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Abstract
Development and maintenance of model transformations make up a
substantial share of the lifecycle costs of software products that rely
on model-driven techniques. In particular large and heterogeneous
models lead to poorly understandable transformation code due to
missing language concepts to master complexity. At the present time,
there exists no module concept for model transformation languages
that allows programmers to control information hiding and strictly
declare model and code dependencies at module interfaces. Yet only
then can we break down transformation logic into smaller parts, so
that each part owns a clear interface for separating concerns. In this
paper, we propose a module concept suitable for model transforma-
tion engineering. We formalize our concept based on cQVTom, a
compact subset of the transformation language QVT-Operational.
To meet the special demands of transformations, module interfaces
give control over both model and code accessibility. We also imple-
mented the approach for validation. In a case study, we examined the
effort required to carry out two typical maintenance tasks on a real-
world transformation. We are able to attest a significant reduction
of effort, thereby demonstrating the practical effects of a thorough
interface concept on the maintainability of model transformations.

Categories and Subject Descriptors D.2.2 [Software Engineer-
ing]: Design Tools and Techniques—Modules and Interfaces; D.3.2
[Programming Languages]: Language Classifications—Specialized
Application Languages

General Terms Design, Languages

Keywords Model-driven software engineering, model transforma-
tions, transformation languages, modularity, maintenance

1. Introduction
In software engineering circles, domain-specific languages (DSLs)
have gained wide acceptance as a technique to improve the produc-
tivity and quality of software. This is particularly true for model-
driven software engineering where models represent first-class ar-
tifacts. In this field, a multitude of specialized languages had been
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designed to transform models into other models and finally into
code artifacts. These so-called transformation languages aim to ease
development efforts by offering a succinct syntax to query from and
map model elements between different modeling domains.

However, development and maintenance of model transforma-
tions themselves are expected to make up a substantial share of
the lifecycle costs of software products that rely on model-driven
techniques [20]. Much of the effort in understanding model trans-
formations arises from complexity induced by a high degree of
data and control dependencies. Complexity is connected to size,
structural complexity and heterogeneity of models involved in a
transformation. Visualization techniques can help to master this
complexity [17, 20]. It is a fact that maintainability must already be
promoted at the design-time of a software program [18]. As one solu-
tion to ease maintenance processes, modern programming languages
feature concepts to decompose programs into modules or classes.
In addition, the concept of interfaces helps to hide implementation
details, thus making it easier for developers to understand a pro-
gram, to locate concerns, and to adapt a program to new or changing
requirements. These concepts reach back to the 1970s when Parnas
proposed the information hiding principle as a key principle for
software design [16]. Nowadays, they are well-accepted for their
positive effect on maintainability [13].

At the present time, however, there exists no concept for model
transformation languages that allows programmers to control infor-
mation hiding and strictly declare model and code dependencies at
module interfaces. Yet only then can we break down transformation
logic into smaller parts, where each part owns a clear interface for
separating concerns. To the same extent as for programs written in
general-purpose languages, with a proper concept to encapsulate
concerns, the effort required in understanding behavior and locating
concerns in larger transformations can be significantly reduced.

Among the many DSLs that had been designed for model trans-
formation programming, QVT, ETL, and ATL belong to the most
popular and advanced ones. But all these and other proposed transfor-
mation languages lack a thorough module concept. QVT’s concept
of libraries, for example, does only allow to dissect a transforma-
tion into smaller parts. There are no explicit interfaces, and it is
impossible to hide functionality. Thus, in order to understand a QVT
transformation, it is necessary to read the full implementation.

What distinguishes transformation programs from general-pur-
pose programs is that they operate on often large and structurally
complex models. However, existing transformation languages
merely provide weak encapsulation mechanisms: developers cannot
specify what model elements a module is allowed to read, instantiate,
or modify. By just looking at the interface of a module, one cannot
tell its impact. But, as long as interfaces are not able to communicate
on which of the models’ elements a module operates, developers



are struggling with understanding a module’s impact on the overall
transformation.

In this paper, we propose a module system that includes not
only control dependencies as part of its interface contracts, but also
data dependencies at the class-level of involved models. We for-
malize our approach by designing a minimal yet fully functional
transformation language, Core QVT-Operational-Modular, short
cQVTom, that is based on the conceptual core of QVT-Operational
(QVTo) and that embraces an interface for rigorous specification of
both control and data dependencies. The goal of our approach is to
attest similar effects on model transformations as observed for mod-
ularized programs in general, namely improved understandability,
maintainability and adaptability [18].

As a proof-of-concept and to validate the expected effects of our
approach, we integrate our modular concept into the transformation
language Xtend. We chose Xtend so we can reuse Java’s interface
and class concepts provided by Xtend’s host language, Java, and
adapt it to our needs. We carry out a case study on a real-world
model-to-text transformation written in Xtend. For two typical
maintenance scenarios, a refactoring and an evolution scenario,
we can demonstrate how our approach helps to localize concerns
already at the interface-level without examining the underlying
implementation, thereby significantly reducing the effort as opposed
to a previous, non-modularized version.

In summary, we make two different contributions: Firstly, we
design a proper module concept for model transformation languages,
which we formally define on a core subset of QVTo. Secondly, we
validate our approach on a real-world model-to-text transformation
written in Xtend. For this purpose, we implemented our concept for
the Xtend language.

This paper is structured as follows. First, we motivate the diffi-
culty of maintaining transformations in Section 2, and we present
our idea in Section 3. In Section 4, we formalize the approach by
providing syntax and a type system for a core subset of QVTo that
is enriched with our module concept. Section 5 introduces our im-
plementation into the Xtend language, and Section 6 studies effects
of our approach on maintainability of a real-world transformation.
In Section 7, related work is discussed. Finally, Section 8 presents
conclusions and proposes directions for future work.

2. Maintenance of Model Transformations
In model-driven software engineering, models are considered to
be first-class artifacts and are expected to evolve during their life-
cycle. Whenever a model changes, all dependent artifacts of the
model must be adapted for that change, including model instances
and transformations that operate on the model (co-evolution). It
is thus important that model transformations can be adapted with
minimal effort. This effort can be minimized through a modular
design, under the premise that the programming language supports
adequate concepts for modularization.

By means of two realistic evolution scenarios, we identify issues
that appear with existing module concepts of transformation lan-
guages. We chose an example transformation that is small enough to
help clarify these issues while still presenting the core features of an
imperative transformation language. Let us consider a unidirectional
transformation between two similar models, one model describes
simple activity diagrams, the other describes processes as chains
of steps. Figure 1 uses a textual syntax that is part of the QVTo
language [14] to define both models.

A transformation from activity to process models requires two
mappings to be implemented. One mapping creates for each instance
of Activity an instance of class Process, and another mapping
is responsible for projecting any Action contained in an Activ-
ity to a Step, so that the Step is contained in the Process
that had been created from the respective Activity. Since we

package ActivityModel {
class Activity { composes actions : Action [*]; }
class Action { references succ : Action [1]; }
class StartAction extends Action { }
class StopAction extends Action { }

}
package ProcessModel {
class Process { composes steps : Step [*]; }
class Step {
references next : Step [1];
composes isStart : Boolean [1];
composes isStop : Boolean [1];

}
}

Figure 1: Activity2Process example – Source and target models
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Figure 2: Activity2Process transformation

are anticipating that in the future both models might be extended
with new entities, and that the exact behavior of these mappings
might be subject to change, we find it reasonable to encapsulate
each mapping in a separate module. Figure 2 depicts model and
mapping dependencies that occur.

