
Chapter 22
Benchmarking Intrusion Detection Systems with
Adaptive Provisioning of Virtualized Resources

Aleksandar Milenkoski and K. R. Jayaram and Samuel Kounev

Abstract With the increasing popularity of virtualization, deploying intrusion detec-
tion systems (IDSes) in virtualized environments, for example, in virtual machines
as virtualized network functions, has become an emerging practice. Modern virtu-
alized environments feature on-demand provisioning of virtualized processing and
memory resources to virtual machines, dynamically adapting its intensity in order
to meet resource demands. Such a provisioning may have a significant impact on
many properties of an IDS deployed in a virtual machine, for example, on its at-
tack detection accuracy. However, conventional metrics for quantifying IDS attack
detection accuracy do not capture this impact, which may lead to inaccurate as-
sessments of the IDS’s accuracy at detecting attacks. In this chapter, we discuss
in detail on the impact of on-demand provisioning of virtualized resources on IDS
attack detection accuracy. Further, we discuss on relevant issues related to the use
of conventional metrics for quantifying IDS attack detection accuracy. Finally, we
present a preliminary metric and measurement methodology, which allow for the
accurate assessment of IDS attack detection accuracy taking on-demand resource
provisioning into account.

Aleksandar Milenkoski
University of Würzburg, Am Hubland, 97074 Würzburg, Germany e-mail: milenkoski@acm.
org

K. R. Jayaram
Thomas J. Watson Research Center, Yorktown Heights, NY USA e-mail: jayaramkr@us.ibm.
com

Samuel Kounev
University of Würzburg, Am Hubland, 97074 Würzburg, Germany e-mail: skounev@acm.org

625

P
re

-p
rin

t v
er

si
on

 fo
r p

er
so

na
l u

se
 o

nl
y!

626 Milenkoski et al.

22.1 Introduction

In recent years, virtualization has received increasing interest, both from industry
and academia, as a way to reduce costs through server consolidation and to enhance
the flexibility of physical infrastructures. In a virtualized system, governed by a
hypervisor, resources such as processor time, disk capacity, and network bandwidth,
are shared among virtual machines (VMs). Each VM accesses physical resources
through the hypervisor and is entitled to a predefined fraction of capacity.

While server consolidation through virtualization provides many benefits, it also
introduces some new challenges. For example, the increased dynamics and flexi-
bility of virtualized systems increase the need for automated resource management
mechanisms to guarantee system stability and adequate quality-of-service [8], [9].
Further, the introduction of a hypervisor and the allocation of multiple VMs on a sin-
gle physical server are additional critical aspects introducing new potential threats
and vulnerabilities [11], [17]. For instance, Gens et al. [4] report that security is a
major concern for users of modern virtualized service infrastructures, followed by
availability and performance. Some critical security issues include data integrity,
authentication, application security, and so on.

Intrusion detection is a common security mechanism for detecting malicious ac-
tivities (attacks) in host and/or network environments. The accurate attack detection
brings multiple benefits, for example, it allows for timely reaction in order to stop
an on-going attack. This is crucial for mission-critical systems with high integrity
and availability requirements, such as self-aware systems featuring self-protection
(see Chapter 14).

The National Institute of Standards and Technology (NIST) defines intrusion de-
tection as “the process of monitoring the events occurring in a computer system or
network and analyzing them for signs of possible incidents, which are violations or
imminent threats of violation of computer security policies, acceptable use policies,
or standard security practices” [19]. Given this definition, under intrusion detection
system (IDS), we understand the software that automates the intrusion detection pro-
cess. The research and industrial communities have designed and developed many
intrusion detection systems (IDSes), for example, the community-driven Snort [18]
by Sourcefire and the commercial ISS (Internet Security Systems) by IBM,1 which
use a diverse set of intrusion detection techniques.

The wide adoption of virtualization technology has lead to the emergence of
novel IDSes specifically designed to operate in virtualized environments, such as
ACPS (Advanced Cloud Protection System) [10], Invincea,2 Juniper Firefly Host,3

and vShield Endpoint.4 Many of these IDSes have components both inside the hy-
pervisor and in a designated, secure VM (normally the host VM), which has several

1 http://www-935.ibm.com/services/in/en/it-services/intrusion-detection.html
2 http://www.invincea.com/
3 http://www.juniper.net/techpubs/en US/firefly6.0/information-products/pathway-pages/security-
virtual-host-product-family-index.html
4 https://www.vmware.com/de/products/vsphere/features/endpoint

P
re

-p
rin

t v
er

si
on

 fo
r p

er
so

na
l u

se
 o

nl
y!

22 Benchmarking Intrusion Detection Systems 627

benefits. For instance, they can monitor the network and/or host activities of all colo-
cated VMs and are isolated from malicious VMs’ users since they do not operate
inside the VMs, but leverage functionalities of the underlying hypervisor.

The adoption of virtualization technology has also lead to the emergence of the
practice of deploying conventional IDSes (e.g., hardware IDS appliances or com-
mon software-based IDSes) as virtualized network functions (VNFs). For instance,
the network-based IDS Snort [18] may be deployed in a designated VM and config-
ured to tap into the physical network interface card used by all VMs. Thus, the IDS
can monitor the network activities of all VMs at the same time while being isolated
from, and transparent to, their users. Further, in comparison to deploying hardware
IDS appliances, which are expensive and challenging to manage, deploying IDSes
as VNFs is cost-effective and makes their management an easier task.

With the increasing complexity of IDSes, the development of methodologies,
techniques, and tools for evaluating IDSes has become an important research topic.
The benefits of IDS evaluation are manyfold. For instance, one may compare mul-
tiple IDSes in terms of their attack detection accuracy in order to deploy an IDS
which operates optimally in a given environment, thus reducing the risks of a secu-
rity breach. Further, one may tune an already deployed IDS by varying its config-
uration parameters and investigating their influence through evaluation tests. This
enables comparison of the evaluation results with respect to the configuration space
of the IDS, which can help to identify an optimal configuration. In Chapter 14, we
discuss in detail on the importance of IDS evaluation in the context of self-aware
systems that feature self-protection.

Any IDS evaluation experiment requires careful planning including selection of
(i) workloads, which are used for exercising the sensors of an IDS under test, and
(ii) metrics and measurement methodologies, which are used for quantifying IDS
properties (e.g., attack detection accuracy). Workloads, metrics, and measurement
methodologies are considered as the standard components of any evaluation exper-
iment.

A common aspect of all existing metrics for quantifying IDS attack detection
accuracy (which we refer to as IDS evaluation metrics) is that they are defined with
respect to a fixed set of hardware resources available to the IDS under test [6]. How-
ever, a virtualized environment may have elastic properties. Under elasticity, we
understand on-demand provisioning (i.e., allocation or deallocation) of virtualized
resources (i.e., CPU, memory, or network resources) to VMs, whose intensity dy-
namically adapts with respect to changes in the intensity of the workloads that the
VMs process. For instance, the Xen and VMware VSphere hypervisors allow for
on-demand hotplugging virtual CPUs and memory on VMs.5

On-demand provisioning of virtualized resources to VMs is also known as ver-
tical VM scaling, a topic that has received a considerable amount of attention. Re-
searchers, such as Spinner et al. [21], Xu et al. [22], and Dawoud et al. [2], have
developed approaches for fine controlled provisioning of virtualized resources for

5 See, for example, https://pubs.vmware.com/vsphere-60/index.jsp?topic=%2Fcom.vmware
.vsphere.hostclient.doc%2FGUID-F102B9BD-1B92-4AC5-ADC0-BE4E90473C5F.html.

P
re

-p
rin

t v
er

si
on

 fo
r p

er
so

na
l u

se
 o

nl
y!

628 Milenkoski et al.

the purpose of optimising benefits gained, improving performance isolation between
VMs, and so on.

Virtualized resources may be hotplugged on a VM where an IDS operates. This
implies that resources can be provisioned and used by an IDS deployed in a virtu-
alized environment during operation, which may have a significant impact on many
properties of the IDS, including its attack detection accuracy. Thus, we argue that
the use of existing IDS evaluation metrics, which do not take elasticity into account,
for evaluating IDSes deployed in virtualized environments may lead to inaccurate
measurements.

In this chapter, we first systematize and review commonly used IDS evaluation
metrics. We then discuss and show through case studies how elasticity of virtual-
ized environments affects IDS attack detection accurracy. Further, we discuss issues
related to the use of conventional IDS evaluation metrics for evaluating IDSes de-
ployed in elastic virtualized environments. Finally, we propose a preliminary metric
and measurement methodology, which take elasticity into account.

This chapter is organized as follows: In Section 22.2, we survey existing IDS
evaluation metrics; in Section 22.3, we discuss and demonstrate through case studies
relevant issues related to the use of these metrics; in Section 22.4, we present our
preliminary ideas on a metric and measurement methodology that take elasticity
into account; in Section 22.5, we discuss future work and conclude this chapter.

