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Abstract—Modern Software Defined Networking (SDN) appli-
cations rely on sophisticated packet processing. However, there
is a mismatch between control plane requirements and data
plane capabilities caused by increasing hardware heterogeneity.
To overcome this challenge, we propose TableVisor, a proxy-layer
for the OpenFlow control channel that enables the flexible and
scalable abstraction of multiple physical devices into one emu-
lated data plane switch that meets the requirements of the control
plane application. TableVisor registers with the SDN controller
as a single switch with use-case specific capabilities. It translates
the instructions and rules from the control application towards
the appropriate physical device where they are executed. In this
paper, we present the updated architecture and functionality of
TableVisor as well as first evaluation results based on testbed
experiments.

I. INTRODUCTION

The original idea of Software Defined Networking (SDN)
is to control a network consisting of COTS hardware switches
by programming their forwarding behavior via a standardized
southbound interface such as OpenFlow [1]. However, this
vision of a unified interface towards the data plane has
not always been held up in practice. SDN-enabled switches
are often shipped with different hardware capabilities and
configurations, e.g., with a varying number of flow tables or
support for certain data plane features [2], [3], [4], [5] for
reasons of differentiation. Some switches, for example, do
support hardware MPLS encapsulation or specific OpenFlow
write actions while others do not. Some are limited by being
equipped with a single TCAM chip that does not enable them
to perform Multi-Table Processing (MTP). Unfortunately, this
way the control plane developers currently have no other
choice than to either restrict the compatibility of their control
software to a set of well known devices or to provide solutions
for most devices on the market. Both approaches essentially
negate the original vision of SDN.

At the same time, many modern SDN applications rely on
sophisticated packet processing. Therefore, missing hardware
features and hardware heterogeneity is a growing problem for
software-based networks. It can be characterized as a general
mismatch between control plane requirements and data plane
capabilities, e.g., an application needs flexible MTP with an

arbitrary number of flow tables while a specific switch can
only provide a fixed number.

Several approaches try to address this problem by introduc-
ing more flexibility into the data plane, e.g., programmable
switches [6], OpenFlow Table Type Patterns [7], or high
level programming languages for packet processing [8]. We
refer to this as Programmable Data Plane (PDP) [9]. While
PDP partially solves the mismatch, two fundamental problems
remain: First, PDP based solutions are – by design – limited to
the resources and capabilities of a single device. Control plane
requirements going beyond what is provided by the device
cannot be satisfied, even if two devices together could easily
fulfill the request. Furthermore, real world SDN deployments
are expected to be composed of heterogeneous devices [10].
SDN applications, however, are not normally designed to deal
with this kind of heterogeneity. It should thus be possible
to add new data plane features, e.g., by adding PDP-capable
devices, and utilize them at application level without upgrading
the entire infrastructure.

TableVisor is a novel approach for flexible and scalable
pipeline processing that addresses the above problems and
was originally introduced in [11]. TableVisor is based on the
general idea, that multiple physical hardware switches can be
pooled together to emulate a device with extended capabilities
and capacity. It can be used, for example, to build scalable and
feature-rich multi-table pipelines that are tailored to a specific
use case, even if the switches in the infrastructure can only
support a single flow table.

This paper extends our previous work on TableVisor to en-
able full-featured MTP and improve the overall usability of the
approach, e.g., regarding configuration or wiring requirements.
The main contributions of this paper can be summarized as
follows:

• We extend TableVisor to include topology detection,
meta-data support, pipeline processing and hardware ta-
ble extension. We also provide TableVisor with a new
bypassing feature to enable flexible go-to instructions
without additional requirements to the wiring of physical
switches.

• We include first evaluation results based on testbed exper-
iments and show that the data plane overhead of Table-



Visor scales linear with the number of pipeline stages
emulated by TableVisor (using single table hardware in
the underlay). In addition we quantify the overhead on the
control plane by evaluating flow mod processing times
with and without TableVisor.