In QVTo, both mappings can be implemented as mapping opera-
tions and contained in two separate modules, a transformation and a
library module. Because of QVTo’s imperative nature, the transfor-
mation module must contain an entry point, the main function. The
main function’s signature declares input and output models as trans-
formation parameters with a model type, also called the domains of a
transformation. An implementation of the transformation module is
given in Figure 3a. The latter mapping operation is factored out into
an own module that is imported by the main module (Figure 3b).

Several weaknesses of this approach become evident when
we consider two typical maintenance scenarios, refactoring and
evolution. Failure to perform refactoring at periodic intervals usually
results in accumulating technical debt. Evolution of transformations
can be experienced even more frequently, emerging whenever any
of the models change.

Refactoring modular structure. Suppose we want to rethink the
way the transformation is currently structured. In our ex-
ample, module Activity2ProcessModule is responsi-
ble for mapping an Activity to a Process, and module
Action2StepModule for mapping instances of Action to
instances of Step. Dependence information is only available
by studying the actual implementation. Module clustering is
generally determined by dependence metrics like coupling. In
contrast to ordinary software, external dependencies are not only
introduced by method calls, but also by references to model
element. Without having an interface concept that incorporates
both dimensions, control and data flow, it is hard to reason about
modularity of model transformations. Furthermore, the subset of
model elements a module does access is only by convention, it is
neither programmatically declared nor automatically enforced.

Adapting to evolving models. Adding an attribute name to ac-
tions and steps requires the transformation to adapt accordingly



import Action2StepModule;
transformation Activity2ProcessModule(
in a:ActivityModel, out p:ProcessModel)
extends Action2StepModule;

main() {
a.rootObjects()[Activity]->map mapActivity2Process();

}
mapping Activity::mapActivity2Process() : Process {

result.steps := self.actions->map mapAction2Step();
}

(a) First module

transformation Action2StepModule(
in a:ActivityModel, out p:ProcessModel);

mapping Action::mapAction2Step() : Step {
-- result.name := self.name;
result.next := self.succ.late resolveone(Step);
result.isStart := self.oclIsTypeOf(StartAction);
result.isStop := self.oclIsTypeOf(StopAction);

}

(b) Second module

Figure 3: Activity2Process example in QVTo

(Figure 3b, line 4). We cannot deduce from the transformation
signature alone for what model parts each module is responsi-
ble. Because mapping implementations might internally access
classes Action or Step, their signatures are neither informa-
tive enough. Developers need to check the full code to locate
relevant spots before carrying out the requested change.

Other transformation languages, like ATL, ETL, Kermeta, and
VIATRA2, provide even less sophisticated concepts than QVTo. In
a classification from 2003 [6], Czarnecki observes that only some
approaches support organization of rules into modules, he does not
talk about information hiding aspects. Transformation languages that
are hosted by an object-oriented language may exploit the available
class mechanism, for example RubyTL for Ruby, SMTL for Scala,
and Xtend for Java. But even Java’s sophisticated class mechanism
still does not offer a solution for model access control.

3. Modularity Tailored for Transformations
To solve mentioned issues, our idea is to introduce a proper interface
concept that facilitates information hiding. Hiding the internal
details of a piece of software from any other piece and encapsulating
design decisions that are likely to change bring the following benefits
(cf. MacCormack [13], Parnas [16]):

Encouraging deliberate designs. Implementations are type-check-
ed against their interfaces to ensure contracts are met. This
encourages developers to think about a modular design with
encapsulated implementation decisions. It also prevents misuse
by introducing unintended dependencies from external code.

Fostering team development. Initial development can be carried
out more efficiently with a proper interface concept. As soon as a
modular design has been created in terms of interfaces, multiple
developers may work on implementing different parts of the
project in parallel.

Making software easier to understand, use and reuse. Develop-
ers require less effort to understand software behavior when
provided with a view that abstracts from implementation details.
Interfaces offer an abstract and often sufficient description of a
module’s responsibilities and dependencies.

Simplifying modification and repair. If a decision is distributed
over multiple modules, ripple-of-change effects occur when that
decision is being modified. Localized design decisions help to
limit ripple-of-change effect.

Facilitating variability through reconfiguration. Alternative im-
plementations can be easily exchanged for design decisions that
are encapsulated behind an interface. This is done by simply
exchanging implementations of the same interface.

So that developers can exploit these benefits to the fullest, we ex-
pect a model transformation language to integrate a module concept
that abides to the information hiding principle. Our understanding
of the principle is described by these four rules:

R1: Segregation of interface and implementation. Implementa-
tion details (queries and helper methods, internal state) are
hidden behind interfaces. Per required interface, a unique imple-
mentation exists.

R2: Conformance of interface and implementation. Implemen-
ted methods must conform to exported method signatures. This
means that method name and the number of arguments have to
be equal, and types must be substitutable according to Liskov
(contravariance of argument types, covariance of return types).
Any method used must be either defined locally in the implemen-
tation, or it must be defined in one of the imported interfaces.

R3: Method access control. Only methods that are either defined
locally or by an imported interface are visible. Any other method
is not visible and can therefore not be accessed.

R4: Model access control. Here, our domain-specific module con-
cept is distinct from module concepts for general-purpose pro-
gramming languages. In order to accommodate the central role
of model references for transformation languages, interfaces
must make the scope of model elements in a domain that can be
referenced explicit. An implementation can access only model
elements that are defined by exported interfaces. For greater flex-
ibility, access restrictions on models should be definable not only
at class-level but also at package-level. The latter is equivalent
to explicitly stating any transitively nested classes.

Violation of interface contracts should be detected at design-time
employing static type checking. A compile-time error should be
issued if methods that are hidden are accessed, if model elements
are referenced that are not declared as modifiable or readable, or if
methods that are declared in an interface remain unimplemented or
with incompatible signatures.

We propose a derivative of QVTo, we name it QVT-Operational-
Modular (QVTom), that replaces the existing module concept with
a more elaborate one. To give an idea of the notation, we rewrite the
previous example in QVTom (cf. Figure 4). A transformation
module must implement at least one interface and can depend on
an arbitrary number of interfaces, stated by keywords export and
import, respectively. A transformationinterface must
be exported by exactly one module implementation. An interface
declares a transformation signature, which is a list of typed model
parameters. Signatures of an implementation’s exported interfaces
must be identical, except for access restrictions. For each model
parameter, directives in/out/inout indicate the direction, and
access is restricted to the classes and packages listed in trailing
square brackets []. A package name is a shortcut for any directly
or indirectly contained classes in the package. Any reference to a
model element is put into the context of a model parameter, e.g.
Activity@a. Modules must define at least the methods declared
in an exported interface with compatible signature.

