
Stochastic Performance Analysis and Capacity Planning of
Publish/Subscribe Systems

Arnd Schröter1, Gero Mühl2, Samuel Kounev3, Helge Parzyjegla1, Jan Richling1

1 Communication and Operating Systems Group, Berlin University of Technology, Germany
2 Architecture of Application Systems, University of Rostock, Germany

3 Institute for Program Structures and Data Organization, Karlsruhe Institute of Technology, Germany
{arnd.schroeter,g_muehl,skounev,parzyjegla,richling}@acm.org

ABSTRACT
Publish/subscribe systems are used increasingly often as
a communication mechanism in loosely-coupled distributed
applications. With their gradual adoption in mission critical
areas, it is essential that systems are subjected to a rigorous
performance analysis before they are put into production.
However, existing approaches to performance modeling and
analysis of publish/subscribe systems suffer from many lim-
itations that seriously constrain their practical applicability.
In this paper, we present a set of generalized and comprehen-
sive analytical models of publish/subscribe systems employ-
ing different peer-to-peer and hierarchical routing schemes.
The proposed analytical models address the major limita-
tions underlying existing work in this area and are the first
to consider all major performance-relevant system metrics
including the expected broker and link utilization, the ex-
pected notification delay, the expected time required for new
subscriptions to become fully active, as well as the expected
routing table sizes and message rates. To illustrate our ap-
proach and demonstrate its effectiveness and practicality,
we present a case study showing how our models can be ex-
ploited for capacity planning and performance prediction in
a realistic scenario.

Keywords: Event-based Systems, Publish/Subscribe, Per-
formance Modeling and Prediction

1. INTRODUCTION
Publish/subscribe systems were originally motivated by

the need for loosely-coupled and asynchronous dissemination
of information in distributed event-based applications [19].
With the advent of ambient intelligence and ubiquitous com-
puting, many new applications of publish/subscribe systems
have emerged [12], for example, in the areas of transport
information monitoring [2, 23], event-driven supply chain
management [1, 21], location-based services [6, 9] and ubiq-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DEBS’10, July 12-15, 2010, Cambridge, UK.
Copyright 2010 ACM 978-1-60558-927-5/10/07 ...$10.00.

uitous sensor-rich environments [16, 20]. The main advan-
tage of publish/subscribe is that it makes it possible to de-
couple communicating parties in time, space, and flow [10].

The clients of a publish/subscribe system can take over
the roles of publishers or subscribers depending on whether
they act as producers or consumers of information. Publish-
ers publish information in the form of notifications, while
subscribers express their interest in specific notifications by
issuing subscriptions. Subscriptions are normally defined
as a set of constraints on the type and content of notifica-
tions which are often referred to as filters. A notification
service, interposed between the clients, delivers published
notifications to all subscribers that have issued matching
subscriptions. In many cases, the notification service is im-
plemented by a set of brokers each managing a set of lo-
cal clients. The brokers are connected by overlay links and
a published notification is routed stepwise from the broker
hosting the publisher over intermediate brokers to all bro-
kers that host subscribers with matching subscriptions. To
achieve this, each broker manages a routing table that is
used to forward incoming notifications to neighbor brokers
and local clients. The routing tables are updated according
to a routing algorithm by propagating newly issued or can-
celed subscriptions in the broker network. This information
is included in control messages exchanged by the brokers.

With the increasing popularity of publish/subscribe sys-
tems and their gradual adoption in mission critical areas [12],
performance and scalability issues are becoming a major
concern. System developers and deployers are often faced
with questions such as: What performance would the system
exhibit for a given deployment topology, configuration and
workload scenario? What would be the expected notifica-
tion and subscription delays as well as the utilization of the
various system components (brokers, network links, etc)?
What maximum load (number of publishers and subscribers,
notification publication rates) would the system be able to
handle? What would be the optimal number of brokers and
the optimal system topology? Which components would
be most utilized as the load increases and are they bottle-
necks? To answer such questions, techniques for predicting
the system performance as a function of its configuration
and workload are needed.

Unfortunately, most existing approaches to performance
analysis of publish/subscribe are focused on specific sys-
tem configurations that are evaluated by means of time-
and resource-intensive simulations. Such evaluations are ex-
pensive especially when large-scale systems with multiple

258

alternative configurations and workloads have to be consid-
ered. While a few analytical models of publish/subscribe
systems have been proposed (e.g., [4, 8, 17, 11]), they impose
a number of restrictive assumptions which limit their practi-
cal applicability. Furthermore, most approaches typically do
not consider important performance-relevant system metrics
such as the end-to-end notification and subscription delays,
but instead are focused on lower level metrics such as the
routing table sizes of brokers and their message throughput.

In this paper, we propose a set of generalized analytical
models of publish/subscribe systems that employ peer-to-
peer or hierarchical routing schemes. In contrast to existing
work, the proposed models cover a variety of different rout-
ing algorithms and are thus applicable to a large class of
systems. The models capture the performance-relevant as-
pects of system behavior and can be used to predict the
system performance for a given workload and configuration
scenario. This allows to evaluate trade-offs across multi-
ple scenarios with minimal overhead. The analytical models
proposed in this paper have several novel aspects including:

1. All major performance-relevant system metrics are con-
sidered: the routing table sizes, the message rates, the
expected notification delay, the expected time required
for new subscriptions to become fully active, the ex-
pected broker utilization and the expected utilization
of overlay links and physical links.

2. A variety of different routing algorithms are supported
including simple and identity-based routing, as well as
advanced algorithms, such as covering- and merging-
based routing [16].

3. All routing algorithms are supported in their peer-to-
peer variant in addition to their hierarchical variant.

4. For each broker and physical link, arbitrary service time
distributions of notifications and control messages are
supported. Furthermore, the physical network and its
effect on the traffic generated by the overlay network is
modeled explicitly.

To evaluate our approach in a realistic scenario, we ap-
ply it to a case study of a representative publish/subscribe
system. The case study shows how the proposed modeling
approach allows to analyze the impact of design decisions on
the system performance without the need for expensive and
time-consuming simulations. For example, we show how the
models can be used to determine the optimal number of bro-
kers and their position for a given workload and configura-
tion scenario. Furthermore, we demonstrate how important
insights into the dynamic system behavior can be gained.

The proposed analytical models significantly extend ex-
isting work on modeling of publish/subscribe systems pro-
viding a powerful tool for performance prediction and ca-
pacity planning. At system design time, the models can be
exploited for comparing alternative system designs with dif-
ferent communication and messaging patterns. At system
deployment time, models help to detect system bottlenecks
and to ensure that sufficient resources are allocated to meet
performance and Quality of Service requirements. Finally,
during operation, the models can be exploited to dynami-
cally reconfigure the system adapting its resource allocations
to reflect changes in the workload intensity.

The remainder of the paper is organized as follows: In
Sect. 2, we describe how routing is done in the type of sys-
tems we consider. Section 3 describes our analytical models
in detail and Sect. 4 presents the case study. Section 5 dis-

Figure 1: Overlay and physical network.

cusses several ways in which the proposed models can be
extended. In Sect. 6, related work is reviewed and the pa-
per is wrapped up in Sect. 7.

2. PUBLISH/SUBSCRIBE ROUTING
Routing in publish/subscribe systems takes place on two

levels as depicted in Figure 1. On the upper level, messages
traverse the broker overlay topology based on their content
and the currently active subscriptions. On the lower level,
messages are routed through the physical network between
neighboring brokers in the overlay topology. The physical
network consists of physical routers and links connecting
brokers in the overlay topology. The overlay network is a
logical network whose nodes are the brokers and whose links
are paths in the physical network. When a broker sends a
message to another broker over an overlay link, the message
is injected into the physical network and forwarded step-
wise over physical links and routers to the receiving broker.
Therefore, overlay links sharing physical links or routers also
share their physical bandwidth.

