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Abstract—Architecture-based Performance Prediction (AbPP)
allows evaluation of the performance of systems and to answer
what-if questions without measurements for all alternatives.
A difficulty when creating models is that Performance Model
Parameters (PMPs, such as resource demands, loop iteration
numbers and branch probabilities) depend on various influencing
factors like input data, used hardware and the applied workload.
To enable a broad range of what-if questions, Performance
Models (PMs) need to have predictive power beyond what has
been measured to calibrate the models. Thus, PMPs need to be
parametrized over the influencing factors that may vary.

Existing approaches allow for the estimation of parametrized
PMPs by measuring the complete system. Thus, they are too
costly to be applied frequently, up to after each code change. They
do not keep also manual changes to the model when recalibrating.

In this work, we present the Continuous Integration of
Performance Models (CIPM), which incrementally extracts and
calibrates the performance model, including parametric depen-
dencies. CIPM responds to source code changes by updating
the PM and adaptively instrumenting the changed parts. To
allow AbPP, CIPM estimates the parametrized PMPs using the
measurements (generated by performance tests or executing the
system in production) and statistical analysis, e.g., regression
analysis and decision trees. Additionally, our approach responds
to production changes (e.g., load or deployment changes) and
calibrates the usage and deployment parts of PMs accordingly.

For the evaluation, we used two case studies. Evaluation results
show that we were able to calibrate the PM incrementally and
accurately.

Index Terms—architecture-based performance prediction,
parametric dependency, incremental calibration, DevOps

I. INTRODUCTION

In many application domains, software is nowadays devel-
oped iteratively and incrementally, e.g., following agile prac-
tices. This means that there usually is no dedicated architecture
design phase, but architectural design decisions are made
continuously throughout the development. For performance
analysis, this means that there is not a single point in time
at which the performance analysis is carried out, but a per-
formance analysis is required whenever performance-critical
architecture design decisions have to be made.

In such iterative and incremental development projects, de-
velopers typically use Application Performance Management
(APM) [16, 9] to assess the current performance of their
software. However, APM cannot predict the impact of design
decisions or to answer scalability and sizing questions in a
large and distributed environment, where the resources may

not be accessible and a huge amount of load generators would
be needed.

Software performance engineering [4, 43] uses models to
assess the performance of a software system. It supports
the evaluation of various architecture, design, implementation
and workload choices. Compared to APM, such model-based
performance prediction [7] allows to predict future alternatives
before implementing them [43]. In particular, Architecture-
based Performance Prediction (AbPP) approaches [42] reflect
the architecture of the software system in a Performance
Model (PM) in order to easily study design alternatives [36].

The problem of AbPP in iterative-incremental development
is that modelling is a time-consuming process. In particular,
calibrating Performance Model Parameters (PMPs) (e.g., Re-
source Demands (RDs), branch probabilities, and loop counts)
is challenging, because the PMPs may depend on impacting
factors such as input data, properties of required resources
or usage profile. Ignoring these so-called parametric depen-
dencies [8]) will lead to inaccurate performance predictions.
Thus, keeping the PM and in particular the parametrized PMPs
consistent with the iteratively and incrementally evolving
source code over time requires repeated manual effort.

To address the high effort to create performance models
when source code is available, researchers have suggested
several approaches to extract PMs automatically. However,
most of these approaches [10, 48, 3, 33, 44] have three short-
comings: First, they require instrumentation and execution of
the whole system under study to extract the PM, which causes
a high overhead and is not feasible at high frequency, e.g.,
after each source code commit. Second, they do not consider
parametric dependencies. Notable exceptions are the approach
by Krogmann et al. [30, 29] or Grohmann et al. [14], which
also extract parametric dependencies (but monitor the whole
system to calibrate the model without keeping the manual
changes). Third, they reconstruct the whole architectural PM
from scratch. Thus, they cannot keep manual changes of the
architecture model, which is problematic if the architecture
model shall be used as an architecture knowledge base and
is enhanced manually with e.g. the rationale of architecture
decisions [28].