There has to be one dedicated interface IMain with exactly
one mapping that forms the entry point of a transformation. This
approach is borrowed from the Modula-3 language. In our example,
module Activity2Process exports IMain (Figure 4a), so
that mapping mapActivity2Process is the entry point.This
mapping calls another mapping provided by interface IAction2-
Step, and implemented by module Action2Step (Figure 4b).



transformation interface IMain(
in a : ActivityModel[Activity],
out p : ProcessModel[Process]) {

mapping Activity@a::mapActivity2Process() : Process@p;
}
transformation module Activity2Process

export IMain
import IAction2Step {

mapping Activity@a::mapActivity2Process() : Process@p {
result.steps := self.actions->

map IAction2Step::mapAction2Step();
}

}

(a) First module

transformation interface IAction2Step(
in a : ActivityModel[StartAction, StopAction],
out p : ProcessModel[Step]) {

mapping Action@a::mapAction2Step() : Step@p;
}
transformation module Action2Step

export IAction2Step {
mapping Action@a::mapAction2Step() : Step@p {

result.name := self.name;
result.next := self.succ.late resolveone(Step@p);
result.isStart := self.oclIsTypeOf(StartAction@a);
result.isStop := self.oclIsTypeOf(StopAction@a);

}
}

(b) Second module

Figure 4: Activity2Process example in QVTom

Implementations of each interface are granted restricted read or
read/write access to distinct subsets of the models, whereby access
to a class automatically implicates access to the class’s features. In
the example, implementations of IMain can only access instances
of Activity, and create or modify instances of Process. On
the other hand, implementations of IAction2Step can only refer
to instances of StartAction and StopAction, and create or
modify objects of class Step. If the latter module implementation
would define further queries or mappings, these would not be visible
to the former module’s implementation.

The purpose of a module system is namespace control and data
abstraction. There are no extra semantics added besides definition
and resolution of namespaces, access control on top of namespaces,
and an aligned mechanism for entry point definition. Thus, QVTom
programs can always be transformed into non-modular QVTom or
QVTo programs by giving unique names to entities.

Revisiting both example scenarios from last section, we can
easily see that the proposed module system brings certain benefits.
Refactoring the modular structure requires less effort, as all of
the information required for reasoning can be deducted from the
interface definitions alone. When it comes to adapting the example
to an evolving model, we can locate the affected module much
quicker from reading the interface descriptions as well: only one of
the two modules has access to subclasses of Action.

4. Core QVTom
In the style of Featherweight Java (FJ) [10] we formalize a minimal
subset of QVTom that we call Core QVTom (cQVTom). Main
purpose of cQVTom is to demonstrate the added modular system.
While retaining core features of transformation languages, we skip
several of QVTo’s features that do not add to the general idea and
should be integrable straightforwardly. In this section, based on
the syntax, we present a calculus for type inference and prove
its soundness. We guarantee that a well-typed program enforces
information hiding postulated by the four rules from the previous
section.

Core QVTom skips several metamodeling concepts (e.g., abstract
classes, primitive types, multiplicities), many of QVTo’s concepts
(e.g., helpers, queries, constructors, variables and globals, superim-
position, dispatching, guards and sections), and most concepts of
the underlying Object Constraint Language (if, let, collection opera-
tions, stdlib functions). QVT’s existing module concepts had been
completely removed to be replaced by our concepts, e.g., import,
access, extend, transform, main.

We realize modularity as a second-class module system. This
means that the module system is segregated from the core language’s
system. Modular definitions are evaluated statically at compile-time,
hence at runtime, expressions cannot reflect on modules nor can
they manipulate them. If a program is well-typed it conforms to the
information hiding rules. Later at runtime, the module structure can
be ignored as it is no longer needed1.

4.1 Syntax

The syntax is minimal, though expressive enough to demonstrate
relevant features and interaction of the added features together with
core features of QVTo. The abstract syntax is presented in Figure 5
using a variant of the Backus-Naur form. A transformation T com-
prises three parts, metamodel definitions, interface definitions, and
module implementations, the latter defining mapping implementa-
tions with a minimal QVTo syntax.

Metavariables p, c, f , i, t, s, x range over unique names
of packages, classes, fields, interfaces, domains, mappings, and
both arguments and variables, respectively. Typing judgments on
sequences are abbreviated, P is shorthand for whitespace-separated
lists P1 . . . Pn with zero or a finite number of elements, analogous
for C, F , S, O, B. In order to hint the underlying concrete syntax,
the overline operator with an overset comma denotes shorthand
notation for comma-separated parameter lists, e.g.,

,

e. The ? operator
marks grammatical expressions as optional, the | operator separates
alternative choices.

Metamodels are formulated with the same notation as described
in the QVT specification, with one extension: Packages p not only
define classes, they define subpackages as well. A class c can inherit
from another class c′, and define contained or referenced elements.
A field f is typed with a class c and can have multiplicities 1 or 0..∗.

A module interface i specifies a list of model domains t : p the
transformation unit is operating on, where a domain either acts
as input or output (in or out). A domain owns a unique model
domain identifier t that is part of any model element reference. In
addition to root package p, the exact elements contained in the root
package that are accessible by implementations must be declared in
trailing square brackets. This can be a list of classes c′ and packages
p′. Naming a package equals to naming all directly and indirectly
contained classes in the package. Method signatures of mappings
are identical to QVTo’s syntax. Each metamodel element, the calling
context c, parameters c′ and the target element c′′, is prefixed by the
respective domain that marks the context, t, t′, and t′′.

A module m implements exactly one interface i. To do so, it
can rely on one or more interfaces j. This time, mapping signatures
are supplemented by a list of statements. Assignment expressions
can be used to setup fields of target model elements built from
QVTo expressions. We have seven types of expressions in cQVTom:
Querying a target object created from a source object, invoking a
mapping s defined by an exported or imported interface j, checking
the type of an expression, accessing a field f , instantiating a class c
in domain twith constructor parameters e, accessing the surrounding
mapping’s source context, and accessing an argument or variable x.
This is a valid subset of QVTo’s rich syntax. We now aim at showing
how information hiding is enforced on this variety of concepts.

1 Of course, one can defer static evaluation of information hiding to runtime.



Syntax:

T ::= P I M Transformation program

P ::= package p { P C } Metamodel specification
C ::= class c (extends c′)? { F } Class declaration
F ::= (composes | references) f : c ([1] | [*]); Feature declaration

I ::= transformationinterface i (

,

(in | out) t : p[
,

p′
,

c]) { S } Module interface declaration

S ::= mapping c@t :: s(
,

in c′@t′) : c′′@t′′; Method signature declaration

M ::= transformationmodulem export i (import
,

j)? { O } Module implementation definition

O ::= mapping c@t :: s(
,

in x : c′@t′) : c′′@t′′ { B } Mapping implementation definition

B ::= result.f := E; Assignment
E ::= E.lateresolveone(c@t) Trace resolution call

| E->map j::s (
,

x) Mapping invocation
| E.oclIsTypeOf(c@t) Type checking
| E.f Feature access
| new c@t(

,

E) Class instantiation
| self Context access
| x Variable access

Metamodel primitives:

package G { classObject{}; classBoolean{}; classString{}; }

Metamodel subtyping:

c <: c
c <: c′ c′ <: c′′

c <: c′′
class c extends c′ { ... }

c <: c′ c <: Object

class c { ... }

c <: Object

Lookup of metamodel packages, classes and features:

class c (extends c′)? { . . .}

classesC (c) = c, classesC
(
(c′)?

