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Abstract. Due to the increasing size of today’s data centers as well as
the expectation of 24/7 availability, the complexity in the administration
of hardware continuously increases. Techniques as the Self-Monitoring,
Analysis, and Reporting Technology (S.M.A.R.T.) support the monitor-
ing of the hardware. However, those techniques often lack algorithms for
intelligent data analytics. Especially, the integration of machine learning
to identify potential failures in advance seems to be promising to reduce
administration overhead. In this work, we present three machine learning
approaches to (i) identify imminent failures, (ii) predict time windows
for failures, as well as (iii) predict the exact time-to-failure. In a case
study with real data from 369 hard disks, we achieve an F1-score of up
to 98.0% and 97.6% for predicting potential failures with two or mul-
tiple time windows, respectively, and a hit rate of 84.9% (with a mean
absolute error of 4.5 hours) for predicting the time-to-failure.

Keywords: Failure prediction · S.M.A.R.T. · Machine learning · Label-
ing methods · Classification · Regression · Cloud Computing.

1 Introduction

Large IT companies like Google, Amazon, Microsoft, and IBM have millions
of servers worldwide. The administration of those servers is an expensive and
time-consuming task. Especially unexpected crashes of servers, e.g., due to hard
disk failures, can result in unavailable services and data loss. Hence, hardware is
usually equipped with data collection mechanisms to observe the current state.

One such example is the Self-Monitoring, Analysis, and Reporting Tech-
nology (S.M.A.R.T.) [21]. This technology uses sensors to gather information
about the current state of hard disk drives (HDDs) and solid-state drives (SSDs).
S.M.A.R.T. also provides an overview of the current state of the drives includ-
ing vendor-specific thresholds that indicate a current malfunction. However, it
misses intelligent analysis and linking of the different parameters. Especially, pre-
dictive analytics would help to identify potential faults or crashes in advance,
can eliminate delays resulting from unexpected issues and, thus, increase relia-
bility in Cloud Computing. Further, as it enables warning ahead of a failure, it
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can support administration, e.g., it offers the potential to guarantee the presence
of a backup of the data and the availability of a substitute device.

In this paper, we provide three machine learning based approaches to predict
disk failures in advance. Leveraging this method, data center providers can iden-
tify their disk drives with imminent failures at an early stage and replace them
to avoid unexpected downtime and data loss. Our contributions are threefold:

– A comparison of data preparation steps for binary classification of disk fail-
ures in near future.

– A random forest approach for predicting the time window of a disk failure.
– A regression based approach for continuous time-to-failure prediction.

We show the applicability of those approaches in a case study with real data
collected from 369 HDDs equipped with S.M.A.R.T. The results are promising:
The application of oversampling improves the predictive quality of the binary
classifier with an accuracy of 97.642%, the multi-class classification of time win-
dows achieves a multi-class accuracy of 97.628% and downscaled to two classes
an accuracy of even 98.885%, while the time-to-failure regression achieves an
average hit rate of about 84.9% (with a mean absolute error of only 4.5 hours).

The remainder of the paper is structured as follows: Next, Section 2 intro-
duces the topics HDD monitoring (see Section 2.1) as well as machine learning
based on random forest (see Section 2.2). Subsequently, Section 3 summarizes
the current state-of-the-art in predicting disk failures and delineates our contri-
bution. Section 4 presents our three approaches for disk drive failure prediction.
Afterwards, Section 5 describes the results of the case study for evaluating the
applicability of our approaches. Finally, Section 6 discusses the evaluation find-
ings and concludes the paper with an outlook on future work.

2 Background

This section contains the necessary background information on hard disk drive
monitoring and random forest, which is used in this paper.

2.1 Hard Disk Drive Monitoring

Failure Indicators. Monitoring internal HDD parameters to improve the re-
liability was first implemented in HDDs by IBM in 1992 [21]. IBM named this
system Predictive Failure Analysis. Compaq, Seagate, Quantum, and Conner
together integrated another monitoring system called IntelliSafe just a few years
later [17]. In 1995, Seagate aimed to create a version that is compatible also with
other hardware manufacturers. Therefore, IBM, Quantum, Western Digital, and
Seagate cooperated to develop a novel HDD monitoring system based on Intel-
liSafe and Predictive Failure Analysis. The result of this collaboration was the
Self-Monitoring, Analysis, and Reporting Technology (S.M.A.R.T.) [21]. This
technology is used as a monitoring system in most HDDs and nowadays also
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SSDs. Here, several internal parameters and operations, e.g., head flying height,
spin-up time, and drive calibration retry count, are stored during runtime. Today,
most drive manufacturers include the S.M.A.R.T. system for drive monitoring.
However, each drive manufacturer can define its own set of attributes to monitor
and thresholds for these parameters that should not be exceeded. Yet, there is
still a subset of S.M.A.R.T. attributes that most drive manufacturers monitor
in common, e.g., spin-up time, read error rate, and start/stop count.

