
FOX: Cost-Awareness for Autonomic Resource Management in
Public Clouds

Veronika Lesch
University of Würzburg
Würzburg, Germany

veronika.lesch@uni-wuerzburg.de

André Bauer
University of Würzburg
Würzburg, Germany

andre.bauer@uni-wuerzburg.de

Nikolas Herbst
University of Würzburg
Würzburg, Germany

nikolas.herbst@uni-wuerzburg.de

Samuel Kounev
University of Würzburg
Würzburg, Germany

samuel.kounev@uni-wuerzburg.de

ABSTRACT
Nowadays, to keep track with the fast changing requirements of
internet applications, auto-scaling is an essential mechanism for
adapting the number of provisioned resources to the resource de-
mand. In the context of public clouds, there exist different natures
of cost-models for charging resources. However, the accounted
resource units and charged resource units may differ significantly
due to the applied cost model. This can lead to a significant increase
of charged costs when using an auto-scaler as it tries to match the
demand of the application as close as possible. In the literature,
several auto-scalers exist that support cost-aware scaling decisions
but they introduce inherent drawbacks.

In this work, this lack of existing cost-aware mechanisms is
addressed by introducing amediator between an application and the
auto-scaler. This cost-aware mechanism is called FOX. It leverages
knowledge of the charging model of the public cloud and reviews
the scaling decisions found by the auto-scaler to reduce the charged
costs to a minimum. More precisely, FOX delays or omits releases
of resources to avoid additional charging costs if the resource is
required in the future. Hereby, FOX is not restricted to use one
specific auto-scaler but offers interfaces to use any auto-scaler.

For an evalation under controlled conditions, FOX scales a multi-
tier application deployed in a private cloud that is stressed with two
real world workloads: BibSonomy and IBM CICS. As FOX provides
an interface for auto-scalers, we evaluate the cost-awaremechanism
with three state of the art auto-scalers: React, Adapt, and Reg. The
experiments show that FOX is able to reduce the charged costs by
34% at maximum for the Amazon EC2 charging model. According
to the cost model, FOX provisions more resources than required.
This results in a decreased SLO violation rate from 28% to 2% at
maximum. The accounted instance time increases at max. by 30%.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICPE ’18, April 9–13, 2018, Berlin, Germany
© 2018 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 978-1-4503-5095-2/18/04. . . $15.00
https://doi.org/10.1145/3184407.3184415

CCS CONCEPTS
• General and reference→ Cross-computing tools and tech-
niques; • Networks → Cloud computing; • Computer sys-
tems organization→ Self-organizing autonomic computing;
• Software and its engineering→ Virtual machines;

KEYWORDS
Cloud Computing, Public Cloud, Auto-Scaling, Cost-Awareness,
Charging Model
ACM Reference Format:
Veronika Lesch, André Bauer, Nikolas Herbst, and Samuel Kounev. 2018.
FOX: Cost-Awareness for Autonomic Resource Management in Public
Clouds. In ICPE ’18: ACM/SPEC International Conference on Performance
Engineering, April 9–13, 2018, Berlin, Germany. ACM, New York, NY, USA,
12 pages. https://doi.org/10.1145/3184407.3184415

1 INTRODUCTION
In order to face the dynamic behavior respectively requirements
of internet applications, cloud computing emerged as computing
model that allows fast access to resources and has a high level of
scalability. Due to these benefits, the usage of auto-scalers arose in
cloud computing. The developed mechanisms try on the one hand
to adapt the supplied resources as close as possible to the demanded
resources; on the other hand they try to consider the predefined
service level objectives. When using auto-scalers in public clouds,
the desired effect of adapting the number of resources can lead to
high costs as the accounted costs and the charged costs can deviate
depending on the cloud. For example, if a virtual machine (VM) is
charged hourly, the hour has to be paid although the accounted
time is less than one hour. In order to minimize the charged costs, a
cost-aware mechanism is required. While taking the future demand
into account, the cost-aware mechanism modifies the auto-scaling
decisions.

In this work, a cost-aware mechanism, called FOX, is proposed.
FOX serves as mediator between an application deployed in a public
cloud and an auto-scaler. The working principle of FOX bases on the
MAPE-K control loop [16] and has additional knowledge of the cost-
models. The main idea is to proactively plan the resource allocation
and release. In order to reduce the charged cost, FOX modifies
the found scaling decisions of the auto-scaler. If the resource is
already charged and will be required in the future, FOX does not
stop the VM to avoid additional charging intervals. The design

https://doi.org/10.1145/3184407.3184415
https://doi.org/10.1145/3184407.3184415

ICPE ’18, April 9–13, 2018, Berlin, Germany V. Lesch, A. Bauer, N. Herbst, S. Kounev

of FOX provides an interface for auto-scalers, i.e., FOX is able to
add cost-aware functionality to any auto-scaler using this interface.
Additionally, there is also an interface for a forecasting mechanism
that allows to add different existing forecasters.

We evaluate FOX using a multi-tier application deployed under
controlled conditions in a private cloud. The application is stressed
using two real-world workloads: BibSonomy and IBM CICS. To
show that FOX can add cost-awareness to multiple auto-scalers,
three auto-scalingmechanisms are selected and evaluated: React [8],
Adapt [2], and Reg [13].

The results of the experiments with the Amazon EC2 cost model
show that FOX is able to decrease the charged costs, the cost you
have to pay, for all auto-scalers by 34% at maximum. In addition
to the cost reduction, the accounted instance time is increased
which results in 26% less SLO violation at maximum. The elasticity
metrics consider how well the supply curve fits the demand. FOX
actively decides not to stop resources if they will be required, thus
SLO improvements are achieved in trade for a slightly worse auto-
scaling performance considering the elasticity metrics.

In order to investigate the impact of cost-aware mechanism for
auto-scaling, we pose ourselves the following research questions:
RQ1What kind of cost models exist and what are the popular ones?,
RQ2 How can we modify the scaling decisions so that the charged
costs are reduced?, and finally, RQ3 How well does FOX perform in
the context of auto-scaling?

The contributions of this paper align with the three addressed
research questions and structure the paper as follows: in Section 2,
we survey existing cost models, i.e., we answer RQ1. In Section 3,
we address RQ2 by introducing the approach of FOX. Afterwards,
the used tools are introduced in Section 4. Section 5 discusses the
results of the experiments and addresses RQ3. In Section 6, we
summarize related work before concluding the paper.

2 PUBLIC CLOUD COST MODELS
Multiple public infrastructure cloud provider exist each offering
their own charging model. However, a classification into three
groups can be found: hourly charging, two phase charging and
minute-by-minute charging.

Hourly-based Charging. The first group, hourly charging,
charges for every started hour regardless of stopped instances be-
fore the full hour is over. By this rough granularity, a huge charging
overhead can occur. For example, Amazon EC21, ORACLE Cloud2,
IBM Bluemix3, Digital Ocean4, and OHV5 charge on an hourly
basis.

Two-Phase Charging. The Google Cloud Platform6 is a repre-
sentative providing the two phase charging model. The first phase
consists of a fixed interval of ten minutes, which has to be paid
regardless of a shorter runtime. Afterwards, the model switches to
the second phase, where a minute-by-minute charging is applied.
This cost model introduces overheads for the first ten minutes

1https://aws.amazon.com/de/ec2/pricing/on-demand/
2https://cloud.oracle.com/infrastructure/pricing
3https://www.ibm.com/cloud-computing/bluemix/de/pricing?lnk=hm
4https://www.digitalocean.com/pricing/#faq
5https://www.ovh.de/g677.informationen_zur_dedicated_cloud_abrechnung
6https://cloud.google.com/compute/pricing#machinetype

of a virtual machine but afterwards they do not introduce large
overheads.

Minute-Based Charging. The third group of public cloud
providers charge the used resources minute-by-minute. So, all in-
stance times are rounded to the next minute. This introduces a
small overhead that is negligible when looking at the minute price.
Example public cloud providers that charge on this basis are the
Open Telekom Cloud 7, Microsoft Azure8, and 1&19.

