research, we plan to perform in-depth measure-
ments of elasticity values for thread pools and other elastic resources/platforms, incl.
resources in cloud computing environments. We plan to study elasticity on industry-
grade computers, such as the IBM System z mainframe of the Informatics Innovation
Center. In this context, we are investigating the capabilities of IBM Workload Manager
(WLM) and similar tools.

Our particular attention will be on the “parameter space” of resources/platforms,
and also on how the state/history of resources and state/history of the workload affects
the elasticity. Additionally, we will take costs into impact so that elasticity-cost trade-
offs can be identified and studied. The planned elasticity benchmarks will also explore
the boundaries of elasticity and scalability.

We will also look into possible negative performance effects of elasticity, e.g. when
the additional resource is only needed for a short time, but adding that resource instance
(e.g. a CPU core) incurs such an overhead that the overall performance decreases. For
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example, we will look into (negative and/or positive) caching effects which are relevant
when adapting the memory allotment of an application/VM at runtime.

One of the challenges we will need to address is the frequent impossibility of direct
resource measurements: while we were able to query the Java thread pool about its
state (number of tasks and threads), this may not be the case for other resources or
for commercial cloud software vendors. Thus, we will need to make use of inference
algorithms such as Kalman filters.

As cloud computing relies on virtualization, we will study the impact of virtualizing
an elastic resource or an elastic platform. For example, assume that for platform tech-
nology A, a Java thread pool is mapped to native or “artificial” threads/processes in a
given way - however, running an instance of A as a guest (virtual machine) on host that
is of platform technology B may affect the mapping of (now virtualized) threads. Study-
ing the impact of virtualization on elastic resources/platforms will help to answer the
deployment or relocation questions that are asked by people in industry and academia.

We also plan to apply our research to commercial “cloud hosters”, such as Amazon
EC2 [vV11]. In the long term, we target a configurable benchmark suite with a workload
miXx, so that different “cloud hosters” can be compared in terms of elasticity.

Acknowledgements: we would like to thank Fabian Brosig, Nikolaus Huber and Samuel
Kounev for their helpful reviews and comments. The installation of the z10 main-
frame at the Informatics Innovation Center in Karlsruhe has been made possible by
IBM Boblingen Research & Development GmbH, and we thank Thomas Klein, Giinter
Fehrenbach, Erich Amrehn, Ingrid Schwarz-Hartmann, Martin Mihler and Uwe Den-
neler for their continuing support.
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