• We present a preliminary outline of an extended Table-
Visor architecture that can be flexibly integrated into an
existing network infrastructure and discuss several advan-
tages and disadvantages of our envisioned approach.

The remainder of this paper is structured as follows: In
Section II, we discuss background and related work. Sec-
tion III contains the TableVisor architecture and basic opera-
tion. Subsequently, in Section IV the proxy-layer functionality
is presented. We then provide a discussion of TableVisor’s
advantages as well as challenges and possible extensions in
Section V and give our concluding remarks in Section VI.

II. BACKGROUND AND RELATED WORK

A. Multi Table Processing

Multi Table Processing (MTP) was introduced in Open-
Flow 1.1 and provides a goto-table instruction which
allows pipeline processing of packets inside the data path.
As outlined by the Open Networking Foundation in [12],
MTP is well suited to alleviate the flow table explosion
problem common to various types of networking applications.
For example in cases where matches and actions have to be
considered independent of each other (e.g. traditional MAC
address learning) or where some kind of two stage processing,
like pre-classification, is required, MTP is a suitable solution.
Many novel applications for software-defined networks also
rely on MTP for similar reasons, e.g., source address valida-
tion [13], d-dimensional packet classification [14] or wildcard
rule caching [15].

Hardware support for MTP, however, is difficult to achieve
due to energy and cost constraints of the TCAM technol-
ogy [16]. As a result, existing SDN-switches only support a
small number of hardware flow tables and often do not allow
to jump between them via the goto-table instruction. The
NEC PF5240 used in this work has multiple hardware tables,
but, with exception of specialized tables for MPLS support,
does not allow jumping between these tables.

B. Hardware Abstraction

Several concepts deal with device heterogeneity by intro-
ducing a Hardware Abstraction Layer (HAL). Table Type
Patterns [7] for OpenFlow are a prominent and recent example.
ALIEN HAL [17] focuses on realizing OpenFlow capabilities
on legacy network elements by introducing a reusable, two-
layer abstraction platform with a unified control endpoint
to common-of-the-shelf SDN controllers. FlowAdapter [18]
is middle layer between the hardware and software data
plane that provides flexible M-stage MTP support by prop-
erly mapping MTP rules onto existing hardware capabilities.
Similar ideas of abstraction can be found in other architectural
proposals as well [19], [20]. HAL-based solutions, however,
are normally restricted to the hardware capabilities of the

underlying network device. TableVisor can overcome this
limitation by aggregating the capabilities of multiple and
possibly heterogeneous hardware devices.

C. Programmable Data Plane

Programmable Data Planes (PDPs) are another important
trend for SDN [21], [9]. The core idea here is to provide
programmable network devices with freely definable packet
processing pipelines, i.e., moving away from the fixed match-
action paradigm currently found in hardware switches. The
FlexPipe architecture of Intel’s FM6000/FM7000 series [6],
for example, allows programmable parsing of incoming traffic
based on a TCAM/SRAM/MUX structure. [2] proposes a
model for reconfigurable match tables and enables dynamic
(in-field) reconfiguration of the data plane. Protocol Oblivious
Forwarding [22] introduces a generic flow instruction set to
make the data plane protocol-oblivious. As mentioned earlier
in the introduction, PDPs together with high level program-
ming languages for packet processing like P4 [8] or CNC
[23] can help solving the mismatch between control plane
requirements and data plane capabilities. They are, however,
also limited by the capacity and functionality of the underlying
hardware (similar to HAL-based solutions) and might even
increase the problem of device heterogeneity in real world
SDN deployments.

D. Proxy Layer Approaches

TableVisor is implemented as a proxy layer between the
SDN controller and SDN hardware. OpenFlow protocol mes-
sages sent by either of those two entities are intercepted and
modified by the TableVisor layer to realize the abstraction.
The method of transparently processing OpenFlow messages
is heavily used in related work, e.g., to perform network
virtualization [24], [25], [26], to inter-operate with non-SDN
legacy network equipment [27] or to transparently deal with
flow table limitations [28].

III. TABLEVISOR

This section covers the design concept behind TableVisor,
presents the system architecture and concludes with a sum-
mary of functionality realized by the proxy layer.

