
Remodularizing Legacy Model Transformations
with Automatic Clustering Techniques

Andreas Rentschler, Dominik Werle, Qais Noorshams,
Lucia Happe, Ralf Reussner

Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
{rentschler,noorshams,happe,reussner}@kit.edu,

dominik.werle@student.kit.edu

Abstract. In model-driven engineering, model transformations play a
critical role as they transform models into other models and finally into
executable code. Whereas models are typically structured into packages,
transformation programs can be structured into modules to cope with
their inherent code complexity. As the models evolve, the structure of
transformations steadily deteriorates, and eventually leads to adverse
effects on the productivity during maintenance.
In this paper, we propose to apply clustering algorithms to find decom-
positions of transformation programs at the method level. In contrast
to clustering techniques for general-purpose languages, we integrate not
only method calls but also class and package dependencies of the mod-
els into the process. The approach relies on the Bunch tool for finding
decompositions with minimal coupling and maximal cohesion.
First experiments indicate that incorporating model use dependencies
leads to results that reflect the intended structure significantly better.

1 Introduction
The idea behind model-driven software engineering (MDSE) is to move the
abstraction level from code to more abstract models. Although the principal aim
of model-driven techniques is to improve the productivity, maintenance of models
and particularly of transformation programs for mapping these models to less
abstract models and finally to executable code remains costly. Studies on long-
term experiences from industrial MDSE projects give evidence for maintenance
issues that arise from constantly evolving models [1, p. 9].

As the complexity of models grows, model transformations tend to become
larger and more complex. If transformation programs are not properly struc-
tured into well-understandable artifacts, understanding and maintaining model
transformations is worsened.

However, as opposed to object-oriented code where data is encapsulated by
the concept of classes, transformation units must consider not only the methods
provided and required by a module, but also the scope of model elements that
are used by a module to implement a particular concern. We recently proposed a
module concept tailored for model transformation languages which introduces
information hiding through an explicit interface mechanism [2]. Per interface,
scoping of model elements can be defined on the package and class level. Further
on, only those methods are accessible that are defined either locally or in one of
the imported interfaces.

Although it is possible to use the added language concept to develop transfor-
mations with a modular design, according to our own experience, many existing

StopAction

ActivityModel ProcessModel

mapActivity2Process
in out

TransformationSource Model Target Model

Activity

Action

Process

Step

StartAction

CompositeActions

Composite
Action

actions

actions steps

next

next

mapC'Action2Stepin

out

mapAction2Step

call

in

in

in

out

import

call

import

mapStopAction2Step

mapStartAction2Step

Module Exported method Control dependency Data dependencyInternal method

Activity2Process

Action2Step

call

C'Action2Step call

mapping

mapping

mapping

mapping

mapping

<kind>

createProcess
helper call

in

out

<name> <kind>

Fig. 1: Activity2Process transformation – Method and model scoping

transformations have been built monolithically, or their modular structure had
been deteriorating over time. As it has been observed for software in general,
deriving a module structure manually from legacy code can be cumbersome
without an in-depth knowledge of the code. At the present time, there is no
approach to derive such a structure from transformation programs automatically.

Existing clustering approaches [3] are able to derive module structures from
source code. But in contrast to ordinary programs, transformation programs
traverse complex data structures. Most model-to-model and model-to-code trans-
formations are structured based on the source or target model structure. As we
will show, model use relationships should be taken into account by automatic
clustering approaches to produce useful results.

In this paper, we propose to carry out automatized cluster analysis based
on a dependence graph that includes not only method calls, but also model use
dependencies and structural dependencies among model elements.We use the
Bunch tool [4], a software clustering framework that searches for clusters with
minimal coupling and maximal cohesion. By integrating model information into
the search process, found clusters are (near-)optimal regarding the scope of both
methods and model elements.

Next, Section 2 motivates our previously published modularity concept for
transformations as a way to improve maintainability, and presents methods how
experts tend to structure transformation programs. Section 3 briefly introduces the
Bunch tool, a prominent software clustering technique that is used in this paper.
In Section 4, we present a novel approach for clustering model transformations.
Section 5 presents relevant work that is related to our own work, and Section 6
concludes the paper and points out potential further work on the topic.