In this paper, we present our approach, called Continu-
ous Integration of the Performance Model (CIPM), to in-
crementally extract and calibrate architecture-level PMs with



parametric dependencies after each source code commit. Our
approach builds upon the Palladio approach [42] for modelling
and simulating architecture-level PMs. We have extended an
incremental extraction of such architectural PMs [31] with
incremental calibration that considers the parametric depen-
dencies and is based on adaptive monitoring. The goal of the
approach is to keep the PM up-to-date automatically to allow
AbPP. An initial version of this idea has been presented in a
workshop publication [37] without evaluation.

The contributions of our paper are twofold:
(A) Incremental Dev-time calibration: We propose a novel

incremental calibration at Development time (Dev-time)
that responds to source code changes by adaptive in-
strumentation of the changed parts of the code and uses
the resulting measurements from performance tests or the
production system to estimate the PMPs incrementally.
For this purpose, we propose a novel incremental Re-
source Demand Estimation (RDE) that is based on adap-
tive monitoring. Our calibration uses statistical analysis to
learn potential dependencies, e.g., regression analysis for
resource demands and decision trees for the estimation
of branch transitions.

(B) Model-based DevOps pipeline: We extend agile DevOps
practices [11] to integrate the CIPM activities and thus
to reduce the effort for AbPP. To do so, we propose a
model-based DevOps pipeline and implement a part of it.
In addition to the above-mentioned incremental Dev-time
calibration, we also include an existing approach for cali-
bration at Operation time (Ops-time) in the pipeline. This
Ops-time calibration responds to changes in deployment
and usage profile and updates the respective parts of the
PM. We include also prototypical self-validation steps.

We evaluate our contributions using two case studies [18,
24]. The evaluation confirmed that the incremental calibration
was able to detect parametric dependencies while significantly
reducing the monitoring overhead. Moreover, we showed that
the calibrated performance models are accurate by comparing
the simulation results with monitored data.

The next section gives an overview of the foundations.
Section III introduces a motivating example. The overall CIPM
process is presented in Section IV. Section V describes how to
embed CIPM in the model-based DevOps pipeline. The next
three sections provide detail on the CIPM activities: Section VI
presents the adaptive instrumentation, Section VII describes
the incremental calibration and Section VIII describes how
we estimate the parametric dependencies. Our evaluations
are discussed in Section IX. The related work follows in
Section X. The paper ends with our conclusions and future
work (Section XI).

II. FOUNDATIONS

A. Palladio

Palladio is an approach to model and simulate architecture-
level PMs and has been used in various industrial projects [42,
8]. Within Palladio, the so-called Palladio Component Model
(PCM) defines a language for describing PMs: the static

structure of the software (e.g. components and interfaces), the
behavior, the required resource environment, the allocation of
software components and the usage profile. The PCM Service
Effect Specification (SEFF) [8] describes the behavior of a
component service on an abstract level using different control
flow elements: internal actions (a combination of internal
computations that do not include calls to required services),
external call actions (calls to required services), loops and
branch actions. SEFF loops and branch actions include at least
one external call. Other loops and branches in the service
implementation are ignored and combined into the internal
actions to increase the level of abstraction.

To predict the performance measures (response times, cen-
tral processing unit (CPU) utilization and throughput) the
architects have to enrich the SEFFs with PMPs. Examples of
PMPs are resource demands (processing amount that internal
action requests from a certain active resource, such as a CPU
or hard disk), the probability of selecting a branch, the number
of loop iterations and the arguments of external calls.

Palladio uses the stochastic expression (StoEx) language
[26] to define PMPs as expressions that contain random vari-
ables or empirical distributions. StoEx allows parameter char-
acterization (e.g. determining NUMBER OF ELEMENTS,
VALUE, BYTESIZE and TYPE) and to express calculations
and comparisons (e.g., file.BYTESIZE<=5*max.VALUE).
B. Co-evolution approach with Vitruvius

The co-evolution approach of Langhammer et al. [32, 31]
helps software developers and architects to keep the architec-
ture model and the code consistent when their software sys-
tem evolves. It defines change-driven consistency preservation
rules that propagate changes in source code to the architecture
model and vice versa using model-based transformations.