The routing of notifications and subscriptions in the bro-
ker overlay network is done according to a publish/subscribe
routing algorithm. Normally, the overlay topology is re-
quired to be acyclic in order to enable the use of advanced
routing algorithms introduced later. The most basic rout-
ing algorithm is notification flooding, where notifications are
forwarded along all paths in the system reaching all brokers,
whereas subscriptions are never propagated beyond the sub-
scriber hosting brokers. This is in contrast to filtering-based
routing algorithms which propagate subscriptions into the
broker overlay network and forward notifications selectively
utilizing the information about the currently active subscrip-
tions. Filtering-based routing algorithms are available in
two main variants: based on the hierarchical and the peer-
to-peer routing scheme, respectively [7]. A number of spe-
cific routing algorithms are available for both schemes [16].
While the presentation focuses on peer-to-peer routing, the
proposed models are applicable to both routing schemes and
we consider both of them in the presented case study.

2.1 Peer-to-Peer Routing Scheme
With the peer-to-peer routing scheme, brokers are arranged

in an acyclic overlay topology. Please note that “peer-to-
peer” in the context of publish/subscribe systems [7] usually
only means that neighboring brokers are peers in the sense
that they behave symmetrically, which is in contrast to hi-
erarchical routing, where neighboring brokers behave asym-

259

metrically. Whether a peer-to-peer substrate (e.g., Pastry,
or Chord) is used for communication is an orthogonal issue,
but incorporating such a substrate into the models of this
paper would clearly be interesting.

With peer-to-peer routing, subscriptions issued by clients
are propagated into the broker overlay network, and while
being propagated, they establish routing entries which are
stored in the broker routing tables to form the reverse de-
livery paths of notifications from the producers to the sub-
scribers. The propagation of a subscription may be sus-
pended if a point is reached at which the delivery of all noti-
fications matching the subscription is already guaranteed by
another active subscription that has been propagated previ-
ously. If a subscription is revoked by a client, information
about this revocation is propagated in the same way as the
information about new subscriptions.

Notifications published by clients are forwarded in the bro-
ker network using the reverse delivery paths set up by the
subscription propagation process: a notification is forwarded
by a broker to a neighbor broker only if there is a matching
routing entry for this neighbor, representing a client with a
matching subscription in the respective subtopology.

2.2 Hierarchical Routing Scheme
With the hierarchical routing scheme, brokers are arranged

in a tree-based overlay topology, where one of the brokers is
designated as root broker and broker relations are asymmet-
rical: for two adjacent brokers, the broker nearer to the root
broker is called the parent broker of the other broker and
brokers having the same parent broker are called child bro-
kers of the respective broker. These asymmetrical relations
affect subscription and notification forwarding.

With hierarchical routing, subscriptions are propagated
only upwards in the broker tree from the broker hosting the
subscriber towards the root broker. As in the case of peer-to-
peer routing, this is done to form the reverse delivery paths
for matching notifications. To compensate for the fact that
subscriptions are only propagated upwards, notifications are
always propagated all the way up to the root broker. In
addition, notifications are propagated downwards towards
subscribers whenever they meet a matching routing entry on
their way to the root broker. Thus, notifications are filtered
only at one end of an overlay link in contrast to peer-to-peer
routing where they are filtered at both ends.

2.3 Considered Routing Algorithms
We consider several routing algorithms which are each

available for both routing schemes. The algorithms differ
in terms of whether and if yes in which cases the propa-
gation of a subscription is suspended. At this point the
delivery of all notifications matching the subscription is al-
ready guaranteed by other active subscriptions. In the case
of hierarchical routing, the propagation of a subscription to-
wards the root broker is suspended in the above case, while
for peer-to-peer routing, propagation is suspended for indi-
vidual neighbor brokers only.

With simple routing, propagation is never suspended re-
sulting in each subscription always being propagated all the
way up to the root broker, in the case of hierarchical routing,
and being flooded into the broker overlay network, in the
case of peer-to-peer routing. With identity-based routing,
the propagation of a subscription is suspended if a broker is
reached that has already propagated a subscription match-

n

n

n

n

n

n

F

G
F

F

F

G

G F
F

Leaf Broker

B0

Subscriber

Publisher

B2

C2C1 C3

B4B3

B1 B5

Figure 2: Peer-to-peer covering-based routing.

Root Broker

n

n

n

n

n

n

n

G

F

G
F

F

Leaf Broker

B0

Subscriber

Publisher

B2

C2C1 C3

B4B3

B1 B5

Figure 3: Hierarchical covering-based routing.

ing the same set of notifications to its parent broker in the
case of hierarchical routing or to the considered neighbor
broker in the case of peer-to-peer routing. Similarly, with
covering-based routing, the propagation of a subscription is
suspended if a broker is reached that has already propagated
a subscription matching the same set of notifications or a
superset of them. Finally, merging-based routing works like
covering-based routing but additionally supports the merg-
ing of several subscriptions into a single subscription replac-
ing the original subscriptions that is propagated towards the
root broker in the case of hierarchical routing or to the con-
sidered neighbor broker in the case of peer-to-peer routing.

As an example, we describe peer-to-peer and hierarchi-
cal covering-based routing in more detail. We start with
the peer-to-peer variant (Fig. 2): Client C1 subscribes to a
filter F and the subscription is propagated installing corre-
sponding routing entries in the routing tables of all brokers
(depicted as solid arrows). After that, client C2 subscribes to
filter G which matches a subset of the notifications matched
by filter F . The subscription is propagated to B1, where it
meets the already installed routing entry for filter F . Be-
cause of that, G is not forwarded to the neighbor brokers
B0 and B4, but only to B2 installing a routing entry there.
Then, client C3 publishes a notification n matching filter G
(and thus also F). The notification is propagated from B4

to B1 because of the routing entry for filter F . Broker B1

260

forwards this notification to B2 because of the routing entry
for filter F and to B3 due to the entry for filter G. Brokers
B2 and B3 then deliver n to clients C1 and C2, respectively.

The hierarchical variant of covering-based routing (Fig. 3)
differs in that (i) less routing entries are installed because
subscriptions are only propagated upwards and (ii) the no-
tification n is additionally forwarded to the root broker be-
cause notifications are always propagated to the root broker.
In general, hierarchical routing is forwarding more notifica-
tions but requires smaller routing tables and less subscrip-
tion forwarding to update routing tables.

3. ANALYTICAL MODELS
In this section, we present our modeling approach consid-

ering the different routing algorithms discussed in the pre-
vious section. We derive the following performance metrics
of the publish/subscribe system (some of them are related
to the whole system, others to individual brokers and links)
in a step-by-step fashion:

• The routing table sizes (Sect. 3.2) which are a measure
for the matching overhead.

• The message rates (Sect. 3.3) which can be used to
estimate the overall system communication costs.

• The utilization of brokers and links (Sects. 3.4 and. 3.5)
usable to detect performance bottlenecks.

• The notification delay (Sect. 3.6) and the subscription
delay (Sect. 3.7) which are commonly used as Quality
of Service (QoS) metrics in publish/subscribe systems.

In the following, we focus on peer-to-peer routing and de-
scribe later in Sect. 3.8 how to obtain the same results for
hierarchical routing.

3.1 System Model
Before deriving the performance metrics, we describe the

basic system model in the following subsections.