22.2 An Overview of IDS Evaluation Metrics

In this section, we provide a compact overview of commonly used IDS evaluation
metrics. In Chapter 14, we provide related contents focussing on IDS evaluation
metrics relevant when it comes to evaluating IDSes employed as part of self-aware
systems featuring self-protection.

We distinquish between two types of metrics: (i) performance-related metrics,
and (ii) security-related metrics (see Chapter 14). By performance-related metrics,
we mean metrics that quantify non-functional properties of a tested IDS, such as ca-
pacity, performance overhead, resource consumption, and similar. The metrics that
quantify these properties, such as processing throughput and CPU utilization, are
typical for traditional performance evaluation suites. The practice in the area of IDS
evaluation has shown that performance-related metrics are also applicable for eval-
uating IDSes. For instance, Meng et al. [14] measure workload processing through-
put, Lombardi et al. [10] measure performance overhead, Mohammed et al. [16]
measure power consumption of a distributed IDS, and Sinha et al. [20] measure
memory consumption. We focus here on security-related metrics, not elaborating
further on the performance-related ones.

P
re

-p
rin

t v
er

si
on

 fo
r p

er
so

na
l u

se
 o

nl
y!

22 Benchmarking Intrusion Detection Systems 629

22.2.1 Security-related metrics

By security-related metrics, we mean metrics that quantify security-relevant prop-
erties of an IDS under test. We focus here on metrics for quantifying the attack de-
tection accuracy of an IDS, where attack detection is considered as having a binary
output - attack/no attack - since this is the most typical case and common practice
in IDS evaluation. When it comes to attack detection in general, an IDS may also
be evaluated with respect to other features (e.g., evaluating provided additional in-
formation about the detected attack attempts). We refer the reader to the evaluation
methodology specification of NSS Labs for further information on how other IDS
attack detection features may be evaluated.6

We distinguish between basic and composite security-related metrics (see Chap-
ter 14). We provide an overview of these metrics in Table 22.1. In Table 22.1, we
also show the notation of used symbols (including variables).

22.2.1.1 Basic metrics

The basic metrics are most common and they quantify various individual attack de-
tection properties. Although they are quantified individually, these properties need
to be analyzed together in order to accurately characterize the attack detection effi-
ciency of a given IDS. The true positive rate 1−β = P(A|I) quantifies the proba-
bility that an alert generated by an IDS is really an intrusion. The false positive rate
α = P(A|¬I) quantifies the probability that an alert generated by an IDS is not an
intrusion, but a regular benign activity. The respective complementary metrics, i.e.,
the true negative rate 1−α = P(¬A|I) and the false negative rate β = P(¬A|¬I),
are also relevant. We do not list these metrics in Table 22.1 since they are simply
arithmetically related to the true and false positive rate.

The positive predictive value (PPV) quantifies the probability that there is an in-
trusion when an IDS generates an alert whereas the the negative predictive value
(NPV) quantifies the probability that there is no intrusion when an IDS does not
generate an alert. These metrics are normally calculated once one has already cal-
culated P(A|I), P(A|¬I), P(¬A|¬I) and P(¬A|I) by using the Bayesian theorem
for calculating a conditional probability (see Table 22.1). Thus, PPV and NPV are
also known as Bayesian positive detection rate and Bayesian negative detection rate,
respectively.

The basic metrics listed in Table 22.1 originate from signal detection theory. Han-
cock and Wintz [7] describe the use of these metrics in the area of signal detection.
In this paper, we denote these metrics as security-related only because we refer to
them in the context of detecting attacks against computer systems and/or networks
in particular.

6 http://www.nsslabs.com/sites/default/files/import/assets/Methodologies/NSS Labs IPS
%20Group%20Test%20Methodology%20v6.1.pdf

P
re

-p
rin

t v
er

si
on

 fo
r p

er
so

na
l u

se
 o

nl
y!

630 Milenkoski et al.

Table 22.1: Metrics for quantifying IDS attack detection accuracy

Metric Annotation/Formula
Basic metrics

True positive rate 1−β = 1−P(¬A|I) = P(A|I)
False positive rate α = P(A|¬I)
Positive predictive value P(I|A) = P(I)P(A|I)

P(I)P(A|I)+P(¬I)P(A|¬I)

Negative predictive value P(¬I|¬A) = P(¬I)P(¬A|¬I)
P(¬I)P(¬A|¬I)+P(I)P(¬A|I)

Composite metrics
Expected cost Cexp = Min(CβB,(1−α)(1−B))+Min(C(1−β)B,α(1−B))
Intrusion detection
capability CID = I(X ;Y)

H(X)

Notations of used symbols
Symbol Meaning
A Alert event: An IDS generates an attack alert
I Intrusion event: An attack is performed

Cα Cost of an IDS generating an alert when an intrusion has not occured

Cβ Cost of an IDS failing to detect an intrusion

C Cost ratio: The ratio between the costs Cα and Cβ

B = P(I) Base rate: Prior probability that an intrusion event occurs

X
IDS input: Discrete random variable used to model input to an IDS such that
X = 0 represents a benign activity and X = 1 represents a malicious activity
(i.e., an intrusion)

Y
IDS output: Discrete random variable used to model the generation of alerts by
an IDS such that Y = 0 represents no alert and Y = 1 represents an alert

H(X) Uncertainty of X : Entropy measure quantifying the uncertainty of the IDS input
X

I(X;Y)
Mutual information: The amount of information shared between the random
variables X and Y, i.e., the amount of reduction of the uncertainty of the IDS
input (X) after the IDS output (Y) is known

22.2.1.2 Composite metrics

IDS evaluators often combine the basic metrics in order to analyze relationships
between them, for example, to discover an optimal IDS operating point — an IDS
configuration which yields optimal values of both the true and false positive detec-
tion rate — or to compare multiple IDSes. It is a common practice to use a ROC
(Receiver Operating Characteristic) curve to investigate the relationship between
the measured true positive and false positive detection rate of an IDS. A ROC curve
plots true positive rate against the corresponding false positive rate [12]; that is, a
ROC curve depicts multiple IDS operating points of an IDS under test and, as such,
it is useful for identifying an optimal operating point or for comparing multiple
IDSes.

P
re

-p
rin

t v
er

si
on

 fo
r p

er
so

na
l u

se
 o

nl
y!

22 Benchmarking Intrusion Detection Systems 631

Security researchers have proposed metrics that are more expressive than ROC
curves. One of the most prominent metrics that belong to this category are the ex-
pected cost metric (Cexp) proposed by Gaffney et al. [3] and the intrusion detection
capability metric (CID) proposed by Gu et al. [5]. We discuss in detail the expected-
cost metric in Chapter 14. We focus here on the intrusion detection capability metric.

Intrusion detection capability

Gu et al. [5] propose a metric called intrusion detection capability (denoted by CID,
see Table 22.1). They model the input to an IDS as a stream of a random variable
X (X = 1 denotes an intrusion, X = 0 denotes benign activity), and the IDS output
respectively as a stream of a random variable Y (Y = 1 denotes IDS alert, Y = 0
denotes no alert). It is assumed that both the input stream and the output stream
have a certain degree of uncertainty reflected by the entropies H(X) and H(Y),
respectively. Thus, Gu et al. [5] model the number of correct guesses of an IDS,
i.e., I(X ;Y), as mutual shared information between the random variables X and Y
— I(X ;Y) = H(X)H(X |Y). An alternative interpretation is that the accuracy of an
IDS is modeled as the reduction of the uncertainty of the IDS input, H(X), after the
IDS output Y is known. Finally, by normalizing the shared information I(X ;Y) with
the entropy of the input variable H(X), the intrusion detection capability metric CID
is obtained. Note that CID incorporates the uncertainty of the input stream H(X)
(i.e., the distribution of intrusions in the IDS input) and the accuracy of an IDS
under test I(X ;Y). Thus, one may conclude that CID incorporates the base rate B
and many basic metrics, such as the true positive rate (1− β), the false positive
rate (α), and similar. For the definition of the relationship between CID, on the one
hand, and B, 1−β , and α , on the other hand, we refer the reader to [5]. Given this
relationship, a value of CID may be assigned to any operating point of an IDS on the
ROC curve. With this assignment, one obtains a new curve, i.e., a CID curve. A CID
curve provides a straightforward identification of the optimal operating point of an
IDS, i.e., the point that marks the highest CID.