These rules are defined based on VITRUVIUS [27, 12], a
view-based framework that encapsulates the heterogeneous
models of a system and the semantic relationships between
them in a Virtual Single Underling Model (VSUM) in order
to keep them consistent. VITRUVIUS defines mappings and
reactions languages that describe consistency rules on the
metamodel-level. These rules describe the consistency repair
logic for each kind of changes, i.e., which and how the artifacts
of a metamodel have to be changed to restore the consistency
after a change in a related metamodel has occurred.

Using VITRUVIUS, Langhammer et al. implemented their
approach to keep Java source code (using an intermediate
model [17]) and a PCM model consistent. The defined con-
sistency rules update the structure of a PCM model (i.e.
components and interfaces) and its behavior (in term of SEFFs,
but without PMPs) as a reaction to changes in the source code.
Similarly, changes in PCM model are propagated to the Java
source code.

C. Kieker
Kieker [22] is an APM tool that captures and analyzes

execution traces from distributed software systems. It allows
one to describe specific probes (data structures of the moni-
tored information) using the Instrumentation Record Language



train (List<Order> : orders, List<OrderItem> : items)

<<LoopAction>> iterations:
orders.NUMBER_OF_ELEMENTS

(1) <<InternalAction>>:
preprocess

(2) <<InternalAction>>:
trainForRecommender

(4)<<ExternalAction>>
Util.createBuyMatrix

(3)

Fig. 1: The behavior of TeaStore’s ”Recommender.train” service using SEFF

(IRL) [6]. It also supports dynamic and adaptive monitoring
by activating or deactivating probes during run time.

D. iObserve

iObserve [21] aims to increase the human comprehensibility
of run-time changes by updating an architecture model accord-
ingly. The authors defined specific monitoring records using
IRL and map the resulting measurements to the corresponding
parts in the PCM using the so-called Run-time Architecture
Correspondence Meta-Model (RAC) [20]. iObserve detects
changes concerning the deployment and the user behavior and
updates the related parts of the PCM to analyze performance
and privacy aspects [19]. However, iObserve does not support
updating component behavior models (SEFFs) with PMPs.

III. RUNNING EXAMPLE

We introduce a motivating example that illustrates our
approach and was used to evaluate it (see Sec. IX). The
example is part of the TeaStore case study [24]: a website to
buy different kinds of tea. In this case study, the Recommender
component is responsible for calculating the recommendations
for a certain shopping cart using the services ‘train’ and
‘recommend’. The ‘train’ service derives information from the
previous orders and prepares the data for the ‘recommend’
service. Because there are different strategies to recommend
a list of related items, the developers implemented four ver-
sions of ‘recommend’ and ’train’ along different development
iterations. These implementations have different performance
characteristics. Performance tests or monitoring can be used
to discover these characteristics for the current state, i.e., for
the current deployment and the current workload. However,
predicting the performance for another state (e.g., different
deployment or workload) is expensive and challenging because
it requires setting up and performing several tests for each
implementation alternative. In our example, answering the fol-
lowing questions is challenging based on APM: “Which imple-
mentation would perform better if the load or the deployment
is changed?” or “How well does the ’train’ service perform
during yet unseen workload scenarios?” An example for the
latter question would be an upcoming offer of discounts, where
architects expect an increased number of customers and also
a changed behavior of customers in that each customer is
expected to order more items.

AbPP can answer these questions faster using simulations
instead of the expensive tests if an up-to-date PM is available.

Regardless how the model will be built and updated (reverse
engineering extraction or manual/ automatic update), all avail-
able approaches recalibrate the whole model by monitoring
all parts of the source code instead of recalibrating only the
model parts affected by the last changes in source code. For

example, the changes in the implementation of ’train’ belong
to the last part of the code which is represented as an internal
action ‘trainForRecommender’ by modelling the behaviour
using SEFF (see Fig. 1). This means that these changes
have only impact on the RD of ‘trainForRecommender’ and
all other PMPs are valid (e.g., RD of preprocessor internal
action). Recalibrating the whole PMPs loses potential previous
manual changes and causes unnecessary monitoring overhead.
Additionally, not all the available approaches detect the para-
metric dependencies (e.g., the RD of ‘trainForRecommender’
is related to the number of ordered items).