3.1.1 Data and Filter Model
Notifications in publish/subscribe systems are typically

represented as a set of attributes where each attribute is
a name/value pair. One of the attributes is often distin-
guished as notification class. For example, the notifica-
tion {(stock,Foo), (price, 37)}, where stock is the notifica-
tion class, can be used to indicate that a share of the cor-
poration Foo is currently traded at $ 37. Subscriptions are
normally defined as conjunctions of attribute filters, where
each attribute filter places a constraint on the value of a
given attribute. For example, the subscription {stock =
Foo, price > 35} is matched by the above notification. We
use this common model for notifications and subscriptions
but make some restrictions for the sake of compactness of
the presentation. Without loss of generality, we assume that
subscriptions are placed for individual notification classes
only. We also speak of a filter class referring to the set of
all possible subscriptions for a given notification class. In
addition to the notification class, we assume that each no-
tification has a numeric attribute whose value v is a real
number between 0 and 1. A subscription matches notifica-
tions of a single class whose numeric attribute’s value lies
in a given interval [a, b], where a and b are real numbers

and 0 ≤ a ≤ b ≤ 1. We assume that v as well as a and
b are randomly chosen. These assumptions are again made
for compactness of the presentation. As discussed in Sect. 5,
the proposed modeling approach can be extended to support
subscriptions and notifications with multiple additional at-
tributes and other than uniform distributions.

In our model, in the case of simple and covering-based
routing the complete information about a subscription (i.e.,
its class and interval) is propagated in the broker network,
whereas in the case of identity-based routing only the notifi-
cation class is propagated. Thus, in the latter case, routing
is purely class-based. Finally, in the case of merging-based
routing, the notification class is propagated together with
an interval [amin, bmax], where amin and bmax are the min-
imum a and maximum b of all active subscriptions of the
respective filter class in a subtopology. Thus, we investigate
a version of merging-based routing that can be seen as an
extension of class-based identity-based routing.

3.1.2 Client Model
Instead of dealing with clients directly, we assume inde-

pendent arrivals of new subscriptions at the brokers for each
filter class. For simplicity, the subscription interarrival times
are modeled using exponential distributions. The subscrip-
tion lifetimes, on the other hand, can have arbitrary dis-
tributions. We denote with λf (B)−1 the mean interarrival
time and with µf (B)−1 the mean lifetime of subscriptions
at broker B for filter class f . Effectively, this means that
we model the subscription arrivals and departures using a
M/G/∞ queuing system for each broker and filter class. We
denote with ωf (B) the publication rate of broker B for fil-
ter class f . Let B be the set of brokers and F be the set
of filter classes. The overall publication rate ωf for a filter
class f within the whole publish/subscribe system is then
ωf =

∑
B∈B ω

f (B) and the total publication rate ω over all

filter classes is ω =
∑
f∈F ω

f .

3.1.3 Broker Model
Brokers are modeled as M/G/1 queuing systems. For each

broker, we allow to set the service time distributions of no-
tifications and control messages individually for each filter
class. We denote with Sfn(B) and Sfc (B) the service time
distributions of broker B for notifications and control mes-
sages of filter class f , respectively. This basic model for the
service time distributions can easily be extended to include
the matching overhead, which depends on the routing ta-
ble size of the respective broker. This can, e.g., be done by
weighting the service time by the routing table size.

3.1.4 Model for Physical Links and Routers
Physical links and routers are also modeled as M/G/1

queuing systems. For physical links, we additionally intro-
duce the latency δ(l) of link l that occurs in addition to the
queuing delay due to the limited signal propagation speed
and the distance between the connected routers. For routers,
we set δ(l) = 0. There is currently no need to further differ-
entiate between physical links and routers for the purpose
of our analysis because we consider both of them as physi-
cal components that introduce a delay for messages. Thus,
in the rest of the paper we will speak of physical compo-
nents without distinguishing between links and routers. If
a physical component l is part of an overlay link (Bi, Bj),
we denote this by l ∈ (Bi, Bj). Finally, we define Sfn(l) and

261

Sfc (l) as the service time distributions of l for notifications
and control messages of filter class f , respectively.

3.2 Routing Table Sizes
The routing table of a broker consists of local routing en-

tries used to deliver notifications to local subscribers and
remote routing entries used to forward notifications to neigh-
bor brokers along delivery paths. The expected number of
local routing entries at broker B for filter class f is given by:

xfl (B) = λf (B) · µf (B)−1 (1)

Given that client communication is local, the local rout-
ing entries are of minor interest because they do not cause
messages to be sent across the network. We therefore con-
centrate on the remote routing entries.

Let N (B) be the set of all neighbor brokers of a broker B
and let T (Bi, Bj) be the subtopology containing all brokers
that can be reached from a broker Bi via a neighbor bro-
ker Bj including Bj itself. Furthermore, let S(Bi, Bj) =
N (Bj) \ {Bi}. Then, the accumulated number of subscrip-
tions xfa(Bi, Bj) for filter class f in T (Bi, Bj) is:

xfa(Bi, Bj) = xfl (Bj) +
∑

N∈S(Bi,Bj)

xfa(Bj , N) (2)

To calculate the number of remote routing entries xfr (B)
a broker B has for filter class f , we have to take every neigh-
bor N of B into account, where xfr (B,N) is the number of
remote routing entries that broker B has for its neighbor N :

xfr (B) =
∑

N∈N (B)

xfr (B,N) (3)

The probability of having k active subscriptions in the
subtopology T (Bi, Bj) for filter class f is then:

pfk(Bi, Bj) =
e−x

f
a(Bi,Bj)

k!
· xfa(Bi, Bj)

k (4)

Let Efr (k) be the expected number of remote routing en-
tries for filter class f if there are k active subscriptions for
the same filter class in the subtopology T (Bi, Bj). Then,

xfr (Bi, Bj) =

∞∑
k=0

pfk(Bi, Bj) · Efr (k) (5)

Now, we derive Efr (k) for the considered routing algo-
rithms.

Flooding. For flooding, Efr (k) = 0 for all k and therefore
xfr (Bi, Bj) = 0.

Simple Routing. For simple routing Efr (k) = k for all k
implying xfr (Bi, Bj) = xfa(Bi, Bj).

Identity-Based and Merging-Based Routing. With both
routing algorithms, a broker Bi has a single remote routing
entry for its neighbor broker Bj and filter class f if there
is at least one active subscription for this filter class in the
subtopology T (Bi, Bj). Thus, Efr (k) = 0 for k = 0 and

Efr (k) = 1 for k > 0 implying xfr (Bi, Bj) = 1− e−x
f
a(Bi,Bj).

Covering-Based Routing. Here, each remote routing en-
try for a neighbor broker Bj corresponds to a subscription

existing in the subtopology T (Bi, Bj) that is not covered
by any other subscription existing in this subtopology. Let
pfcs(k) be the probability that a subscription for filter class f
is covered by any of k other subscriptions for the same filter
class. Then, Efr (k) = k · (1− pfcs(k − 1)).

We now calculate pfcs(k). The probability that a given
subscription [a, b] for filter class f is covered by another
randomly chosen subscription for the same filter class is
2a · (1− b). Thus, the probability that a given subscription
is not covered by any out of k subscriptions is (1−2a(1−b))k.
The complement of this probability is then the probability
that the subscription is covered by at least one of the k
subscriptions. We have to average this probability by inte-
gration over all a and b since both are chosen randomly:

pfcs(k) = 2 ·
∫ 1

a=0

∫ 1

b=a

1− (1− 2a (1− b))k db da (6)

= 1− 2 ·
k∑
l=0

(−2)l
k!

(k − l)!
l!

(2l + 2)!
(7)

≈ 2

m(m− 1)

m∑
u=1

m−u+1∑
v=1

[
1−

(
1− (u− 1

2
)(v − 1

2
)

m(m− 1)/2

)k]
(8)

While Eq. 7 gives the exact solution, Eq. 8 gives an ap-
proximation derived using numerical integration, which can
be computed more efficiently. In Eq. 8, m is the number of
interpolation points.