22.2.2 Case study

We now present a case study involving the de-facto standard network-based IDS
Snort [18] in order to demonstrate the use of the previously discussed metrics.
We evaluate Snort 2.9.22 using a database of rules dated 11.07.2013. We deployed
Snort in a host with a dual-core CPU, each core operating at the speed of 2 GHz,
3 GB of memory, and a Debian 7.0 OS. We use the DARPA (Defense Advanced
Research Projects Agency) datasets as workloads, which have been recorded over
several weeks in 1998. We note that at the time of writing, the accuracy of Snort
in detecting the attacks recorded in the DARPA datasets is of no practical relevance
since the attacks recorded in these datasets do not (or extremely rarely) occur in cur-

P
re

-p
rin

t v
er

si
on

 fo
r p

er
so

na
l u

se
 o

nl
y!

632 Milenkoski et al.

rent real-world attack scenarios. However, the DARPA datasets are still the largest
datasets that contain both malicious and benign activities. We replayed a trace file
from the DARPA datasets that has been recorded on Monday of the first week of
trace recording. In order to calculate metric values, we used the “ground truth” files
provided by the Lincoln Laboratory at MIT.7 They contain information useful for
uniquely identifying each attack recorded in the trace file that we replayed, such as
time of execution of the attack, IP addresses of the attacking and victim host, and
the network protocol through which the attack has been carried out. To calculate
values of basic and composite security-related metrics, we compared the “ground
truth” information with the alerts produced by Snort. As a result, we were able to
calculate the number of detected and missed attacks as well as the number of false
alerts, which information is required for calculating values of basic and composite
security-related metrics.

With its default configuration enabled, Snort detected almost all replayed attacks.
However, Snort also issued false alerts. More specifically, Snorts rule with ID 1417
led to mislabeling many benign SNMP (Simple Network Management Protocol)
packets as malicious. To investigate whether Snort can be tuned such that the num-
ber of false alerts is reduced while the number of true alerts remains sufficiently
high, we examined the influence of the configuration parameter threshold on the
attack detection accuracy of Snort. The parameter threshold is used for reducing
the number of false alerts generated by suppressing rules that often mislabel benign
activities as malicious. A rule may be suppressed in a way such that it will not trig-
ger the generation of an alert everytime it labels an activity as malicious. Similarly,
a suppressed rule may be configured to not trigger the generation of an alert for a
specific number of times (specified with the keyword count) during a given time
interval (specified with the keyword seconds).

The measurement of the attack detection accuracy of an IDS for different con-
figurations of the IDS enables the identification of an optimal operating point (i.e.,
an IDS configuration that yields optimal values of both the true and false positive
detection rate). We considered 6 operating points of Snort. We measured the attack
detection accuracy of Snort for 5 different configurations where the rule with ID
1417 was suppressed by setting the value of count to 2, 3, 4, 5, and 6, while seconds
was set to 12026. We also measured the attack detection accuracy of Snort when
its default configuration was used, according to which the rule with ID 1417 is not
suppressed.

In Table 22.2, we present the values of the basic security-related metrics true
positive rate (1− β), false positive rate (α), positive predictive value (PPV), and
negative predictive value (NPV). In Table 22.2, one can observe that the values
of α and 1− β decrease as the value of count increases. This is expected since
the rule with ID 1477 is suppressed more often as the value of count is increased.

7 The trace file we used is available at http://www.ll.mit.edu/mission/communications/cyber/
CSTcorpora/ideval/data/1998/testing/week1/monday/tcpdump.gz. The corresponding “ground
truth” data is available at http://www.ll.mit.edu/mission/communications/cyber/CSTcorpora/ideval/
data/1998/Truth Week 1.llist.tar.gz. To replay the trace file, we used tcpreplay [1]. We used this
trace file for all experiments presented in this paper.

P
re

-p
rin

t v
er

si
on

 fo
r p

er
so

na
l u

se
 o

nl
y!

22 Benchmarking Intrusion Detection Systems 633

Table 22.2: Attack detection accuracy of Snort (seconds=120)

Configuration Metric values
α 1−β PPV NPV

count=6 0.0008 0.333 0.9788 0.9310
count=5 0.0011 0.416 0.9768 0.9390
count=4 0.0013 0.5 0.9771 0.9473
count=3 0.0017 0.624 0.9761 0.9598
count=2 0.0024 0.833 0.9747 0.9817
Default configuration 0.0026 0.958 0.9762 0.9953

Increasing the value of count leads to decreasing the number of generated false
alerts, which is manifested by the decreasing values of α presented in Table 22.2.
However, increasing the value of count also leads to worsening of the true positive
rate 1−β . This is a typical trade-off situation between the true and the false positive
rate of an IDS.

Although the basic security-related metrics are quantified individually, they need
to be analyzed together in order to accurately characterize the attack detection effi-
ciency of a given IDS. To this end, we use composite security-related metrics.

0.5 1 1.5 2 2.5 3

·10−3

0

0.2

0.4

0.6

0.8

1

False positive rate (α)

T
ru
e
p
os
it
iv
e
ra
te

(1
−
β
)

[0.667]
[0.584]

[0.501]

[0.377]

[0.169] [0.044]

(a)

0.5 1 1.5 2 2.5 3

·10−3

0

0.2

0.4

0.6

0.8

1

False positive rate (α)

In
tr
u
si
on

d
et
ec
ti
on

ca
p
ab

il
it
y
(C

I
D
)

[CID = 0.883]

(b)

Fig. 22.1: Attack detection accuracy of Snort: a) ROC curve and estimated costs
associated with the depicted operating points, and b) CID curve (�marks an optimal
operating point)

In Figure 22.1a, we depict a ROC curve that provides an overview of the pre-
viously mentioned trade-off between the true and false positive rate exhibited by
Snort. In addition, in Figure 22.1a, we annotate the depicted operating points with
the associated estimated costs Cexp. The values of the estimated costs are values of
the expected-cost metric proposed by Gaffney et al. [3], which we discuss in detail

P
re

-p
rin

t v
er

si
on

 fo
r p

er
so

na
l u

se
 o

nl
y!

634 Milenkoski et al.

Hypervisor	

 Host VM	
 VM #n	

. . .	

 IDS VM	

NIC	
 <monitors>	

 IDS	

incoming
traffic	

outgoing	

traffic	

 VNF	
 VNF	

Fig. 22.2: A network-based IDS deployed as a VNF

in Chapter 14. When calculating the values of the expected cost metric we assumed
a cost ratio C of 10 (i.e., the cost of not responding to an attack is 10 times higher
than the cost of responding to a false alert). The base rate B is 0.10.

Once we calculated the cost associated with each operating point, we were able
to identify an optimal operating point, i.e., the operating point that has the lowest
Cexp associated with it compared to the other operating points (see Chapter 14). The
optimal operating point is (0.0026,0.958), which has an estimated cost of 0.044
associated with it. Based on our findings, we conclude that Snort operates optimally
in terms of cost when configured with its default settings.

In Figure 22.1b, we depict the values of the intrusion detection capability metric
(CID) [5] for the different operating points of Snort. The CID curve depicted in Fig-
ure 22.1b enables the identification of an optimal operating point of Snort in terms
of intrusion detection capability (i.e., the point that marks the highest CID). The op-
timal operating point is (0.0026,0.958), which marks a CID of 0.883. As a result,
we conclude that Snort operates optimally in terms of intrusion detection capability
when configured with its default settings.

22.3 Issues and Relevant Phenomena

In Section 22.1, we discussed the practice of deploying IDSes in virtualized envi-
ronments; that is, we discussed IDSes specifically designed to operate in virtualized
environments and conventional IDSes deployed as VNFs. In Figure 22.2, we depict
the deployment of a conventional network-based IDS as a VNF. The IDS, deployed
in a designated VM (IDS VM in Figure 22.2), taps into the physical network inter-
face card (NIC) managed by the hypervisor in order to monitor incoming and out-
going traffic. Other VNFs (VNF in Figure 22.2), such as routing or firewalling, may
be deployed in co-located VMs (Host VM, VM #n in Figure 22.2). In this section,
we discuss relevant issues related to the use of conventional IDS evaluation metrics
(see Section 22.2) for evaluating IDSes deployed in virtualized environments, for
example, as depicted in Figure 22.2.

22 Benchmarking Intrusion Detection Systems 635

In Section 22.1, we mentioned that a common aspect of current IDS evaluation
metrics is that they are defined with respect to a fixed set of hardware resources
available to a given IDS under test. This is contrary to what elasticity of modern
virtualized environments enables — flexible, on-demand provisioning of resources
to VMs where IDSes may be deployed (see Figure 22.2 and Section 22.1). Mell et
al. [13] and Hall et al. [6] confirm that conventional IDS evaluation metrics express
the attack detection accuracy of an IDS only for a specific hardware environment in
which the IDS is expected to reside during operation.