A. Architecture

Figure 1 shows the control channel in a common OpenFlow
setup compared to the intercepted communication through
TableVisor as a proxy layer. In an OpenFlow setup without
a proxy layer, messages between a controller and one or
multiple switches are exchanged through a direct OpenFlow
channel, as depicted in Figure 1a. To emulate a multi-table
switch by the use of multiple hardware switches, TableVisor
requires to intervene this communication channel in order to
modify all incoming and outgoing OpenFlow message on the
controller’s Southbound API. Hence, TableVisor acts as an
emulated switch, seen by the controller, and as a controller
endpoint for the used switching hardware. By this, the received
OpenFlow messages on the control channel can be adapted and
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Fig. 1: Control Channel Structure.

forwarded to the other party. The controller does not know
anything about the composed multi-table pipeline.

The architecture of the TableVisor software is depicted
in Figure 2. The implementation is based on LINC switch1

and reuses the application framework, the provided OpenFlow
libraries and the controller communication channel. The Table-
Visor proxy layer itself is comprised of three main logical
layers, the switch endpoint, the message processing layer and
the controller endpoint. This layer structure simplifies devel-
opment, connection handling as well as debugging of errors.
Finally, TableVisor can be configured via a configuration file
that, e.g., allows to map a datapath ID to a table number and
thus enables the configuration of the order in which switches
are used in the switching pipeline.

The Switch Endpoint is responsible for establishing a
connection to the controller. This layer allows TableVisor to
be completely transparent towards the controller and act like
a single OpenFlow switch regardless of the number of actual
hardware switches connected to TableVisor itself.

Following, the Message Processing handles all OpenFlow
messages coming from either the controller or one of the
hardware switches. Thereby, the contents of the messages are
adapted in such a way, that regular OpenFlow messages send
by the controller can be forwarded distributed to the under-
lying switching hardware. As the rewriting process represents
the fundamental functionality of the shim layer, it is described
in Section III-B in detail.

Finally, the Controller Endpoint is the layer of TableVisor
switches connect to. The IP address of the actual controller
therefore needs to be replaced with the address of the host run-
ning TableVisor. The switches then see the controller endpoint
as a regular OpenFlow controller. The switches themselves are
in this case not aware of the multi-table architecture created
by TableVisor, as every switch represents one table in the
architecture. The controller then instructs TableVisor to use
multiple tables via the goto-table instruction which is
processed by the message processing layer and passed to the
respective switch as an output action. In addition to this,
the controller endpoint is able to automatically detect the
underlying switch topology using LLDP.

1https://github.com/FlowForwarding/LINC-Switch/
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B. Message Processing

In order to realize the transparent proxy layer TableVisor
introduces between the OpenFlow controller and involved
switching hardware, OpenFlow messages need to be pro-
cessed. This is, as already mentioned, performed by the mes-
sage processing layer of TableVisor. To achieve this, messages
between the controller and switching hardware are intercepted
by the TableVisor proxy layer which processes these messages
and then forwards or distributes them to the switches or the
controller respectively.

The controller sends messages via the southbound API to
the data plane, assuming that a single hardware switch will
process them. TableVisor needs to inspect these messages and
has to decide about rewriting and forwarding or direct reply-
ing to them. The connection establishment and maintenance
messages are examples of messages, which will be handled
directly by TableVisor without rewriting and forwarding them
to the switches. If messages require to be forwarded to the
switches, TableVisor needs to perform the following major
tasks:

1) If the message is related to a specific table, TableVisor
has to determine the responsible switch based on the
table ID targeted by the controller.

2) If the message includes a target table ID, TableVisor
has to rewrite the table ID to the ID the switch uses to
address this table internally. Especially many hardware
switches use table IDs different from zero for their
tables, stored in TCAM memory. Without this func-
tionality, TableVisor would be limited to table 0 of all
switches.

3) If the message includes a goto-table instruction, the
instruction has to be replaced by an output action
to pass the packet via Ethernet connection to another
switch representing the target table.