IV. CONTINUOUS INTEGRATION OF PERFORMANCE
MODEL

This section provides an overview of the CIPM approach,
before describing how it is embedded in a continuous software
engineering approach in Section V and before providing more
details on the CIPM activities in Sections VI-VII.

Our approach CIPM incrementally extracts and calibrates
architecture-level PMs with parametric dependencies after
each source code commit. To do so, CIPM updates the PM
continuously to keep it consistent with the running system, i.e,
the deployed source code and the last measurements.

CIPM consists of four main activities:
1) Performance model update and adaptive instrumentation:

CIPM analyzes the source code changes, updates the
architectural PM and static behavior model based on the
co-evolution approach [31] and instruments the changed
parts of code to calibrate the new/ updated related parts
of the architecture as will be discussed in Section VI.

2) Monitoring: CIPM collects the required measurements ei-
ther during testing or executing the system in production.

3) Incremental calibration of PM (Sec. VII): CIPM performs
the Dev-time calibration of behavior, i.e., PMPs (Sec.
VII-A) considering the parametric dependencies (Sec.
VIII) and the Ops-time calibration, i.e., updating the
deployment and usage parts of PM (Sec. VII-B).

4) Self-validation: CIPM automatically starts a simulation
and calculates the variation between the simulation results
and the monitoring data to show the estimation error
before performing AbPP.

To realize these four activities, CIPM extends the co-evolution
approach with a monitoring process to keep the PM consistent
with the last up-to-date measurements. The static structure
and behavior update of PM is already provided by the co-
evolution approach. For the adaptive instrumentation, we (a)
extend the VSUM with an Instrumentation Model (IM) that
describes and manages the instrumentation points and (b)
define the consistency rules between the IM and source code.
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Fig. 2: Model-based DevOps pipeline

The rules define how VITRUVIUS has to respond to the
changes in code by adaptive instrumentation of the changed
parts with predefined monitoring probes. For the monitoring,
we (c) define a Measurements Model (MM) that describes the
resulting monitoring records. These records belong to specific
types that are responsible for collecting the necessary mon-
itoring information to calibrate the SEFF elements. Finally,
for the incremental calibration and estimation of parametric
dependencies, we (d) define the consistency rules between
MM and PM, which analyze the monitoring data, calibrate
the PMPs and update the deployment and usage parts of PM.

With our approach, we can also handle overlapping commits
that occur while the monitoring and calibration of a previous
commit are still ongoing by managing multiple copies of the
PM and keeping track of which model instance belongs to
which version of the source code.

V. THE MODEL-BASED DEVOPS PIPELINE

DevOps practices aim to close the gap between the devel-
opment and operations and to integrate them into one reliable
process. We extend the DevOps practices to integrate and
automate the CIPM in a Model-based DevOps (MbDevOps)
pipeline. This enables AbPP during DevOps-oriented develop-
ment. The next paragraphs explain the pipeline processes. The
lower case numbers refer to the process’s number in Fig. 2.

The MbDevOps pipeline starts on the “development” side
with continuous integration1 (CI) process [40] that merges
the source code changes of the developers (cf. Fig. 2).
VITRUVIUS responds to the changes in source code with the
first CIPM activity: updating the architectural PM1.1 and
generating the required instrumentation points in IM1.2

(cf. Sec. II-B). Next, adaptive instrumentation2 instru-
ments the changed parts of source code using the instru-
mentation points from IM (Sec. VI). The following process
is the performance testing3, which integrates the second
CIPM activity ’Monitoring’ to generate the necessary mea-
surements for calibration. The pipeline divides the mea-

surements into training and validation set. Afterwards, the
Dev−time calibration4 (the first part of 3rd CIPM activity)
enriches the PM with PMPs using the training set. Section VII
describes the incremental calibration process whereas Sec-
tion VIII explains how we parametrize the PMPs with the
influencing input parameters. After the calibration, the pipeline
starts the self−validation with test data5 process (the 4th

CIPM activity), which uses the validation set to evaluate
the calibration accuracy. If the model is deemed accurate,
developers can use the resulting PM to answer the performance
questions using AbPP6. If not, they can change the test
configuration to recalibrate PM. Answering the performance
questions using AbPP instead of the test-based performance
prediction reduces both the effort and cost of setting up the
test environment to perform this prediction.