)
package p { P C }

P = package p′ { . . .} C = class c (extends c′)? { . . .}

packagesP (p) = p′ classesP (p) = c,
[
k
classesC

(
(c′k)?

) ]
class c (extends c′)? { (composes | references) f : c ([1] | [*]); }

featuresC (c) = featuresC
(
(c′)?

)
, f : c

Lookup of declared and implemented mapping types:

transformationinterface i . . . { S }

S = mapping c@t :: s(in c′@t′) : c′′@t′′

mappingsI(i) =
⋃
S∈S

{
(i, s) 7→

(
(c@t, c′@t′) 7→ c′′@t′′

)}
transformationmodulem . . . { O }

O = mapping c@t :: s(in x : c′@t′) : c′′@t′′ { . . .}

mappingsM (m) =
⋃

O∈O

{
(this, s) 7→

(
(c@t, c′@t′) 7→ c′′@t′′

)}

Figure 5: cQVTom’s syntax, subtyping rules, and auxiliary functions.



Module structure is well-formed:
` I WF `M WF

` T WF
(WF-PROGRAM)

∀k : p′k ⊂ packagesP
+(pk) ∧ classesC

∗(ck) ⊂ classesP
∗(packagesP+(pk)

)
∆
[
k

(
ak, tk) 7→ classesC

∗(ck) ∪ classesP
∗(p′k) ∪ classesP

∗(packagesP
+(p′k)

)
∪ classesP (G)

]
` S WF

` transformationinterface i (a = (in | out) t : p[p′ c]) { S } WF
(WF-INTERFACE)

transformationmodulem export i . . . { . . .}(
mappingsM (m)

)
(this, s) = (c0@t0, c′0@t

′
0) 7→ c′′0@t

′′
0

∆(in, t) 3 c ∆(in, t′) 3 c′ ∆(out, t′′) 3 c′′

c0@t0 <: c@t c′@t′ <: c′0@t
′
0 c′′@t′′ <: c′′0@t

′′
0

` mapping c@t :: s(in c′@t′) : c′′@t′′ WF
(WF-MAPPINGDECL)

transformationmodulem′ export i . . . { . . .}⇒ m′ = m

transformationinterface i (a = (in | out) t : p[p′ c]) { S }

∆
[
k

(
ak, tk) 7→ classesC

∗(ck) ∪ classesP
∗(p′k) ∪ classesP

∗(packages+(p′k)
)
∪ classesP

∗(G)
]
,

Ω
[ (
∪kmappingsI (jk)

)
∪mappingsM (m)

]
` O WF

` transformationmodulem export i (import j)? { O } WF
(WF-MODULE)

∆(in, t) 3 c ∆(in, t′) 3 c′ ∆(out, t′′) 3 c′′

Γ[self 7→ c@t, x 7→ c′@t′,result 7→ c′′@t′′],∆,Ω ` B WF

∆,Ω ` mapping c@t :: s(in x : c′@t′) : c′′@t′′ { B } WF
(WF-MAPPINGIMPL)

Γ(result) = c@t c0 <: c′ ∆(out, t) 3 c
featuresC (c) 3 f : c′ Γ,∆,Ω ` e0 : c0@t0

Γ,∆,Ω ` result.f := e0; WF
(WF-ASSIGNMENT)

Expression typing and conformance checks:
Γ,∆,Ω ` e0 : c0@t0

Γ,∆,Ω ` e0.lateresolveone(c@t) : c@t
(T-TRACERES)

c0 <: c c <: c′

Ω(i, s) = (c@t, c′@t′) 7→ c′′@t′′

Γ,∆,Ω ` e0 : c0@t0 Γ,∆,Ω ` e : c

Γ,∆,Ω ` e0->map i::s (e) : c′′@t′′
(T-MAPPINGINV)

Γ,∆,Ω ` e0 : c0@t0
(
∆(in, t) ∪∆(out, t)

)
3 c

Γ,∆,Ω ` e0.oclIsTypeOf(c@t) : Boolean@tG
(T-TYPECHECK)

featuresC (c0) = f : c

Γ,∆,Ω ` e0 : c0@t0
(
∆(in, t0) ∪∆(out, t0)

)
3 c0

Γ,∆,Ω ` e0.fi : ci@t0
(T-FEATURE)

Γ,∆,Ω ` e : c′ ∆(out, t) 3 c
Γ,∆,Ω ` new c@t(e) : c@t

(T-CLASSINST)

Γ(self) = c@t
(
∆(in, t) ∪∆(out, t)

)
3 c

Γ,∆ ` self : c@t
(T-CONTEXT)

Γ(x) = c@t
(
∆(in, t) ∪∆(out, t)

)
3 c

Γ,∆ ` x : Γ(x)
(T-VARIABLE)

Figure 6: cQVTom’s typing rules.



For any metamodel defined, a package G introduces the primitive
data types Object, Boolean, and String. Respective fields
have been omitted for simplicity.

Like in FJ, a subtyping relationship between classes is estab-
lished by an operator <: that is based on the extends keyword.
Subtyping is reflexive, transitive, but also antisymmetric, i.e. no
cycles are permitted. For convenience, any class except Object
inherits from Object by default.

We introduce auxiliary methods for metamodel and mapping
lookup. These methods are utilized by the typing rules hereinafter,
they are defined in Figure 5 in the lower two sections. Function
classesC maps a class to a list of inherited classes including itself.
In case that (extends c′)? is omitted, c′ evaluates to Object,
and classesC (Object) = ε. For a given package, functions
packagesP and classesP compute all packages and classes directly
contained in the package, respectively. And finally, for a given
class, function featuresC retrieves directly contained features. Note
that here—and similarly in the rest of this paper—, for brevity,
we abbreviate typing judgments on sequences, writing f : k as
shorthand for f1 : k1, . . . , fn : kn (cf. [10]). Function mappingsI
creates for a given interface identifier a function that relates pairs
of interface and mapping identifiers to the mapping’s signature
type. Analogously, mappingsM creates such a function for any
mapping defined in a module implementation – here, we use this
for identifying the interface whose implementation is currently
being defined. For any of these functions being special kinds of
binary relations, the + operator denotes their transitive closure. The
∗ operator is short for a functional closure on sets, for instance,
classesP

∗(P ) :=
⋃

p∈P classesP (p).

4.2 Typing

We build a type system in the style of the classical Hindley-
Milner type system. Several ideas and many notational elements
are borrowed from FJ [10]. Primary judgment of our type system is
that of type well-formedness with respect to the modular structure,
` T WF. To attain this goal, we must judge about the typing of
expressions to determine any explicit and implicit type references.
We use a type system where typing relations take the form Γ,∆,Ω `
e : t. This reads: “In a scoped type environment Γ, Ω, ∆ of variables,
methods, and model elements, the term e has type t”.

We capture scoping information in a type environment that con-
sists of three parts: a variable environment Γ, a method environ-
ment Ω, and a model element environment ∆. The variable environ-
ment is a function mapping identifiers in scope to types, Γ ::= ∅ |
Γ, [nk=0 vk 7→ ck@tk ]. The method environment is more complex,
it maps a pair of interface identifier and mapping identifier to a map-
ping’s signature, Ω ::= ∅ | Ω, [nk=0 (i, sk) 7→

(
(ck@tk, c′k@t′k) 7→

c′′k@t
′′
k

)
]. The model element environment is a function that captures

accessible model elements, ∆ ::= ∅ | ∆, [nk=0 (ak, tk) 7→ Ck],
where ak is the access type, in or out, tk is the model domain
identifier, the pair of both mapping to Ck, the list of class identifiers
that are accessible as inquired.