In this work, FOX considers the cost models of the first two
categories: hourly charging and two phase charging. For the hourly
charging, we expect that the costs can be lowered by a significant
amount when using FOX, as there is a large overhead when round-
ing runtimes to the next full hour. For the second group, the two
phase cost models, we expect that the cost savings are not as sig-
nificant as they are for the hourly charging, as the overhead by
rounding to the next full minute is very small.

Relation to SpotMarkets. In addition to these groupswhere
instances can be provisioned and released on demand, AmazonWeb
Services offer a Spot Market10. Here, the prices of instances vary
dependent on supply and demand. The customer can specify a max-
imum price he wants to pay for an instance. If the price for an
instance drops below this maximum, the instance is provisioned
for this customer. The instance is released if the price rises above
the maximum price the customer defined or if the customer stops
the instance by himself. The cost-aware mechanism of FOX also
supports a deployment with spot instances, as the logic how scaling
decisions are modified to save costs is not affected. The deployment
with spot instances introduces the risk that instances may not be
provisioned on demand or are terminated by the platform if the
actual price is higher than the bid. Thus, optimal bid placing could
be the responsibility of another independent component and is not
considered as a feature of FOX. To ensure reproducible results, the
scenario using spot instances is omitted in the evaluation of FOX.

In this section, we address the research question RQ1:What kind
of cost models exist and what are the popular ones? Among public
cloud environments available, multiple cost models exist that can
be classified into three groups: hourly charging, two phase charging
and minute-by-minute charging. Example cloud providers for these
cost models are Amazon EC2, Google Cloud Platform and Open
Telekom Cloud. In this paper, we consider only the first two groups
as the third group does not introduce large overheads that can be
optimized by a cost-aware mechanism.

3 APPROACH
The main idea of FOX is that it operates as mediator between
the auto-scaling mechanism and the application for adapting the
associated scaling decisions based on a predefined cost-model. To
this end, FOX contains a knowledge base, a forecast component and
the interface for the auto-scaler. The knowledge base holds all found

7https://cloud.telekom.de/fileadmin/CMS/Information/Kundenflyer/
Open-Telekom-Cloud_Pricing-Models.pdf
8https://azure.microsoft.com/pricing/details/virtual-machines/linux
9https://hosting.1und1.de/cloud-computing
10https://aws.amazon.com/ec2/spot/pricing/

https://aws.amazon.com/de/ec2/pricing/on-demand/
https://cloud.oracle.com/infrastructure/pricing
https://www.ibm.com/cloud-computing/bluemix/de/pricing?lnk=hm
https://cloud.google.com/compute/pricing#machinetype
https://cloud.telekom.de/fileadmin/CMS/Information/Kundenflyer/Open-Telekom-Cloud_Pricing-Models.pdf
https://cloud.telekom.de/fileadmin/CMS/Information/Kundenflyer/Open-Telekom-Cloud_Pricing-Models.pdf
https://azure.microsoft.com/pricing/details/virtual-machines/linux
https://hosting.1und1.de/cloud-computing
https://aws.amazon.com/ec2/spot/pricing/

FOX: Cost-Awareness for Autonomic Resource Management in Public Clouds ICPE ’18, April 9–13, 2018, Berlin, Germany

Figure 1: MAPE-K model of the Cost-Component.

scaling decisions from the auto-scaler, the predicted future arrival
rates, and the knowledge about the cost model of the cloud platform
provider. An overview of existing cost models are explained in
Section 2. In our experiments, a simplistic forecaster returns the
arrival rates of the last observerd day as forecast for the current
day. As auto-scalers React, Adapt, and Reg are used (see Section 4).
The auto-scaler and the forecast component can be replaced with
other mechanisms. An example forecasting tool developed for auto-
scaling contexts in cloud computing is the hybrid, decomposition-
based approach called Telescope [28].

3.1 MAPE-K Adaptation
The approach of FOX is based on the MAPE-K control loop [16] as
depicted in Figure 1. In the first phase calledMonitor, FOX monitors
the application and gathers information such as arrival rates and
saves them into the knowledge base. As most of the existing auto-
scalers in the literature are designed for homogeneous requests, i.e.
single class case, FOX also holds this assumption. The monitoring
interval is set to two minutes. Then, during the Analyze phase FOX
fetches forecast values for the next 30 minutes from the forecast
component. Based on these forecasts, the auto-scaler makes scaling
decisions for all tiers for the next 15 intervals and saves them
also in the knowledge base. While the application can consist of
different resources, the resource types in each tier are assumed
to be homogeneous. In the Plan phase, FOX reviews the scaling
decisions based on the decisions found for the future forecasts and
changes them according to the cost model. That is, for instance, that
some scaling down decisions are delayed or cancelled according to
the charging interval. Finally, in the Execute phase, FOX scales the
application based on the adapted scaling decisions. The Analyze,
Plan and Execute phases are described in more detail below.

Analyze: In the Analyze phase, FOX sends the observed arrival
rate history to the forecaster component and receives the forecast
values for the next 30 minutes, i.e., 15 forecast values. This is done
every 15 minutes so that an overlap in forecasts exists. This overlap
is required since FOX evaluates future events to adapt the scaling
decisions. For each forecast value and each tier, the auto-scaler is
called for making scaling decisions. The auto-scaler receives the

forecast value via the interface, the amount of running VMs and
the request rate that a single VM can handle at the specific tier. The
amount of running VMs for the first forecast value is the amount
of current running VMs. For the following forecast values, the
planned amount from previous decisions are used. Based on this
information, scaling decisions for each forecast value are made per
tier and added to the knowledge base. From the second forecaster
call on, the overlap of the decisions appears. As the new decisions
have more recent information, the old decisions are omitted and
replaced by the new ones.

Plan: For our experiments, FOX takes two common cost models
into account: First, the Amazon EC2 model with an hourly charging,
and secondly, the Google Cloud Platform model where the first
ten minutes are charged fix and then the charging switches to a
minutely basis, see Section 2 for a more detailed explanation of
the cost models. The idea of FOX is to modify the current scaling
decisions based on planned decisions for the future. Hereby, a down-
scaling should be avoided when a VM will be required again in the
near future. In case an up-scaling should be processed, the decision
will not be modified. The decision logic how FOX changes the
decisions is depicted in Figure 2 and summarized in Algorithm 1.
First, FOX checks whether the current decision triggers a down-
scaling (Algorithm 1, L. 1). If this holds (r.t. two lower cases in Fig. 2),
all future decisions are fetched that are planned during the next
charging interval (Algorithm 1, L. 2), i.e., one hour for Amazon EC2
and ten minutes for Google Cloud Platform. Then, FOX iterates
over all future decisions (Algorithm 1, L. 3) and checks whether
the amount of the future decision is higher than the amount of the
current decision (Algorithm 1, L. 4), i.e., whether a down-scaling
should be processed even if the VM will be required in the future.
If this holds, the amount of the current decision is changed to
the number of running VMs or the amount of the future decision,
depending on which one is smaller (Algorithm 1, L. 5). In case the
amount of the future decision is smaller than the amount of the
current decision, the current decision is not modified. Finally, the
revised decision is returned.

Execute: The Execute phase is responsible for scaling the appli-
cation according to the found scaling decisions that are reviewed

ICPE ’18, April 9–13, 2018, Berlin, Germany V. Lesch, A. Bauer, N. Herbst, S. Kounev

Figure 2: Decision logic for comparison to future decisions.