Messages from switches to the controller need to be handled
in a similar way. The switches do not know anything about
the multi-table implementation. They send their messages to
the controller endpoint of TableVisor. Messages for connec-
tion establishment and maintenance are handled directly by
TableVisor, while other messages, like packet-in, have to be
rewritten and forwarded. For the messages that have to be
forwarded, TableVisor performs the following major tasks:

1) Replace the table ID sent by the switch with the multi-
table related ID, based on the socket that identifies the
switch in TableVisor.
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Fig. 3: Data plane delay of an emulated multi-table switch for
different frame lengths and load levels.

2) If the message includes an output action to pass
packets to another switch representing a subsequent
table, this has to be replaced with a goto-table
instruction, as this is what the controller expects.

C. Impact on Control and Data Plane

Obviously, the introduction of an additional layer to the
OpenFlow control channel, as depicted in Figure 1b, as well as
the concatenation of switches affects the control and data plane
respectively. In order to analyze the influence the TableVisor
software itself as well as the multi-switch pipeline have on
SDN performance, we conduct a measurement study regard-
ing two important performance indicators for SDN enabled
networks.

First, we evaluate the influence of the multi-switch pipeline
on the data plane. To do so, we measure the end-to-end delay
of the emulated pipeline using a Spirent C1 Testcenter as
the traffic generator. As expected, the end-to-end delay of
the pipeline is simply the sum of delays introduced by the
individual hardware appliances.

Figure 3 shows the delay in a pipeline comprised of four
identical HP 2920-24G switches regarding different load levels
and frame lengths. It can be seen that the delay is independent
of the load and is constant for all three load levels. The frame
length, on the other hand, has significant influence on the end-
to-end delay, which indicates, that a large portion of the time is
used to write the information to the transmission media while
the processing of packets is independent of the packet size.

Second, in order to evaluate the impact of TableVisor
on the control plane, we measure flow setup times using
one of the HP2920-24G switches. The measurements have
been conducted in a dedicated testbed comprised of a single
physical host running the Ryu SDN controller and TableVisor
and the aforementioned hardware switch. Figure 4 shows the
measurement results which have been obtained by sending
between 1 and 1000 randomly generated flow mod messages,
shown along the x axis, followed by a barrier request. Thereby,
the scenario in which the controller is directly connected to
the switch is shown in orange while the brown line depicts the
measurement results including the TableVisor proxy layer. The
time between the barrier request and the corresponding barrier
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Fig. 4: Setup times for 1 to 1000 flow mods with and without
TableVisor.

reply, shown along the y axis, is considered to be the flow mod
response time. The whiskers represent the 95% confidence
interval of 30 measurement repetitions. This measurement
methodology has been evaluated in detail in [29].

It can be seen that the response time grows linearly in both
cases, while the absolute values in the TableVisor scenario
are roughly twice as high. This additional delay results from
the message processing performed by TableVisor in order
to map incoming OpenFlow messages transparently onto the
underlying switching hardware.

IV. PROXY LAYER FUNCTIONS

The following section presents the functionality realized
by the current implementation of the TableVisor proxy layer
solution and points out possible use cases.

A. Pipeline Processing

The first functionality provided by TableVisor we focus on
in this work is Pipeline Processing. Thereby, the involved
hardware switches are used as a queue all packets have to
pass through. Packets are then iteratively processed by the
switches. This allows the combination of different hardware
appliances in order to realize complex scenarios that are not
possible using a single hardware switch due to table sizes
or supported functionality. Figure 5 shows an exemplary use
case for pipeline processing using multiple, different hardware
switches.