Notation Γ[x0 7→ c0@t0, . . . , xn 7→ cn@tn] is the type envi-
ronment Γ updated at xk, k = 0..n to map xk to ck@tk. For an
overlined syntax expression x : c@t type variables are represented
as sequences (xk)nk=0, (tk)nk=0, and (ck)nk=0. Then, Γ[x : c@t],
Γ[k xk 7→ ck@tk], and Γ[{x0 7→ c0@t0, . . . , xn 7→ cn@tn}] are
short forms for the notation mentioned above.

Type inference rules are displayed in Figure 6. They are com-
pletely syntax directed, thus defining small-step semantics. As we
already mentioned, our type system is designed to prove that a mod-
ular transformation program in cQVTom is well-formed regarding
the information hiding principle. A transformation program T is
only then well-formed if its interface definitions and module imple-
mentations are well-formed (WF-PROGRAM).

An interface signature defines a sequence of modeling domains
on packages p, and for each domain a list of packages p′ and classes
c on which access is opened up. These elements must be contained
in the respective domain’s root package p (WF-INTERFACE). An
environment ∆ is built that maps domain names to the list of
accessible classes. Inside an interface definition, mapping signatures
are declared. Any of these declared signatures must be implemented
by a module m with compatible types, and any type used must be
accessible (WF-MAPPINGDECL). Type conformance is checked
according to the Liskov principle, and accessibility is checked based
on the ∆ environment.

There must be exactly one implementation per interface. A
module inherits model visibilities from the interface it implements,
so ∆ is equally configured (WF-MODULE). The Ω environment
is filled with methods provided by imported interfaces plus those
defined locally. A mapping implementation must have any of its
signature’s type accessible. Two variables plus their respective types
are added to its scope, self and result (WF-MAPPINGIMPL). In
the body of a mapping, the target object’s features can be initialized.
It must be a valid feature of the object’s type, both sides of the
assignment must have matching types, and the result’s type must be
write accessible. (WF-ASSIGNMENT).

Expression typing is obvious, insofar that we infer for each
syntactical element related types, and check that the element is
visible and excels a valid accessibility mode. Trace resolution
and mapping invocation (T-TRACERES, T-MAPPINGINV) do not
require access rights as they delegate type access to external modules.
Even so must we ensure that parameter types are compatible. Global
type classes are accessed via a global domain identifier tG : G,
rule T-TYPECHECK gives an example of use. Access to a feature
demands read access only to the parent type (T-FEATURE). If
an object is created, we check if its type is write accessible (T-
CLASSINST). Context and variables are checked if they are in scope
and their type is read accessible (T-CONTEXT, T-VARIABLE).

4.3 Properties

Soundness of the semantics with respect to a type system generally
means that “well-typed programs cannot go wrong”. Since we only
focus on soundness of modular concepts added by us, soundness
means that well-typed programs at runtime do not hurt any of our
four principles. In the following, we formalize our four rules, and
provide a proof sketch for each of them.

R1: Segregation of interface and implementation. Modules that
implement the same interface can be exchanged while maintaining
type conformance.

THEOREM 4.1. For any pair of transformations T and T ′, where

T = P I M0 . . .Mi . . .Mn

T ′ = P I M0 . . .M
′
i . . .Mn ,

with module implementations Mi, M ′i of the same name m = m′,
both exporting the same interface i = i′, and both being well-
formed, i.e., `M WF and `M ′ WF, we can say that ` T WF ⇔ `
T ′ WF.

PROOF. In the scope of an implementation definition, methods and
model types only can (and must be) dereferenced by an interface
name, i.e. j::s and c@t, at the syntactical level. No assumptions
concerning the actual implementation are made. Required and pro-
vided method signatures must be compatible in terms of Liskov’s
substitution principle, as encoded by rules WF-MAPPINGDECL for
module implementations and T-MAPPINGINV for method invoca-
tions. Therefore, any module implementation remains independent
of any other module implementations. �



R2: Conformance of interface and implementation. A program
is only then well-formed if there exists exactly one implementation
per interface. If an interface misses an implementation potential
method calls cannot be resolved. If an interface is implemented
multiple times it is not clearly expressed which implementation to
choose resulting in nondeterministic behavior.

THEOREM 4.2. For any interface i ∈ I , there exists exactly one
implementation m ∈ M for i. For this implementation we can
find exactly one bijective mapping between implementation and
interface methods fm,i : O|m → S|i, so that each method o ∈ O|m
maps to a method s ∈ S|i with equal name and an equal number
of arguments, o = s and |c′o| = |c′s|, and signature types are
pairwise compatible according to Liskov (contravariant argument
types, covariant return types).

PROOF. Suppose for an implementation m ∈M of interface i ∈ I
exists another implementation m′ ∈ M of that same interface.
Then, implementations m, m′ must be the same, as guaranteed
by rule WF-MODULE: m = m′. In addition, WF-MAPPINGDECL
guarantees that for any method implementation (which there must be
exactly one, as we have just shown), type conformance constraints
according to Liskov are met. �

R3: Method access control. In an implementation, only model
types or mappings are referenced that are imported by the prefixed
interface, and the interface is imported by the implemented interface.

THEOREM 4.3. For any implementation of a module m,
transformationmodulem export i (import

,

j)? ,

if a method implementation o ∈ O|m references a method j′::o
that is not locally defined, j′ 6= this, then j′ ∈ j, and the signature
of o is compatible (regarding to Liskov’s substitution principle) to
the signature of o specified in the interface j′.

PROOF. Only mapping invocation expressions may refer to methods.
There are two cases, either a called mapping o is defined locally
(dereferenced using this::o), or the mapping is dereferenced by
an interface with notation i::o. By inquiring the Ω environment,
rule T-MAPPINGINV ascertains that only methods in scope (i.e.,
local or imported ones) are referenced. The same rule tests for type
conformance, as well. �

R4: Model access control. In an implementation, only model types
are referenced for read or write access in a specific domain if the
respective access mode is declared for this model type and domain
type in the interface implemented by the implementation.

THEOREM 4.4. For any expression’s inferred type, ` e : c@t,
model type c must be defined as read-accessible in the respective
domain t by the surrounding module’s interface, except if access is
delegated to another module. It must be write-accessible if features
are created or modified. Additionally, for any parameter being part
of a mapping or OCL operation’s signature, its type c@t must
be defined as accessible with the correct mode (read- or write-
accessible for context and input parameters, write-accessible for
output and return parameter types) in the respective domain t by
the surrounding module’s interface.

PROOF. For any expression that is defined in the syntax, a type is
inferred by an expression typing rule. There, we can find a precon-
dition in the form of c ∈ ∆(in, t) ∪ ∆(out, t) for read access
checks, and c ∈ ∆(out, t) for write access checks, depending on
the underlying dynamic semantics; Exceptions are T-TRACERES
and T-MAPPINGINV which delegate to external modules. The same
is true for method parameters (rules WF-MAPPINGDECL, WF-
MAPPINGIMPL) and assignments (rule WF-ASSIGNMENT). �

Type Soundness. A program is considered as being well-typed if
and only if it does not hurt the information hiding principle.