Algorithm 1: Revising auto-scaler decisions
Input: Decision current, runningVms run, chargInterval ci
Result: revisedDecision
/* if running VMs > amount of cur. decision, revise (acc. to Fig. 2) */

1 if run > current.amount then
2 futures = getFutureDecisionsInInterval(ci);
3 foreach next in futures do
4 if next.amount > current.amount then
5 current.amount = min(run, next.amount);
6 return current

by the cost component. In this phase, the cost component is impor-
tant, again, as it can decide which VMs should be stopped in case
of down-scaling to minimize financial loss. The procedure of this
phase works as follows. First, the decisions for the current time
are given to the execution component. In case of an up-scaling
decision, the component provisions the required VMs. In case of
a down-scaling decision, the execution component requests the
VMs that introduce minimum financial loss if stopped from the
cost component. To determine the VMs that should be stopped, the
cost component takes the charging model into account. For the
Amazon EC2 charging model, the runtime of all VMs are gathered.
Then, the VMs that are closest to the next charging interval, i.e. one
hour, are selected for down-scaling. For the Google Cloud Engine,
the VMs are sorted descending by their overall runtime so that
the VM which ran longest is at the beginning of the list. Then, the
down-scaling amount of VMs is selected from the beginning of the
list. So, the VMs with longest overall runtime are selected.

3.2 Discussion
In this section, we address the research question RQ2: How can we
modify the scaling decisions so that the charged costs are reduced?
FOX is designed according to the MAPE-K control loop. Here, the
Plan phase consists the cost-aware mechanism where the knowl-
edge of the cost model is used to review the existing scaling deci-
sions from the auto-scaler to minimize costs. This mechanism is
two-fold: First, the mechanism reviews all down-scaling decisions
whether they are meaningful. That is, if a future decision defines
that the instances that should be stopped will be required in a few
minutes, the down-scaling is not executed or reduced executed.
Second, in case of a reviewed down-scaling decision that should
be executed, the VMs are stopped that reduce the lowest financial

loss, i.e., the instances that are closest to the next charging interval
are stopped in case of Amazon EC2. For the Google Cloud Platform
cost model the VMs with the longest runtime are stopped.

4 TOOLS
The following section introduces three categories of tools that are
used in this work: forecaster, auto-scaler and elasticity benchmark-
ing framework.

4.1 Forecaster
The forecast component of FOX is able to access multiple different
forecaster. In this work a simple forecaster is used where the values
of the last day are returned as forecast values for the next day.
So, the forecast value for the next interval is the observed value
24 hours earlier. Though, different forecasting approaches can be
used. Telescope, e.g., is a hybrid forecasting tool that is designed to
perform multi-step-ahead forecasts for univariate time series, while
maintaining a short runtime [28]. Besides Telescope, tBATS [9] or
ARIMA [1] can be used as forecaster as well.

4.2 Auto-Scalers
For the evaluation of FOX, we selected a subset of the most cited and
public available auto-scalers proposed in the survey of T. Lorido-
Botran et al. [17].

React: In 2009, Chieu et al. [8] present a reactive scaling algo-
rithm for horizontal scaling. React provisions VM resources based
on a threshold or scaling indicator of the web application. The
indicators consist of the number of concurrent users, the number
of active connections, the number of requests per second, and the
average response time per request. React gathers these indicators
for each VM and calculates the moving average. Afterwards, the
current web application VMs with active sessions above or below
the given threshold are determined. Then, if all VMs have active
sessions above the threshold, newweb application instances are pro-
visioned. If there are VMs with active sessions below the threshold
and with at least one VM that has no active session, idle instances
are removed.

Adapt: In 2012, A. Ali-Eldin et al. [2] propose a proactive auto-
scaler that supports horizontal scaling. It contains a model of each
service of the cloud based on a closed loop control system. Adapt
models the infrastructure using queueing theory as G/G/n stable
queue with variable number of servers n. Using this model the
authors build two adaptive controllers that are parameter indepen-
dent. Any performance metric can be used as controlled parameter.
Adapt estimates the future service capacity using a gain parameter
that determines the estimated change in the workload in the future.
The two controllers are built by using two different gain parame-
ters: the periodical rate of change of the system load and the ratio
between the change in the load and the average system service rate
over time.

Reg: In 2011, W. Iqbal et al. [13], introduce their proactive auto-
scaler that uses response times to find scaling decisions to remove
bottlenecks. A reactive model checks if the capacity is less than the
load, and makes a scale-up decision. For down-scaling, a proactive
mechanism decides when and how much to deprovision. Therefore,

FOX: Cost-Awareness for Autonomic Resource Management in Public Clouds ICPE ’18, April 9–13, 2018, Berlin, Germany

a regression model is used to predict the number of VMs required
at each time. This model is updated every time a new observation
is added. The reactive mechanism feeds these observations to the
proactivemechanism at every observation interval. Then, themodel
is recalculated using the complete history of the workload. If the
current load is lower than the capacity, the model determines the
required amount of VMs that can fulfill this load.

4.3 Elasticity Benchmarking Framework
In order to evaluate the two approaches, we use the BUNGEE Cloud
Elasticity Benchmark controller [11]. The working principle is de-
picted in Figure 3. On the left side, the system under test (SUT) is
depicted. It contains the IaaS cloud that hosts the multi-tier appli-
cation and the scaling controller. On the right side, the experiment
controller (BUNGEE) with its four phases is illustrated. First, in the
System Analysis, the controller constructs a discrete mapping func-
tion for the SUT that determines the associated minimum amount
of resources required to meet the SLOs (Service Level Objectives)
for each load intensity. Then, the second phase, called Benchmark
Calibration, uses the mapping from step one to generate identical
changes in the curve of the demanded resource units on every plat-
form under comparison. Based on this mapping and a predefined
workload profile, the Measurement phase stresses the SUT while
BUNGEE monitors the supplied VMs. Finally, in the Elasticity Eval-
uation phase, the elasticity and user-oriented metrics based on the
collected monitoring data are calculated.

Figure 3: Elasticity Benchmarking Framework.

5 EVALUATION AND EXPERIMENT
DESCRIPTION

The evaluation is split into multiple parts. First, we explain the
elasticity metrics we use for evaluating the performance of the auto-
scaling mechanism. Second, we introduce the cost metrics. We use
these metrics to evaluate FOX and its cost saving potential. Third,
we describe the experiment environment. Fourth, we explain the
plots made for evaluating the scaling behavior of the auto-scaling
mechanism without and with FOX in the methodology section.
Fifth, we present the evaluation that contains detailed results for
the experiments using React on the BibSonomy trace. Due to space
limitations, we summarize the experiments for Adapt and Reg using
BibSonomy in a table and omit the plots. Afterwards, we present the
results of the experiment using React on the IBM workload using a

detailed metric evaluation. Finally, we summarize the assumptions
and limitations of the experiments and discuss whether the results
can be generalized.

5.1 Elasticity Metrics
We use system-oriented elasticity metrics endorsed by the Re-
search Group of the Standard Performance Evaluation Corporation
(SPEC) [12] for quantifying the performance of FOX in context of
auto-scaling. In particular, we use the provisioning accuracy and
the wrong provision time share.

For the following equations, we define:
• T as the experiment duration and time t ∈ [0,T]
• st as the resource supply at time t
• dt as the demanded resource units at time t
• n as the number of tiers

The demanded resource units dt are the minimal amount of VMs
required to meet the SLOs under the load intensity at time t . ∆t de-
notes the time interval between the last and the current change
either in demand d or supply s . The curve of demanded resource
units d over time T is derived by BUNGEE, see Section 4. The
resource supply st is the monitored number of running VMs at
time t .

Provisioning accuracy θU and θO : The provisioning accu-
racy describes the relative amount of resources that are under-
provisioned, respectively, over-provisioned during the measure-
ment interval. In other words, the under-provisioning accuracy θU
is the amount of missing resources normalized by the current de-
manded resource units that are required to meet the SLOs nor-
malized by the experiment time. Similarly, the over-provisioning
accuracy θO is the amount of resources that the auto-scaler supplies
in excess. The range of this metric is the interval [0,∞), where 0
is the best value and indicates that the supply curve lays on the
demand curve during the entire measurement interval.