2 Modular Model Transformations
To explain how model transformations are structured in a way that improves
maintainability, we are going to use a minimalistic example transformation
Activity2Process implemented in QVT-Operational (QVT-O) [5], which maps
activity diagrams to process diagrams (Fig. 1).

A transformation between the two models would be implemented with five
mapping methods. Each method is responsible for mapping one class of the source
domain to semantically equivalent elements in the target domain. Because the
target model is less abstract, as it does not offer composite steps, hierarchical
activity models are flattened by the transformation.

When decomposing the sample transformation into modules, we may identify
three different concerns: The first module is responsible for mapping the container
elements and to trigger the rest of the mappings. A second module can be assigned
to the task of mapping actions to process elements. Internally, the module does
further deal with start and stop actions. A third module can be made responsible
for mapping the extended concept of composite actions to basic steps.

With our recently proposed module concept for model transformations (cf. [2]),
it is possible to define this decomposition in a way that improves maintainability.
Explicit interfaces. We introduce a new language concept to declare module
interfaces. With explicit interface declarations, it is possible to hide implementa-
tion details behind interfaces. For instance, the second module in Fig. 1 relies on
two mapping functions that are only used locally and can be thus kept internal,
StartAction2Step and StopAction2Step (marked by a dashed frame). By
omitting these from the module’s interface declaration, they remain invisible for
the other two modules that import this module.
Method access control. Only method implementations that are either defined
locally, or that are declared by one of the imported interfaces can be called.
The first module in the example, for instance, is only able to access mappings
Activity2Process and Action2Step.
Model visibility control. The second module in the Activity2Process scenario
must only have access to three model elements in the source domain, Action,
StartAction, and StopAction, and Step in the target domain. These classes
can be specified in the module’s interface declaration. It is statically checked that
an implementation of the interface does not access elements outside of this scope.
Scoping of model elements can also be declared at package-level, so the third
module could list package CompositeActions as accessible.

Information-hiding modularity helps to improve understandability and main-
tainability, as the scope of a module can be directly grasped from its declared
interface. Internal functions for querying model elements are hidden behind the
interface, making it easier to understand the functionality provided by a module.

Keeping the scope of models and the number of modules that are imported at
a minimum is obviously a prime concern; internally, mappings in a module may
have arbitrary references to each other. This relates to two software metrics to
measure the quality of a module decomposition, favoring a low degree of method
and data interconnectivity between modules and a high degree of intraconnectivity
of methods within a module (low coupling and high cohesion). In an optimal
decomposition, each module encapsulates a single concern with a minimal model
scope, and model scopes overlap for as few modules as possible.

By observing transformations that had been manually implemented by experts,
we can distinguish three classic styles of how a transformation is structured [6].
Source-driven decomposition. In this case, for objects of each class in the
source domain, objects of one or more classes are generated in the target do-
main (one-to-many mappings). Transformations where models are transformed
to models that are equally or less abstract usually fall into this category. The
Activity2Process transformation is a typical candidate for a source-driven de-

composition. It traverses the tree-like structured activity model, and each node
embodies an own high-level concept that is mapped to target concepts.
Target-driven decomposition.When objects of a particular class in the target
domain are constructed from information distributed over instances of multiple
classes in the source domain (many-to-one mappings), a target-driven decom-
position is deemed more adequate. Transformations from low-level to high-level
concepts (synthesizing transformations) use this style.
Aspect-driven decomposition. In several cases, a mixture of the two ap-
plies. Aspect-driven decompositions are required whenever a single concern is
distributed over multiple concepts in both domains (many-to-many mappings). In-
place transformations (i.e., transformations within a single domain) that replace
concepts with low-level concepts often follow this style, particularly if operations
are executed per concern and affect multiple elements in the domain.

Any of these styles – and preferably also mixtures – must be supported by an
automatic decomposition analysis in order to produce meaningful results.

3 Automatic Software Clustering
The principal objective of software clustering methodologies is to help software
engineers in understanding and maintaining large software systems with outdated
or missing documentation and inferior structure. They do so by partitioning
system entities – including methods, classes, and modules – into manageable
sub systems. A survey on algorithms that had been used to cluster general
software systems has been carried out by Shtern et al. [3]. They describe various
classes of algorithms that can be used for this purpose, including algorithms
from graph-theory, constructive, hierarchical agglomerative, and optimization
algorithms.