The “operations” side of Figure 2 starts on the
continuous deployment7 in the production environment.
CIPM Monitoring8 in the production environment generates
the required run-time measurements for the next process:
Ops−time calibration9 (the second part of the 3rd CIPM
activity). The ops-time calibration calibrates and updates both
usage model and deployment model (Sec. VII-B). Next, the
self−validation with monitoring data10 (the 4th CIPM
activity) validates the estimated PMPs. If the PM is not
accurate enough, the adaptive recalibration11 process (Sec.
VII) recalibrates the inaccurate model parts using monitoring
data. Finally, the developers can perform more model −
based analysis12 on the resulting model, e.g., model-based
auto scaling. Additionally, having an up-to-date descriptive
PM supports the development planning13. This is due to the
advantages of models: increasing the understandability of the
current version, modelling and evaluating design alternatives
and answering what-if questions.

VI. ADAPTIVE INSTRUMENTATION

The goal is to instrument the parts of source code, which
have been changed and their changes may affect the validity



of related PMPs. In our running example, only the source
code of ’trainForRecommender’ is instrumented to provide the
required measurements to update the RD, whereas there is
no need to instrument the loop or the code of ‘preprocess’,
because these parts of code are not changed, consequently the
old estimations of the PMPs remain valid.

To automate the adaptive instrumentation, we use the con-
sistency rules between the source code model and IM, which
responds to changes in method body (e.g., adding/ updating
statements) by instrumenting the related parts. The rules
reconstruct the SEFF using a reverse engineering tool [29]
and map code statements to their SEFF element (e.g., internal
actions). Then, they create the required probes (e.g., service
probe, internal action probe, loop probe or branch probe) that
refer to the SEFF elements whose code statements have been
changed. We define the following monitoring record types that
are related to the aforementioned probe types using IRL (cf.
Section II-C).
• Service call record to monitor the following:

- the input parameters properties (e.g., type, value, num-
ber of list elements, etc.) that should be considered later
as candidates for parametric dependency investigation,
- the caller of this service execution to learn the para-
metric dependency between the input parameters of both
caller and callee services.
- the allocation context that captures where the compo-
nent offering this service is deployed.

• Internal-action record type to monitor the response time
of the internal actions.

• Loop record to monitor the number of loop iterations.
• Branch record to monitor the selected branch.

More details about the records types are in [23, Chapter 4.3.3].
Finally, we implemented a model-based instrumentation to

generate the instrumented source code as a VITRUVIUS view.
This view combines the information from two models: the
source code model and the IM. The instrumentation starts with
generating the instrumentation code for each probe in the IM
according to the probe type. Then it injects the instrumentation
codes into a copy of the source code. To detect the correct
places for the instrumentation codes, the instrumentation pro-
cess uses the relations stored in VITRUVIUS correspondence
model, i.e., the relation between probes and SEFF elements,
the relation between SEFF elements and their source code
statements and relation between the original source code and
the generated copy (instrumented source code).

VII. INCREMENTAL CALIBRATION

The following subsections explain the calibration types.

A. Dev-time calibration

The Dev-time changes that we consider in this paper are the
source code changes that may have an impact on performance,
i.e., changes in a method body.

On one hand the incremental calibration of the SEFF
branches, loops or external call arguments requires only to
instrument the related source code and to analyze the resulting

measurements (e.g., loop iteration number, the selected branch
transition, and the values of external call parameters). The goal
of this analysis is to detect whether there are dependencies to
the service input parameters and express these PMPs sequen-
tially as stochastic expression (cf. Sections VIII-B to VIII-D).

On the other hand, the incremental calibration of the internal
actions with Resource Demand (RD) is challenging because
we aim to estimate the RD of internal actions incremen-
tally without high monitoring overhead. The existing RDE
approaches either estimate the RDs at the service level [45] or
require expensive fine-grained monitoring [5, 30]. Therefore,
we propose in the following paragraph a light-weight RDE
process that is based on adaptive instrumentation and moni-
toring to allow for an incremental RDE.

