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The task of optimization of the complex service execution plan is the last stage of the process of complex 
services composition in systems based on the SOA paradigm. In general this task consists of choosing proper 
versions of atomic services, delivering requested functionalities, such that non-functional requirements for 
complex service are satisfied. In most real-life cases this task is reduced to the problem of multidimensional 
knapsack problem (MKP), which is known to be NP-hard. Therefore, in order to facilitate effective complex 
service composition, it is crucial to provide an efficient MKP solution algorithm. In this paper a novel approach 
to the problem of optimization of complex service execution plan is introduced. In the proposed approach the 
MKP feasible solution space is constructed in such a way, that the optimal solution can be found in constant 
time. Of course, since MKP is NP-hard, the process of solution space construction takes an exponential time, 
This time, however, is amortized  by multiple usages of single solution space for determination of optimal 
execution plans for multiple complex service requests. 

 
 
1. INTRODUCTION 
 

In systems based on SOA (Service-Oriented Architecture) paradigm services delivered to 
end-users (complex services) are composed with use of atomic services (services that have atomic 
functionality). The functionality of a complex service is an aggregation of functionalities of atomic 
services [5]. In general system is distributed, what means that applications acting as atomic services 
can be installed on any machine with communication interface available. An user requesting a 
service from the system formulates the request that precisely specifies demanded functionality. To 
deliver the requested functionality system uses the service composition procedure which consists of 
choosing the proper atomic services with an execution order. Moreover, user is able to formulate an 
additional terms of service delivery which involves non-functional aspect of delivering the service – 
Quality of Service requirements. Such complex request for service is called SLA – Service Level 
Agreement – and uniquely defines functional and non-functional user needs. 

 
1.1. SERVICE COMPOSITION TASK 

 
In general, the task of complex service composition consists of finding, for given ordered set 

of required functionalities (stated in the SLA), an order of atomic services versions execution such 
that non-functional requirements are met. The task of complex service composition can be 
decomposed into three sequential subtasks (see figure 1): 

1. Complex service structure composition – transformation of the SLA into set of required 
functionalities and the precedence relations between functionalities. The result of this task is 



complex service structure represented as a directed graph (not connected in general) of required 
functionalities. 

2. Complex service scenario composition – transformation of complex service structure graph 
into single and consistent graph of required functionalities with precisely defined order of execution 
of all atomic functionalities. Since it is possible, that single functionality is delivered by more than 
one atomic service version, the scenario graph represents in fact a family of execution graphs where 
member graphs differ in atomic service versions applied to deliver required atomic functionality. 

3. Complex service execution plan composition – choice of particular atomic services in 
complex service scenario graph such that non-functional requirements of complex service are met.  

In order to deliver complex service with requested functionality and non-functional properties 
various optimization tasks need to be solved on consecutive stages of complex service composition 
task (i.e.: stages of complex service structure, scenario and execution plan composition) [9]. 
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Fig. 1. Decomposition of the process of complex service composition 

 

1.2. COMPLEX SERVICE EXECUTION PLAN 
 
Aim of this paper is to focus on the complex service execution plan determination. Order 

constraints and atomic services selected under complex service scenario determination process 
should be processed further to select proper atomic service versions for execution. Atomic service 
versions can be available at the distributed execution system in many versions (each version differs 
from other in nonfunctional aspect) so choosing the proper execution plan can be treated as quality 
optimization task with popular QoS criteria i.e., execution time, cost, security, etc. 

 

2. THE COMPLEX SERVICE SCENARIO 

 
At the third stage of complex service composition process it is assumed that a graph called 

complex service execution scenario is given. The scenario defines unambiguously the order in 
which atomic functionalities should be delivered in order to fulfill the user functional requirement. 
The scenario is modeled as a graph ),( ECVCGC =  where VC  is a vertex set where one vertex 

represents functionality to be delivered and EC  is a set of edges which defines the order of 
delivering functionalities. Exemplary complex service scenario is presented on the figure 2.  
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Fig. 2. Exemplary scenario of complex serviced which goal is to make a phone call. Each of distinguished 
functionalities can be delivered by many versions of atomic services. 
 

An exemplary complex service - which goal is to make a cell phone call - consists of four 
operations that have to be executed. Assuming that user does not have enough funds to execute this 
service, first user has to get the funds, for example by getting a loan. A loan can be given by many 
institutions where each can be treated as another atomic service version. Similar situation is with 
buying a cell phone – the user can buy the same phone model in many stores – and with the sim 
card – many cellular operators can offer user a sim card activation service.  Finally user can make a 
call using the newly bought cell phone and the sim card using various versions of calling service 
e.g. VoIP call, GSM call, video call etc. 