Types of Failures. Failures of HDDs can be separated into two types: (i) pre-
dictable and (ii) unpredictable failures. The predictable failures occur due to
slow mechanical processes like wear. Since the S.M.A.R.T. technology only uses
thresholds of individual parameters, it can only detect the slow degradation
effects caused by predictable mechanical failures. According to Seagate [21], me-
chanical and thus mostly predictable failures make up about 60% of failures.
Therefore, the detection rate based solely on S.M.A.R.T. thresholds is not suf-
ficient. In contrast, unpredictable failures usually emerge rather spontaneously.
The reasons for such unpredictable failures are typically of an electronic nature
or abrupt physical failures. Although using only the manufacturer thresholds
does not cover both types of failures, a study by Google [18] shows that some
S.M.A.R.T. attributes, e.g., (offline) uncorrectable sector count and reallocation
event count, are strongly correlated to HDD failures.

2.2 Random Forest Models

Random forest is a machine learning method which uses the concept of ensem-
ble learning. It was first introduced by Breiman and Cutler [4] and builds up
on a former version of Ho [12]. Ensemble learning methods use the concept of
the “wisdom of the crowd”. That is, these methods combine a large number n
of uncorrelated models to derive a final outcome. Typically, ensemble learning
methods create many weak learners1 and fuse their outcomes to derive a model
with high predictive power, i.e., a strong learner. The two most common ways
of creating and combining such weak learners are boosting and bagging. While
boosting aims at iterative improvement of the models by focusing on the in-
stances that were wrongly classified in the previous iteration, bagging generates
many individual models and provides a result that is derived by majority de-
cision of the models’ predictions [3]. Random forest belongs to the category
of bagging ensemble learners. As weak learners, random forest creates decision
trees based on the training data. Subsequently, random forest aggregates the
individual predictions of the decision trees to produce a final prediction.

By applying the ensemble technique, random forest overcomes the main dis-
advantage of single decision trees, i.e., their tendency to overfit the training data
and therefore generalize rather poorly [12]. However, to prevent overfitting, ran-
dom forest has to ensure that the decision trees do not correlate with each other.

1 Weak learners are classification methods that correlate rather weakly with the true
classification, while strong learners correlate very well with the true classification.
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An initial approach to reach this goal was introduced by Ho [12]. She proposed
to use only randomly selected features for model learning of each decision tree.
Breiman and Cutler [4] built up on this so-called random decision forest as they
introduced the bagging approach. Using bagging, not only the features are se-
lected randomly but also the training samples themselves. That is, for each of
the n decision trees, a subset of all training data is sampled with replacement2

and then the feature space of each sample is also sampled randomly.
Random forest can be parameterized to perform either classification (binary

or multi-class) or regression. In terms of classification, the final prediction is the
class with the most individual predictions of the decision trees. For regression,
the individual predictions are combined using the arithmetic mean.

3 Related Work

The prediction of HDD failures is not only an important task for cloud providers,
but also an interesting research area for the scientific community. This field of
research arose especially due to the introduction of S.M.A.R.T., which simplified
the data collection and thus formed the basis for approaches of statistical and
machine learning as well as of artificial intelligence.

The most common approach found in literature is binary classification. The
main focus of the papers following this approach is to determine whether an
HDD will fail within a certain period of time or not. Botezatu et al. [2] propose
such an approach based on informative downsampling, regularized greedy forests,
and transfer learning. While Shen et al. [22] apply an approach based on part-
voting random forest, Xiao et al. [25] present a mechanism for predicting HDD
failures based on an online random forest so that the model can evolve as new
data arrives. An algorithm to predict these failures using the multiple-instance
learning framework combined with naive Bayesian classifier is introduced by
Murray et al. [16]. Sun et al. [23] propose a CNN-based approach to predict HDD
failures as well as memory failures. For this purpose, Sun et al. also designed
a new loss function to handle the imbalanced training instances effectively. In
contrast, Zhao et al. [28] treat the data as time series to construct Hidden Markov
Models and Hidden Semi-Markov Models.