In this paper, we employ the Bunch tool, a clustering system that uses one
of two optimization algorithms, hill climbing or a genetic algorithm, to find
near-optimal solutions [4]. Bunch operates on a graph with weighted edges,
the so-called Module Dependency Graph (MDG). Nodes represent the low-level
concepts to be grouped into modules, and may correspond to methods and classes.
As a fitness function for the optimization algorithms, Modularization Quality
(MQ) is used, a metric that integrates coupling and cohesion among the clusters
into a single value. Optimization starts with a randomly created partitioning,
for which neighboring partitions – with respect to atomic move operations – are
explored.

According to Mitchell et al. [4], a dependency graph is a directed graph
G = (V,E) that consists of a set of vertices and edges, E ⊂ V × V . A partition
(or clustering) of G into n clusters (n-partition) is then formally defined as ΠG =⋃n
i=1Gi with Gi = (Vi, Ei), and ∀v ∈ V ∃1k ∈ [1, n], v ∈ Vk. Edges Ei are edges

that leave or remain inside the partition, Ei = {〈v1, v2〉 ∈ E : v1 ∈ Vi ∧ v2 ∈ V }.
The MQ value is the sum of the cluster factors CFi over all i ∈ {1, . . . , k}

clusters. The cluster factor of the i-th cluster is defined as the normalized ratio
between the weight of all the edges within the cluster, intraedges µi, and the
sum of weights of all edges that connect with nodes in one of the other clusters,
interedges εi,j or εj,i. Penalty of interedges is equally distributed to each of the
affected clusters i and j:

MQ =

k∑
i=1

CFi, CFi =


0, µi = 0

µi

µi+
1
2

∑k
j=1
j 6=i

(εi,j+εj,i)
, otherwise

Trans-
formation
Program

Weighted
Dependence

Graph

Autom.
Derived

Clustering

Manually
Derived
Expert

Clustering

Dependence
Analysis

Cluster
Analysis

Structural
Analysis

Quality/
Similarity of
Clusterings?

Weight Configuration:
■ Method Calls
■ Model Uses
■ Model Structure

Algorithm
and

Parameters

Fig. 2: Clustering approach

Bunch does not differentiate between types of nodes, although edges can be
given different weights. Other software clustering approaches exist, a survey by
Maqbool et al. [7] lists ARCH, ACDC [8], LIMBO, and others. We decided for
Bunch, because it uses classic low-coupling and high-cohesion heuristics that
match the information-hiding property we are heading for, and because it has
gained a good reputation so far [7].

4 Clustering Model Transformations
The methodology of our automatic clustering approach for model transformations
follows to a wide extent the typical procedure of software clustering approaches in
general. It comprises three steps (Fig. 2). In the first step, dependence information
is statically analyzed and extracted from the source files, resulting in a weighted
dependence graph. It is crucial to choose appropriate weights for the types of
dependencies that are going to be extracted. The graph serves as input for the
cluster analysis. Before running cluster analysis as the second step, an appropriate
algorithm must be chosen, and the algorithm’s parameters are to be configured.
In the third and last step, the automatically derived clustering has to be analyzed.
One option is to compare results with the existing modular decomposition that
is automatically extractable from the source files, for instance using some of the
available similarity measures. However, developers may also compare clusterings
derived with alternative weights, either manually, or using similarity or quality
metrics. This whole procedure can be repeated with different configurations.
Developers planning to refactor the present code manually to obtain an improved
modular structure can base their decisions on the computed clusterings.

In the following sub sections, we will address any of the peculiarities when
dealing with model transformations. The Activity2Process scenario from Section 2
serves as a running example.

4.1 Dependence Analysis

A preliminary step in any graph-based clustering approach is to extract depen-
dence information from software systems in a graph-based form. When dealing
with general-purpose programming languages, various source code analysis tools
are available to choose from. However, as we want to extract dependencies from
languages specific to the domain of model transformations, we must build our own
tools. We use static analysis, i.e., only information that is immediately available
at the syntactic level is used, whereas dynamic information that results from
(partial) execution of the source code is not used. In the context of transformation
programs, we consider not only dependencies among methods, but in addition
the structure of involved models and model use dependencies.