Based on the above, we argue that the use of conventional IDS evaluation met-
rics may lead to inaccurate measurements in cases where the elastic behavior of a
given virtualized environment has a significant impact on the attack detection accu-
racy exhibited by an IDS deployed in the environment by impacting relevant tran-
sient behaviors of the IDS. Under relevant transient IDS behaviors, we understand
IDS behaviors that are influenced by the amount of resources available to an IDS
over time and may impact the attack detection accuracy exhibited by the IDS. For
example, the attack detection accuracy exhibited by a network-based IDS may be
correlated to the number of dropped packets by the IDS in the time intervals when
attacks have been performed. Large amounts of dropped packets in such intervals
due to lack of resources may manifest themselves as low IDS attack detection accu-
racy. Not quantifying the impact of the former on the latter may lead to incomplete,
inaccurate observations about the accuracy of the IDS.

In a scenario where an IDS evaluator aims to understand the relation between
a given transient behavior of an IDS and the attack detection accuracy the IDS
exhibits, the use of conventional IDS evaluation metrics introduces the following
inter-related issues:

• challenging metric value correlation: The IDS evaluator would have to cor-
relate values of metrics belonging to two categories: (i) metrics that quantify
attack detection accuracy (e.g., true and false positive rate), and (ii) metrics that
quantify the considered transient IDS behavior (e.g., amount of dropped packets
over time). However, given the lack of metrics and measurement methodologies
specifically designed for that purpose, such a correlation would be approxima-
tive, which may lead to inaccurate observations;
• inaccurate comparisons of IDSes: The approximative nature of the correlation

mentioned above rules out accurate comparisons of the attack detection accu-
racy of multiple IDSes by taking elasticity into account. Note that IDS com-
parisons are a common goal of IDS evaluation studies [15]. Comparing IDSes
requires precise measurement of considered metric values so that the compar-
isons are accurate and fair.

P
re

-p
rin

t v
er

si
on

 fo
r p

er
so

na
l u

se
 o

nl
y!

636 Milenkoski et al.

22.3.1 Transient IDS Behaviors and IDS Attack Detection
Accuracy

In this section, we discuss and demonstrate the impact of relevant transient IDS
behaviors on IDS attack detection accuracy. We consider the case of a network-
based IDS deployed as a VNF (see Figure 22.2). The transient IDS behavior of
interest is amount of dropped packets over time (see Section 22.3).

There are many factors influencing the amount of packets dropped by an IDS over
the duration of an evaluation experiment. These include characteristics of processed
workload (e.g., the speed the network traffic processed by the IDS), and the config-
uration and design of the IDS (e.g., use of multithreading for processing network
packets in an efficient manner). If the IDS under test is deployed in a virtualized
environment, an additional important factor is the hypervisor, which may provision
on-demand resources to the VM where the IDS operates (see Section 22.3).

In this work, we focus on the hypervisor as a factor influencing transient IDS
behaviors, which we discuss in detail in paragraph ‘the hypervisor’. However, we
note that having an overview of the other factors influencing a given transient IDS
behavior of interest is beneficial when it comes to quantifying IDS attack detection
accuracy by taking elasticity into account. This is because it allows for the precise
measurement of the impact of the hypervisor on IDS attack detection accuracy by
varying relevant configuration points between measurements (e.g., enforcing differ-
ent resource provisioning policies), not changing characteristics of the other factors
(e.g., the speed of the network traffic used as workload). Note that these factors may
also have a significant impact on transient IDS behaviors and therefore on IDS at-
tack detection accuracy. Next, we demonstrate how the speed of the network traffic
processed by an IDS impacts the amount of packets dropped by the IDS over time,
which, in turn, impacts the attack detection accuracy exhibited by the IDS.

We deployed Snort 2.9.7.0 in a paravirtualized VM with an Ubuntu 14.04 op-
erating system running on top of a Xen 4.4.1 hypervisor. We allocated 2 CPUs of
2.6 GHz, 4GB of main memory, and a NIC with a maximal data transfer rate of 1
Gbit/second to the VM where Snort was deployed.8 We replayed over 240 seconds
a trace file from the 1998 DARPA datasets.7 We configured Snort to use a database
of rules dated 10th April 2015. All other configuration options of Snort were set to
their default values.

We performed four separate experiments such that we replayed network traffic at
the speed of 5, 10, 80, and 150 Mbps. We repeatedly executed each experiment 30
times and we averaged the results. In Figure 22.3a, we depict the number of packets
dropped by Snort over 240 seconds for each considered network traffic speed. In
Figure 22.3a, one can observe that Snort dropped a certain amount of packets when
we replayed network traffic at the speed of 150 Mbps.

In Figure 22.3b, we depict the true positive rate exhibited by Snort in relation to
the total amount of dropped packets at the considered network traffic speeds. One
can observe a decline of 0.03 of the measured true positive rate when network traffic

8 We used this testbed environment for all experiments presented in this paper.

P
re

-p
rin

t v
er

si
on

 fo
r p

er
so

na
l u

se
 o

nl
y!

22 Benchmarking Intrusion Detection Systems 637

0	

10000	

20000	

30000	

40000	

50000	

60000	

70000	

80000	

0	
 10
	

20
	

30
	

40
	

50
	

60
	

70
	

80
	

90
	

10
0	

11
0	

12
0	

13
0	

14
0	

15
0	

16
0	

17
0	

18
0	

19
0	

20
0	

21
0	

22
0	

23
0	

24
0	

N
um

be
r o

f d
ro

pp
ed

 p
ac

ke
ts
	

Time (sec.)	

150 Mbps	
 5, 10, 80 Mbps	

(a)

0.97	

1.00	
3.83 %	

0 %	

0.00%	

0.50%	

1.00%	

1.50%	

2.00%	

2.50%	

3.00%	

3.50%	

4.00%	

4.50%	

0.94	

0.95	

0.96	

0.97	

0.98	

0.99	

1.00	

150 Mbps	
 5, 10, 80 Mbps	

TPR	
 DP	

To
ta

l a
m

ou
nt

 o
f d

ro
pp

ed
	

 p
ac

ke
ts

 (%
)	

Tr
ue

 p
os

iti
ve

 r
at

e	

(b)

Fig. 22.3: Relevant transient behavior and attack detection accuracy of Snort: a)
number of dropped packets over time, and b) measured true positive rate (TPR) in
relation to the total amount of dropped packets (DP)

is replayed at the speed of 150 Mbps. This can be attributed to the larger amount
of packets dropped by Snort (i.e., 3.83% of all replayed network packets), some of
which are malicious.

The hypervisor We now discuss and demonstrate through case studies the im-
pact that the hypervisor may have on relevant transient behaviors (i.e., number
of dropped packets over time) of an IDS deployed in a virtualized environment
(i.e., a network-based IDS deployed as a NVF). Modern hypervisors feature on-
demand provisioning of CPU and memory resources, performed by hotplugging
virtual CPU(s) and memory on running VMs (see Section 22.1). We investigate here
the impact of two relevant characteristics of CPU and memory hotplugging on the
number of packets dropped by an IDS over time and therefore on its attack detection
accuracy: hotplugging intensity (i.e., amount of hotplugged resources) and hotplug-
ging speed (i.e., the hypervisor’s speed at provisioning resources with respect to
resource demands).

Case Study #1: CPU hotplugging intensity We demonstrate through this case
study the impact of CPU hotplugging intensity on IDS attack detection accuracy. We
deployed the IDSes Snort 2.9.7.0 and Suricata 2.0.6 in our testbed environment. We
allocated one virtual CPU to the VM where Snort and Suricata were deployed so that
the VM is under CPU pressure when workloads are run. This enabled us to observe
the impact of CPU hotplugging on IDS attack detection accuracy in scenarios where
such a hotplugging is normally performed (i.e., in scenarios where a VM on which
CPU is hotplugged is under CPU pressure). We replayed over 240 seconds, at the
speed of 150 Mbps, a trace file from the 1998 DARPA datasets.7 All configuration
options of Snort and Suricata were set to their default values.

By experimenting with both Snort and Suricata, we demonstrate how CPU hot-
plugging affects the number of packets dropped by IDSes with different designs.
Therefore, besides the hypervisor, we also demonstrate the impact of IDS design as
a factor influencing transient IDS behaviors (see Section 22.3). Note that Suricata

P
re

-p
rin

t v
er

si
on

 fo
r p

er
so

na
l u

se
 o

nl
y!

638 Milenkoski et al.

0	

20000	

40000	

60000	

80000	

100000	

120000	

140000	

160000	

0	
 10
	

20
	

30
	

40
	

50
	

60
	

70
	

80
	

90
	

10
0	

11
0	

12
0	

13
0	

14
0	

15
0	

16
0	

17
0	

18
0	

19
0	

20
0	

21
0	

22
0	

23
0	

24
0	

N
um

be
r o

f d
ro

pp
ed

 p
ac

ke
ts
	

Time (sec.)	