Hamerly and Elkan [11] model the failure prediction task as an anomaly
detection approach. To this end, Hamerly and Elkan introduce two models.
The first model is based on a mixture model of naive Bayes submodels with
expectation-maximization and the second one applies a naive Bayes classifier
to detect the anomalies. Wang et al. [24] also propose an approach based on
anomaly detection and failure prediction. Therefore, Wang et al. apply Maha-
lanobis distance, Box-Cox transformation, and generalized likelihood ratio tests.

Pitakrat et al. [19] compare various machine learning methods with regard
to their binary HDD failure classification performance. Aussel et al. [1] conduct
a study assessing the performance of support vector machines, random forests,

2 Sampling with replacement means that instances can be selected multiple times in
the same sample.
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and gradient boosted trees as well as the impact of feature selection. Similar
to these works, dos Santos Lima et al. [20] evaluate the performance of several
recurrent neural models with shallow and deep architectures.

To not only predict whether an HDD will fail or not, some researchers apply
the binary classification repeatedly with different failure time windows to provide
more information about the time horizon of the predicted failure [14, 15, 29].
Li et al. [14, 15] propose a classification approach based on decision trees and
an algorithm to estimate the health degree of the HDD using regression trees.
Zhu et al. [29] present a backpropagation neural network approach and a support
vector machine based model for the prediction of imminent failures.

While Chaves et al. [7] present an approach to estimating the time-to-failure
as a continuous variable using a Bayesian network, Yang et al. [27] introduce an
approach based on linear regression. An approach to predict the health status
of HDDs using a recurrent neural network is proposed by Xu et al. [26].

In distinction to the existing work, we compare the performance of different
data preparation steps, i.e., oversampling techniques, for the binary classifica-
tion of upcoming failures. In addition and contrary to most of the approaches
presented, we explicitly model the time-to-failure in time windows and predict
it by applying multi-class classification using only a single model. Finally, we
assess the impact of pre-filtering the training data for regression model learning.

4 Approaches for HDD Failure Level Prediction

This paper aims at three major failure prediction aspects based on S.M.A.R.T.
measurements. First, we compare three binary classification alternatives with
different preprocessing steps. Second, the time-to-failure is predicted using multi-
class classification. Therefore, a new labeling strategy is applied to generate
meaningful target values. In a third approach, regression is used to predict the
time-to-failure as a continuous value.

4.1 Binary Classification of Failing HDDs

To perform a binary classification task, we create two distinct classes. Therefore,
all instances with a time-to-failure of one week or less receive the class label 0.
The remaining S.M.A.R.T. data instances get the class label 1. This labeling
procedure was also performed by Pitakrat et al. [19]. Although Pitakrat et al.
performed a broad comparison of different machine learning methods, they did
not assess the impact of preprocessing techniques. For this purpose, we apply
three different ways of training the machine learning model: (I) binary clas-
sification without further data preparation (Unmodified), (II) binary classifica-
tion with Enhanced Structure Preserving Oversampling (ESPO) as oversampling
technique, and (III) binary classification using Synthetic Minority Oversampling
Technique (SMOTE) as oversampling mechanism. We apply random forest as
machine learning method since it is typically comparatively fast for model learn-
ing and prediction, robust against overfitting, and can handle multiple classes
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efficiently3. In addition, random forest achieved very good and robust results in
the comparison of machine learning methods in Pitakrat et al. [19].

Unmodified. In the binary classification approach without further preprocess-
ing steps, we pass the S.M.A.R.T. measurement instances along with their label
to random forest to learn a model that represents the training data. After model
learning, we provide the learned model with unseen instances to predict whether
the instance of the new HDD indicates a future failure or not.