θU [%] :=
100
T

·

T∑
t=1

max(dt − st , 0)
dt

∆t

θO [%] :=
100
T

·

T∑
t=1

max(st − dt , 0)
dt

∆t

Wrong provisioning time share τU and τO : The wrong pro-
visioning time share captures the time in which the system is in
an under-provisioned, respectively over-provisioned, state during
the experiment interval, i.e., the under-provisioning time share τU
is the time relative to the measurement duration, in which the
system is under-provisioned. Similarly, the over-provisioning time
share τO is the time relative to the measurement duration in which
the system is over-provisioned. The range of this metric is the in-
terval [0, 100]. The best value 0 is achieved, when the system has
during the measurement no over- or under-provisioning.

τU [%] :=
100
T

·

T∑
t=1

max(sдn(dt − st), 0)∆t

τO [%] :=
100
T

·

T∑
t=1

max(sдn(st − dt), 0)∆t

ICPE ’18, April 9–13, 2018, Berlin, Germany V. Lesch, A. Bauer, N. Herbst, S. Kounev

Multi-tier Auto-scaling Deviation σn : In order to evaluate
the performance of FOX according the introduced system oriented
elasticity metrics, we propose to calculate the deviation of the scal-
ing behavior across each tier compared to the theoretically optimal
auto-scaler. The theoretically optimal auto-scaler is assumed to
know the future load. Therefore, it knows when and how much
the demanded resources change. For calculating the auto-scaling
deviation, the aforementioned metrics provisioning accuracy (θU ,
θO) and wrong provisioning time share (τU , and τO) are considered.
As these metrics calculate the deviation of the supplied resources
to the demanded, the vector of the theoretical optimal auto-scaler
is assumed to be the zero vector. For the determination of the devi-
ation, we use the Minkowski distance with these vectors. If FOX is
compared to the theoretically optimal auto-scaler, the Lp -norm can
be used as the Minkowski distance between a vector and the zero
vector is equal to the norm. We set p to the value 4 as we have four
dimensions. Thus, we define the multi-tier auto-scaling deviation
σn as follows, where n is the number of tiers:

σn [%] =

(n∑
i=1

(
θ4U ,i + θ

4
O,i + τ

4
U ,i + τ

4
O,i

) n
4

) 1
n

SLO violation rate ϕ: In addition to the system oriented met-
rics provisioning accuracy and wrong provisioning time share, the
Service Level Objective (SLO) violation rate is taken into account.
This metric shows how many requests the application has handled
within the specified SLOs. Therefore, the requests violating the SLO
are divided by the amount of sent requests during the experiment.
In this work, the SLOs are specified using the response time: 95%
of all requests have to be handled within two seconds.

5.2 Cost Metrics
As FOX is a cost-aware mechanism, cost metrics are also taken into
account for the evaluation. To this end, we consider the instance
time, however, we have to distinguish between two different in-
stance times: accounted instance time and charged instance time. The
accounted instance time is the total runtime of all VMs of all tiers.
The charged instance time is the runtime, the public cloud provider
charges. Figure 4 shows both instance times for the Amazon EC2
pricing model. The red blocks represent the charged instance time
and the green blocks the accounted instance time. Resource in-
stance 1 has on the left an accounted instance time of 1.25 and
is charged for two hours as all started hours are charged full no
matter if the resource is stopped earlier. On the right the accounted
instance time matches the charged instance time of one hour. The
second resource instance is started three times and runs only for a
few minutes each time. However, it is charged for three full hours,
even if the previous charging interval is still running. The third
resource instance runs for a bit more than two hours but is charged
for three hours. So, all started hours are rounded to a full hour
charged instance time. In addition, each start of the same instance
is considered to be a completely new instance without recognition
of previous and still running charging intervals.

Cost saving rate Π: For a quantification of the cost savings
FOX can provide, we introduce the cost saving rate metric Π. This
metric compares the instance times of the auto-scaler (costAS) to the

Figure 4: This example shows which instance times are ac-
counted and which instance times are charged.

instance times of a naive approach (costNaive). The naive approach
is assumed to provision all available resources at the start of the
experiment and does not have any auto-scaling mechanisms, i.e., all
available resources are running throughout the experiment. Both
types of instance times are considered and a cost saving rate for
accounted instance times (Πa), respectively, charged instance time
Πc is calculated. The range of this metric is in the interval (−1,∞).
If the value is negative, costs are saved. The lower the value is in
the negative range the more costs are saved. If the value is greater
or equals zero, the mechanism spends more or equal cost than the
naive approach.

Πx [%] = 100 ·
(

costAS
costNaive

− 1
)

5.3 Experimental Description
For the experimental evaluation, we designed a multi-tier applica-
tion. It consist of three tiers with a standard workflow: The pre-
sentation tier (pt) receives requests and sends them to the business
tier. An instance of the presentation tier has a processing rate of 17
requests per second. The business tier (bt) processes the forwarded
requests but has a predefined number of serving units. This intro-
duces a limitation of the number of parallel executions per instance
to ten requests per second. Afterwards, the results are sent to the
database tier (dt), that persists the results. The number of parallel
database accesses per instance is limited to 25 per second. Finally,
the results are sent back to the presentation tier that sends the
response to the client. The tiers of the application are configured
individually. There are different amounts of VM instances that can
be provisioned per tier. At the presentation tier, 15 VMs can be pro-
visioned. The business tier can be scaled to 25 VMs and the database
tier can have 10 VMs. This configuration is made due to hardware
limitations of the servers of our private cloud environment. Based
on the request rates that can be served per tier and VM, 17 (pt),
10 (bt) and 25 (dt), the maximum arrival rate the application can
handle with all VMs provisioned is 250 per second.

In order to stress the application with authentic workloads with
time-varying behavior, we choose two real world traces: (i) Bib-
Sonomy and (ii) IBM. The BibSonomy represents HTTP requests to
servers of the social bookmarking system BibSonomy (see the paper
of Benz et al. [4]) during April 2017. The IBM Customer Information
Control System (CICS) transactions trace captures four weeks of

FOX: Cost-Awareness for Autonomic Resource Management in Public Clouds ICPE ’18, April 9–13, 2018, Berlin, Germany

recorded transactions on a z10 mainframe CICS installation. Each
trace was sampled in 15 minute intervals, i.e., one day consists of
96 data points. For our experiments, we accelerate each trace by
the factor of 7.5. That is, one data point for each two minutes. For
having an internal repetition, we select two days for each trace.

The experiments are conducted in our private cloud infrastruc-
ture. The cloud consists of eleven homogeneous, virtualized Xen-
Server hosts. Eight of them are managed by Apache CloudStack11.
The distributed application is deployed on the CloudStack envi-
ronment. The last three servers are not part of the CloudStack
environment and are used for hosting (i) the load-balancer (Citrix
Netscaler12) and the cloud management for CloudStack, (ii) the
auto-scaling mechanisms and FOX, and (iii) the load driver and the
experiment controller. The specification of each physical machine
and worker VM can be found in Table 1.

Table 1: Specification of the Servers.

Criteria Server Worker VMs
Model HP DL160 Gen9 –
Operating System Xen-Server Ubuntu 16.06
CPU 8 cores 1 vcore
Memory 32 GB 2 GB

5.4 Methodology
All shown figures in the following have the same structure: a de-
mand versus supply graph for each tier at the top and a request
evaluation at the bottom. All graphs have the experiment duration
of about 385 minutes at the x-axis. The y-axis shows the number of
VMs for the demand supply plot, and the requests per second for
the request evaluation. The demand and supply graph shows the
demand as black dashed line and the supply as a blue solid line. If
the supply line falls below the demand line there are too less VMs
provisioned. In case the supply line exceeds the demand line, too
many VMs are instantiated. So, the optimal auto-scaler would result
in a supply line matching the demand line during the experiment.
The request evaluation graph shows the sent requests as a black
dashed line, the requests processed conform to the SLO as green
solid line and the requests that violate the SLOs as red dashed and
dotted line. The sum of the SLO conform and SLO violation lines
result in the sent request line. That is, if the green line matches
the black line and the red line is zero during the experiment all
requests have been served within the SLO. If the red line is not equal
to zero and the green line drops below the black line, more SLO
violations occured. An user-oriented auto-scaler tries to configure
the application so that all requests can be served within the SLO
and therefore, the green line should match the black line.