(SS-L1):mapping_Activity2ProcessModule_mapActivity2Process

(SS-L0):mapping_Action2StepModule_mapAction2Step

mapping_Action2StepModule_mapAction2Step

class_core_Action

(SS-L0):package_core

package_core

class_core_BasicAction

(SS-L0):mapping_Activity2ProcessModule_mapActivity2Process

mapping_Activity2ProcessModule_mapActivity2Processentry_Activity2ProcessModule_main

class_core_Activity

(SS-L0):mapping_Action2StepModule_mapAction2Step2

class_core_StartAction

mapping_Action2StepModule_mapAction2Step2

(SS-L0):mapping_Action2StepModule_mapAction2Step3

mapping_Action2StepModule_mapAction2Step3

class_core_StopAction

(SS-L1):helper_CompositeAction2StepModule_createProcess

(SS-L0):class_process_Step

package_process

class_process_Step

(SS-L0):helper_CompositeAction2StepModule_createProcess

class_process_Process

helper_CompositeAction2StepModule_createProcess

(SS-L0):mapping_CompositeAction2StepModule_mapAction2Step

package_composite

mapping_CompositeAction2StepModule_mapAction2Step

class_composite_CompositeAction

Fig. 3: Activity2Process transformation – Bunch-derived clustering based on
class-level dependencies

Implementation structure. Any method that is present in one of the source
files is represented by a single node vi ∈ V in the graph G = (V,E). For instance,
QVT-O defines four different types of methods, namely helpers, mappings, queries,
and constructors; these are all translated to nodes in the graph.

Method call dependencies are extracted as follows. For any two nodes vi, vj ∈
V in the graph where each represents a distinct method, vi 6= vj , a directed
edge points from vi to vj , 〈vi, vj〉 ∈ E, iff the method represented by vi calls
or otherwise references the method represented by vj . In QVT-O, a single call
(indicated by keyword map) may refer to multiple methods in the case of method
dispatching, and references may arise from reuse dependencies (keywords are
disjunct, merge, override, and extend).
Model structure. Any package and class in one of the models used by the
transformation is represented by a distinct node in the graph.

Package containment is extracted as follows. For any two nodes vi, vj ∈ V in
the graph where each represents a distinct model element, vi 6= vj , a directed
edge points from vi to vj , 〈vi, vj〉 ∈ E, iff vi represents a class or package and vj
represents a package that directly contains that class or package.

Additionally, inheritance and reference relationships among classes are defined.
For any two nodes vi, vj ∈ V in the graph where each represents a class, vi 6= vj ,
a directed edge points from vi to vj , 〈vi, vj〉 ∈ E, iff vi represents a class that
inherits from or references instances of another class represented by vj .
Model use dependencies. For any two nodes vi, vj ∈ V in the graph where vi
represents a method and vj a class or package, vi 6= vj , a directed edge points
from vi to vj , 〈vi, vj〉 ∈ E, iff the method represented by vi implicitly or explicitly
refers to one of the classes or packages of the involved models. We distinguish
model use dependencies with read-access and write-access.

In QVT-O, read dependencies occur as both context and in/inout parameters,
or within the implementation body for each of the intermediate Object Constraint
Language (OCL) expression’s inferrable type; write dependencies occur in the
form of a mapping’s result parameter and explicit instantiations via new or object
operator. We provide an alternative extraction method that reduces class-level
dependencies to package-level dependencies.
Weight configuration. To guide the clustering algorithm, the influence of depen-
dence relations can be regulated manually. For this purpose, a weighting function
w : E → N0 assigns positive numbers to the edges in the graph. Depending on
the type of dependency represented by the respective edge, we use four weights:

Wwrite for write-access dependencies to classes and packages, Wread for read-
access dependencies to classes and packages from one of the method’s parameters,
Wcall for method call dependencies, and Wpackage for containment of classes and
packages to their directly containing package.These weights constitute a particular
weight configuration, vector WC := 〈Wwrite ,Wread ,Wcall ,Wpackage〉 ∈ N4

0.
Choosing a weight of zero naturally results in the respective type of edge

being ignored by the clustering algorithm. Choosing values Wwrite � Wread

promotes a mainly target-driven decomposition, whereas values Wwrite �Wread

enforce a mainly source-driven decomposition.