ESPO. Dealing with imbalanced data is a non-trivial task for machine learn-
ing methods. In this context, imbalance means that the training data contains
significantly more instances of one class (majority class) than of the other class
(minority class). This often results in biased models that tend to overestimate
towards the majority class. In our case, the number of instances of the class
representing HDDs that fail within the next week is much smaller. There are
two common ways to deal with such class imbalances: undersampling and over-
sampling. Undersampling discards instances of the majority class to reach a
balance in the number of class instances. Oversampling, in contrast, creates new
instances of the minority class based on existing instances. In our approach,
we use oversampling instead of undersampling, since removing majority class
instances would reduce the size of the training data set and typically decrease
the quality of the model4. In this second alternative, we apply Enhanced Struc-
ture Preserving Oversampling (ESPO) for oversampling. ESPO synthetically
generates new instances of the minority class on the basis of multivariate Gaus-
sian distribution [6]. To this end, ESPO estimates the covariance structure of
the minority class instances and regularizes the unreliable eigenspectrum [6].
Finally, ESPO extends the set of minority class instances by maintaining the
main covariance structure and by generating protection deviations in the trivial
eigendimensions [6]. After oversampling the minority class, we apply the same
model learning procedure as in alternative (I). However, this alternative offers
the machine learning method more training data and with regard to the two
classes approximately equally distributed training data.

SMOTE. This alternative is similar to alternative (II), but it uses Synthetic
Minority Oversampling Technique (SMOTE) instead of ESPO as oversampling
technique. SMOTE creates new instances of the minority class by combining in-
stances that lie close to each other in the feature space [8]. To this end, SMOTE
determines the nearest neighbours of each instance of the minority class. Subse-
quently, it takes a random subset of these neighboring instances and computes

3 The handling of multiple classes is not explicitly required for comparing data prepa-
ration for binary classification. However, it is necessary for multi-class classification
in Section 4.2 and to maintain comparability between the approaches.

4 This does not apply if the data set is sufficiently large to still be large enough after
undersampling.
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the differences between their features and the feature of the respective instance.
The feature difference is weighted with a random number between 0 and 1.
Finally, SMOTE adds the resulting weighted difference to the features of the
considered instance and provides this as new instance of the minority class [8].

4.2 Classification of multiple Failure Levels

Failure Level Labeling. To predict future failures in multiple levels, a new
target variable needs to be defined. For this purpose, we changed the failure
variable of the original data and used the new failure label as target variable. In
the original data, the failure label is 0 if the HDD is running and only changes to 1
if the HDD stops due to a failure, i.e., the time-to-failure is zero. Since we want
to predict multiple failure levels, other class labels are required. Therefore, we
define a set of relevant classes, each representing a different failure level: 0, (0,1],
(1,2], (2,5], (5,12], (12,24], (24,48], (48,72], (72,96], (96,120], (120,144], (144,168],
(168,∞). Thus, each of these labels represents the interval of the time-to-failure
in hours. The last class label (168,∞) indicates that no failure is expected within
the next week. If, for example, the random forest model predicts label 48, the
failure is expected after 24 hours at the earliest (i.e. after the next smaller class
label), but no later than 48 hours. For the sake of simplicity and readability, in
the following, we will refer to each of these classes only with its upper limit, e.g.,
we will refer to the label (24,48] as 48.

Model Learning. After calculating the new class labels based on the time-to-
failure, we pass the S.M.A.R.T. attributes as features to random forest with the
newly created labels as target variable. Thereby, the random forest model learns
not only whether the HDD will soon fail or not, but also the time-to-failure
in discretized form. This extends the binary classification (cf. Section 4.1) to a
multi-class scenario where each class represents a specific time window in which
the predicted failure is to be expected.

4.3 Regression for Time-to-Failure Prediction

Applying the binary classification of Section 4.1 only provides predictions on
whether an HDD is likely to fail within the next week or not. The multi-class
classification approach in Section 4.2 extends the provided information by deliv-
ering a time window, i.e., the predicted class, within the failure is expected to
occur. However, all these predictions are only discretized.

To obtain continuous predictions about the time-to-failure, regression must
be used instead of classification since classification can only predict a discrete
output that must be included in a specified set of classes. In addition, the output
class must also be present in the training set so that the model can learn the cor-
relation between the features and the output class. Regression, in contrast, can
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predict any continuous value based on the input features. This allows regression
models to predict values that are not included in the training set.