5.5 Experiment Results
As mentioned earlier, the evaluation of FOX is based on two dif-
ferent workload traces: BibSonomy and IBM. In addition, three
different auto-scalers are used to show that FOX can improve the
behavior of multiple auto-scalers. Due to space limitations, detailed
11Apache CloudStack: https://cloudstack.apache.org/
12Citrix Netscaler: https://www.citrix.de/products/netscaler-adc/

evaluations are presented only for React without and with FOX for
both workload traces. Additionally, for the BibSonomy workload
trace plots are shown where the scaling behavior with and without
FOX can be observed. Due to space limitations, the evaluation for
the other auto-scalers is limited to the BibSonomy workload and
the results are shown in summary in Table 3.

React on the BibSonomy workload: The scaling behaviors
of React without, respectively with FOX are shown in Figure 5,
respectively Figure 6. Figure 5 shows that React performs many
adaptations to match the current demand. In some up-scaling cases,
React starts the instances too late and under-provisioning occurs
that results in increasing SLO violation rates at the bottom of the
figure. However, Reactmatches the current demandmost of the time.
Figure 6 shows the behavior of React with FOX using the Amazon
EC2 cost model. At the top three plots, the unstable behavior of
React is smoothed when using FOX. The supply curve tends to over-
provision the amount of VMs. That is, the supply curve stays above
the demand curve most of the time. However, some scaling actions
are performed to reduce the amount of unused VMs if meaningful.
As the supply curve lies above the demand curve most of the time,
the SLO violations are reduced to a minimum as can be seen at
the bottom of the figure. This is the behavior, we expected, as FOX
performs down-scaling only if the instances that should be released
will not be used in the future.

Table 2: Elasticity metrics results for React on the BibSon-
omy trace.

Tier Metric React FOXA FOXG
1 θU 2.65% 0.45% 0.62%
1 θO 33.29% 66.08% 57.91%
1 τU 16.48% 3.04% 3.92%
1 τO 68.05% 93.57% 91.01%
2 θU 6.10% 0.99% 1.53%
2 θO 20.80% 54.79% 47.25%
2 τU 35.34% 6.67% 8.17%
2 τO 52.18% 88.54% 85.45%
3 θU 2.22% 0.15% 0.47%
3 θO 27.93% 82.97% 62.66%
3 τU 13.45% 1.12% 2.65%
3 τO 57.97% 96.03% 91.71%
overall ϕ 12% 3% 3%
overall σ3 89% 144% 134%

The evaluation of the elasticity metrics show the same results
as observed in the figures. Table 2 shows the elasticity metrics for
React without and with FOX for Amazon EC2 and Google Cloud
Platform cost model on the BibSonomy workload. At the first tier,
the provisioning accuracy for under-provisioning of React is about
2% while the provisioning accuracy for the experiments with FOX
is about 0.5%, so the under-provisioning at the first tier is reduced
by 75%. However, the over-provisioning accuracy for React is about
33% and for the experiments with FOX it is 66%, respectively 58%
for Amazon EC2, respectively, Google Cloud Platform cost model.
In addition, the under-provisioning time share of React without

https://cloudstack.apache.org/
https://www.citrix.de/products/netscaler-adc/

ICPE ’18, April 9–13, 2018, Berlin, Germany V. Lesch, A. Bauer, N. Herbst, S. Kounev

FOX is 16% and for the experiments with FOX it is reduced to 3%
and 4%. The over-provisioning time share for React is 68% and for
the experiments with FOX larger than 90%. The scaling behavior
at the other tiers is comparable to the one at the first tier. The
SLO violation rate of React is 12% and for the experiments with
FOX the violation rate is 3%. So, the SLO violation rate is reduced
by 75% when using FOX. However, the auto-scaling deviation for
React is 89% and for the experiments with FOX the deviation is
larger than 100%. For comparison, the auto-scaling deviation for the
Naive approach is 221%. So, a trade-off between SLO violation rate
and auto-scaling deviation can be accessed. This is the expected
behavior of FOX. It reduces under-provisioning phases by delaying
or cancelling scaling down actions if future decisions state that the
instances will be required. Hereby, the auto-scaler performance
becomes worse in trade for a reduced SLO violation rate.

The evaluation based on the cost aspects is summarized in Table 3.
For the BibSonomy workload all three auto-scalers are evaluated.
First, the results of React are discussed. The cost saving rate for
charged costs (Πc) compares the charged instance time of the auto-
scaler run with the naive scenario. The value of -5% shows that the
charged costs are reduced by 5% when using React without FOX
for the Amazon EC2 cost model. FOX is able to reduce the costs
by 26% for the Amazon EC2 cost model. So, FOX saves 21% more
costs than the experiment without FOX. This gain is caused by the
down-scaling logic of FOX, as a down-scaling is only executed if
the instances are not required in the near future. In the run without
FOX, many instances are stopped due to the actual request rate
but are again provisioned when the load increases. This introduces
additional charging intervals to start with the Amazon EC2 cost
model as described earlier. This behavior is reduced when using
FOX and the charged costs are lowered. The cost saving rate for
accounted instance times (Πa) compares the accounted instance
times to the naive approach where all instances run throughout
the experiment. The value -45% for React with the Amazon EC2
cost model shows that the accounted instance time is reduced by
45% when using React in comparison to the naive approach. When
using FOX the accounted instance time is only reduced by 28%, i.e.,
FOX supplies more instance time than React without FOX. This
also results in a significantly reduced SLO violation rate from 12%
when using React to 3% when using FOX for the Amazon EC2 cost
model. However, this can only be achieved in trade for a worse auto-
scaling performance in terms of elasticity metrics. In summary, for
the Amazon EC2 cost model, the costs can be reduced by FOX while
the accounted instance time is increased. When comparing React
without FOX to React with FOX for the Google Cloud Platform cost
model, it can be seen that the charged costs saving rate matches the
accounted cost saving rate. So, there is no significant cost savings
when using the Google Cloud Platform cost model for FOX. This
can be explained by the cost model, as every minute is charged
separately and there is no rounding to the next full hour as seen
for the Amazon EC2 cost model.

Adapt on the BibSonomyworkload: During the evaluation
of Adapt with the BibSonomy workload the results show similar
behavior as seen for React. When looking at the values of Adapt
without FOX for the Amazon EC2 cost model, it can be seen that the
SLO violation rate is 28% and the auto-scaling deviation is 86%. The

accounted costs are reduced by 57% compared to the naive approach
and the charged costs are only reduced by 40%. In comparison to
the run with FOX, the SLO violation shows a significant decrease
to 2% but with a doubled auto-scaling deviation. When looking
at the cost saving rates, the accounted costs are reduced less, so
FOX manages to supply more accounted instance time. In addition,
the charged costs are reduced by 43%. The increased amount of
accounted instance time results in a significant decrease of SLO
violation rate from 28% to 2% in trade for auto-scaling performance.
The run with the Google Cloud Platform cost model shows similar
behavior. The SLO violation rate is reduced significantly from 28%
to 3% when comparing Adapt without and with FOX. However, the
auto-scaling deviation is doubled. The accounted instance time is
reduced by 57% for the run of Adapt without FOX and the charged
costs are reduced by 56%. The evaluation with FOX shows that the
accounted instance time and charged costs are reduced only slightly
but the SLO violation rate is reduced by a significant amount.