 An user formulating the request for service defines a set of quality parameters that should be 
delivered in order to satisfy the user. The requirements concern the whole process of delivering a 
service and should be taken into consideration during the composition process especially in the 
execution plan determination stage. 
 

 
3. PROBLEM FORMULATION 

 
The task of execution plan determination is the last task that needs to be solved in the 

complex service composition procedure. In general the task of determination of optimal execution 
plan of complex service can be described in the following way. The systems task is to pick one 
version of each atomic service defined uniquely by the scenario in such a way, that quality 
requirements are satisfied. Noteworthy is fact that picking two atomic service versions defines also 
a communication path that is going to be used to communicate between these services – assuming 
that there is always chosen the best possible path if there is more than one available in the system. 
The task is similar to the task of finding an optimal path in graph considered in earlier work [4] but 
the difference in this approach is the solution represented as a graph - not as a single path. Due to 
that the former algorithms cannot be used. Formally the task of finding optimal a complex service 
execution plan is formulated as follows: 

 
For given: 

• Scenario graph ),( ECVCGC =  

• A l-th service request represented by the lSLA   

• Complex service nonfunctional requirement lΨ  

• Quality criterion ( )lGQ Ψ,  

Find: 
• Such set of atomic services versions for scenario GC  that quality criterion is 

minimized 
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where: 
• 

kj
as1  denotes kj -th version of k-th atomic service 



 
The problem stated above can be easily transformed into multi-choice knapsack problem in 

the following way. The task is to pick exactly one item (atomic service version) from each group 
(atomic service) in such way that quality of represented by picked items (complex service) is 
optimal in sense of chosen quality criterion Q . 

The solution of the formulated problem is known and some algorithms solving such problem 
has been presented i.e. in [7]. The problem formulated at the beginning of this chapter can not be 
directly transformated into multichoice knapsack problem because of execution scenario of 
complex service is given as a graph in general. In order to transformate the problem of 
determination the optimal execution plan into multi-choice knapsack problem, one has to reduce 
scenario graph into connected directed graph having all vertices with input and output degree no 
higher than one – in the special case just a graph with only one node. In order to solve the stated 
problems, the procedure of graph reduction is proposed in next chapter of this paper. 
 

4. SCENARIO GRAPH REDUCTION PROCEDURE 

 

The goal of the scenario graph reduction procedure is to transform the scenario graph into the 
graph having exactly one node. Transformation of the input scenario graph consists of 
determination of sub graph - called here a pattern - and defining a result of reduction for the 
considered pattern. Moreover, all versions of atomic services present within this pattern should be 
aggregated into new resulting vertex in such way that latter distinguishing the original versions in 
possible. The most important part of pattern reduction is to find an aggregation function that 
aggregates the values of the nonfunctional parameters into the new ones in the newly created 
vertex. The whole procedure of pattern reduction has been described in the section below. 

 
4.1. PATTERN REDUCTION PROCEDURE 
 

In order to reduce the scenario graph into the desired form, the set of patterns with 
aggregation function has to be defined. In the figure 3 there has been presented two scenario 
subgraph patterns (subfigures a and c) with corresponding resulting vertex (subfigures b and d 
respectively) obtained using aggregation function. The original versions of the atomic services are 
being merged into the new ones in the newly created vertex. The aggregation functions used in the 
examples depicted in the figure 3 – considering execution time as the nonfunctional parameter - are 
sum and sum-max - respectively for serial reduction (subfigures a,b) and split reduction (subfigures 
c,d). Therefore the resulting versions of k-th atomic service obtained in process of serial reduction 

have the following values of execution time: ( ) ( ) ( );1,1,11 ididkd +−=  ( ) ( ) ( );2,1,12 ididkd +−=  