We implemented two alternatives of time-to-failure regression using random
forest: (i) using all available data to learn the random forest regression model
(Naive) and (ii) train the random forest regression model exclusively on the train-
ing instances where the failure occurs during the next 168 hours (Pre-Filtering).
Then, we apply the random forest regression models only on the measurements
where a failure will occur within the next week. To retrieve this information,
the approaches of Section 4.1 or Section 4.2 can be used, for example. The idea
of pre-filtering the training set to HDDs that actually fail within the next week
aims to focus the regression model on failing devices. For intact HDDs, a time-
to-failure regression does not make sense, because if there is no indicator for
an imminent failure yet, it cannot be distinguished whether the HDD will last
another year or two years, for example. Therefore, the time-to-failure can only
be guessed. By pre-filtering the data set, we explicitly focus our model on the
relevant part of the data in order to achieve a more precise prediction.

5 Evaluation

We implemented the approaches in R using the libraries randomForest [5],
OSTSC [10], and unbalanced [9]. First, this section describes the evaluation de-
sign. Then, the achieved predictive qualities of the binary and multi-class classi-
fication approaches are provided. Afterwards, the performances of the regression
models are presented and, finally, the runtimes required for model training are
compared for all approaches.

5.1 Evaluation Design

To assess the performance of our classification and regression models, we use a
data set consisting of 369 HDDs5. This data set was first used by Murray et
al. [16]. Although the data set encompasses 64 S.M.A.R.T. features for each
instance, we only include 25 in our experiments. Many of the excluded parame-
ters are constant during the entire measurement period and, thus, do not con-
tain any information on the health status of the HDD. The time-to-failure is
of course excluded for the classification tasks and used as target variable for
the regression task. The remaining 25 features included in the remaining data
set are FlyHeight5-12, GList1-3, PList, ReadError1-3, ReadError18-20, Servo1-
3, Servo5, Servo7-8, and Servo10. The reduced feature set was also used by
Pitakrat et al. for their comparison of machine learning methods. Of the 369
HDDs included in the data set, 178 did not fail during the measurement period,
while 191 suffered a critical failure. This large number of failed HDDs is due to
consumers sending in their failed HDDs containing the S.M.A.R.T. parameters
of the past several weeks. Thereby, the number of defective and intact HDDs is

5 HDD data set: http://dsp.ucsd.edu/~jfmurray/software.htm

http://dsp.ucsd.edu/~jfmurray/software.htm
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fairly balanced in this data set. However, the data set contains continuous, i.e.,
approximately two-hourly, measurements of each HDD. This results in a total
amount of 68411 measurement instances. Since we do not only predict for each
HDD whether it will fail some day in the future, we predict the time-to-failure for
each measurement instance of the S.M.A.R.T. parameters. Yet, this procedure
results in an unbalanced data set. Figure 1 shows a histogram of the distribu-
tion of the time-to-failure classes. For this purpose, the time-to-failure classes
are shown on the horizontal axis and the number for each time-to-failure class
on the vertical axis. The figure clearly shows the dominance of the last class,
i.e., the class indicating that there will be no failure within the next 168 hours.
Furthermore, it can be seen that especially the classes 0 to 5 are very small
with only 260 to 653 instances. For binary classification, the class indicating an
imminent failure within the next 168 hours comprises 23749 instances, while the
class indicating no failure within the next 168 hours consists of 44662 instances.

0

10000

20000

30000

40000

0 1 2 5 12 24 48 72 96 120 144 168

8

Class

C
ou

nt

Fig. 1. Histogram of the distribution of failure classes.

In accordance with the literature, we use a split of approximately 80:20 for
model training and model testing. That is, about 80% of all data is used to learn
the model, while the model is evaluated on the remaining about 20% of the data.
Since a single experiment alone is not significant, we perform the experiment 25
times to reduce the random distortion, as most of the techniques and methods
applied are based on random numbers.

Although a comparison with existing approaches would be interesting, the
reported metrics cannot be compared since the approaches were executed on
different data sets (real world and synthetic) –without handling the class imbal-
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ance adequately– which affects the evaluation metrics significantly. In addition,
the authors presented in Section 3 have not made their code publicly available,
hence, it was not possible to reproduce their measurements in our setting.

5.2 Binary Failure Prediction

To ensure reproducibility, Table 1 summarizes the parametrization of the applied
methods for the comparison of binary classification random forest models. We
set the number of decision trees generated to 100 and the number of features that
are randomly selected as candidates for each split to 5 for all three alternatives.