In this scenario, we realized an MPLS label edge router
using four separate hardware switches2. The first switch rep-
resents an access control list and matches on destination MAC
address as well as the MPLS Ethernet. As this switch does
not support MPLS actions, a second switch that is able to
pop the MPLS label is required. This is done by specifying
the output action which sends the packet out to the second
switch in the pipeline. The flow rule for this behavior on
the switch was intended as a goto-table instruction by
the controller and was rewritten to an output action by
TableVisor. In the second switch the MPLS label is removed
and the packet is passed to the next switch in the pipeline

21 × NEC PF5240, 3 × HP 2920-24G
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which performs the routing actions. Therefore, it matches on
the destination IP prefix of the packet and sets the destination
mac address correspondingly. Finally, the last switch in the
pipeline performs the switching step in which the packets are
forwarded to the respective destination autonomous systems.

This example shows one possible use case that can be
realized using the pipeline processing feature of TableVisor.
As of writing this paper, no switch that supports pipeline
processing in hardware is known to the authors.

While in this scenario all packets need to be processed by
all of the involved switches, there are other use cases for
multi-table processing in which, depending on a multitude of
factors, packets may not require to be processed in each single
table of the emulated multi-table switch. In these cases, tables
can be skipped by either using the previously described meta-
data feature provided by TableVisor to carry over meta-data
between tables, or an additional physical link between switches
can be used to jump between tables without having to pass
through unused intermediary tables. This bypassing feature
further increases flexibility and can reduce the additional data-
plane delay introduced by the multi-switch pipeline. A detailed
analysis of the additional delay is performed in Section III-C.

The functionality realizable using pipeline processing de-
pend solely on the supported features of the underlying
hardware. If support for a certain protocol or functionality
is required, it can simply be realized by adding a hardware
switch that implements the required feature.

B. Metadata

The OpenFlow protocol specifies that packets may be
equipped with a mask-able register that allows to carry so
called Metadata from one table to another. This enables,
depending on the support from switches, more complex ac-
tions as packets can be marked by an initial table and then
processed accordingly in a later table. As the meta-data is
meant to be used within a single integrated hardware switch,
the information is generally lost with the transmission of the
packet. In order to allow these more complex multi-table
scenarios in a multi table emulation scenario using TableVisor,
we implemented the ability to transmit meta-data between the
involved hardware switches.

In order to achieve this, TableVisor exploits the source
and destination MAC address fields of the Ethernet header.
As these fields are not required to allow proper transmission
of packets between switches aggregated using TableVisor
we decided to store the meta data in either the source or
destination MAC header field. Each of these fields allows
for 48 bits of meta-data to be transferred between switches.
Moreover, the number of switches that support writing and
reading the MAC address fields is far larger than the number
of switches that support the internal usage of meta-data. This
results in the possibility to use switches that do not support
native OpenFlow meta-data to realize more complex scenarios
if used in combination with the TableVisor proxy layer.

This functionality is realized by the Message Processing
layer described in Section III-A by translating an OpenFlow
Write-Metadata action into a Set-Field-Action
which then writes the meta-data into the packet header instead
of the switch internal meta-data register. TableVisor ships with
three meta-data providers that use different header fields to
store the meta-data. Supported fields are source and destination
MAC and VLAN ID.

C. Table Extension

The second use case provided by the current implementation
is the extension of hardware tables, as these are often very
limited in size. Since the required TCAM (Ternary Content-
Addressable Memory) storage is very complicated and expen-
sive to build, hardware manufacturers limit the provided size in
order to provide appliances at competitive prices. The special
feature of TCAM storage is that it is not only able to search for
words consisting entirely of 0s and 1s, but instead can match
on a third state X or don’t care, which allows for wildcard
matching. This enables matching on specific bits of a packet
header, like used in IP address prefix matching.

In the previous pipeline processing scenario, TableVisor
maps a single switch via its data path ID to a specific table
in the emulated multi-table switch. This behavior needs to be
changed in order to combine the TCAM storage of multiple
switches into one larger hardware accelerated flow table since
now a table, as seen by the controller, can span multiple
underlying hardware switches. To achieve this, two crucial



requirements have to be met. First, TableVisor has to ensure
that packets are only matched once, even if the virtual table
has multiple matching entries distributed over more than one
switch. This is done via the previously described meta-data
functionality that allows TableVisor to maintain meta-data
between hardware switches. Thereby, packets are marked by
the first rule that matches. Following switches belonging to
the same virtual table are configured to ignore marked packets.
Hence, every packet gets only matched exactly once per virtual
table.