( ) ( ) ( );1,2,13 ididkd +−=  ( ) ( ) ( );2,2,14 ididkd +−=  where ( )1,id  denotes the execution time of first 

version of i-th atomic service. Respectively the execution times for split reduction procedure can be 
calculated by following the following pattern: ( ) ( ) ( ) ( ){ };1,,...,1,max1,11 nidididkd ++−=  
( ) ( ) ( ) ( ){ };2,,...,1,max1,12 nidididkd ++−=  and for the last m-th version of the newly created 

service: ( ) ( ) ( ) ( ){ };2,,...,2,max2,1 nidididkd m ++−= . The number of versions in the newly created 

service can be calculated using the equation 1 
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where )( jassize  denotes the number of versions of j-th atomic service and J denotes the number of 

atomic services present in the pattern. 
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Fig. 3. Two subgraph patterns (serial - a and split - c) with the corresponding results of reduction (b and d respectively). 
Atomic service versions before reduction (a,c) are transformed into the new ones (b,d) which nonfunctional parameter 
values were also recalculated using proper aggregation functions. In this example the number of atomic service versions 
in serial reduction equals to 4 and in the split reduction can be calculated using equation (1). 

 
Except of patterns reducing vertices one can distinguish the edge reduction pattern which 

leads to decrease the graph complexity. The redundant edge reduction pattern has been presented in 
figure 4.  

 
Fig. 4. Possible edge reduction non violating precedence relations between vertices of scenario graph; a) grah before 
edge removal, b) graph after removing the redundant edge. 

 
Without loosing any information one can remove edge ( 11, +− ii asas ) because of transitivity of 

the precedence relation: 1111 +−+− ⇒∧ iiiiii asasasasasas ≺≺≺ . It is obvious that one can 

distinguish other patterns of edge removal if and only if one does not cause the loss of information 
in case of such a reduction. 

The reductions defined formerly are the basic ones and one can define more of such 
reductions to cope with more specific scenario graphs in more efficient way. The complete 
reduction operations set should contain at least one vertex reduction operation and at least one 
redundant edge reduction. Such a set of reductions should give the guarantee to reduce any scenario 
graph into the form of single node. 
 

4.2. THE REDUCTION ALGORITHM 
 



In order to reduce the scenario graph to the form that is appropriate for the formulated 
problem one has to perform the steps concerning all vertex reduction patterns and all edge reduction 
patterns. Assuming that each edge reduction procedure reduces no less than one or no less than two 
nodes (in case of node pattern reduction), the whole reduction process makes maximum 

ECVC +
2
1

 reductions.  

Each reduction has also its computational complexity which is influenced by the following 
operations: the complexity of procedure of finding a pattern, complexity of calculating the values of 
non-functional parameters of the newly created node, disconnecting removed vertices and 
connecting the newly created one. All of the mentioned procedures can have different 
implementations so complexities may vary. Trying to estimate the worst case complexities of 
former operations the results has been presented in table 1. 

 
Operation Complexity Denotation 

Finding an pattern ( )knO  VCn =  
k – largest output degree of 
vertex in graph 
M - number of vertices in the 
reduction pattern 

mJ  – number of versions of m-th 

atomic service  

Calculating new values of non-
functional parameters 
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Disconnection and connection 
of graph vertices 

( )nO  

Finding and reducing 
redundant edge 

( )nnO log3  

Table. 1. Estimation of calculation complexities of operations used in reduction procedure. 

 
Noteworthy is fact that vertices that are disconnected can be removed and not considered 

further, so value of n ( VCn = ) is decreasing during the process of reduction. Decreasing speed 

depends on number of vertices that are being reduced during the node reduction operation. The 
general procedure consists of looped execution of all reduction operations until the vertices count 

1=n . 
Example of the reduction process has been presented in the figure 5. Scenario graph used in 

this example contains six vertices (functionalities) with precedence relations given as on subfigure 1 
of figure 5. Each functionality in the considered scenario graph has two versions of atomic service. 
In the first step there is a split-reduction pattern found and the result of reduction is presented on 
subfigure 2. In the second step situation repeats – split reduction pattern is found and reduced. 
Notice that number of versions in the resulting vertex grows. On subfigure 3 the serial reduction 
pattern is found and reduced. The algorithm stops in step four where only one vertex is left 
(subfigure 4). The resulting vertex has 64 versions 
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Fig. 5. Exemplary reduction process for scenario with six functionalities (atomic services), each having two versions. 
After two split reductions and one serial reduction the result is single atomic service with 64 versions. Every newly 
created functionality gets new number for ease of distinguishing. 

 

4.3. THE GRAPH-FOLD PROCEDURE 
 

The general procedure of folding the graph has been presented on the listing 1. Moreover, the 
spit reduction function has been presented. Other reductions has been omitted due to analogy to the 
split reduction function. 