1->2 CPUs	
 1->3 CPUs	
 1->4 CPUs	

CPU hotplugging	

(a)

0	

20000	

40000	

60000	

80000	

100000	

120000	

140000	

160000	

180000	

200000	

0	
 10
	

20
	

30
	

40
	

50
	

60
	

70
	

80
	

90
	

10
0	

11
0	

12
0	

13
0	

14
0	

15
0	

16
0	

17
0	

18
0	

19
0	

20
0	

21
0	

22
0	

23
0	

24
0	

N
um

be
r o

f d
ro

pp
ed

 p
ac

ke
ts
	

Time (sec.)	

1->2 CPUs	
 1->3 CPUs	
 1->4 CPUs	

CPU hotplugging	

(b)

Fig. 22.4: Number of packets dropped over time: a) by Snort, and b) by Suricata

features multi-threading and is therefore utilising multiple CPUs more effectively
than Snort.

We performed six separate experiments; that is, three experiments for each con-
sidered IDS such that we hotplugged one, two, and three additional virtual CPUs on
the VM where Snort/Suricata was deployed, at the 120th second of each experiment.
We repeated each experiment 30 times and we averaged the results. In Figure 22.4a
and Figure 22.4b, we depict the number of packets dropped by Snort and Suricata
over 240 seconds for each considered CPU hotplugging scenario (1→2 CPUs, 1→3
CPUs, and 1→4 CPUs in Figure 22.4). In Table 22.3, we present the attack detec-
tion accuracy of Snort and Suricata we measured for each hotplugging scenario, that
is, exhibited true and false positive rate, in relation to the total amount of dropped
packets (expressed in percentage in Table 22.3).

Table 22.3: Attack detection accuracy of Snort and Suricata [TPR — true positive
rate; FPR — false positive rate; DP – dropped packets]

CPU hotplugging scenario Snort Suricata
TPR FPR DP (%) TPR FPR DP (%)

1→ 2 CPUs 0.924 0.0000034 8.26 0.967 0.0000098 3.37

1→ 3 CPUs 0.929 0.0000031 7.71 0.972 0.0000109 2.79
1→ 4 CPUs 0.932 0.0000032 7.48 0.975 0.0000108 2.73

As expected, the true positive rates exhibited by Snort and Suricata increase as
more CPUs are hotplugged on the VM where the IDSes are deployed. This is due to
the decrease of the number of packets dropped by the IDSes after CPUs have been
hotplugged (see Figure 22.4a and Figure 22.4b). The false positive rates exhibited
by Snort and Suricata vary with respect to the accuracies of the IDSes as well as
the particular packets dropped by the them (i.e., some of the dropped packets would

P
re

-p
rin

t v
er

si
on

 fo
r p

er
so

na
l u

se
 o

nl
y!

22 Benchmarking Intrusion Detection Systems 639

0	

20000	

40000	

60000	

80000	

100000	

120000	

140000	

160000	

180000	

0	
 10
	

20
	

30
	

40
	

50
	

60
	

70
	

80
	

90
	

10
0	

11
0	

12
0	

13
0	

14
0	

15
0	

16
0	

17
0	

18
0	

19
0	

20
0	

21
0	

22
0	

23
0	

24
0	

N
um

be
r o

f d
ro

pp
ed

 p
ac

ke
ts
	

Time (sec.)	

nach 20 Sek.	
 nach 40 Sek.	
 nach 80 Sek.	
at 20th sec.	
 at 40th sec.	
 at 80th sec.	

(a)

0.990	

0.982	

0.980	

1.50%	

2.01%	
 2.32%	

0.00%	

0.50%	

1.00%	

1.50%	

2.00%	

2.50%	

0.974	

0.976	

0.978	

0.980	

0.982	

0.984	

0.986	

0.988	

0.990	

0.992	

nach 20 Sek.	
 nach 40 Sek.	
 nach 80 Sek.	

TPR	
 DP	

Tr
ue

 p
os

iti
ve

 r
at

e	

To
ta

l a
m

ou
nt

 o
f d

ro
pp

ed
	

 p
ac

ke
ts

 (%
)	

at 80th sec.	
at 20th sec.	
 at 40th sec.	

(b)

Fig. 22.5: Relevant transient behavior and attack detection accuracy of Suricata: a)
number of dropped packets over time, and b) measured true positive rate (TPR) in
relation to the total amount of dropped packets (DP)

have been falsely considered malicious if they had been processed by the IDSes).
We do not elaborate further on the false positive rate.

In Figure 22.4a and Figure 22.4b, one can observe the impact of CPU hotplug-
ging intensity on the number of packets dropped over time by IDSes with different
designs; that is, in contrast to Snort, Suricata dropped significantly less packets (i.e.,
3.37%, 2.79%, and 2.73%, see Table 22.3) due to its ability to effectively utilise
multiple CPUs. This results in Suricata exhibiting higher true positive rates than
Suricata.

Case Study #2: CPU hotplugging speed We demonstrate through this case study
the impact of CPU hotplugging speed on IDS attack detection accuracy. We de-
ployed Suricata 2.0.6 in our testbed environment and we allocated one virtual CPU
to the VM where Suricata was deployed so that the VM is under CPU pressure when
workloads are run. We replayed over 240 seconds, at the speed of 150 Mbps, a trace
file from the 1998 DARPA datasets.7 All configuration options of Suricata were set
to their default values. We performed four experiments such that we configured the
hypervisor to hotplug three CPUs at the 20th, 30th, 40th and the 80th second of the
experiment. We repeated each experiment 30 times and we averaged the results.

In Figure 22.5a, we depict the number of packets dropped by Suricata over 240
seconds for each considered hotplugging scenario (at 20th sec., at 40th sec., and at
80th sec. in Figure 22.5a). In Figure 22.5b, we depict the true positive rate exhibited
by Suricata in relation to the total amount of dropped packets for each considered
hotplugging scenario. As expected, one can observe in Figure 22.5b that CPU hot-
plugging speed has significant impact on the attack detection accuracy exhibited by
Suricata. For instance, there is a decrease of 0.01 of the true positive rate exhibited
by Suricata when the hypervisor provisioned CPUs at the 80th instead of the 20th
second of the experiment. This is due to the loss of additional 0.82% of all replayed
packets because of a delay in CPU provisioning of 60 seconds.

Case Study #3: Memory hotplugging intensity We demonstrate through this case
study the impact of the memory hotplugging intensity on IDS attack detection accu-

P
re

-p
rin

t v
er

si
on

 fo
r p

er
so

na
l u

se
 o

nl
y!

640 Milenkoski et al.

racy. We deployed Snort 2.9.7.0 in our testbed environment and we allocated 1.5 GB
of memory to the VM where Snort was deployed so that the VM is under memory
pressure when workloads are run. This enabled us to observe the impact of memory
hotplugging on the attack detection accuracy exhibited by Snort in scenarios where
such a hotplugging is normally performed (i.e., in scenarios where a VM on which
CPU is hotplugged is under memory pressure). We replayed over 240 seconds, at
the speed of 150 Mbps, a trace file from the 1998 DARPA datasets.7 We set all
configuration options of Snort to their default values. We performed three separate
experiments such that we allocated additional 0.1 GB, 0.3 GB, and 2 GB of mem-
ory to the VM where Snort was deployed at the 120th second of the experiment. We
repeated each experiment 30 times and we averaged the results.

In Figure 22.6a, we depict the number of packets dropped by Snort over 240
seconds for each considered hotplugging scenario (1.5→1.6 GB, 1.5→1.8 GB, and
1.5→3.5 GB in Figure 22.6a). In Figure 22.6b, we depict the true positive rate exhib-
ited by Snort in relation to the total amount of dropped packets for each considered
hotplugging scenario.

The results from this study show that on-demand resource provisioning may have
diverse impacts on transient IDS behaviors and therefore on IDS attack detection ac-
curacy. This further emphasizes the need of novel metrics and measurement meth-
ods for quantifying these impacts (see Section 22.3). For instance, in Figure 22.6a,
one can observe a significant increase of packets dropped by Snort when memory
is hotplugged. This is followed by a stable transient behavior of the IDS, which,
as expected, is dropping less packets than before the memory hotplugging action.
Depending on the amount of hotplugged memory, this normally leads to an im-
provement of the exhibited true positive rate to a certain extent (see in Figure 22.6b
the true positive rate exhibited by Snort when 0.1 GB and 2 GB are hotplugged).
However, when 0.3 GB of memory is hotplugged, a significant amount of packets
is dropped, which leads to the lowest true positive rate we measured (i.e., 0.729,
see Figure 22.6b). This is because of many factors involved, for example, the way
in which the IDS under test and/or the operating system where the IDS is deployed
have been designed to handle various amounts of newly allocated memory.