Table 1. Used libraries and methods along with the parametrization for the binary
classification random forest models. Alternative (I) is without oversampling, (II) applies
ESPO for oversampling, and (III) uses SMOTE to oversample the minority class.

Alternative Library:Method Parameters

(I) Unmodified randomForest:randomForest() ntree = 100, mtry = 5, replace = TRUE

(II) ESPO
OSTSC:OSTSC() ratio = 1.0, r = 1.0
randomForest:randomForest() ntree = 100, mtry = 5, replace = TRUE

(III) SMOTE
unbalanced:ubBalance()

type = ”ubSMOTE”, percOver = 300,
percUnder = 150, k = 5

randomForest:randomForest() ntree = 100, mtry = 5, replace = TRUE

Table 2 presents the average achieved values for the evaluation metrics accu-
racy, precision, recall, and F1-score. The results show that alternative (II) ESPO
yields the highest accuracy, precision, and F1-score. Only in terms of recall,
ESPO is outperformed by the unmodified and SMOTE approaches, although all
approaches differ only slightly. Considering all four evaluation metrics, ESPO
achieves the overall best performance of the binary classification alternatives.

Table 2. Average achieved values of the three binary classification alternatives.

Alternative Accuracy Precision Recall F1-Score

(I) Unmodified 97.472% 94.347% 96.993% 95.649%

(II) ESPO 97.642% 94.913% 96.970% 95.928%

(III) SMOTE 95.734% 89.086% 96.995% 92.869%

As Table 2 only shows the average values and not the variation within the 25
replications, Figure 2 illustrates the performances using box plots. To this end,
the horizontal axis presents the evaluation metrics, while the vertical axis depicts
the achieved values. The orange, blue, and purple colored boxes describe the
(I) approach without oversampling, the (II) ESPO oversampling approach, and
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the (III) SMOTE oversampling approach, respectively. Again, the figure shows
that the unmodified and ESPO approaches clearly outperform SMOTE in all
metrics besides recall. Regarding recall, all three approaches yield approximately
the same value with only marginal variation within the replications. The highest
variation can be seen for the metric precision. Here, the interquartile range, i.e.,
the difference between the third and first quartiles, shows the largest value.
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Fig. 2. Performance of the binary classification alternatives for each evaluation metric.

5.3 Failure Level Classification

In contrast to binary classification, we set the number of classification trees to
n = 500 because predicting multiple classes is more difficult than distinguishing
between only two classes. Table 3 shows the average confusion matrix over all 25
runs. The confusion matrix clearly shows that most values are on the diagonal
and therefore most instances are correctly predicted. In addition, for the failure
classes, most false predictions are predicted in the neighboring classes. This
means that the upcoming failure is detected, only the time windows are missed
by a few hours up to one day. Thus, these wrongly predicted classes are uncritical
in practice since the failure is nevertheless predicted with a relatively accurate
time horizon. Moreover, it can be seen that the actual time-to-failure classes
1, 2, and 5 cannot be predicted as accurately as the others. This is due to the
fact that there are only very few training instances for these classes and the
temporal difference between these classes is very short. However, the rightmost
column shows the number of cases in which the HDD failed in the respective
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time window, but our multi-class approach did not predict a failure within the
next week. This column also contains some instances, which can be explained by
the fact that the S.M.A.R.T. parameters cannot cover all aspects that can lead
to an HDD failure [21], e.g., sudden electronic or physical impacts.

Table 3. The confusion matrix for the multi-class classification approach. The rows
show the actually observed (Ob) time-to-failure classes, while the columns present the
predicted (Pr) ones. The value in each cell illustrates the number of instances predicted
for that particular set of observed and predicted class labels. The green color indicates
the correctly predicted instances. The second cell from the left in the third row, for
example, shows a single instance that is predicted as “a failure will occur within the
next hour”, while the failure actually occurred in the time window of one to two hours
after the measurement.