Second, a mechanism is required to distribute flow rules
evenly among all switches involved in the table size aggrega-
tion. This distribution is performed through a combination of
priority boundaries and hashing. Due to the fact that Table-
Visor configures switches involved in a virtual multi-switch
table to ignore packets that have already been matched by an
earlier switch, we had to ensure that rules with high priority
are installed in the first switch of the composite. On the other
hand, flow rules with low priority need to be installed in the
last switch of the aggregation. To realize this, a fixed priority or
priority interval is specified in the TableVisor configuration for
each of the used hardware switches. It is possible to share one
priority between multiple switches to distribute flows. When
installing such flows, a hash value, based on the match fields, is
calculated and the flow is forwarded to the switch associated
with this hash value. This results in an even distribution of
flow rules of this priority among all involved switches while
at the same time allowing the controller to replace flow rules
since the hash value is definite and based on the match fields.
Finally, all flow rules with higher or lower priority are simply
installed in the first or last switch respectively. This behavior
results in a fully transparent and OpenFlow conform hardware
accelerated flow table spanning multiple hardware switches.

V. DISCUSSION

TableVisor can be seen as a first step to conceptually
address the mismatch between control plane requirements and
data plane capabilities. This section briefly discusses general
advantages and challenges of the TableVisor approach and
provides several pointers for future work.

A. Advantages

One of the main advantages of TableVisor is increased
flexibility. More specifically: the possibility to realize powerful
proxy layer services (like flexible pipeline processing) even if
the underlying hardware is limited with respect to functionality
or capacity. The current TableVisor prototype, for example,
enables full-featured MTP while the underlying hardware only
has a single flow table and does not support the goto-table
instruction. Because TableVisor is implemented as a software
layer and provides a fully transparent view towards control
applications, the approach can be easily integrated into existing
software-defined networks (no changes are required to existing
hardware and software). The aspect of increased flexibility
is especially important since current state-of-the-art SDN
switching technology often lacks support for complex pipeline

processing features or optional OpenFlow actions. And even
if new technology is available at some point in the future –
e.g., COTS switches with a programmable data plane – it can
be reasonably assumed that control plane requirements remain
that cannot be fulfilled by a single network device.

TableVisor can overcome this conceptual limitation by in-
troducing a proxy layer that emulates a feature-rich multi-
table pipeline using several hardware switches. This approach
is most applicable to scenarios where (a) specific data plane ca-
pabilities are otherwise unavailable, (b) already existing hard-
ware has to be utilized, e.g., because of economic efficiency
and (c), it is viable to accept the tradeoff between improved
flexibility and reduced performance (slightly increased control
and data plane latency).

B. Challenges and Future Work

There are several open challenges connected to the Table-
Visor approach. First of all, the true potential of TableVisor
ultimately depends on the proxy layer services that can be
realized. Section IV already gives two important examples
(pipeline processing and table extension), but there are other
use cases that could benefit from an additional proxy layer:

Feature Pooling: As mentioned earlier, state-of-the-art SDN
hardware cannot normally provide all the features required
from the control plane. The OpenFlow specification, for ex-
ample, lists various features as optional. Adding new features
normally requires installing new hardware. Upgrading the
entire infrastructure, however, is a time consuming, error prone
and expensive procedure, especially if certain features are only
required for a small fraction of flows. The TableVisor proxy-
layer allows incremental hardware acquisition by pooling
several switches together. This way, a certain feature can be
used by the control plane as long as it is supported by one of
the switches in the pool.

Local Repair: The control delay between switches and
controller is a well-known problem for repair and recovery
operations. Reactive repair that involves the controller, for
example, is often too slow to provide carrier grade require-
ments (less than 50ms). The TableVisor proxy layer can be
used to handle local repair operations without including the
SDN controller. If the proxy layer is executed in near vicinity
of the switching hardware (e.g., based on Network Functions
Virtualization), a low delay control loop could be realized.