4.2 Cluster Analysis

Once dependence information has been extracted from the source files in form of
a graph, and weights have been configured accordingly, cluster analysis can be
performed on the obtained graph structure in a follow-up step.
Algorithm and parameters. Bunch supports three clustering algorithms, ex-
haustive search, hill climbing, and a genetic algorithm. In this paper, we use
Bunch’s hill climbing algorithm which appeared to produce more stable results.
We use a consistent configuration, with population size set to 100, the minimum
search space set to 90%, leaving 10% of the neighbors selected randomly.

Fig. 3 depicts the graph that had been extracted from the Activity2Process
example. Colored nodes represent the transformation’s methods, and gray nodes
mark the transformation’s model elements. Boxes mark a two-level partitioning
created by Bunch – L0 stands for the lower and more detailed level, whereas
L1 partitions subsume one or more L0 partitions. For this clustering, a weight
configuration 〈1, 15, 5, 15〉 had been used. With a sufficiently higher weight for
read than for write dependencies, 15 � 1, a source-driven decomposition had
been performed. Therefore, mapping methods have been grouped together with
their respective source model elements (Activity, Action, etc.) on L0. Two
of the clusters solely contain model elements and can be ignored. In the L1
partition, two clusters remain: One cluster aggregates Activity2Process and
Action2Stepmethods, the other cluster aggregates CompositeAction2Step
methods. The reference to class CompositeAction may have primarily induced
the algorithm to correctly group the respective methods together. When compar-
ing the Bunch-derived L0 partition with our handmade partitioning illustrated
by colors blue, red and yellow (cf. Fig. 3), we can observe that both partitions
are highly similar. Bunch, however, decided to agglomerate the red and blue L0
clusters to a single L1 cluster. Developers may think about adopting Bunch’s
recommendation and merge clusters Activity2Process and Action2Step.

4.3 Structural Analysis

The main objective of the approach is to gain a better understanding of the code,
but also to agree on a modular decomposition that fosters understandability and
that can be used to restructure the code. To achieve this goal, in this last step, the
existing modular structure and partitions computed by the algorithm on different
parameters are compared against each other regarding their modularization
quality and structural differences. Although this is a manual step that requires
to find a compromise on two or more partitions and to refine the solution based
on expert knowledge, developers can profit from a set of metrics.

To include the legacy modular structure of the code into the assessment, an
automatized structural analysis is used that extracts this kind of information.

Table 1: Activity2Process – Manual vs. derived clustering
Configuration Statistics Similarity to expert clustering

#
Cl
us
te
rs

M
Q
in
de
x

Pr
ec
isi
on

R
ec
al
l

Ed
ge
Si
m

M
eC
l

Expert clustering
Derived manually 3 1.067 100% 100% 100 100%

Method-call dependencies only
Hill Climbing, WC = 〈0, 0, 1, 0〉 2 1.214 20.00% 100% 54.54 60%

Class-level dependencies
Hill Climbing, WC = 〈1, 15, 5, 15〉 2 1.083 33.33% 100% 72.72 85%

Modularization Quality. Quality metrics can be used for a quick estimation
of the quality of a particular partition. In context of the Bunch approach, it
makes sense to observe the MQ index that Bunch uses to assess partitions when
searching for a (quasi-)optimal partition. The MQ value can be computed for
both method and model dependencies (which it has been optimized for), but also
for method dependencies alone.

We use three similarity measures to quantify the similarity of a sample
clustering with the expert clustering, Precision/Recall, EdgeSim, and MeCl. The
latter two had been specifically built for the software domain by Mitchell et al.,
all three are supported by the Bunch tool. Other measurements that are used in
other contexts include MojoFM [9] and the Koschke-Eisenbarth metric [10].
Precision/Recall. Precision is calculated as the percentage of node pairs in
a single cluster of a sample clustering that are also contained within a single
cluster in the authoritative clustering. Recall, on the other hand, is defined as the
percentage of node pairs within a single cluster in the authoritative clustering
that are also node pairs within a single cluster in the sample clustering [3]. Edges
are not considered, and the metric is sensitive to number and size of clusters [11].
EdgeSim. The EdgeSim similarity measure [11] calculates the normalized ratio
of intra and intercluster edges present in both partitions. Nodes are ignored.
MeCl. The MergeClumps (MeCl) metric is a distance measure [11]. Starting with
the largest subsets of entities that had been placed in each of the partitions into
the same clusters, a series of merge operations, needed to convert one partition
into the other, is calculated. Both directions are considered, and the largest
number of merge operations (in a normalized form) is taken as the MeCl distance.