22.4 Metric and Measurement Methodology

In this section, we present our preliminary work on a novel metric and measure-
ment methodology that take elasticity of virtualized environments into account (see
Section 22.1). The metric and methodology we propose enable the measurement of
the attack detection accuracy of an IDS deployed in a virtualized environment fea-
turing on-demand resource provisioning; that is, they enable the evaluation of the
attack detection accuracy of such an IDS with respect to the impact that on-demand
resource provisioning performed by the underlying hypervisor has on the attack de-
tection accuracy exhibited by the IDS (see for example Section 22.3.1, paragraph
‘the hypervisor’). The metric and measurement methodology we propose aim to

P
re

-p
rin

t v
er

si
on

 fo
r p

er
so

na
l u

se
 o

nl
y!

22 Benchmarking Intrusion Detection Systems 641

0	

20000	

40000	

60000	

80000	

100000	

120000	

140000	

0	
 10
	

20
	

30
	

40
	

50
	

60
	

70
	

80
	

90
	

10
0	

11
0	

12
0	

13
0	

14
0	

15
0	

16
0	

17
0	

18
0	

19
0	

20
0	

21
0	

22
0	

23
0	

24
0	

N
um

be
r o

f d
ro

pp
ed

 p
ac

ke
ts
	

Time (sec.)	

1.5->1.6 GB	
 1.5->1.8 GB	
 1.5->3.5 GB	

Memory 	

hotplugging	

(a)

0.755	

0.729	

0.774	

24.02%	

26.60%	

22.42%	

20%	

21%	

22%	

23%	

24%	

25%	

26%	

27%	

0.700	

0.710	

0.720	

0.730	

0.740	

0.750	

0.760	

0.770	

0.780	

1.5->1.6 GB	
 1.5->1.8 GB	
 1.5->3.5 GB	

TPR	
 DP	

Tr
ue

 p
os

iti
ve

 r
at

e	

To
ta

l a
m

ou
nt

 o
f d

ro
pp

ed
	

 p
ac

ke
ts

 (%
)	

(b)

Fig. 22.6: Relevant transient behavior and attack detection accuracy of Snort: a)
number of dropped packets over time, and b) measured true positive rate (TPR) in
relation to the total amount of dropped packets (DP)

address the issues related to the use of conventional IDS evaluation metrics — pos-
sibility of inaccurate observations about the accuracy of an IDS, challenging met-
ric value correlation, and inaccurate comparisons of IDSes (see Section 22.3). We
stress that the metric and measurement methodology we propose are meant to com-
plement the conventional ones and are to be used only when it comes to evaluating
IDSes deployed in virtualized environments featuring on-demand resource provi-
sioning. We name the metric we propose hypervisor factor (HF), since it quantifies
the impact of the hypervisor as a factor impacting IDS attack detection accuracy
(see Section 22.3.1).

Quantifying the impact of the hypervisor on IDS attack detection accuracy calls
for a novel definition of the boundaries of a system-under-test (SUT) in the area of
IDS evaluation. In the area of system evaluation, the precise definition of the bound-
aries of an SUT is critical for the accurate measurement of system performance and
interpretation of evaluation results. In contrast to the conventional understanding
in the area of IDS evaluation about what comprises an SUT (i.e., the IDS under
test), we advocate a novel SUT with extended boundaries including the hypervisor
as well, since it is an important factor impacting transient IDS behaviors, which, in
turn, impact IDS attack detection accuracy. In Figure 22.7, we depict the boundaries
of the conventional SUT in the area of IDS evaluation and of the novel SUT we
propose considering a network-based IDS deployed as a VNF (see Figure 22.2).

22.4.1 Metric design

We distinguish three states in which a given IDS, part of an SUT as we define it,
may be over the duration of an IDS evaluation experiment: baseline, underprovi-
sioned, and overprovisioned state. By baseline IDS state, we mean a state of the
IDS in which it is provisioned by the hypervisor with the minimum amount of re-

P
re

-p
rin

t v
er

si
on

 fo
r p

er
so

na
l u

se
 o

nl
y!

642 Milenkoski et al.

Hypervisor	

VM #1	
 VM #n	

. . .	

IDS VM	

NIC	
 <monitors>	

IDS	

incoming
traffic	

outgoing	

traffic	

SUT	

(a)

Hypervisor	

VM #1	
 VM #n	

. . .	

IDS VM	

NIC	
 <monitors>	

IDS	

incoming
traffic	

outgoing	

traffic	

SUT	

(b)

Fig. 22.7: Boundaries of: a) the conventional SUT, and b) novel SUT in the area of
IDS evaluation

sources such that provisioning more resources does not have an impact on the attack
detection accuracy of the IDS (e.g., it does not improve the positive rate exhibited
by the IDS, see Section 22.3). Therefore, by overprovisioned, or underprovisioned,
IDS state, we mean a state of the IDS in which it is provisioned by the hypervisor
with more, or less, resources than the amount needed for the IDS to be considered in
baseline state. Given these definitions of IDS states, we design the HF metric with
respect to the following criteria, which are crucial for the accurate and practically
useful IDS evaluation:

Criterion C1: If configured accordingly, the HF metric penalizes resource over-
provisioning with respect to the

a) time the IDS has spent in overprovisioned state over the duration of an IDS
evaluation experiment, and

b) the false positive and false negative rate exhibited by the IDS under test when
in overprovisioned state, since provisioning excess amount of resources has not con-
tributed towards improving the accuracy of the IDS. We design the HF metric to
penalize equally various extents of overprovisioning since we consider any extent
of overprovisioning an equally negative phenomenon;

Criterion C2: If configured accordingly, the HF metric penalizes resource under-
provisioning with respect to the

a) time the IDS has spent in underprovisioned state over the duration of an IDS
evaluation experiment, and

b) the extent of the impact that the underprovisioning has had on the true pos-
itive rate exhibited by the IDS. We consider this impact a negative phenomenon
since it causes the reduction of the number of true alerts issued by the IDS (see Sec-
tion 22.3). The HF metric does not penalize resource underprovisioning that has had
no impact on the true positive rate since we consider resource saving, which does
not cause reduction of this rate, a positive phenomenon.

Criterion C3: If configured accordingly, the HF metric rewards resource under-
provisioning with respect to the

a) time the IDS has spent in underprovisioned state over the duration of an IDS
evaluation experiment, and

22 Benchmarking Intrusion Detection Systems 643

b) the extent of the impact that the underprovisioning has had on the false positive
rate exhibited by the IDS. We consider this impact a positive phenomenon since
it brings practical benefits - reduced number of issued false alerts and increased
amount of saved resources. Underprovisioning may cause the reduction of the false
positive rate exhibited by an IDS if a given amount of workload units (e.g., packets),
which would have been falsely labelled as malicious by the IDS if processed by it,
are not processed by the IDS due to lack of resources.

In summary, the HF metric favors the most an SUT configured in a way such
that the hypervisor saves the most resources while impacting the true positive rate
exhibited by the IDS to the least extent and the false positive rate exhibited by the
IDS to the biggest extent.

Criterion C4: The HF metric expresses the base rate. The attack detection perfor-
mance of an IDS should be assessed with respect to a base rate measure in order for
such an assessment to be accurate (see Section 22.2). Therefore, it is important that
the HF metric expresses this rate.

Criterion C5: The HF metric enables the straightforward identification of opti-
mal operating points. In the context of IDS evaluation, an optimal operating point
is an IDS configuration which yields values of both the true and false positive rates
considered optimal with respect to a given measure (e.g., cost, see Section 22.2). In
the context of this work, under optimal operating point, we understand a configura-
tion of both the IDS under test and the underlying hypervisor, which yield values
of metrics quantifying the performance of the hypervisor at provisioning resources
and of metrics quantifying IDS attack detection accuracy (e.g., true and false posi-
tive rate) considered optimal with respect to the impact of the former on the latter
(see criterion C1, C2, and C3). This is because we consider a novel SUT with bound-
aries that include an IDS and a hypervisor provisioning the IDS with resources (see
Figure 22.7b).

We design the HF metric to enable a straightforward identification of optimal
operating points; that is, for a given set of operating points, the optimal operating
point yields an extreme value of HF. In Section 22.4.3, we discuss more on operating
points and on identifying optimal operating points.

Criterion C6: The HF metric enables the accurate comparison of multiple SUTs.
This is feasible only if criterion C5 is fulfilled, a topic that we discuss more in Sec-
tion 22.4.3.

22.4.2 Metric construction

We present here the main principles of construction for the HF metric. Similar to
Gaffney et al. [3], we construct the HF metric using a construct from decision theory
— a decision tree — as a basis. In Figure 22.8, we depict the decision tree that we
use for constructing the HF metric. The tree shows the sequence of uncertain events
(circles) that describe:

P
re

-p
rin

t v
er

si
on

 fo
r p

er
so

na
l u

se
 o

nl
y!