Transparent Optimizations: Because the TableVisor proxy
layer works independently of the SDN controller, it can
perform transparent optimizations. This includes, for example,
the rate at which new flows can be installed into a hardware
switch or parallel execution of different pipeline stages.

For future work, we plan to implement and evaluate addi-
tional proxy layer services. Note that this may require other
conceptual considerations besides the TableVisor proxy layer,
e.g., mechanisms similar to what is described in [28].

Dynamic provisioning is another important challenge, i.e.,
online configuration of TableVisor based on specific control-
plane requirements. To reduce complexity, the current Table-
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Visor architecture enforces a strict separation of concerns in
two dimensions: (a) between SDN controller and TableVisor
and (b) between multiple instances of TableVisor within the
same network. While the former is crucial for control plane
transparency, the ladder can be softened to enable dynamic
provisioning and further improve flexibility.

In this regard, we plan to investigate alternative control
channel structures. Fig. 6 shows an example where multiple
logical TableVisor instances are organized as a middle-ware
layer attached to the SDN controller. This way, the organi-
zation of the underlying switches of the proxy layer can be
configured and changed on-demand which allows for a much
more flexible deployment.

In addition, the proxy layer between controller and switches
introduces an additional layer of complexity. While this com-
plexity is hidden from the controller, it can still affect the
overall operation of the network, e.g., regarding robustness
and security. Future work therefore includes a thorough inves-
tigation of these aspects (switch and link failures, proxy layer
failures, security implications).

VI. CONCLUSION

In this paper, we present the second major version of
TableVisor, a transparent proxy layer software tool that allows
pipeline processing and enables the extension of hardware
flow table sizes using multiple hardware switches. Today,
most OpenFlow-enabled switches are either limited to a single
hardware table or, if multiple tables are available, do not allow
jumping between these tables. Hence, the control plane is
constrained by the capabilities provided by the underlying
switching hardware. To alleviate this restriction, the most
recent version of the TableVisor software provides two new
major features.

First, the pipeline processing functionality of TableVisor, as
presented in Section IV-A, emulates a single multi-table switch
using multiple hardware switches. Multi-table processing is
an essential feature for many OpenFlow use cases. MTP can
counter the flow table explosion problem, since in a multi-table
scenario the number of flow entries grows linearly instead of
quadratically.

The second major feature provided by TableVisor is the
emulation of large hardware tables by combining the TCAM
storage of multiple switches, as described in Section IV-C.
This feature increases the often limited memory storage ca-
pacity of OpenFlow switches.

Beyond the introduction of these new features, we evaluate
the performance impact of the TableVisor shim-layer regarding
data plane and control plane. Measurements show that the
additional data plane delay introduced by pipeline processing
using multiple switches scales linearly with the number of used
hardware switches. The available bandwidth is not affected by
the concatenation of hardware switches and latency is limited
by the slowest device of the composite.

Regarding the influence on the control plane, we measured
flow setup times with and without the TableVisor software in
between the controller and switching hardware. The results
show that the introduction of TableVisor into the control
channel increases the response time of the control plane by
roughly factor 2. This, however, is not a significant problem
in real world scenarios, since in most use cases, flow rules
are installed proactively and the control plane in general
has only weak constraints regarding the response time of
switches. Furthermore, we are confident that the control plane
performance of TableVisor can be further optimized in future
versions.

The current version of TableVisor is thus able to alleviate
some of the problems current OpenFlow switching hardware
has. By emulating multi table hardware through the combina-
tion of, potentially heterogenous, single table switches, Table-
Visor is able to partially solve the mismatch between control
plane requirements and underlying data plane capabilities. In
addition, the combination of multiple switches to emulate a
single, large hardware flow table solves the problem of limited
TCAM storage in current switching hardware. Although the
impact TableVisor has on control and data plane have to be
considered, our measurements have shown, that the trade-off
between more powerful switching hardware through TableVi-
sor emulation and additional data plane delay or control plane
performance is justifiable.
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