3.3 Message Rate
The message rate is defined as the sum of the notification

rate and the control message rate which are now derived.

3.3.1 Notification Rate
Let P fn (Bi, Bj) be the probability that a notification of

filter class f is propagated from a broker Bi to a neighbor
broker Bj . If a notification of filter class f is published at
broker Bi, it is propagated into the subtopology T (Bi, Bj)
causing the following notification traffic:

Efn(Bi, Bj) = P fn (Bi, Bj) +
∑

N∈S(Bi,Bj)

Efn(Bj , N) (9)

The total notification rate generated by a broker B is then:

bfn(B) = ωf (B) ·
∑

N∈N (B)

Efn(B,N) (10)

The total notification rate bfn for filter class f in the whole
system and the total notification rate bn over all filter classes
in the whole system are:

bfn =
∑
B∈B

bfn(B) bn =
∑
f∈F

bfn (11)

Now, we derive P fn (Bi, Bj). Let pfn(k) be the probability
that a notification is forwarded if there are k subscriptions of
the same filter class f in the respective subtopology. Then,

P fn (Bi, Bj) =

∞∑
k=0

pfk(Bi, Bj) · pfn(k) (12)

We now derive pfn(k) for the different routing algorithms.

262

Flooding. Here, pfn(k) = 1 for all k ≥ 0 and therefore
P fn (Bi, Bj) = 1.

Identity-Based Routing. Here, pfn(k) = 0 for k = 0 and

pfn(k) = 1 for k > 0 implying P fn (Bi, Bj) = 1− e−x
f
a(Bi,Bj).

Simple and Covering-Based Routing. pfn(k) does not dif-
fer for simple and covering-based routing since in both cases
a notification is propagated if there is a matching subscrip-
tion in the respective subtopology. The main difference from
identity-based routing here is that both the notification class
and the interval are required to match.

Again, pfn(k) = 0 for k = 0. We now derive pfn(k) for
k > 0. The probability that a point x randomly chosen
from the interval [0, 1] is covered by an interval whose limits
are randomly chosen from [0, 1] is 2 · x(1− x). The prob-
ability that x is not matched by any of k subscriptions is
thus (1− 2 · x(1− x))k. The complement of this probabil-
ity is the probability that a given notification is matched by
at least one of k subscriptions. To obtain the desired result
we have to average this probability by integration over all x
since x is chosen randomly:

pfn(k) =

∫ 1

0

1− (1− 2 · x (1− x))k dx (13)

= 1−
k∑
l=0

(−2)l
k!

(k − l)!
l!

(2l + 1)!
(14)

≈ 1

m

m∑
u=1

[
1−

(
1− (u− 1

2
)(m− u+ 1

2
)

m(m− 1)/2

)k]
(15)

While Eq. 14 gives the exact solution, Eq. 15 gives an ap-
proximation derived using numerical integration using m in-
terpolation points, which can be computed more efficiently.

Merging-Based Routing. Here, a notification of class f
with value v of the numeric attribute is propagated from
broker Bi to Bj if there is (i) a subscription [a1, b1] for the
same filter class in the subtopology T (Bi, Bj) with a1 ≤ v
and (ii) a subscription [a2, b2] for the same filter class with
v ≤ b2. These conditions can also be satisfied by a single
subscription. Hence, pfn(k) = 0 for k = 0. If there are k > 0
subscriptions [al, bl] for a filter class f , then the probability
that the minimum value amin of all al’s equals a is (1−a)2k

and the probability that the maximum value bmax of all bl’s
equals b is b2k. The expected value of amin is amin(k) =∫ 1

0
a ·2k · (1−a)2k−1 da = (2k+1)−1 and the expected value

of bmax is bmax(k) =
∫ 1

0
b ·2k · b2k−1 db = 2k(2k+ 1)−1. The

expected value of bmax − amin is (2k − 1)(2k + 1)−1. Thus,

pfn(k) =
2k − 1

2k + 1
(16)

3.3.2 Control Message Rate
The control message rate bc covers all messages sent in the

system to keep the routing tables up-to-date. Let P fs (Bi, Bj)
be the probability that a subscription is propagated from
broker Bi to a neighbor broker Bj . If a subscription is is-
sued at broker Bi, it is propagated into the subtopology
T (Bi, Bj) causing the following control message traffic:

Efs (Bi, Bj) = P fs (Bi, Bj) +
∑

N∈S(Bi,Bj)

Efs (Bj , N) (17)

The same message traffic is generated when a subscription
is revoked at broker Bi. Thus, the control message rate
generated by a broker B for filter class f is:

bfc (B) = 2 · λf (B) ·
∑

N∈N (B)

Efs (B,N) (18)

The total control message rate bfc for filter class f for the
whole system and total control message rate bc for the whole
system over all filter classes are then:

bfc =
∑
B∈B

bfc (B) bc =
∑
f∈F

bfc (19)

Now, we determine P fs (Bi, Bj). Let pfs (k) be the probabil-
ity that a subscription being issued or revoked is forwarded
if there are currently k other subscriptions for the same filter
class f active in the subtopology T (Bj , Bi). Then,

P fs (Bi, Bj) =

∞∑
k=0

pfk(Bj , Bi) · pfs (k) (20)

Now, we derive pfs (k) for the different routing algorithms.

Flooding. With flooding, a subscription is never propa-
gated. Hence, ∀k : pfs (k) = 0 and, thus, P fs (Bi, Bj) = 0.

Simple Routing. With simple routing, a subscription is-
sued or revoked is always propagated as a control message
regardless how many other subscriptions are active in the
subtopology T (Bj , Bi). Hence, pfs (k) = 1 for all k and,
therefore, P fs (Bi, Bj) = 1.

Identity-Based Routing. With identity-based routing, a
subscription issued or revoked leads to a control message
propagated by broker Bi to its neighbor broker Bj if there is
no other subscription for the same filter class in the subtopol-
ogy T (Bj , Bi). Hence, pfs (k) = 1 for k = 0 and pfs (k) = 0

for k > 0 implying P fs (Bi, Bj) = e−x
f
a(Bj ,Bi).

Covering-Based Routing. With covering-based routing, a
subscription issued or revoked leads to a control message
propagated by broker Bi to its neighbor broker Bj if this
subscription is not covered by any existing subscription in
the subtopology T (Bj , Bi). Thus, pfs (k) = 1− pfcs(k).

Merging-Based Routing. Here, a newly issued or canceled
subscription for filter class f and interval [a, b] at broker Bi
causes a control message to be propagated to broker Bj if a is
smaller than the current amin or b is greater than the current
bmax. The probability for the former is amin(k), for the
latter it is 1−bmax(k) provided that there are k subscriptions
for filter class f active in the subtopology T (Bj , Bi). Thus,
pfs (k) = 1− [(1− amin) · bmax] = (4k + 1)/(2k + 1)2.

3.4 Performance Metrics for Brokers
In this section, we determine performance metrics for in-

dividual brokers including the expected broker traffic and
broker utilization as well as the expected message delay.

3.4.1 Broker Traffic
The broker traffic consists of two parts: (a) traffic caused

by notifications and (b) control traffic caused by control mes-

263

sages as well as local subscriptions and unsubscriptions. The
the overall traffic is then the sum of these two parts.