COROLLARY 4.5. Let T be a transformation program in valid
cQVTom syntax. If ` T WF, transformation T does not hurt the
principle of information hiding as described by rules R1 to R4.

PROOF. From the proofs of theorems 4.1 to 4.4 immediately follows
soundness of our module concept. �

Decidability. Because type inference rules are syntax directed, there
is only one conclusion for each syntactic form. Evaluation will
only get stuck if one of two kinds of premises remains unfulfilled,
type conformance or accessibility. If and only if our type system
terminates on a program with ` T WF, it is well-formed. Hence the
type system is decidable, and an efficient implementation exists.

5. Implementation in Xtend
For validation purposes, we prototypically implemented a trans-
formation language Xtend2m2 that includes our module concept.
Xtend2m augments the Xtend language3 for model-to-model (M2M)
and model-to-text (M2T) transformations on EMF-based Ecore mod-
els. EMF maps Ecore metamodels to Java types. Xtend is a statically
typed language that compiles to ordinary Java code. It features
template expressions for M2T and cached methods for M2M, and
because it is built with the Xtext framework, it comes with full-
featured Eclipse editors and can be easily extended and customized.
Extensibility was the primary reason we decided to use the Xtend
language for a prototypical implementation of our concepts.

We exploit the fact that Xtend programs are 100% compatible
with Java’s type system: We utilize Java interfaces as module
interfaces and Java classes as module implementations. Mapping
operations are Java methods inside a class. As a consequence, Java’s
type checker automatically ensures that a module conforms to its
interface, and enforces that only mappings marked as public are
accessed from outside.

However, there are four weaknesses. First, cached methods only
take care that, for a certain parameter set, the previously created
element is returned instead of a new one. Second, model access
restrictions can not be declared for an interface, and implementations
are not statically checked for violations against restrictions. Third,
module implementations must be kept independent from each other.
This issue is already tackled by standard dependency injection
APIs, but it is not checked if the imported interface is actually
a transformation interface. And fourth, Xtend does not prescribe
how a transformation’s entry point must look like.

To mark classes and interfaces as transformation concepts, and to
include access declarations and mapping methods with QVTo-like
tracing, we designed six dedicated Java annotations. Based on these
annotations, we were able to make use of an Xtend feature called
Active Annotations. This mechanism gives language developers
the chance to intercept static code analysis and transpilation to
Java for two purposes. On the one hand, we can perform static
type checking, and in cases of any semantic issues we can create
appropriate compiler warnings and errors. These issues are then
displayed at the corresponding location in the Eclipse editor. On the
other hand, we can manipulate transpilation, for example, we are
able to inject code into methods with a certain annotation.

Figure 7 again shows the Activity2Process transformation from
the introduction, but this time it is implemented in Xtend2m rather
than QVTom. All the annotations used there are going to be
explained in the following paragraphs.

2 Sources are available at qvt.github.io/xtend2m.
3 Xtend is hosted at xtend-lang.org

http://qvt.github.io/xtend2m
http://xtend-lang.org


@TransformationInterface
@ModelIn(#["activitymodel.Activity",

"activitymodel.Action"])
@ModelOut(#["processmodel.Process"])
interface IActivity2Process extends MainMethod {
def Process mapActivity2Process(Activity self)

}
@TransformationModule
class Activity2Process implements IActivity2Process {

@Import extension IAction2Step

@Creates(typeof(Process))
override Process mapActivity2Process(Activity self) {
result.steps = self.actions.map[mapAction2Step]

}

override main(List<List<EObject>> input) {
val activity = input.head.
filter(typeof(Activity)).head

mapActivity2Process(activity)
doLateResolution

}
}

(a) First module

@TransformationInterface
@ModelIn(#["activitymodel.StartAction",

"activityModel.StopAction"])
@ModelOut(#["processModel.Step"])
interface IAction2StepModule {
def Step mapAction2Step(Action self)

}
@TransformationModule
class Action2Step implements IAction2Step {

@Creates(typeof(Step))
override Step mapAction2Step(Action self) {

result.name = self.name
self.succ.lateResolveOne [ result.next = it ]
result.isStart = self instanceof StartAction
result.isStop = self instanceof StopAction

}
}

(b) Second module

Figure 7: Activity2Process example in Xtend2m

Interfaces must be indicated with @TransformationInter-
face, and classes with @TransformationModule. Control
dependencies can be declared via @Import, and are mapped
by the transpiler to an ordinary @Inject. At the same time,
transformation modules are automatically injected with a factory for
model creation, a module configuration class and a tracing API. Type
checking makes sure that an interface implemented or imported by a
transformation module is in any case annotated as a transformation
interface. A dedicated interface IMain constitutes the entry point.
A transformation is only valid if this interface is implemented by
exactly one module.

We replaced cached methods with our own concept. Methods
annotated with @Creates(typeof(T)) automatically create an
instance of T that is registered at our tracing API. Later on, trace
resolution can be conducted in the style of QVTo, for example by
calling lateResolveOne. In contrast to QVTo, late resolution
must be triggered by an explicit call to doLateResolution. Any
referenced model types from inside a method are checked if they
are declared as accessible by the interface the surrounding module
implements.

Access control can be declared for module interfaces via two an-
notations, @ModelIn and @ModelOut. These are parameterized
by a list of model element classes. All classes in a package can be
declared using a wildcard operator, myPackage.*.

At this time, the dependency injection framework has not been
informed about available implementations. Xtend programs are typ-

module Activity2ProcessTransformation
Workflow {
// load metamodels ActivityModel.ecore, Process.ecore
// load ActivityModel instance into slot "inputModel"
.
.
.
component = xtend2m.mwe.ModuleLoader {
input = "inputModel"
output = {

package = "processmodel"
slot = "outputModel" }

transformationModule = "Activity2Process"
transformationModule = "Action2Step"

}
// persist ProcessModel from slot "outputModel"
.
.
.

}

Figure 8: Activity2Process example – MWE2 workflow definition

ically orchestrated from a workflow script written for the Model
Workflow Engine (MWE2). We built a customized workflow compo-
nent that initiates the wiring and then executes the transformation.
So that this can happen, module implementations must be registered.
Concerning the introductory Activity2Process example, a workflow
script must register implementations for two interfaces, IMain and
IAction2Step (Figure 8).

As we have shown, transformations written in Xtend2m share
all modular concepts of QVTom and key QVTo concepts. Because
Xtend already comes with template expressions built-in, not only
M2M, but also M2T transformations can be written. One difference
concerning our module concept is that no metamodel represents the
target, hence access restrictions cannot be declared.

6. Validating our Approach
To validate our approach, we chose a transformation that is prac-
tically used in a larger research project on software architecture
simulation, the Palladio approach4. For this transformation, we are
able to show that maintenance effort is significantly smaller if a
transformation is structured based on our module concept.