Reg on the BibSonomy workload: The third auto-scaler we
evaluated is called Reg. The experiment using Reg without FOX
shows specific characteristics of Reg. At random points of the ex-
periment, drops in the supply curve can be detected, where all VMs
are stopped and immediately provisioned in the next interval. The
plots of the experiment using Reg with FOX show that these drops
in the supply curve are removed by FOX. The results for elasticity
metrics and cost saving rates are summarized in Table 3. The run
of Reg without FOX for the Amazon EC2 cost model shows a SLO
violation rate of 22% and an auto-scaling deviation of 77%. The
accounted instance time is reduced by 54% in comparison to the
naive approach and the charged costs are reduced by 5%. When
using FOX, the SLO violation rate is reduced to 4% but the auto-
scaling deviation increases. The accounted saving rate is 35%, so
more accounted instance time is supplied in comparison to the run
of React without FOX. The charged cost saving rate is 35% that is
30% higher than without FOX. So, for the Amazon EC2 cost model,
FOX is able to supply more accounted instance time while reduc-
ing the charged costs. This also results in a significant lower SLO
violation rate of only 4%. The evaluation of React without and with
FOX using the Google Cloud Platform cost model shows that React
without FOX has a SLO violation rate of 22% while the run with
FOX has a reduced SLO violation rate of only 11%. The auto-scaling
deviation of the run without FOX is 77% and slightly increased for
the run with FOX. The accounted cost saving rate is 53% for the
run without FOX and 39% for the run with FOX. The charged cost
saving rate is reduced by React by 54% and for the run with FOX
by 39%. So, FOX supplies more accounted instance time that results
in a significant lower SLO violation rate.

React on the IBMworkload: In order to evaluate FOX with
different workloads, the IBM workload is selected in addition to
the BibSonomy trace. Due to space limitations, only the evaluation
of React using the elasticity metrics in Table 4 and the cost saving
rates summarized in Table 3 are presented and the plots are omitted.
First, the elasticity metrics are discussed. The under-provisioning
accuracy is reduced for the first tier from about 2% to 1% with FOX.
The over-provisioning accuracy is slightly increased from 86% to
91%, respectively 89%. The under-provisioning time share at the

FOX: Cost-Awareness for Autonomic Resource Management in Public Clouds ICPE ’18, April 9–13, 2018, Berlin, Germany

Table 3: Cost metrics results for the BibSonomy trace.

BibSonomy IBM
React Adapt Reg React

Metric ReactA FOXA ReactG FOXG AdaptA FOXA AdaptG FOXG RegA FOXA RegG FOXG ReactA FOXA ReactG FOXG
ϕ 12% 3% 12% 3% 28% 2% 28% 3% 22% 4% 22% 11% 12% 4% 12% 5%
σ3 89% 144% 89% 134% 86% 209% 86% 187% 77% 121% 77% 100% 143% 168% 143% 156%
Πa -45% -28% -45% -32% -57% -43% -57% -11% -54% -35% -53% -39% -59% -51% -59% -53%
Πc -5% -26% -44% -32% -40% -43% -56% -10% -5% -35% -54% -39% -42% -51% -59% -53%

0

10

20

Presentation Tier

demand supply

0

20

40

V

irt
ua

l M
ac

hi
ne

s Business Tier

0

5

10
Database Tier

0 50 100 150 200 250 300 350
Minutes

0

200

400

R
eq

. /
 S

ec
on

d Requests

Sent SLO Conform SLO Violations

Figure 5: Scaling behavior of React without FOX on the BibSonomy trace with Amazon EC2 cost model.

first tier is reduced when using FOX from about 8% to 5%. The over-
provisioning time share is increased from 86% to 90%, respectively
89%. A similar behavior for the other tiers can be derived from the
metrics in the table. The SLO violation rate of React is 12% while
the rate for the experiments using FOX is reduced significantly
to 4%, respectively 5%. The auto-scaling deviation shows a slight
increase when using FOX. So, FOX focuses on a trade-off between
auto-scaler performance and SLO violation rate.

The cost saving rates shown in Table 3 show for the run with
Amazon EC2 cost model that React reduces the charged instance
times by 42% compared to the naive approach. When using FOX the
charged costs are reduced by 51%. The accounted instance time for
React without FOX is reduced by 59% in comparison to the naive
approach. FOX only reduces the accounted instance times by 51%.
So, FOX supplies more accounted instance time while reducing the
costs in comparison to the run of React without FOX. This increased
accounted instance time results in a reduction from 12% to 4% SLO
violations. However, this can only be achieved in trade for a worse

auto-scaling performance in terms of elasticity metrics. When com-
paring the charged costs for the Google Cloud Platform charging
model, For the Google Cloud Platform, the results show, that FOX
supplies more accounted instance time, as the saving rate is lower
as in the run without FOX, while the charged costs remain stable
when using FOX. This can be explained by the charging interval
of one minute, as the rounding overheads to the next charging
intervals are very small. Though, the SLO violation rate is reduced
from 12% to 5% when using FOX. Again, the auto-scaling deviation
is increased when using FOX.

5.6 Threats to Validity
In order to perform the above discussed measurements several
assumptions had to be made. These assumptions may reduce the
expressiveness of the results. All assumptions and their effect on
the results are discussed in the following. First, the set of experi-
ments is run in a private cloud environment under controlled con-
ditions for reproducible performance-related results. The cost and

ICPE ’18, April 9–13, 2018, Berlin, Germany V. Lesch, A. Bauer, N. Herbst, S. Kounev

0

10

20

Presentation Tier

demand supply

0

20

40

V

irt
ua

l M
ac

hi
ne

s Business Tier

0

5

10
Database Tier

0 50 100 150 200 250 300 350
Minutes

0

200

400

R
eq

. /
 S

ec
on

d Requests

Sent SLO Conform SLO Violations

Figure 6: Scaling behavior of React with FOX on the BibSonomy trace with Amazon EC2 cost model.

Table 4: Elasticitymetrics results for React on the IBM trace.

Tier Metric React FOXA FOXG
1 θU 1.93% 1.11% 1.02%
1 θO 86.31% 90.91% 88.61%
1 τU 8.33% 5.59% 5.32%
1 τO 85.87% 90.11% 88.86%
2 θU 4.76% 2.07% 1.91%
2 θO 66.11% 112.59% 80.56%
2 τU 16.43% 8.29% 9.08%
2 τO 78.67% 88.62% 87.41%
3 θU 5.82% 0.97% 0.75%
3 θO 96.04% 105.07% 103.92%
3 τU 13.61% 3.97% 2.94%
3 τO 79.49% 93.62% 93.36%
overall ψ 12% 4% 5%
overall σ3 143% 168% 156%

elasticity-related mechanisms work independent of an experienced
performance variability of a public environment. Thus, the obtained
results shall be meaningful for the public cloud environments. Sec-
ond, the results are strongly dependent on the used auto-scaling
mechanism. Therefore, three different auto-scalers that are intro-
duced in the literature are used and compared. However, several
other auto-scaler exist and the experiments could be expanded to
include more auto-scalers. However, this work does not focus on
optimal auto-scaling decisions. Third, the results of the cost-aware
mechanism FOX depend on the quality of the forecast approach

that is used. We used a simple forecasting method that returns the
values of the last day as forecast. We proposed multiple alterna-
tive forecaster that could be included in the experiments to reduce
variations in the results. Fourth, the experiments are conducted
using one multi-tier application with homogeneous request types
per tier. Other applications could behave in a different way and the
results would be changed. Finally, only two workloads, BibSonomy
and IBM are used to stress the application. The experiments should
be expanded to use multiple other real world workload traces to
show that FOX has similar results on many workloads. The results
proposed in this paper cannot be generalized as there are too many
assumptions and restrictions made for the experiments. However,
the results have shown that FOX behaves as desired and is able to
reduce the charged costs while increasing the accounted instance
time and hereby reducing the SLO violation rate in the public cloud
scenario.