Notification Traffic. The notification traffic on a broker B
for filter class f consists of the notifications published by its
local clients and those received from its neighbor brokers:

νfn(B) = ωf (B) +
∑

N∈N (B)

νfn(N,B) (21)

The notification traffic νfn(Bi, Bj) for filter class f that
broker Bi forwards to Bj is:

νfn(Bi, Bj) = P fn (Bi, Bj) · ωfa(Bj , Bi) (22)

where ωfa(Bj , Bi) is the accumulated publication rate for
filter class f in the subtopology T (Bj , Bi):

ωfa(Bj , Bi) = ωf (Bi) +
∑

N∈S(Bj ,Bi)

ωfa(Bi, N) (23)

Control Traffic. The control traffic on a broker B consists
of the local subscriptions and unsubscriptions as well as the
control messages received from its neighbor brokers:

νfc (B) = 2 · λf (B) +
∑

N∈N (B)

νfc (N,B) (24)

The control traffic νfc (Bi, Bj) for filter class f that broker
Bi sends to Bj is:

νfc (Bi, Bj) = 2 · P fs (Bi, Bj) · λfa(Bj , Bi) (25)

where λfa(Bj , Bi) is the accumulated arrival rate of sub-
scriptions of filter class f in the subtopology T (Bj , Bi):

λfa(Bj , Bi) = λf (Bi) +
∑

N∈S(Bj ,Bi)

λfa(Bi, N) (26)

Overall Broker Traffic. The overall broker traffic is then:

ν(B) =
∑
f∈F

(
νfn(B) + νfc (B)

)
(27)

3.4.2 Broker Utilization
The overall utilization of broker B is caused by the noti-

fications and control messages of all filter classes:

U(B) =
∑
f∈F

(
νfn(B) · E[Sfn(B)] + νfc (B) · E[Sfc (B)]

)
(28)

where E[Sfn(B)] and E[Sfc (B)] denote the expected values
of the service time distributions for notifications and control
messages of broker B. Note that if U(B) > 1 for some
broker, the system is overloaded and not in a steady state.

3.4.3 Broker Delay
Modeling the brokers with M/G/1 queues, we can approx-

imate the mean waiting time W (B) of a message at broker B
using the Pollaczek-Khinchin mean value formula [13]:

W (B) =
ν(B) · E[S(B)2]

2(1− U(B))
(29)

In the equation above, E[S(B)2] is the second moment
of the averaged service time distribution S(B) of broker B.

S(B) can be derived by combining the individual Sfn(B) and
Sfc (B) weighted by their relative shares of the overall traffic,
i.e., νfn(B)/ν(B) and νfc (B)/ν(B), respectively.

The approximated expected delay for a notificationDf
n(B)

and for a control message Df
c (B) of filter class f at broker

B is then given by:

Df
n(B) = W (B) + E[Sfn(B)] (30)

Df
c (B) = W (B) + E[Sfc (B)] (31)

Since we can use any service time distribution as long
as its second moment E[S2(B)] and the expected process-
ing times E[Sfn(B)] and E[Sfc (B)] can be computed, we are
able to model graduated broker delays for the different mes-
sage types. For example, we could use a hyper-exponential
service time distribution consisting of two exponential distri-
butions per filter class, one for the notifications and another
for the control messages of each filter class.

3.5 Performance Metrics for Links
We now turn to performance metrics for physical links and

overlay links. First, we determine the traffic on overlay links.
After that, we derive the utilization of physical links and
routers as well as the message delays they introduce. Finally,
we derive the utilization and message delay of overlay links.

3.5.1 Overlay Link Traffic
The traffic on overlay link (Bi, Bj) is the notification and

control message flow of filter class f from Bi to Bj :

νf (Bi, Bj) = νfn(Bi, Bj) + νfc (Bi, Bj) (32)

3.5.2 Traffic, Utilization and Delay of Physical Links
and Routers

An overlay link (Bi, Bj) connects two brokers in the over-
lay topology by a path in the underlying physical network
consisting of physical links and routers. The overall traffic
per filter class νf (l) and the overall traffic ν(l) on a physical
component l is then:

νf (l) =
∑

l∈(Bi,Bj)

νf (Bi, Bj) ν(l) =
∑
f∈F

νf (l) (33)

The notification and subscription traffic νfn(l) and νfc (l)
can be determined using Eq. 33 by considering only νfn(Bi, Bj)
and νfc (Bi, Bj), respectively.

The utilization U(l) of component l is (cf. Eq. 28):

U(l) =
∑
f∈F

(
νfn(l) · E[Sfn(l)] + νfc (l) · E[Sfc (l)]

)
(34)

Note that if U(l) > 1 for some physical component, the
system is overloaded and not in a steady state. We can
approximate the mean waiting time W (l) of a message at
component l with (cf. Eq. 29):

W (l) =
ν(l) · E[S(l)2]

2(1− U(l))
(35)

The approximated expected delay for a notification Df
n(l)

and for a control messageDf
c (l) of filter class f at component

l is then given by (cf. Eqs. 30 and 31):

Df
n(l) = W (l) + E[Sfn(l)] + δ(l) (36)

Df
c (l) = W (l) + E[Sfc (l)] + δ(l) (37)

264

3.5.3 Overlay Link Delay
We now derive the expected delay Df

n(Bi, Bj) of a no-
tification and the expected delay Df

c (Bi, Bj) of a control
message of filter class f at overlay link (Bi, Bj) by adding
up the delays at its constituting physical components:

Df
n(Bi, Bj) =

∑
l∈(Bi,Bj)

Df
n(l) (38)

Df
c (Bi, Bj) =

∑
l∈(Bi,Bj)

Df
c (l) (39)

The derived delays for the overlay links are used to calcu-
late the notification delay as well as the subscription delay
in the next two subsections.

3.6 Notification Delay
A notification published at some broker is forwarded step-

wise through intermediate brokers until it reaches all brokers
that have a local client with a matching subscription. The
delay of a notification is the time between its publication at
the initial broker and its latest delivery to one of the desti-
nation brokers. To determine the expected delay of a noti-
fication, the expected delays of the brokers and links on the
delivery paths are not sufficient because the expected value
of the maximum of a set of random variables is higher than
the expected values of each random variable. In order to de-
rive the expected notification delay, the probability density
functions of the delays of all links and brokers would have
to be used. For simplicity, we focus on deriving the expected
notification delay for the worst delivery path.

In the following, we recursively derive the expected worst-
path delay of a broker for a given filter class. We first cal-
culate the delay excluding the publishing broker Bi for the
delivery paths going through its neighbor broker Bj . As a
next forwarding step, the neighbor broker N of Bj is chosen
that maximizes the delay for this filter class considering all
neighbor brokers to which notifications of the filter class are
potentially forwarded (i.e., P fn (Bj , N) > 0):

∆f
n(Bi, Bj) = Df

n(Bi, Bj) +Df
n(Bj) +

max
N∈S(Bi,Bj):P

f
n (Bj ,N)>0

∆f
n(Bj , N) (40)

The expected worst-path notification delay ∆f
n(B) for bro-

ker B and filter class f is then given by:

∆f
n(B) = Df

n(B) + max
N∈N (B)

∆f
n(B,N) (41)

To derive a global measure, we determine the filter class
generating the highest delay at some broker B that has a
local publisher of this filter class (i.e., ωf (B) > 0):

∆n = max
f∈F

[
max

B∈B:ωf (B)>0
∆f
n(B)

]
(42)

3.7 Subscription Delay
A subscription issued at some broker is propagated step-

wise through the broker overlay network until it reaches
other subscriptions that suspend its further propagation or
until a leaf broker is reached. The delay of a subscription

is the time between its issuing and the end of its propa-
gation, i.e., the latest time a broker decides to not prop-
agate the subscription further. Similar to the notification
delay, we also derive the expected subscription delay for the
worst forwarding path. This measure can again be calculated
based on the expected delays of brokers and links. We re-
cursively sum up the maximum delays of links and brokers if
there is a non-zero subscription forwarding probability (i.e.,
P fs (Bj , N) > 0):

∆f
s (Bi, Bj) = Df

c (Bi, Bj) +Df
c (Bj) +

max
N∈S(Bi,Bj)}:P

f
s (Bj ,N)>0

∆f
s (Bj , N) (43)

The expected worst path subscription delay ∆f
s (B) for

broker B and filter class f is then given by:

∆f
s (B) = Df

c (B) + max
N∈N (B)

∆f
s (B,N) (44)

To derive a global measure, we determine the filter class
generating the highest delay at some broker B that may
issue a subscription of this filter class (i.e., λf (B) > 0):

∆s = max
f∈F

[
max

B∈B:λf (B)>0
∆f
s (B)

]
(45)

Both delays ∆n and ∆s are major performance metrics
for publish/subscribe systems which are also used in the
case study presented in Sec. 4.