The Palladio approach [1] enables the prediction of extra-func-
tional properties at the design-time of component-based software.
By analyzing simulation results, performance, scalability and relia-
bility problems can be detected at an early stage in the development
process. Component-based software architectures and typical usage
scenarios are first modeled in the Palladio Component Model (PCM).
Instances of this model are then translated to simulation code that is
based on the SimuCom simulation framework. Other targets exist
as well, for instance mappings to Plain Old Java Objects (POJO),
to Enterprise Java Beans (EJB3), and to a performance prototype
(ProtoCom).

Technically, the program for translating architectural models to
simulation code had been implemented as an M2T transformation
written in Xpand and Xtend1, both being predecessors of Xtend25.
M2T transformations are special cases of M2M transformations,
where the target model are textual artifacts. Xpand and Xtend2 are
both template-based languages, meaning that transformation logic
is embedded into static text with the help of meta-tags.

We examined two maintenance scenarios that appeared recently
during development. The first scenario deals with the process of
refactoring the modular structure of the transformation. The second
scenario is about adapting the transformation for a new requirement.
We will demonstrate that the effort involved in identifying bad smells
and locating concerns can be dramatically reduced with a proper
modular structure and descriptive module interfaces.

4 For details on Palladio, see palladio-simulator.com.
5 As we discuss the dated dialect Xtend1, we refer to Xtend as Xtend2.

http://palladio-simulator.com


Table 1: SimuCom transformation – Data dependencies per module

Xtend Module rel
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v.*
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m.*
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*
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*

LOC

M1: Allocation 7
M2: Build 7 7 157
M3: Calculators 7 7 32
...
M10: Dummies 7 7 89
M11: JavaCore 7 7 244
M12: JavaNamesExt 7 7 7 7 278
M13: PCMExt 7 7 7 7 480
M14: ProvidedPorts 7 260
M15: Repository 7 120
M16: Resources 7 7 27
M17: SEFFBody 7 7 7 220
...
M23: SimAllocations 7 7 7 111
M24: SimCalculators 7 7 7 86
M25: SimCalls 7 7 286
...
M32: SimResources 7 252
M33: SimSEFFBody 7 7 7 252
M34: SimSensors 35
M35: SimUsage 7 7 7 253
...
M39: SimUsageFactory 7 7 7 91

LOC (Σ) 4987

Modules (Σ) 4 2 11 13 9 30
LOC (%) 18% 7% 35% 42% 28% 87%
Modules (%) 10% 5% 28% 33% 23% 77%

6.1 Scenario 1: Refactoring the modular structure

One of the more recent development tasks in the Palladio project was
to migrate the meanwhile deprecated Xpand templates to the Xtend2
language. Transformation templates were already modularized using
the template method pattern, with the result that variants share
common parts, and concretize by implementing abstract methods.
Yet, former modularization did not use Java interfaces to declare
which public methods implementations must provide, and in Java, it
is not possible to restrict access to model elements.

Next, we utilized the Xtend2m add-on to declare proper inter-
faces. Results of a precursive analysis of data dependencies are
depicted in Table 1 in the form of a dependence matrix. The table
lists for select modules which of the six PCM packages it references.
The PCM is packetized by six modeling aspects, a structural view
(repository.*), a behavioral view (seff.*), an assembly view (sys-
tem.*), a usage view (usagemodel.*), a resource view (resourceen-
vironment.*), and a view on reliability annotations (reliability.*).
For instance, PCM’s reliability concepts are handled—and thus
referenced—by four modules: M12, M17, M28, and M33 (M28 has
been omitted in this view). These four modules share 18% of the
overall 4987 lines of code (LOC).

While modules M1,. . . ,M22 act as generic templates for various
targets including SimuCom, modules M23,. . . ,M39 refine these to
produce SimuCom target code. For example, M23 extends M1 in
order to implement several abstract methods.

According to the table, most packages reference model elements
from only few packages. This indicates a low coupling regarding
data dependencies. Particularly JavaNamesExt and PCMExt (M12

and M13) exhibit a high degree of coupling. Both modules depend
on four PCM packages and are called by most other modules.
Inspecting their code quickly reveals that the two modules had been
used to collect helper methods. This design decision issues from

Xpand’s inability to mix template expressions with utility functions.
Both modules used to be implemented in Xtend1. However, with the
advent of Xtend2, template expressions and functions are mixable.
Because almost all methods are only required by single modules,
they can be moved to the respective module without breaking the
code.

In this example, we identified a bad smell just from studying
dependencies declared in module interfaces. Thus we were able to re-
duce the coupling and increase cohesion between modules, making
the overall transformation better understandable and maintainable.
Without descriptive interfaces, we would have to reverse-engineer
data dependencies manually, with the risk of missing some depen-
dencies. On the other hand, our type interference system statically
analyzes implementations against declared interfaces and identifies
violations automatically.

6.2 Scenario 2: Locating concerns

In the Palladio model, software components can realize component
interfaces. Interfaces in turn can extend other interfaces. When
a component realizes such a chain of interfaces, it must provide
operations for any interface along that inheritance chain. Until
recently6, our transformations were not aware of inheritance chains.
A first step to correct the transformations is to locate places in the
code where interfaces are handled. In the PCM, three manifestations
of interfaces exist, all being descendants of class Interface,
namely OperationInterface, InfrastructureInter-
face, and EventGroup. All four model elements are part of the
structural view, and therefore belong to the repository.* namespace.
Without having data dependencies declared, we must investigate
the full code to track down relevant places. Since the SimuCom
transformation employs our module concept, we can narrow down
possible locations of concern by just studying module descriptions.

By looking at a transformation’s module interfaces, we can tell
if a module is actually authorized to access these interface concepts.
With dependencies declared at the package-level, we would have
to check modules with access to the repository namespace, being
30 out of 39 modules (see Table 1). Since we already have the
transformation’s model dependencies declared at the class-level,
we can narrow down the number of modules we need to consider
even further. Table 2 displays for relevant modules if they access
any Interface-related class residing in the repository namespace.
There are only 14 modules whose implementation must be examined
further, reducing the amount of code to 39%. In the end, we had to
edit four among these to get our task done.

Without a modular structure based on a descriptive module con-
cept, developers need to fall back to a text-based search. However,
a word-based search for “interface” leads to many false positives,
because semantics are ignored. With our proposed blackbox module
concept, maintenance of model transformations takes significantly
less effort than with existing module concepts that do not account
for data and control dependencies at the interface-level.

7. Related Work
Early formal treatment of modular concepts as they appear in
general-purpose programming languages had been carried out by
Burstall and Lampson [3]. More recently, modularity has been
discovered as beneficial for domain-specific languages as well, for
example Kang and Ryu introduced modularity to the JavaScript
language [11].

The initial European workshop on composition of model trans-
formations in 2006 marked major interest in the topic for the first
time. Since then, compositionality of model transformations has
been under steady research, albeit most compositional approaches

6 sdqbuild.ipd.kit.edu/jira/browse/PALLADIO-165

https://sdqbuild.ipd.kit.edu/jira/browse/PALLADIO-165


Table 2: SimuCom transformation – Change impact analysis

Xtend Module <
: rep

os
ito

ry.
Int

erf
ac

e

Had
to

mod
ify

?

M1: Allocation
M2: Build 7...
M6: ComposedStructure 7
M7: ContextPattern 7
M8: DataTypes
M9: DelegatorClass 7 7
M10: Dummies 7
M11: JavaCore 7 7
M12: JavaNamesExt
M13: PCMExt
M14: ProvidedPorts 7 7
M15: Repository 7 7...