644 Milenkoski et al.

No intrusion

1-p1

p3

1-p3

Intrusion

p1

p2

1-p2

Alert

Overprovisioning

Underprovisioning

p4

Baseline
p5

p6

0

0

0

No alert

Overprovisioning

Underprovisioning

p4

Baseline
p5

p6

so

0

su|Δβ|

Alert

Overprovisioning

Underprovisioning

p4

Baseline
p5

p6

so

0

0

No alert

Overprovisioning

Underprovisioning

p4

Baseline
p5

p6

0

0

-su|Δ(1-α)|

Workload IDS operation IDS state Consequence

Fig. 22.8: The decision tree used for constructing the HF metric

• the workload, say W [B], to which the IDS is subjected over the duration of a
given IDS evaluation experiment, say Tmax. We characterize W by the base rate (i.e.,
probability of an intrusion B = P(I), see Section 22.2);
• the operation of the IDS processing workload W [B]. The operation of the IDS

is characterized by the probabilities of the IDS issuing or not issuing an alert when
an intrusion has or has not occurred (i.e., the probabilities P(A|I), P(¬A|I), and so
on, see Section 22.2);
• the state of the IDS (i.e., baseline, overprovisioned, or underprovisioned IDS

state, see Section 22.4.1) when it issues or does not issue an alert. The IDS being
in one of the considered states during operation primarily depends on the resource
provisioning policy applied by the underlying hypervisor, say H[To,Tb,Tu]; that is,
on its precision at meeting the demand for resources by the IDS over time Tmax.
We characterize H by the amount of time the IDS has spent in overprovisioned
(To), baseline (Tb), and underprovisioned (Tu) state over time Tmax (i.e., To/b/u ∈
[0;Tmax],To +T b+Tu = Tmax).

Associated with each uncertain event is the probability of occurrence. There are
six probabilities specified in the tree: p1 = P(I) = B: the probability that an in-
trusion occurs; p2 = P(A|I) = 1− β : the probability that the IDS issues an alert
when an intrusion occurs (i.e., the true positive rate); p3 = P(A|¬I) = α: the prob-
ability that the IDS issues an alert when an intrusion does not occur (i.e., the false
positive rate); p4/5/6 =

To/b/u
Tmax

: the probability that the IDS under test is in overprovi-
sioned/baseline/underprovisioned state when it issues or does not issue an alert (i.e.,
at any moment in the time interval [0;Tmax]);

The attractiveness of each combination of events represented in the tree depicted
in Figure 22.8 is characterized by the consequence (i.e., the penalty or the reward

P
re

-p
rin

t v
er

si
on

 fo
r p

er
so

na
l u

se
 o

nl
y!

22 Benchmarking Intrusion Detection Systems 645

score) associated with it. With respect to the metric design criteria C1, C2, and C3
(see Section 22.4.1), the HF metric:
• penalizes the SUT for the IDS issuing false positive or false negative alerts

when the IDS is in overprovisioned state. A user of the HF metric may disable or
enable this penalization by setting the value of so,so ∈ {0,1} to 0 or 1, respectively;
• penalizes the SUT for the IDS (in underprovisioned state) not issuing an alert

when an intrusion has occurred with the score su|∆β |, where |∆β | = |β − βb|. A
user of the HF metric may disable or enable this penalization by setting the value of
su,su ∈{0,1} to 0 or 1, respectively. βb is the false negative rate exhibited by the IDS
in a scenario where it has operated in baseline state over time Tmax and subjected to
workload W [B]. Therefore, the HF metric quantifies the impact of underprovisioning
on the true positive rate (1−β) exhibited by the IDS – it penalizes the SUT for the
IDS not issuing a true alert because of discarded workloads due to lack of resources;
• rewards the SUT for the IDS (in underprovisioned state) not issuing an alert

when an intrusion has not occurred with the score su|∆(1−α)|, |∆(1−α)|= |(1−
α)− (1−α)b|. A user of the HF metric may disable or enable this rewarding by
setting the value of su,su ∈ {0,1} to 0 or 1, respectively. (1−α)b is the true negative
rate exhibited by the IDS in a scenario where it has operated in baseline state over
time Tmax and subjected to workload W [B]. Therefore, the HF metric quantifies the
impact of underprovisioning on the false positive rate (α) exhibited by the IDS – it
rewards the SUT for the IDS not issuing a false alert.

The formula of the HF metric can be obtained by “folding back” the decision tree
depicted in Figure 22.8; that is, from right to left, the penalty, or the reward, score
at an event node is the sum of products of probabilities and scores for each branch:

HF = B[β (
To

Tmax
so +

Tu

Tmax
su|∆β |)]+(1−B)[α

To

Tmax
so− (1−α)

Tu

Tmax
su|∆(1−α)|)]

=
To

Tmax
so[B+(1−B)α]β +

Tu

Tmax
su[Bβ |∆β |− (1−B)(1−α)|∆(1−α)|]

(22.1)

If the values of so and su are set to 1, Equation 22.1 can be alternatively repre-
sented as the sum of the two components of the HF metric, that is, HFo and HFu,
where HFo =

To
Tmax

[Bβ +(1−B)α] is the penalty associated with overprovisioning
and HFu =

Tu
Tmax

[Bβ |∆β |− (1−B)(1−α)|∆(1−α)|] is the penalty, or reward, as-
sociated with underprovisioning. Distinguishing these components of the HF metric
allows for separately observing the quantified consequences of the hypervisor over-
and/or underprovisioning the IDS in relation to the attack detection accuracy exhib-
ited by the IDS.

22.4.2.1 On baseline IDS state

Calculating values of the HF metric requires calculating To, Tu, and Tb, and, in ad-
dition, βb and (1−α)b (see Equation 22.1). This, in turn, may require extensive

P
re

-p
rin

t v
er

si
on

 fo
r p

er
so

na
l u

se
 o

nl
y!

646 Milenkoski et al.

experimentation in order to: (i) identify the baseline state of the IDS that is part of
the SUT; that is, to determine the minimum amount of resources, say Rb, such that
provisioning more resources does not have an impact on the attack detection accu-
racy exhibited by the IDS (see Section 22.4.1); and (ii) compare this amount with
the amount of resources provisioned by the hypervisor applying a given resource
provisioning policy H[To,Tb,Tu], say Rp.

The above activities may be practically challenging because they require the use
of measurement approaches considering various resource unit and measurement
granularities, and determining how Rb changes over time Tmax with respect to the
intensity of the workload to which the IDS is subjected. Therefore, we assume the
following simplifications:
• Rb is constant over time Tmax — we consider Rb the minimum amount of re-

sources allocated to the VM where the IDS operates, such that the IDS does not
discard workload when the workload is most intensive. This reflects a realistic sce-
nario where resources are provisioned to an IDS considering the peak intensity of
the workload that the IDS may process during operation;
• Rb and Rp differ with regard to a single measurement unit (e.g., MB of mem-

ory) — that is, we assume that the hypervisor allocates and/or deallocates a single
type of resource over the duration of an IDS evaluation experiment. This allows for
determining the difference between Rb and Rp over time Tmax in a straightforward
and accurate manner.

We plan to address the above simplifications as part of our future work.

22.4.3 Properties of the HF metric

In this section, we show how the HF metric satisfies each of the design criteria we
presented in Section 22.4.1:

Criterion C1: For a given Tmax, the value of the HFo component of the HF metric
(see Section 22.4.2) is positively correlated with To (i.e., the time the IDS has spent
in overprovisioned state over time Tmax), the false positive rate (α), and the false
negative rate (β);

Criterion C2 and C3: For a given Tmax, the value of the HFu component of the
HF metric (see Section 22.4.2):
• is positively correlated with Tu (i.e., the time the IDS has spent in underprovi-

sioned state over time Tmax) and |∆β |, which quantifies the extent of the impact that
underprovisioning has had on the false negative rate, and therefore on the comple-
mentary true positive rate;
• is negatively correlated with Tu and |∆(1−α)|, which quantifies the extent of

the impact that underprovisioning has had on the true negative rate, and therefore
on the complementary false positive rate;

Criterion C4: The HF metric expresses the base rate B (see Equation 22.1);
Criterion C5: In Definition 22.1, we define an operating point of an SUT (see

Figure 22.7b).

P
re

-p
rin

t v
er

si
on

 fo
r p

er
so

na
l u

se
 o

nl
y!

22 Benchmarking Intrusion Detection Systems 647

Definition 22.1. An operating point of an SUT consisting of an IDS and a hypervi-
sor, say O(I→ (αb,1−βb);H[To,Tb,Tu])→ (α,1−β), is a configuration I of the
IDS, which yields distinct values of αb and (1− β)b, and a configuration of the
hypervisor, that is, a configured resource provisioning policy H[To,Tb,Tu]. These
configurations yield values of 1−β and α (i.e., the true and false positive rate ex-
hibited by the IDS with configuration I in a scenario where the hypervisor applies
resource provisioning policy H[To,Tb,Tu]).