3.8 Hierarchical Routing
Up to now, we concentrated on peer-to-peer routing. In

order to derive the performance metrics for hierarchical rout-
ing, the forwarding of subscriptions has to be restricted such
that subscriptions are only forwarded upwards in the broker
tree (cf. change 1 below) and the forwarding of notifications
has to be extended such that notifications are always prop-
agated towards the root broker (cf. change 2 below). Fur-
thermore, since subscriptions are not propagated downwards
in the broker tree, only subscriptions originating in the sub-
tree rooted at a broker can influence the routing tables, and,
thus, also the subscription forwarding probabilities of this
broker (cf. change 3 below). A consequence of this is, for
example, that a broker has only remote routing entries for
its child brokers but no entries for its parent broker. Incor-
porating these three changes into the equations presented is
rather simple:

• Change 1: P fs (Bi, Bj) is defined as before, but de-
fined to be 0 if Bj is not the parent broker of Bi.

• Change 2: P fn (Bi, Bj) is defined as before, but de-
fined to be equal to 1 if Bj is the parent of Bi.

• Change 3: xfa(Bi, Bj) is defined as before, but defined
to be 0 if Bj is the parent broker of Bi.

4. CASE STUDY
To validate our approach and demonstrate its effective-

ness in a realistic scenario, we now present a case study of a
representative publish/subscribe system. We consider a sce-
nario in which a company that operates world-wide needs to
exchange data (e.g., stock quotes, trade orders, and business
news) with its customers and field staff in an efficient and

265

timely manner. The company’s activities are divided into
different areas (e.g., countries) where each area runs some
regional offices that may host publish/subscribe brokers. In
order to plan the capacity of the system, the company needs
to know the optimal number of brokers and their placement
in the network, as well as the resulting utilization of links
and brokers, and the expected system performance in terms
of end-to-end notification and subscription delays.

A scenario is defined by a static and a dynamic part. The
static part represents parameters that are usually fixed in
reality and includes the network topology as well as the po-
sitions of clients and company offices that may host brokers.
The dynamic part is used to describe concrete use cases and
workloads characterized by message traffic and the locality
of subscriptions and notifications.

The physical topology is created with 5 domains (repre-
senting the areas) and about 1000 routers (possible locations
of clients) using the Brite [15] topology generator. To derive
an Internet-like topology, the transit-stub model is applied.
The capacity of the physical links varies between 30 000 and
60 000 messages per second, and the capacity of physical
routers is set to 250 000 messages per second. Within this
topology, 100 clients (representing customers and field staff
that produce and consume notifications) are positioned by
attaching them to randomly chosen routers in the physi-
cal topology. Next, two special locations per domain are
selected that represent the company’s regional offices that
may be used to host a broker. For a given broker place-
ment using some or all of these locations, each broker has
a capacity of 1400 messages per second and is connected to
the other brokers by a minimum spanning tree based on the
distance in the physical topology measured in hops. The
clients are connected to the nearest broker.

On top of this static setting a concrete scenario is de-
scribed by a number of active subscriptions Ns in the sys-
tem with an exponentially distributed expected lifetime of
60s, a notification rate ω and a locality measure L described
below. The service times for processing messages at the
brokers are equally distributed and have an exponential dis-
tribution independent of the message type. Each subscrip-
tion and notification is assigned to one of 500 different fil-
ter classes. Regarding locality, each class has a randomly
chosen hot spot domain in which a fraction L of its notifi-
cations are produced and a fraction L of its subscriptions
originate from clients within that domain. The remaining
subscriptions/notifications are uniformly distributed among
the other four domains.

Capacity Planning.
Given such a scenario description defined by a physical

network topology, the possible broker positions, and a work-
load specification, capacity planning aims at answering the
question where to best place how many brokers using which
routing algorithm in order to minimize the average notifica-
tion delay. Regarding our company example, there are ten
possible broker positions (two in each of the five domains)
leading to 210 − 1 = 1023 different broker placements for
which each of the seven individual routing algorithms has
to be investigated. Thus, even this small-sized example fi-
nally leads to 7161 cases to be considered for just a single
workload specification.

Up to now, discrete event simulation was the only viable
approach to evaluate these scenarios and derive estimations

0.001

0.002

0.003

0.004

0.005

0 50000 100000 150000 200000 250000 300000

N
ot
ifi
ca
ti
on

d
el
ay

∆
n
[s
]

Number of subscriptions in the system Ns

Optimized configuration (625, H-MBR)
All brokers (1023, P2P CBR)

Best 1 br./dom. (425, H-MBR)
Worst 1 br./dom. (598, H-MBR)

Figure 4: Expected worst-path notification delay of
different broker placements & routing configurations

for the traffic rates, message delays, and routing table sizes
in advance. However, as simulation is costly in terms of
computation time and memory requirements, one usually
restricts the number of considered cases drastically by, e.g.,
adding further placement constraints and/or preselecting
the routing algorithm. Thus, a manageable, conventional
simulation strategy would be to place exactly one broker
per domain (maybe evaluating all 32 permutations) and to
compare the obtained results to a complete placement with
all ten brokers.

Leveraging the stochastic analysis derived in this paper,
however, we are able to cover a much larger parameter space.
In fact, it becomes possible to solve this optimization prob-
lem by conducting an extensive search with justifiable re-
sources in terms of computing power and time. For the
company scenario with 50, 000 active subscriptions and a lo-
cality of 0.8, we determined the optimal broker placement
and best routing configuration within minutes. The results
are shown in Fig. 4. The best solution leads to an expected
notification delay of 1.8 ms, employs hierarchical merging-
based routing and uses five brokers which are not equally dis-
tributed over the domains: one domain has two, another has
none, while the others have one. In reality, this means that
some company offices have a bad connectivity within their
domain while offices in neighbor domains are better con-
nected. In the restricted simulation setup described above,
this case would not be evaluated at all. Furthermore, if con-
sidering all 32 configurations with exactly one broker per
domain the results vary between 2 ms and 7 ms for the best
(topology 425) and the worst case (topology 598). Thus,
getting a good candidate randomly is quite unlikely.

Scalability.
Usually, parameters such as load and locality are esti-

mated based on previous experience or expectations and are
therefore subject to errors. This leads to systems facing
workloads beyond the workload intensities for which they
have been optimized. Therefore, it is necessary to investi-
gate how scalable the derived configurations are. To illus-
trate this problem, in Fig. 4, we varied the load from zero to
300, 000 active subscriptions to study the impact on the dif-
ferent configurations including the optimal one. Obviously,
the optimal configuration does not scale well and saturates
for higher loads. On the other hand, configuration 425 is

266

less sensitive for an increasing number of subscriptions and
should be preferred although the delay for the optimization
point is marginally higher. However, the best scalability is
provided by a complete 10 broker topology, but with a signif-
icantly higher average delay. This example shows the need
for a comprehensive system analysis that is hard to achieve
with simulation-based approaches.