5.7 Discussion
In this section, we address the research question RQ3: How well
does FOX perform in the context of auto-scaling? The results of the
evaluation show that FOX is able to decrease the charged costs
significantly while increasing the accounted instance time for the
Amazon EC2 cost model compared to the plain auto-salers. This
results in reduced SLO violation rates but higher values for the
metrics reflecting over-provisioning. However, this can only be
achieved in trade for a higher auto-scaling deviation. For the Google
Cloud Platform cost model, smaller improvements are measured.
This can be explained by the nature of this cost model. All results
are summarized in the following.

FOX: Cost-Awareness for Autonomic Resource Management in Public Clouds ICPE ’18, April 9–13, 2018, Berlin, Germany

React on BibSonomy workload.

• React performs many scaling operations to match the de-
mand as close as possible.

• With FOX, the supply curve is smoothed, tends to over-
provision, and the oscillations are removed.

• FOX reduces the charged costs by 21% for the Amazon EC2
cost model.

• FOX provisions 17% more accounted instance time for the
Amazon EC2 costmodel and the SLO violation rate is reduced
from 12% to 3% for the Amazon EC2 cost model.

• The auto-scaling deviation increases in trade for lowered
costs for the Amazon EC2 cost model.

• The costs are not lowered for the Google Cloud Platform
cost model.

• The accounted instance time is increased for the Google
Cloud Platform cost model and the SLO violation rate is
reduced.

Adapt and Reg on BibSonomy workload.

• When using FOX the charged costs are reduced by 3% for
Adapt, respectively 30% for Reg with the Amazon EC2 cost
model.

• The accounted instance times are increased by 14%, respec-
tively 19%. This results in a decrease in the SLO violation
rates of 26%, respectively 18% for the Amazon EC2 cost
model.

• The results for the auto-scaling deviation for the Amazon
EC2 cost model and the evaluation for the Google Cloud
Platform cost model are similar to the results of React.

React on IBM workload.

• The charged costs can be reduced by 9% for the Amazon EC2
cost model, respectively 6% for the Google Cloud Platform
cost model, when using FOX.

• The accounted instance time is increased when using FOX by
8%, respectively 6%. This results in a significant decrease of
SLO violation rate from 12% without FOX to 4%, respectively
5% with FOX.

6 RELATEDWORK
The survey of T. Lorido-Botran et al. [17] gives a broad overview of
existing auto-scalers and a classification into five groups with exam-
ple implementations are proposed: (i) threshold-based rules [8, 10],
(ii) queueing theory [23, 26], (iii) control theory [2, 15], (iv) rein-
forcement learning [19, 22], and (v) time series analysis [7, 13].

In the literature, many auto-scalers exist that can be assigned
to the groups mentioned above. However, only a few auto-scalers
support cost-aware scaling. The cost-awareness of the existing
auto-scalers can be classified into three groups: (i) general cost opti-
mization by using heterogeneous VM image sizes, (ii) limiting costs
by defining a budget or run-time constraint, and (iii) optimization
of the scaling logic with knowledge of the charging models.

The first group consists of auto-scalers that find scaling deci-
sions and select the heterogeneous VM image size combination
that introduces lowest cost while still fulfilling the specified SLAs.
Example auto-scalers for this group are AutoMAP [3] and the one
from Sharma et al. [21]. AutoMAP calculates the required amount

of resources to satisfy the SLAs and then searches for a heteroge-
neous configuration. This configuration should have low costs for
the end user while still fulfilling the desired average response time.
The auto-scaler introduced by Sharma et al. greedily searches for
a configuration with low costs that has a high utilization. There-
fore, first a homogeneous configuration is calculated and then, this
configuration is translated into a heterogeneous solution. In the
paper of Brataas et al. [5], a systematic search over vertically and
horizontally scaled deployments is conducted to find cost-optimal
configurations. This information could be leveraged by an auto-
scaling mechanism to better support heterogeneous resources for
distributed applications.

The auto-scalers of the second group have budget or runtime
constraints that are specified by the user. Example auto-scalers of
this group are introduced by Vaquero et al. [24], Jiang et al. [14],
Xiong et al. [25], and Zhu and Agrawal [27]. The auto-scaler of
Vaquero et al. requires a specified maximum runtime of all VMs.
If this runtime is exceeded the application is no more scaled. The
one from Jiang et al. requires a predefined budget constraint and
SLA. It performs a trade off between cost and SLA satisfaction to
find a minimum amount of resources while still satisfying the SLAs.
Xiong et al. introduced an auto-scaler for a multi-tier application. It
first determines the required amount of resources to satisfy the SLA
on an overall basis and then it splits the new provisioned resources
based on the budget constraints to the tiers. The auto-scaler of
Zhu and Agrawal have predefined time-limit and resource budget
constraints. Within these constraints, the Quality of Service (QoS)
is optimized using control theory.

The auto-scalers of the third group have knowledge about the
charging models of the public cloud where the application is de-
ployed. The approach presented in this paper can be assigned to
this group. Example auto-scalers for this group are the ones from
Cardellini et al. [6], Naskos et al. [18], and Roy et al. [20]. The
auto-scaler introduced by Cardellini et al. has knowledge about the
costs per VM instance per time interval, here the charging inter-
val, e.g. 60 minutes for the Amazon EC2 cloud, is used. With this
knowledge the VMs are shut down immediately before the next
charging interval starts. In case a new VM should be allocated at
this time, the interval of the already running VM is renewed so that
it is not stopped and runs for another charging interval. Naskos
et al. introduce an auto-scaler for noSQL databases that is aware
of the VM charging model and knows the runtimes of all VMs. In
case of downscaling, it stops the VMs that are closest to the next
charging interval. The auto-scaler introduced by Roy et al. handles
a multi-dimensional cost-function. Besides the leasing costs of the
VMs, it includes the distance between the estimated response time
and the SLA and the reconfiguration costs. Different weights can
be assigned to the three components that may result in different
scaling decisions. The auto-scaler optimizes this function and finds
the optimum strategy with minimum costs.

FOX belongs to the third group of the cost-aware auto-scaling
classification. It combines and extends the approaches of the exam-
ple auto-scalers of this category: First, it supports more complex
charging models like the two-phased one as applied at the Google
Cloud Platform, instead of one charging interval as presented in
the paper from Cardellini et al. Second, FOX has knowledge of all
running VMs and their runtimes. With this information and the

ICPE ’18, April 9–13, 2018, Berlin, Germany V. Lesch, A. Bauer, N. Herbst, S. Kounev

knowledge of the charging models, the VM that is nearest to the
next charging interval can be selected in case of downscaling. A
similar mechanism is presented in the paper of Roy et al. Third,
FOX finds proactive decisions for the future. Based on these future
decisions and the knowledge of the charging model, a decision
logic is presented when a downscaling is meaningful and when
the already running VMs should stay running. None of the men-
tioned auto-scalers support future decisions and reviews the actual
decision using them and the knowledge of the charging model.

7 CONCLUSION
In this paper, we examine the problem of increasing costs when
using an auto-scaling mechanism in the public cloud environment.
Our approach, called FOX, operates as a mediator between the
application and the cloud to reduce the charged costs while still sat-
isfying the specified SLOs. Therefore, FOX is based on the MAPE-K
control loop: It monitors the application and analyzes future ar-
rival rates using a forecaster. Based on these forecasts, the future
configurations of the application are determined using the auto-
scaling mechanism. Afterwards, the cost-aware mechanism reviews
all found scaling decisions and modifies them to reduce the costs.
Finally, the modified decisions are executed. FOX has a knowledge
base, where observed and future arrival rates, as well as, the scaling
decisions are stored. The cost-aware mechanism has knowledge
about two different charging strategies: Amazon EC2, where a
hourly charging is defined, and Google Cloud Platform, where the
first ten minutes are charged fix and then, the charging switches to
a minute-by-minute charging.