...
M19: Sensors 7
M20: System
M21: Usage 7
M22: UserActions...
M27: SimContextPattern
M28: SimDummies 7
M29: SimJavaCore 7
M30: SimProvidedPorts 7
M31: SimRepository 7
M32: SimResources...

Modules (Σ) 14 4
LOC (%) 39% 14%
Modules (%) 36% 10%

focus on reusability. In Belaunde’s article on QVTo’s compositional
abilities [2], the author distinguishes between coarse-grained and
fine-grained techniques, also known as internal and external com-
position. The former work on transformations and whole models,
whereas the latter work at the level of mappings and model elements.

7.1 Reuse

Olsen et al. investigate possible ways to improve reusability of
transformations [15], compositional techniques being among them.
A more up-to-date survey and far more detailed classification of
reuse techniques is given by Wimmer et al. [23, 24]. They observe
that module mechanisms should support definition of access rights
and restricted inheritance options. None of the presented fine-
grained compositional mechanisms seems to possess blackbox
characteristics. We believe the main reason is that techniques which
aim at better reuse rely on invasive whitebox mechanisms, whereas
we concentrate on improving maintainability. In fact, we deliberately
decide in favor of maintainability: Because our approach introduces
static dependencies to model elements, we even hinder reuse over
metamodels, yet we can improve evolvability, understandability and
type-safety.

7.2 Internal composition

Original work on modularity had been carried out in the 1990s
in the field of Graph Rewriting Systems, surveyed by Heckel et
al. [7]. Hiding of rewrite rules seems to be possible in all of the
discussed approaches, but hiding of typed graph structures remains
unsupported. More recently, Klar et al. [12] transferred MOF’s
package management to manage rules in MOFLON, a Triple Graph
Grammar dialect. They have reuse in mind, and although rules can
be hidden from imports there is no explicit interface concept.

Stratego/XT supports “meta-model extensibility through gener-
ator extensibility” [9], also known as horizontal modularity. Our
approach still requires the respective modules to be modified when
the models change, yet our descriptive interface helps to locate the
affected modules with less effort.

Cuadrado and Molina added a rule organization mechanism
called phasing [4] to RubyTL, a DSL embedded into Ruby. Phasing
is a whitebox technique to promote modularity and internal trans-
formation composition. Common code can be factored out, as one
phase may refine rules of another phase. A phase has a scope (a
pivot point, i. e. an element in the source metamodel from which a
rule evolves), a precondition, by-value parameters, and a scheduling

Table 3: Comparison of concepts for internal composition

Concept QVTom

Xten
d2

Kerm
eta

QVTr
QVTo

ATL
ETL

VIA
TRA2

Modules 3 3 3 3 3 3 3 3
class class library library module files namespace

Import mechanisms 3 3 3 3 3 3 3 3
extends inherits import access, uses import import

extend

Rule inheritance – – – (3) 3 3 3 –
unimpl. inherits extends extends

Rule merging – – – – 3 – – –
merges

Superimposition – 3 3 (3) 3 3 3 3
override implicit implicit extends implicit implicit model+

data

Qualified namespace 3 3 3 (3) (3) (3) (3) (3)
package package models models models models models?

Explicit interfaces 3 3 3 – – – – –
interface abstract

class

Traces 3 (3) – – – – – –
only local

Methods 3 3 3 – – – – –
def implicit

Model elements 3 (3) – – – – – –
import

Information hiding 3 3 – – – – – –
private

script for ordering sub-phases and binding parameters. However,
their concept does not include interface descriptions to make data
and rule dependencies between phases explicit.

Table 3 compares typical modularity features between languages
we perceived to be most interesting and our proposed derivate,
QVTom. A checkmark indicates full support, partial support if
bracketed, and either the respective keyword or possible limitations
are stated below. All of the observed languages support modularity
to some extent.

Most concentrate on whitebox techniques for reuse matters,
for example inheritance, merging, and superimposition of rules.
Superimposition had been first introduced by Wagelaar to ATL and
QVT [22], a technique to overlay sets of rule definitions on top of
each other. QVTo is said to have an OO heritage [2] and thus only
supports inheritance and superimposition.

When it comes to interface concepts, only few languages provide
concepts to make traces, methods, or model elements explicit.
Only internal DSLs are able to hide implementation details by
exploiting concepts of high-level languages, for instance Xtend
and RubyTL. Rules in Kermeta are defined as class methods in
UML, so inheritance, interfaces and other UML concepts can be
exploited. To our knowledge, QVTom and the Xtend2m prototype
are the only approaches that introduce blackbox modularity.

7.3 External composition

The key characteristic of any external composition mechanism is
that only whole transformations operating on complete models can
be chained, whereas we aim at supporting finer-grained composition-
ality. Both QVT and ATL already bring along integrated blackbox
composition mechanisms for orchestrating complete transforma-
tions. There is no interface concept for language constructs.

Several approaches are concerned with compositionality at the
transformation level, also known as blackbox composition, mostly
aiming at reusability of transformations. The most notable ones are
UniTI [21] integrated into Eclipse AM3 as a GMM4CT plug-in,
Wires* and TraCo. All of them follow the data-driven programming
paradigm, component instances are executed as soon as models
are present at all of the available input ports. None of them offers
a language concept for binding model concepts, which has only



recently been proposed by Cuadrado et al. [5]. While UniTI supports
a shared tracing model, it is not possible to explicitly share single
traces based on concepts.

TraCo is a transformation composition framework that show-
cases safe composition through contractual interfaces [8]. TraCo’s
interfaces only provide for full models, it has neither built-in support
for model access policies, nor does it include mapping operations.
A TraCo component is purely data-driven, it cannot refer to ex-
ternal mappings or externally generated traces. A notable field of
application is to ensure that only valid transformation variants can
be built from available components. With our approach, type-safe
configuration of variants could be performed similarly at design-
time. Because our binding is resolved before runtime, there is no
runtime validation intended.

8. Conclusions and Outlook
In this paper, we have introduced a novel module concept that is
specially tailored for model transformations. The concept makes
data and control dependencies between modules explicit, it provides
interface descriptions that can hide implementation details from
module users. Implementations are statically checked if they actually
meet contractual obligations defined by provided interfaces. We
formalized the underlying type system, and, as a proof-of-concept,
integrated this approach into the Xtend language. In a case study on
a real-world M2T transformation, we have shown that our module
system is able to effectively reduce the effort of locating concerns
involved in typical evolution scenarios.

In the near future, we plan to carry out additional case studies on
M2M transformations. We are currently working on an integration
of our concept into the QVTo language. Modularizing existing trans-
formations could be assisted by an automatic clustering algorithm,
provided that we can find metrics to assess cohesion and coupling
of mappings. Finally, several features of common module systems
remain yet unsupported. For example, only implementations can
define import dependencies, modules cannot form a hierarchy. Ad-
ditionally, data dependencies could be augmented with syntactic
sugar, e.g. a postponed plus operator could automatically include
subclasses of a named class, following a similar feature in Ker-
meta. Also, behavioral contracts in the spirit of Meyer’s Design by
Contract could complement our concept, as already proposed by
Vallecillo et al. [19] for monolithic transformations.
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