Contrary to discrete event simulation, our analytical ap-
proach is especially efficient for higher subscription and noti-
fication rates making such scalability evaluations very cheap.
This is due to the fact that our approach does not need to
deal with each message separately and its computational
time does not depend on the message load. Fig. 5 shows
the relative execution times of our analysis compared to the
runtime of a corresponding discrete event simulation in re-
lation to the number of subscriptions. One can see that
for approximately 60, 000 active subscriptions the complete
evaluation of all 1023 possible broker placements is as costly
as one simulation run for one placement.

1000

2000

3000

4000

0 50000 100000 150000 200000 250000 300000

T
im

e
fa
ct
or

Number of subscriptions in the system Ns

Figure 5: Runtime: simulation vs. analysis

We compared the results to those gathered by a discrete
event simulation. Since we did not vary any model assump-
tions and only used the M/M/1 model for links and brokers
in the case study, all simulation results eventually converge
to the analytical results gained using our model with an in-
creasing number of simulation runs and a longer simulation
time, respectively.

Advanced Evaluations.
Beside capacity planning for concrete workload scenarios,

our approach allows to gain further insights into the behavior
of the publish/subscribe system without expensive simula-
tion runs. In the considered setting, we were able to make
several important observations described in the following.

First, we considered the selection of an optimal routing
algorithm for a given subscription load. We derived the op-
timal (with respect to minimizing the maximum expected
notification delay) routing algorithm for each of the 1023
broker placements, four different localities (0.2, 0.4, 0.6 and
0.8) and a subscription load varying from 10 to 700, 000
subscriptions in the system. Fig. 6 shows the distribution of
the four routing algorithms hierarchical covering-based (H-
CBR), hierarchical merging-based (H-MBR), peer-to-peer
covering-based (P2P-CBR) and peer-to-peer merging-based
(P2P-MBR) in a way that the numbers represent the frac-
tion of cases where the appropriate algorithm is optimal.
It is easy to see that peer-to-peer merging-based routing
is optimal for low load, hierarchical covering-based routing
for medium load and hierarchical merging-based routing for
high load. For the given setting, this insight might help to
optimize the system behavior in case of only vague knowl-

0

0.2

0.4

0.6

0.8

1

10 100 1000 10000 100000 700000

R
el
at
iv
e
sh
ar
e

Number of subscriptions in the system Ns

H-CBR
H-MBR

P2P-CBR
P2P-MBR

Figure 6: Optimal routing algorithms and load

edge on expected load.
Second, we analyzed the impact of locality. Fig. 7 shows

the distribution of optimal routing algorithms for different
localities based on the experiment described above (with
load and locality exchanged so that each data points repre-
sents results from evaluating 1023 broker placements with
varying load). Here, we see that both types of merging-
based routing profit from high locality while for hierarchi-
cal covering-based routing the opposite effect can be seen.
Furthermore, in our setting locality seems to influence the
selection of the optimal routing algorithm much less than it
is influenced by the number of subscriptions.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.2 0.3 0.4 0.5 0.6 0.7 0.8

R
el
at
iv
e
sh
ar
e

Locality L

H-CBR
H-MBR

P2P-CBR
P2P-MBR

Figure 7: Optimal routing algorithms and locality

The described insights are just two examples of how the
proposed stochastic modeling approach allows to analyze the
impact of design decisions on the system performance with-
out the need for expensive and time consuming simulations.

5. FUTURE DIRECTIONS
As part of our future work, we plan to conduct case stud-

ies with real-world applications and workloads in order to
evaluate the effectiveness of our modeling approach in real-
life settings. The validity of the assumptions underlying the
proposed models will be evaluated as well as the applicability
of the models in cases where the assumptions are violated.
To improve the representativeness of the models, we intend
to refine and extend them along several different directions.

267

One major extension would be to introduce a more pow-
erful client behavior model. The presented model can be
extended to support notifications with several attributes as
well as subscriptions constraining several notification at-
tributes conjunctively using different operators. Also non-
uniform value distributions and other value ranges are pos-
sible. The necessary changes only affect the derivation of
the forwarding probabilities of notifications and subscrip-
tions which must be adapted appropriately. We also intend
to extend the broker behavior model. More specifically, we
plan to derive the service time for notifications depending on
the routing tables size and the applied matching algorithm
(e.g., brute force, predicate counting). Similarly, the service
time for control messages will be calculated depending on
the routing tables sizes and the applied routing algorithm.

We also plan to consider correlated client behavior, where
the arrival processes of subscriptions and notifications are no
longer assumed to be independent. Currently, we can cap-
ture correlated behavior only partially by considering equiv-
alent quasi-stationary settings. For example, if notifications
A and B are expected to be published once an hour and 600
times an hour, but all occurrences of B directly follow that
of A within ten minutes, we can capture this situation by
setting the publications rate of B to 1s−1 instead of (6s)−1.

Furthermore, we will investigate different variants of noti-
fication and subscription delays and their potential approxi-
mations in addition to those presented in Sects. 3.6 and 3.7.
Our goal is to find an approximation which is rather easily
computable but still allows to predict the behavior of the
system precisely enough.

Finally, the models will be extended to support more so-
phisticated routing algorithms, like hybrid routing [22] or
algorithms based on advertisements. While hybrid rout-
ing allows to apply different routing algorithms for differ-
ent overlay links in the same publish/subscribe topology,
advertisements allow the propagation of subscriptions to be
restricted to those parts of the overlay network where match-
ing notifications can potentially be produced.

6. RELATED WORK
Castelli et al. [8] present an analytical model of publish/

subscribe systems. The authors provide closed form ana-
lytical expressions for the overall network traffic required
to disseminate subscriptions and propagate notifications, as
well as for the message forwarding load on individual system
nodes. However, the model, at least in its presented form,
assumes that subscribers and publishers are uniformly dis-
tributed over a balanced tree in which each inner node has
the same number of children.

Mühl et al. [17] present an approach to stochastic analysis
of publish/subscribe systems employing identity-based hier-
archical routing. While this work has a similar direction, it
only considers routing table sizes and message rates as met-
rics and does not consider peer-to-peer routing. Moreover,
it does not deal with the more advanced routing algorithms
such as covering-based and merging-based routing, and the
proposed models require more restrictive assumptions such
as identical processing costs for all notification and control
messages. Finally, the physical network and its effect on the
traffic generated by the overlay network is not captured.

Bricconi et al. [5] present a model of the Jedi publish/
subscribe system that is mainly used to calculate the number
of notifications received by each broker using a uniform dis-

tribution of subscriptions. To model the multicast commu-
nication, the authors introduce a spreading coefficient which
models the probability that a broker at a given hop-distance
from the publishing broker receives a published notification.

Baldoni et al. [3, 4] propose an analytical model of dis-
tributed computation based on a publish/subscribe system.
The system is abstracted through two delays, namely the
subscription/unsubscription delay and the diffusion delay
which are assumed to be known. However, the proposed
model is only used to calculate the number of notifications
missed by subscribers due to high network delays. Perfor-
mance metrics such as notification delays and broker utiliza-
tion are not considered.

A basic high-level cost model of publish/subscribe systems
in mobile Grid environments is presented by Oh et al. [18].
This model, however, does not provide much insight into the
behavior of the system since it is based on the assumption
that the publish/subscribe cost and time delay per notifi-
cation are known. He et al. [11] use probabilistic model
checking techniques and stochastic models to analyze pub-
lish/subscribe systems. The communication infrastructure
(i.e., the transmission channels and the publish/subscribe
middleware) are modeled by means of probabilistic timed
automata. The analysis considers the probability of mes-
sage loss, the average time taken to complete a task and the
optimal message buffer sizes. However, distributed broker
topologies are not considered.