We used the above measurements to compare quality and similarity of manu-
ally and two automatically derived partitions in the Activity2Process example.
We computed a partition based on method-level dependencies alone, and another
partition based on method and class-level dependencies (Tab. 1). Due to the
small number of nodes in the input graphs, the output partition per dependence
graph produced was identical for five independent runs.

The expert clustering – the one manually done – comprises three clusters,
whereas both derived clusterings comprise two. The method-level clustering
produced the best MQ value. Despite having a slightly worse modularization
quality, the partition derived from class-level dependencies still produces an
(albeit marginally) better MQ value than that of the expert clustering.

Even more importantly, for this example, all three metrics agree that model-
use dependencies result in a partition more similar to the expert clustering than
a partition derived from method-call dependencies alone. The still relatively low

precision of 20% and 33.33% can be attributed to the fact that two clusters
correspond to a single one in the derived clustering.

5 Related Work
There is only work on statically analyzing model transformation programs for
visualization purposes, whereas software cluster analysis has not been applied to
model transformation programs in particular.
Model transformation analysis. Some work has been done on extracting de-
pendence information from model transformation programs for graphical viewing.
Van Amstel et al. [12] extracted method call and model use dependence infor-
mation and used hierarchical edge bundling diagrams for presentation. Similar
work had been done by us to support model transformation maintenance, as we
employ navigable node link diagrams that are embedded into the development
environment. Our view encompasses both method call and model use depen-
dencies, including inheritance, reference, and containment relationships among
classes and packages. Automatic clustering of these graphs obtained from static
analysis, however, has not been carried out so far by either work.
Software cluster analysis. Software clustering approaches mainly focus on
recovering an architecture from code written in general-purpose programming
languages. Hence their view consists of procedures and call relationships, modules
and use dependencies, or classes and their relationships.

Other information to discover a modular structure had been put into con-
sideration as well, including the change history [13], omnipresent objects [14],
or transactions (repeated use of a set of classes by other classes indicates that
they form a single purpose) [15]. Furthermore, a combination of control and data
dependencies as a source of information to discover a hidden modular structure
in procedural and object-oriented code had been studied over the last three
decades [16,17,18,19]. We apply a similar technique to model transformation
languages, though in our specific case we additionally exploit the subtleties
of UML/MOF-compliant modeling languages as data description language, for
instance hierarchically structured data elements.

Nevertheless, when it comes to the application of automatic clustering tech-
niques to model transformation programs, no previous work is known to us.

6 Conclusions and Outlook
Together with models, model transformations belong to the core assets of software
developed according to the model-driven paradigm. Much of the recent work in
this area has focused on reuse aspects of transformations, neglecting maintain-
ability as an equally important concern. To manage the inherent complexity of
transformation programs, well-approved language concepts can be used, including
information hiding modularity. In practice, however, transformation programs
lack structure, or their structure has slowly eroded over time.

This work proposes to transfer software clustering techniques to the specific
domain of model transformation programs. Based on automatically derived
clusterings, developers have to spent less effort in understanding, maintaining and
refactoring the code. As the example demonstrates, we were able to automatically
derive clusterings that exhibit high similarity with manual decompositions. To
reach this goal, we had to integrate structural information of the models and
model use dependencies of the transformation language’s concepts, and we had
to guide the clustering algorithm by weighting the input dependencies to match
the type of transformation at hand.

We are currently working on a case study with a larger, more realistic trans-
formation, with promising results so far. However, quality of the results obtained
highly depends on the weight vector which is still configured manually. It would
be interesting to explore methods to determine this vector automatically. Further
on, more details could be used to guide the clustering process. We currently
extract data dependence information at the type-level, whereas dataflow analysis
could help to detect cohesiveness between methods more accurately.
Acknowledgements. This research has been funded by the German Research
Foundation (DFG) under the Priority Programme SPP1593.