  
 
function GRAPH-FOLD(GC,qos) 
   result <-- GC 
   memory <-- empty  
   do 
      split <-- REDUCTION_SPLIT(result, qos, memory) 
      serial <-- REDUCTION_SERIAL(result, qos, memory) 
      edge <-- REDUCTION_EDGE(result) 
   while(split + serial + edge > 0) 
   RETURN qos 
END 
 
 
function REDUCTION_SPLIT(result, qos, memory) 
   i <-- find_reduce_split (result) 
   if i > -1 then 
      create_new_node 
      predecessors(new_node) <-- predecessors(i) 
      for each j in successors(i) do 
         successors(new_node) <-- successors(j) 
      end 
      qos_aggregation(new_node, i, qos, memory) 
      remove(successors(i)) 
      remove(i) 
      return 1 
   end 
   return 0 
END 
                     

Listing. 1. A pseudo-code of the general procedure of folding the scenario graph GC with split reduction function. 
Other reductions has been omitted due to analogy to the spit reduction function. 

 



The general graph-fold procedure consist of sequentially checking and reducing split and 
serial node reduction pattern and edge reduction pattern. The algorithm stops if there are no nodes 
and edges possible to reduce. 

The split reduction procedure consists of finding a node that can be reduced with all its 
successors. If such a node is found, the new node is created. All successors of the successors of the 
found node are being attached to the newly created node and all predecessors of the found node 
become the predecessors of the new node. The old node along with all its successors are being 
removed after the quality parameters values are aggregated and saved into the new node. The serial 
reduction procedure is analogical to the split reduction procedure. The edge reduction procedure 
and quality values aggregation has been explained by example in the former sections of this paper. 

5. PROBLEM SOLUTION  

 
The problem of multi-choice knapsack problem formulated in chapter 3 can be solved using 

heuristic algorithms [2,7], but much more interesting solution can be obtained when scenario graph 
has been reduced to single vertex. In case of such a reduction one gets single atomic service with m 
versions. Moreover if there are used data structures like AVL trees [3] as a collection of QoS values 
for the resulting node’s m versions, the optimal solution of the complex service execution plan 
determination problem can be found in ( )mO log  time. 

Depending on the optimization goal given by quality criterion Q , one can achieve different 

graph-fold algorithm behavior. According to the popular quality of service delivery approaches - 
best-effort approach and differentiated services approach - one can formulate such a quality 
criterion that desired algorithm behavior can be achieved. 

 
5.1. COMPLEX SERVICE EXECUTION TIME MINIMIZATION 
 

This solution bases on the best-effort approach and finds lowest obtainable time of execution 
of the complex service. The complex service execution time can be minimized using graph-fold 
algorithm when execution time is considered as the quality parameter. In this case the following 
optimization task should be solved: 

( )m
kk

m kdk
m,...,

*

1

minarg= ,     (2) 

where ( )mkd  denotes execution time of m-th version of the resulting k-th atomic service obtained 

after graph reduction procedure. According to the assumption that resulting collection of atomic 
service versions is ordered by the ( )mkd  value, the solution can be found in ( )1O  and consist on 

picking the version with the lowest execution time value. 
 
 
5.2. COMPLEX SERVICE EXECUTION TIME GUARANTIES 
 

This solution bases on the differentiated services approach and finds optimal execution time 
value with respect to given execution time requirement. In this case the following optimization task 
should be solved: 

( )( )2*
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with respect to the following constraint: 

( ) ** dkd m ≤ ,                  (4) 



 

where *d  denotes the execution time requirement given by user. According to the assumption that 

resulting collection of atomic service versions is ordered by the ( )mkd  value, the solution can be 

found in ( )mO log  and consist on picking the version with the highest execution time value 

fulfilling the user requirement. In the case when there is no valid solution, the request can be 
handled in one of the following ways: the SLA contract should be renegotiated, the request should 
be rejected and not executed in the system or can be served as in the best-effort approach. 
 

6. SIMULATION STUDY 

 

In order to evaluate the quality of service delivered by presented the graph-fold algorithm the 
simulation environment has been developed in OMNeT++ simulation framework [8]. The simulator 
consists of three distinguishable modules: generator module, abstract Enterprise Service Bus and set 
of web services representing atomic service versions. The simulation run consisted of generating 
stream of complex service requests with interarrival time given by exponential distribution with 
mean 0.1 second and random complex service execution scenarios. The generated request was 
processed in abstract ESB module where the task of finding the optimal execution plan was solved. 
There were six algorithms for finding optimal execution plan present in the system – five of those 
were reference algorithms and sixth one was the graph-fold algorithm. Each atomic service version 
present in the system had different performance index generated from exponential distribution with 
mean 10 expressed in kilobytes that can be processed per second. Moreover request data size that 
was going to be processed was also generated from exponential distribution with mean 10KB. The 
number of atomic services was set to 8 (also maximum 8 functionalities were present in generated 
scenario) each having 10 versions. 