Kounev et al. [14] present a methodology for workload
characterization and performance modeling of distributed
event-based systems. A workload model of a generic system
is developed and analytical analysis techniques are used to
characterize the system traffic and to estimate the mean no-
tification delivery latency. For more accurate performance
prediction queuing Petri net models are used. While this
technique is applicable to a wide range of systems, it re-
lies on monitoring data obtained from the system and it is
therefore only applicable if the system is available for test-
ing. Furthermore, for systems of realistic size and complex-
ity, the queuing Petri net models would not be analytically
tractable and thus one would have to resort to simulation.

7. CONCLUSIONS
In this paper, we presented a set of analytical models

for stochastic performance analysis of publish/subscribe sys-
tems. The work presented here extends existing work on
modeling of publish/subscribe systems in several important
aspects: (a) all major performance-relevant metrics of pub-
lish/subscribe systems are considered, (b) a large variety of
different peer-to-peer and hierarchical content-based rout-
ing algorithms is supported, (c) the proposed models cover
a wider range of systems and can be used for comprehensive
analysis. We presented a case study of a representative pub-
lish/subscribe system demonstrating the effectiveness and
practicality of the modeling approach. The proposed mod-
els can be used to identify and eliminate performance bot-
tlenecks before a system is deployed as well as for sizing and
capacity planning. Moreover, the ability to predict the sys-
tem performance is important to ensure that applications
meet their Quality of Service requirements. Finally, per-
formance prediction helps to optimize a publish/subscribe
system and find an optimal broker overlay topology.

268

8. REFERENCES
[1] J. Abbott, K. B. Manrodt, and P. Moore. From

Visibility to Action: Year 2004 Report on Trends and
Issues in Logistics and Transportation. Technical
report, March 2005.

[2] J. Bacon, A. Beresford, D. Evans, D. Ingram,
N. Trigoni, A. Guitton, and A. Skordylis. TIME: An
open platform for capturing, processing and delivering
transport-related data. In Proc. of the 5th IEEE
Consumer Comm. and Netw. Conf. (CCNC), pages
687–691, 2008.

[3] R. Baldoni, R. Beraldi, S. T. Piergiovanni, and
A. Virgillito. Measuring notification loss in
publish/subscribe communication systems. In Proc. of
10th IEEE Pacific Rim International Symposium on
Dependable Computing, pages 84–93, 2004.

[4] R. Baldoni, R. Beraldi, S. T. Piergiovanni, and
A. Virgillito. On the modelling of publish/subscribe
communication systems. Concur. and Comput.: Pract.
and Exper., 17(12):1471–1495, Oct. 2005.

[5] G. Bricconi, E. D. Nitto, and E. Tracanella. Issues in
analyzing the behavior of event dispatching systems.
In Proc. of 10th Intl. Workshop on Software
Specification and Design, pages 95–103, 2000.

[6] I. Burcea and H.-A. Jacobsen. L-ToPSS –
Push-oriented location-based services. In Proc. of the
4th VLDB Workshop on Techn. for E-Services, pages
131–142, 2003.

[7] A. Carzaniga. Architectures for an Event Notification
Service Scalable to Wide-area Networks. PhD thesis,
Politecnico di Milano, Milano, Italy, Dec. 1998.

[8] S. Castelli, P. Costa, and G. P. Picco. Modeling the
communication costs of content-based routing: The
case of subscription forwarding. In Proc. of the
Inaugural Conference on Distributed Event-Based
Systems (DEBS’07), pages 38–49, June 2007.

[9] G. Cugola and J. E. M. de Cote. On introducing
location awareness in publish-subscribe middleware. In
25th IEEE Intl. Conf. on Distributed Computing
Systems Workshops, pages 377–382, 2005.

[10] P. Eugster, P. Felber, R. Guerraoui, and A.-M.
Kermarrec. The many faces of publish/subscribe.
ACM Computing Surveys, 35(2):114–131, 2003.

[11] F. He, L. Baresi, C. Ghezzi, and P. Spoletini. Formal
analysis of publish-subscribe systems by probabilistic
timed automata. In 27th IFIP WG 6.1 Intl. Conf. on
Formal Techniques for Networked and Distributed
Systems, volume 4574 of LNCS, pages 247–262, 2007.

[12] A. Hinze, K. Sachs, and A. Buchmann. Event-based
applications and enabling technologies (keynote). In
Proc. of DEBS 2009, July 2009.

[13] L. Kleinrock. Queuing Systems; Theory, volume 1.
John Wiley and Sons, New York, 1975.

[14] S. Kounev, K. Sachs, J. Bacon, and A. Buchmann. A
methodology for performance modeling of distributed
event-based systems. In Proc. of the 11th IEEE Intl.
Symposium on Object/Component/Service-oriented
Real-time Distributed Computing, pages 13–22, May
2008.

[15] A. Medina, A. Lakhina, I. Matta, and J. Byers.
BRITE: An approach to universal topology generation.
In Proceedings of the International Workshop on
Modeling, Analysis and Simulation of Computer and
Telecommunications Systems (MASCOTS’01), pages
346–353. IEEE Computer Society, Aug. 2001.

[16] G. Mühl, L. Fiege, and P. Pietzuch. Distributed
Event-Based Systems. Springer-Verlag, July 2006.

[17] G. Mühl, A. Schröter, H. Parzyjegla, S. Kounev, and
J. Richling. Stochastic analysis of hierarchical
publish/subscribe systems. In Proceedings of the 15th
European Conference on Parallel Processing
(Euro-Par 2009), LNCS. Springer Verlag, Aug. 2009.

[18] S. Oh, S. L. Pallickara, S. H. Ko, J. H. Kim, and
G. Fox. Cost model and adaptive scheme for
publish/subscribe systems on mobile grid
environments. In 5th Intl. Conf. on Computational
Science, volume 3516 of LNCS, pages 275–278, 2005.

[19] B. Oki, M. Pfluegl, A. Siegel, and D. Skeen. The
information bus: an architecture for extensible
distributed systems. In SOSP ’93: Proceedings of the
fourteenth ACM symposium on Operating systems
principles, pages 58–68, New York, NY, USA, 1993.
ACM.

[20] P. R. Pietzuch. Hermes: A Scalable Event-Based
Middleware. PhD thesis, Computer Laboratory,
University of Cambridge, February 2004.

[21] K. Sachs, S. Kounev, J. Bacon, and A. Buchmann.
Performance evaluation of message-oriented
middleware using the SPECjms2007 benchmark.
Performance Evaluation, 66:410–434, Aug. 2009.

[22] A. Schröter, D. Graff, G. Mühl, J. Richling, and
H. Parzyjegla. Self-optimizing hybrid routing in
publish/subscribe systems. In C. Bartolini and L. P.
Gaspary, editors, 20th IFIP/IEEE International
Workshop on Distributed Systems: Operations and
Management (DSOM 2009), volume 5841 of LNCS,
pages 111–122, Berlin, Germany, Oct. 2009.
Springer-Verlag.

[23] T. Sivaharan, G. S. Blair, and G. Coulson. GREEN: A
Configurable and Re-configurable Publish-Subscribe
Middleware for Pervasive Computing. In OTM
Conf. (1), volume 3760 of LNCS, pages 732–749, 2005.

269

	Introduction
	Publish/Subscribe Routing
	Peer-to-Peer Routing Scheme
	Hierarchical Routing Scheme
	Considered Routing Algorithms

	Analytical Models
	System Model
	Data and Filter Model
	Client Model
	Broker Model
	Model for Physical Links and Routers

	Routing Table Sizes
	Message Rate
	Notification Rate
	Control Message Rate

	Performance Metrics for Brokers
	Broker Traffic
	Broker Utilization
	Broker Delay

	Performance Metrics for Links
	Overlay Link Traffic
	Traffic, Utilization and Delay of Physical Links and Routers
	Overlay Link Delay

	Notification Delay
	Subscription Delay
	Hierarchical Routing

	Case Study
	Future Directions
	Related Work
	Conclusions
	References