A single value of the HF metric may be associated with a specific configuration
of the IDS and of the hypervisor comprising a given SUT (i.e., with each operating
point of the SUT considered in a given evaluation study, see Equation 22.1 and
Definition 22.1). Given that the HF metric may penalize an SUT, a given operating
point of the SUT is considered optimal if it has the lowest value of the HF metric
associated with it. Theoretically, there may be more than one operating point having
the same lowest value of the HF metric associated with them. In such a scenario, a
given operating point may be considered optimal based on subjective criteria. For
example, an IDS evaluator may consider optimal the operating point with the highest
value of Tb (i.e., the operating point such that the IDS spends at most time in baseline
state).

Measuring values of the HF metric and identifying the optimal operating point
of an SUT, out of multiple operating points, is performed in practice by executing
multiple experiments using a given workload, and varying the configuration of the
IDS and/or of the hypervisor between experiments.

Criterion C6: Multiple SUTs can be compared by comparing their optimal op-
erating points—the SUT with the lowest value of the HF metric associated with its
optimal operating point is considered best.

22.5 Conclusion

In this chapter, we elaborated on evaluating in an accurate manner attack detection
accuracy of IDSes deployed in virtualized environments featuring on-demand re-
source provisioning. We demonstrated through case studies the impact of such a
provisioning on IDS attack detection accuracy. We surveyed conventional metrics
for quantifying IDS attack detection accuracy observing that they do not express
this impact, which may lead to inaccurate assessments when using these metrics to
evaluate an IDS deployed in a virtualized environment. We presented a novel metric
— the HF metric — and a measurement methodology, which capture the impact of
on-demand resource provisioning on IDS attack detection accuracy and therefore
contribute towards addressing the previously mentioned issue.

We designed the HF metric with respect to several criteri, such as SUT penalizing
and rewarding criteria, and expression of the base rate. We consider these criteria
crucial for the credible assessment of the attack detection accuracy of an IDS de-
ployed in a virtualized environment.

P
re

-p
rin

t v
er

si
on

 fo
r p

er
so

na
l u

se
 o

nl
y!

648 Milenkoski et al.

The metric and measurement methodology we presented in this chapter are in
their preliminary forms. This work can be continued in several directions. For in-
stance, in-depth analysis of various properties of the HF metric is needed (e.g., anal-
ysis on how values of the HF metric relate to base rate measures). In addition, dif-
ferent SUT penalizing and rewarding criteria may be considered. Further, we plan
to conduct realistic case studies involving evaluation of single or multiple SUTs in
order to demonstrate the practical usefulness of the HF metric.

We stress that rigorous metrics are essential not only for the accurate evaluation
of IDSes, but also as a driver of innovation by enabling the identification of issues
and the improvement of existing IDSes.

Acknowledgements This research has been supported by the Research Group of the Standard
Performance Evaluation Corporation (SPEC, http://www.spec.org, http://research.spec.org). The
authors would like to thank Alexander Leonhardt for providing experimental data.

References

1. Tcpreplay.
2. Wesam Dawoud, Ibrahim Takouna, and Christoph Meinel. Elastic Virtual Machine for Fine-

Grained Cloud Resource Provisioning. In P.Venkata Krishna, M.Rajasekhara Babu, and
Ezendu Ariwa, editors, Global Trends in Computing and Communication Systems, volume
269 of Communications in Computer and Information Science, pages 11–25. Springer, 2012.

3. Jr. Gaffney, J.E. and J.W. Ulvila. Evaluation of intrusion detectors: a decision theory approach.
In Proceedings of the 2001 IEEE Symposium on Security and Privacy, pages 50–61, 2001.

4. Frank Gens, Robert Mahowald, Richard L. Willards, David Bradshaw, and Chris Morris.
Cloud computing 2010: An idc update, 2010.

5. Guofei Gu, Prahlad Fogla, David Dagon, Wenke Lee, and Boris Skorić. Measuring intrusion
detection capability: an information-theoretic approach. In Proceedings of the 2006 ACM
Symposium on Information, computer and communications security (ASIACCS), pages 90–
101, New York, NY, USA, 2006. ACM.

6. Mike Hall and Kevin Wiley. Capacity verification for high speed network intrusion detection
systems. In Proceedings of the 5th International Conference on Recent Advances in Intrusion
Detection (RAID), pages 239–251, Berlin, Heidelberg, 2002. Springer-Verlag.

7. J. Hancock and P. Wintz. Signal Detection Theory. McGraw–Hill, New York, 1966.
8. Evangelos Kotsovinos. Virtualization: Blessing or curse? Queue, 8(11):40:40–40:46, Novem-

ber 2010.
9. Sajib Kundu, Raju Rangaswami, Ajay Gulati, Ming Zhao, and Kaushik Dutta. Modeling

virtualized applications using machine learning techniques. In Proceedings of the 8th ACM
SIGPLAN/SIGOPS conference on Virtual Execution Environments, VEE ’12, pages 3–14, New
York, NY, USA, 2012. ACM.

10. Flavio Lombardi and Roberto Di Pietro. Secure virtualization for cloud computing. Journal
of Network and Computer Applications, 34(4):1113–1122, July 2011.

11. Neil MacDonald. Yes, Hypervisors are vulnerable.
http://blogs.gartner.com/neil macdonald/2011
/01/26/yes-hypervisors-are-vulnerable/, 2011.

12. R. A. Maxion and R. R. Roberts. Proper Use of ROC Curves in Intrusion/Anomaly detection.
Technical Report CS-TR-871, School of Computing Science, University of Newcastle upon
Tyne, November 2004.

P
re

-p
rin

t v
er

si
on

 fo
r p

er
so

na
l u

se
 o

nl
y!

22 Benchmarking Intrusion Detection Systems 649

13. Peter Mell, Vincent Hu, Richard Lippmann, Josh Haines, and Marc Zissman. An Overview of
Issues in Testing Intrusion Detection Systems, 2003.

14. Yuxin Meng and Wenjuan Li. Adaptive Character Frequency-Based Exclusive Signature
Matching Scheme in Distributed Intrusion Detection Environment. In IEEE 11th International
Conference on Trust, Security and Privacy in Computing and Communications (TrustCom),
pages 223–230, June 2012.

15. Aleksandar Milenkoski, Marco Vieira, Samuel Kounev, Alberto Avrtizer, and Bryan D. Payne.
Evaluating Computer Intrusion Detection Systems: A Survey of Common Practices. ACM
Computing Surveys, 2015. To appear.

16. N. Mohammed, H. Otrok, Lingyu Wang, M. Debbabi, and P. Bhattacharya. Mechanism
Design-Based Secure Leader Election Model for Intrusion Detection in MANET. IEEE Trans-
actions on Dependable and Secure Computing, 8(1):89–103, January-February 2011.

17. Diego Perez-Botero, Jakub Szefer, and Ruby B. Lee. Characterizing hypervisor vulnerabilities
in cloud computing servers. In Proceedings of the 2013 International Workshop on Security
in Cloud Computing, Cloud Computing ’13, pages 3–10. ACM, 2013.

18. Martin Roesch. Snort - Lightweight Intrusion Detection for Networks. In Proceedings of the
13th USENIX conference on System Administration (LISA), pages 229–238. USENIX Associ-
ation, 1999.

19. Karen Scarfone and Peter Mell. Guide to Intrusion Detection and Prevention Systems (IDPS),
2007. NIST Special Publication 900-94.

20. Sushant Sinha, Farnam Jahanian, and Jignesh M. Patel. WIND: Workload-aware INtrusion
Detection. In Proceedings of the 9th International Conference on Recent Advances in Intru-
sion Detection (RAID), pages 290–310, Berlin, Heidelberg, 2006. Springer Verlag.

21. S. Spinner, S. Kounev, Xiaoyun Zhu, Lei Lu, M. Uysal, A. Holler, and R. Griffith. Runtime
Vertical Scaling of Virtualized Applications via Online Model Estimation. In IEEE Eighth
International Conference on Self-Adaptive and Self-Organizing Systems (SASO), pages 157–
166, 2014.

22. Jing Xu, Ming Zhao, José Fortes, Robert Carpenter, and Mazin Yousif. Autonomic Resource
Management in Virtualized Data Centers Using Fuzzy Logic-based Approaches. Cluster Com-
puting, 11(3):213–227, 2008.

P
re

-p
rin

t v
er

si
on

 fo
r p

er
so

na
l u

se
 o

nl
y!

P
re

-p
rin

t v
er

si
on

 fo
r p

er
so

na
l u

se
 o

nl
y!