Ob
Pr

0 1 2 5 12 24 48 72 96 120 144 168 ∞

0 67 0 0 0 0 0 0 0 0 0 0 0 2

1 0 35 0 0 4 2 9 0 0 0 0 0 0

2 0 1 12 0 0 2 0 0 0 0 0 0 2

5 0 0 0 52 24 17 1 0 0 0 0 0 2

12 0 0 0 0 185 14 2 0 0 0 0 0 8

24 0 0 0 0 17 339 21 0 0 0 0 0 12

48 0 0 0 0 0 6 773 10 0 0 0 0 18

72 0 0 0 0 0 0 12 740 22 0 0 0 24

96 0 0 0 0 0 0 0 6 768 15 0 0 24

120 0 0 0 0 0 0 0 0 14 752 6 0 24

144 0 0 0 0 0 0 0 0 0 20 762 8 29

168 0 0 1 0 0 0 0 0 0 0 16 729 66

∞ 0 0 1 1 0 1 0 1 1 0 1 5 14143

To summarize the quality of the random forest multi-class classification
model, it achieves an average micro-F1-score of 97.628%. The micro-F1-score
is the sum of instances on the diagonal (colored green) divided by the total
number of instances in the confusion matrix. It should be noted that for multi-
class classification, the micro-F1-score is equal to the multi-class accuracy.

As the micro-F1-score of this multi-class approach cannot be directly com-
pared with the F1-scores obtained in Section 5.2, we downscaled the multiple
classes to the same two classes presented in Section 5.2. That is, we merge all
classes except ∞ into one big class, i.e., the class that indicates an upcoming
failure within the next 168 hours. This way, the classes match those used in Sec-
tion 5.2, which allows us to compare them. However, since ESPO achieved the
best values, Figure 3 shows the comparison of the ESPO approach with the down-
scaled multi-class approach in terms of box plots. Again, the evaluation metrics
accuracy, precision, recall, and F1-score are depicted on the horizontal axis, while
the achieved values of ESPO and downscaled multi-class approach are shown
on the vertical axis. The blue and red boxes represent the ESPO and down-
scaled multi-class results, respectively. The figure shows that the downscaled
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multi-class approach yields even better results regarding accuracy (98.885% vs.
97.642%), precision (99.818% vs. 94.913%), and F1-score (98.019% vs. 95.928%).
Yet, the binary classification with ESPO oversampling achieves a little higher re-
call (96.970% vs. 96.283%). This fact demonstrates that the ESPO approach, on
the one hand, detects more failed HDDs. On the other hand, it shows that ESPO
also predicts more good HDDs as failed, i.e., ESPO has a higher false positive
rate. In numbers, our downscaled multi-class approach achieves a false positive
rate of only 0.07% while ESPO shows a value of 2.09%. The false positive rates
of the other two binary classification approaches are even higher. The detection
of more defective HDDs with a higher false positive rate can be useful if the costs
for false alarms are not relevant. However, in cases where false alarms lead to
high costs, a more conservative model is advantageous since it detects almost as
many failing HDDs and produces less costs for unnecessary HDD replacements.
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Fig. 3. Comparison of the best binary classification approach (ESPO) and the multi-
class classification approach downscaled to two classes.

5.4 Time-to-Failure Regression

Similar to the evaluation of the multi-class classification approach, we set the
number of decision trees to n = 500. Figure 4 depicts the achieved hit rate, mean
absolute error (MAE), and root mean square error (RMSE) for both regression
approaches as box plots. The brown and green boxes represent the naive regres-
sion approach and our regression approach using pre-filtering, respectively. We
define the hit rate as the ratio of correct time-to-failure regressions to the number
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of total regressions. Further, a time-to-failure regression is correct if the actual
time-to-failure falls within an interval of the predicted time-to-failure ± 10%.

The left subfigure of Figure 4 shows the achieved hit rates. It can be seen
that our approach of applying pre-filtering before model learning yields a higher
hit rate than the naive version. In numbers, our pre-filtering approach achieves
an average hit rate of around 84.9% while the naive version only predicts a
correct time-to-failure in about 80.2% of all tries. In contrast to the hit rate,
a smaller value is better for MAE and RMSE. Regarding the MAE (middle
subfigure of Figure 4), our pre-filtering approach results in an average MAE of
about 4.5 hours. The naive regression approach, instead, shows an average MAE
of around 10.0 hours. In addition, the interquartile ranges are very small for both
approaches. The large difference between the MAEs and the small interquartile
ranges imply that our pre-filtering approach predicts the time-to-failure much
more accurate. The same conclusion can be drawn by taking a look at the RMSE
(right subfigure of Figure 4). Our pre-filtering approach shows an average RMSE
of around 12.8 hours while the RMSE of the naive approach reaches around
44.6 hours. Again, the interquartile ranges are very small for both approaches.
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Fig. 4. Achieved values of the two regression alternatives for each evaluation metric.