References
1. Whittle, J., Hutchinson, J., Rouncefield, M., Burden, H., Heldal, R.: Industrial

Adoption of Model-Driven Engineering: Are the Tools Really the Problem? In:
MODELS ’13. LNCS, Springer (2013) 1–17

2. Rentschler, A., Werle, D., Noorshams, Q., Happe, L., Reussner, R.: Designing
Information Hiding Modularity for Model Transformation Languages. In: Proc.
13th Int’l Conf. on Modularity (AOSD’14), ACM (2014) 217–228

3. Shtern, M., Tzerpos, V.: Clustering Methodologies for Software Engineering. Adv.
Soft. Eng. (2012)

4. Mitchell, B.S., Mancoridis, S.: On the Automatic Modularization of Software
Systems Using the Bunch Tool. IEEE Trans. Software Eng. 32(3) (2006) 193–208

5. Object Management Group: MOF 2.0 Query/View/Transformation, version 1.1.
URL www.omg.org/spec/QVT/1.1/ (2011)

6. Lawley, M., Duddy, K., Gerber, A., Raymond, K.: Language Features for Re-use
and Maintainability of MDA Transformations. In: Proc. OOPSLA Wksp. on Best
Practices for Model-Driven Software Development. (2004)

7. Maqbool, O., Babri, H.A.: Hierarchical Clustering for Software Architecture Recov-
ery. IEEE Trans. Software Eng. 33(11) (2007) 759–780

8. Tzerpos, V.: Comprehension-driven Software Clustering. PhD thesis, Univ. of
Toronto (2001)

9. Wen, Z., Tzerpos, V.: An Effectiveness Measure for Software Clustering Algorithms.
In: Proc. 12th Int’l Wksp. on Prg. Compr. (IWPC’04), IEEE (2004) 194–203

10. Koschke, R., Eisenbarth, T.: A Framework for Experimental Evaluation of Clustering
Techniques. In: Proc. Int’l Wksp. on Prg. Compr. (IWPC ’00), IEEE (2000) 201–210

11. Mitchell, B.S., Mancoridis, S.: Comparing the Decompositions Produced by Software
Clustering Algorithms Using Similarity Measurements. In: Proc. IEEE Int’l Conf.
on Sw. Maint. (ICSM ’01), IEEE (2001) 744–753

12. van Amstel, M., van den Brand, M.G.J.: Model Transformation Analysis: Stay-
ing Ahead of the Maintenance Nightmare. In: Proc. 4th Int’l Conf. on Model
Transformations (ICMT ’11). LNCS, Springer (2011) 108–122

13. Beyer, D., Noack, A.: Clustering Software Artifacts Based on Frequent Common
Changes. In: Proc. Int’l Wksp. on Prg. Compr. (IWPC ’05), IEEE (2005) 259–268

14. Wen, Z., Tzerpos, V.: Software Clustering based on Omnipresent Object Detection.
In: Proc. 13th Int’l Wksp. on Prg. Compr. (IWPC ’05), IEEE (2005) 269–278

15. Sindhgatta, R., Pooloth, K.: Identifying Software Decompositions by Applying
Transaction Clustering on Source Code. In: Proc. 31st Annual Int’l Computer
Software and Applications Conference (COMPSAC ’07), IEEE (2007) 317–326

16. Hutchens, D., Basili, V.: System Structure Analysis: Clustering with Data Bindings.
IEEE Trans. Software Eng. SE-11(8) (1985) 749–757

17. Liu, S.S., Wilde, N.: Identifying Objects in a Conventional Procedural Language:
An example of data design recovery. In: ICSM ’90, IEEE (1990) 266–271

18. Chu, W., Patel, S.: Software Restructuring by Enforcing Localization and Informa-
tion Hiding. In: Proc. 18th Int’l Conf. on Sw.Maint. (ICSM ’92), IEEE (1992)

19. Siff, M., Reps, T.W.: Identifying Modules via Concept Analysis. IEEE Trans.
Software Eng. 25(6) (1999) 749–768

http://www.omg.org/spec/QVT/1.1/

	Remodularizing Legacy Model Transformations with Automatic Clustering Techniques