Using such a configured simulation environment there were two experiments performed. First 
consisted of solving the complex service execution time minimization task and second of solving 
the complex service execution time optimization task, where additionally the execution time 
requirement has been set by the user. 

The results of the first experiment have been presented in the figure 6. The experiment lasted 
for 1000 seconds of simulation and consisted on determination of the complex service execution 
plan at the moment when the request was entering the system. The first observation shows that the 
graph-fold algorithm obtained the lowest execution time from all tested reference algorithms. 
Moreover, the execution time line on the chart is very close to the constant value of about 3 seconds 
while the rest of algorithms resulted much higher variation of execution time. Second best was best-
avg algorithm which consisted of choosing such version of atomic service that average execution 
time was lowest. Other algorithms resulted in worse complex service execution time. The main 
disadvantage of the examined algorithms was the fact that the decision was made at the very 
beginning of the request processing. During the processing of the request the system’s state could 
change what was impossible to take into consideration at the moment of decision making. 
 



 
Fig. 6. Simulation results for the six algorithms solving the problem of complex service execution time minimization. 

 
The results of the second experiment have been presented in figure 7. The task of the graph-

fold algorithm was to keep complex service execution time as close as possible to the requirement 
which was set by user to 5 seconds. The complex service execution time was chosen again as a 
quality parameter. The graph-fold algorithm used the shifting window average in order to collect 
the data about atomic services versions execution time. On the chart presented in figure 7 one can 
notice, that the time of execution calculated by the graph-fold algorithm was always lower or equal 
to the requirement. In the case when system was not able to provide required execution time (in the 
period between 800 and 1000 seconds of simulation) lower value was assured. This was caused by 
the fact that no proper complex service version was found so the system delivered the closest to the 
optimum. Analyzing the real complex service execution time curve in the figure 7, some deviations 
might be noticed. The real execution time approaches required value after 150 simulation seconds 
and was kept within about 5% error range utill the end of simulation. The deviation of real complex 
service execution time with respect to the calculated time is caused by the no ideal method of 
prediction of single atomic service version execution time. The decision for each request was made 
at the moment when the request was entering the system so the values describing execution time 
might have changed during the execution process.  
 
 



 
Fig. 7. Simulation results for the graph-fold algorithm solving the task of complex service execution time optimization. 
The calculated completion time curve is one predicted by the algorithm at the beginning of processing the request. The 
real completion time value was measured when the request has been completely processed. 

 

7. CONCLUSION 
 

The graph-fold algorithm presented in this paper is a good and precise approach for delivering 
optimal complex service execution plan in the process of complex service composition. However 
reader should remember that the graph-fold was designed in order to transform the complex service 
scenario graph to the single node with m versions. The abilities to develop the simple decision 
making algorithms comes straight from the fact, that the resulting versions are ordered and one can 
pick the worst and the best version very quick. The graph reduction procedure proposed in this 
paper completes the other approaches proposed in the literature [1,2,6,7,10]. The most important 
weak side of proposed approach is the complexity of the procedure which strongly depends on the 
number of the atomic services versions. The graph-fold algorithm was significantly slower than the 
reference algorithms what can cause growth of calculation time in case of complex service 
execution scenarios with large amount of functionalities or large amount of atomic service versions 
available.  

The fact that presented method gives always the precise and optimal solution can be used as a 
reference point for developed heuristic algorithms. However, the algorithm uses the data about 
certain atomic services versions quality parameters values, so choosing the best data for the 
algorithm is crucial. Taking the values that are fast-changing will result in larger difference between 
the calculated and real complex service execution time. When the considered quality of service 
parameter values are changing slowly, the algorithm produces the results that are closer to the real 
ones.  

We would like to emphasis that in the specific applications of the graph-fold algorithm other 
set of reduction operations can be used in order to reduce the patterns which appears much more 



often in shorter time. Such a modification can decrease the calculation complexity for the majority 
of considered complex service scenarios. 
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