Taking all three measures into account, it can be concluded that our pre-
filtering approach predicts the time-to-failure much more accurately than the
naive version. With an average hit rate of nearly 85% and a mean absolute error
of only 4.5 hours, the time-to-failure regression is very precise.
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5.5 Training Time Comparison

After assessing the quality of the predictions of all presented approaches, we also
analyzed the runtimes for model training. The time needed for the prediction
is negligible compared to the training time. We executed the experiments in
our private cloud using Apache CloudStack and Kernel-based Virtual Machine
(KVM). The virtual machine is deployed on a host with 32 cores each provid-
ing 2.6 GHz and 64 GB memory, having hyperthreading activated. The virtual
machine runs Ubuntu 16.04 (64-bit) with 4 cores each with 2.6 GHz and 8 GB
memory. We implemented the appraoch in R version 3.4.4.

Figure 5 illustrates the training times of all classification and regression ap-
proaches using box plots. To this end, the horizontal axis depicts the approaches,
while the vertical axis presents the required training time. The boxes are col-
ored according to the respective approach, whereby the coloring corresponds to
the previous figures. With an average training time of about 27 seconds, the
unmodified binary classification approach yields the shortest training time fol-
lowed by our multi-class classification approach with about 174 seconds. Both
of the binary classification with oversampling approaches require a much larger
training time of on average around 420 seconds and 335 seconds for ESPO and
SMOTE, respectively. Thus, our multi-class classification does not only achieve
an overall better prediction performance but also a much shorter training time
than the best binary classification approach, i.e., ESPO. Regarding the regres-
sion approaches, the naive procedure takes on average about 2175 seconds, while
the approach that pre-filters the data only requires around 346 seconds. That is,
our pre-filtering approach is more than 6 times faster than the naive version and
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Fig. 5. The required training times for all of the presented approaches.
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even faster than the binary classification approach with ESPO oversampling,
while significantly improving the hit rate, MAE, and RMSE.

6 Conclusion and Discussion

In this paper, we aim at the early prediction of HDD failures. For this purpose,
we present three contributions: (i) a comparison of data preparation steps for
binary classification of imminent HDD failures, (ii) the introduction of a random
forest based approach for time-to-failure classification using multiple time-to-
failure classes, and (iii) a pre-filtering and regression based approach to predict
the time-to-failure as a continuous variable.

(i) For the first contribution, we compare different data preparation steps
for binary classification of imminent failures. The results show that applying
ESPO oversampling to balance the number of instances per class improves the
prediction quality with an F1-score of 95.928% but also requires more runtime to
build the model and perform predictions. In contrast, the application of SMOTE
oversampling performed worse than the unmodified version.

(ii) Since the time horizon of upcoming failures is essential for cloud adminis-
trators to prevent downtimes and data losses, our second contribution focuses on
predicting the time window of upcoming failures using multiple classes by group-
ing close times-to-failures into the same classes. Based on these classes and the
respective S.M.A.R.T. features, we learned a random forest classification model.
This approach yields a micro-F1-score of 97.628% for multi-class classification. If
downscaled to the two classes used in the first contribution, it achieves an even
higher F1-score of 98.019%. Thus, it clearly outperforms the binary classification
approaches while maintaining a very low false positive rate of only 0.07%.

(iii) Finally, we present a pre-filtering prior to learning a random forest re-
gression model for the prediction of the time-to-failure as a continuous value. We
show that this pre-filtering improves the hit rate from 80.2% to 84.9% and sig-
nificantly reduces the runtime compared to learning the regression model using
all available data.

As future work, we plan to compare the predictive quality and runtime of dif-
ferent machine learning methods for multi-class classification of drive failure time
windows. In addition, we want to assess the performance of our approaches on
SSDs as well. Furthermore, we plan to integrate time series forecasting methods
from our previous work [30] to forecast future states of the HDDs for integrating
an additional facet into the analysis. Additionally, it would be possible to use the
forecast in combination with a self-adaptive system [13] to dynamically trigger
additional backups or other maintenance tasks for critical HDDs.
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