The evaluation of FOX is based on a multi-tier application de-
ployed in the private cloud environment. This application is stressed
using two real world workloads: BibSonomy and IBM CICS trace.
To show that FOX can handle multiple auto-scaling mechanisms,
three auto-scalers from the literature are used for evaluation: React,
Adapt, and Reg. The results of all experiments show, that FOX is
able to reduce the charged costs significantly, while increasing the
accounted instance time for the Amazon EC2 charging model. This
results in a significant decrease of SLO violation rate in trade for
a slightly worse auto-scaling performance. For the Google Cloud
Platform charging model, smaller (6%) cost savings are achieved.
This can be explained due to the nature of the charging model, as
there are no rounding overheads charged as for the Amazon EC2
charging model.

In the future, we plan to evaluate FOXwithmore real world work-
load traces and for different applications. In addition, other forecast-
ing mechanisms like Telescope [28] will be integrated. Moreover,
the experiments of all considered auto-scalers will be expanded to
evaluate all of them at all workloads. For the future, it is planned
to publish FOX as a tool on our website13.

ACKNOWLEDGEMENTS
This work was funded by the German Research Foundation (DFG)
under grant No. KO 3445/11-1. This research has been supported
by the Research Group14 of the Standard Performance Evaluation
Corporation (SPEC).

13http://descartes.tools/
14SPEC Research: http://research.spec.org

REFERENCES
[1] R. Adhikari and R. Agrawal. 2013. An introductory study on time series modeling

and forecasting. arXiv preprint arXiv:1302.6613 (2013).
[2] A. Ali-Eldin, J. Tordsson, and E. Elmroth. [n. d.]. An Adaptive Hybrid Elasticity

Controller for Cloud Infrastructures. In IEEE NOMS 2012. IEEE, 204–212.
[3] M. Beltrán. 2015. Automatic provisioning of multi-tier applications in cloud

computing environments. The Journal of Supercomputing 71, 6 (2015), 2221–
2250.

[4] D. Benz and more. 2010. The social bookmark and publication management
system BibSonomy. VLDB 19, 6 (2010), 849–875.

[5] G. Brataas, N. Herbst, S. Ivansek, and J. Polutnik. 2017. Scalability Analysis of
Cloud Software Services. In Companion Proceedings of the 14th IEEE ICAC 2017,
Self Organizing Self Managing Clouds Workshop (SOSeMC 2017). IEEE.

[6] V. Cardellini, E. Casalicchio, F. Presti, and L. Silvestri. 2011. Sla-aware resource
management for application service providers in the cloud. In First International
Symposium on Network Cloud Computing and Applications (NCCA). IEEE, 20–27.

[7] G. Chen andmore. 2008. Energy-Aware Server Provisioning and LoadDispatching
for Connection-Intensive Internet Services.. In NSDI, Vol. 8. 337–350.

[8] T. C Chieu, A. Mohindra, A. A Karve, and A. Segal. 2009. Dynamic scaling of
web applications in a virtualized cloud computing environment. In E-Business
Engineering, 2009. ICEBE’09. IEEE International Conference on. IEEE, 281–286.

[9] A. De Livera, R. Hyndman, and R. Snyder. 2011. Forecasting time series with
complex seasonal patterns using exponential smoothing. J. Amer. Statist. Assoc.
106, 496 (2011), 1513–1527.

[10] R. Han and more. 2012. Lightweight Resource Scaling for Cloud Applications. In
IEEE/ACM CCGrid 2012. IEEE, 644–651.

[11] N. Herbst, S. Kounev, A. Weber, and H. Groenda. 2015. BUNGEE: An Elasticity
Benchmark for Self-Adaptive IaaS Cloud Environments. In SEAMS 2015. IEEE
Press, 46–56.

[12] N. Herbst and more. 2016. Ready for Rain? A View from SPEC Research on the
Future of Cloud Metrics. CoRR abs/1604.03470 (2016).

[13] W. Iqbal, M. Dailey, D. Carrera, and P. Janecek. 2011. Adaptive Resource Provi-
sioning for Read Intensive Multi-tier Applications in the Cloud. Future Generation
Computer Systems 27, 6 (2011), 871–879.

[14] J. Jiang, J. Lu, G. Zhang, and G. Long. 2013. Optimal cloud resource auto-scaling
for web applications. In 13th IEEE/ACM International Symposium on Cluster, Cloud
and Grid Computing (CCGrid), 2013. IEEE, 58–65.

[15] E. Kalyvianaki, T. Charalambous, and S. Hand. 2009. Self-adaptive and Self-
configured CPU Resource Provisioning for Virtualized Servers Using Kalman
Filters. In ACM ICAC 2009. ACM, 117–126.

[16] J. O. Kephart and D. M. Chess. 2003. The Vision of Autonomic Computing.
Computer 36, 1 (Jan. 2003), 41–50. https://doi.org/10.1109/MC.2003.1160055

[17] T. Lorido-Botran, J. Miguel-Alonso, and J. Lozano. 2014. A Review of Auto-
scaling Techniques for Elastic Applications in Cloud Environments. Journal of
Grid Computing 12, 4 (2014), 559–592.

[18] A. Naskos, A. Gounaris, and P. Katsaros. 2017. Cost-aware horizontal scaling of
NoSQL databases using probabilistic model checking. Cluster Computing (2017),
1–15.

[19] J. Rao and more. [n. d.]. VCONF: a Reinforcement Learning Approach to Virtual
Machines Auto-configuration. In ACM ICAC 2009. ACM, 137–146.

[20] N. Roy, A. Dubey, and A. Gokhale. 2011. Efficient autoscaling in the cloud using
predictive models for workload forecasting. In IEEE International Conference on
Cloud Computing (CLOUD), 2011. IEEE, 500–507.

[21] U. Sharma, P. Shenoy, and D. Towsley. 2012. Provisioning multi-tier cloud ap-
plications using statistical bounds on sojourn time. In Proceedings of the 9th
international conference on Autonomic computing. ACM, 43–52.

[22] G. Tesauro, N. K Jong, R. Das, and M. Bennani. 2006. A Hybrid Reinforcement
Learning Approach to Autonomic Resource Allocation. In IEEE ICAC 2006. 65–73.

[23] B. Urgaonkar and more. 2008. Agile Dynamic Provisioning of Multi-tier Internet
Applications. ACM TAAS 3, 1 (2008), 1.

[24] L. Vaquero, D. Morán, F. Galán, and J. Alcaraz-Calero. 2012. Towards runtime
reconfiguration of application control policies in the cloud. Journal of Network
and Systems Management 20, 4 (2012), 489–512.

[25] P. Xiong and more. 2011. Economical and robust provisioning of n-tier cloud
workloads: A multi-level control approach. In 31st International Conference on
Distributed Computing Systems (ICDCS), 2011. IEEE, 571–580.

[26] Q. Zhang, L. Cherkasova, and E. Smirni. 2007. A Regression-based Analytic
Model for Dynamic Resource Provisioning of Multi-tier Applications. In IEEE
ICAC 2007. IEEE, 27–27.

[27] Q. Zhu and G. Agrawal. 2010. Resource provisioning with budget constraints
for adaptive applications in cloud environments. In Proceedings of the 19th ACM
International Symposium on High Performance Distributed Computing. ACM, 304–
307.

[28] M. Züfle and more. 2017. Telescope: A Hybrid Forecast Method for Univariate
Time Series. In Proceedings of the International work-conference on Time Series
(ITISE 2017).

http://descartes.tools/
http://research.spec.org
https://doi.org/10.1109/MC.2003.1160055

	Abstract
	1 Introduction
	2 Public Cloud Cost Models
	3 Approach
	3.1 MAPE-K Adaptation
	3.2 Discussion

	4 Tools
	4.1 Forecaster
	4.2 Auto-Scalers
	4.3 Elasticity Benchmarking Framework

	5 Evaluation and Experiment Description
	5.1 Elasticity Metrics
	5.2 Cost Metrics
	5.3 Experimental Description
	5.4 Methodology
	5.5 Experiment Results
	5.6 Threats to Validity
	5.7 Discussion

	6 Related Work
	7 Conclusion
	References