Our incremental RDE aims to estimate the RDs in the case
of adaptive monitoring, i.e., monitoring the changed parts of
source code. In our running example, monitoring the code of
‘trainForRecommender’ to reestimate its RD. For this goal,
we extend the approach of Brosig et al. [5].

Basis: Non-incremental estimation of resource demands:
Brosig et al. approximate the RDs with measured response
times in the case of low resource utilization, typically 20%.
Otherwise, they estimate the RD of internal action i (a part
of SEFF, see Section II-A) for resource r (Di,r) based on
service demand law [39] shown in equation (1). Here, Ui,r

the average utilization of resource r due to executing internal
action i and Ci is the total number of times that internal action
i is executed during the observation period of fixed length T :

Di,r =
Ui,r

Ci/T
=

Ui,r · T
Ci

(1)

Brosig et al. measure the Ci and estimate Ui,r by using the
weighted response time ratios of the total resource utilization,
which is not applicable in our adaptive case where not all
internal actions are monitored. Therefore, we extend their
approach to estimate Ui,r and as a result Di,r based on the
available measurements and the old RDs estimations.

Incremental estimation of resource demands: Our new
approach distinguishes internal actions into two categories
based on whether they have been modified in the source
code commit preceding the incremental calibration. We denote
internal actions whose corresponding code regions have been
modified in the preceding source code commit as Monitored
Internal Actions (MIAs), e.g., ’trainForRecommender’ in our
running example, – for these code regions, the consistency
rules will generate instrumentation probes and the adaptive
monitoring produce monitoring results. We denote internal
actions whose corresponding code regions have not been
changed in the preceding source code commit as Not Mon-
itored Internal Actions (NMIAs), e.g., ’preprocess’ in our
running example – monitoring data for these code regions
has already been observed in a previous iteration and ,
consequently, we have already an estimation of their RDs.

Based on the fact that the total utilization Ur is measurable
and the utilization due to executing NMIAs can be estimated
based on the old estimations of RDs, we can estimate Ur,MIAs



and estimate the RD for each internal action i ∈ MIAs
accordingly as it will be explained in following paragraphs.

To estimate (Ur,NMIAs), we estimate which internal actions
nmi ∈ NMIAs are processed in this interval and how many
times nmi are called (Cnmi). For that, we analyze the service
call records (see Section VI) to determine which services are
called in an observation period T and which parameters are
passed. Then we traverse the service’s control flows (i.e. their
SEFFs) to get NMIAs and predict their RD using the input
parameters. This requires evaluating branches and loops of
the control flow to decide which branch transition we have
to follow and how many times we have to handle the inner
control flow of loops. Our calibration, adjusts the new or
outdated branches and loops using the monitoring data (as will
be described in Sections VIII-B and VIII-C) before starting
this incremental RDE. Thus, we make sure that we can traverse
the SEFFs control flow. Consequently, we can sum up the
predicted RDs for all calls of the NMIAs and divide the result
by T to estimate the Ur,NMIAs based on the utilization law
as shown in the equation 2:

Ur,NMIAs =

∑
nmi∈NMIAs

∑
k≤Cnmi

Dnmik,r

T
(2)

Accordingly, we estimate the utilization due to executing
the MIAs (Ur,MIAs) using the measured Ur and the estimated
Ur,NMIAs as shown in equation (3):

Ur,MIAs = Ur − Ur,NMIAs (3)

Hence, we can estimate the utilization Ui,r due to executing
each internal action i ∈ MIAs using the weighted response
time ratios as shown in equation (4), where Ri and Ci are
the average response time of i and its throughput. Rj is the
average response time of the internal action j ∈ MIAs and
Cj is the number of executing it in T .

Ui,r = Ur,MIAs.
Ri · Ci∑

j∈MIAs

Rj · Cj
(4)

Using Ui,r we can estimate the resource demand for i (Di,r)
based on the service demand law presented in equation (1).

In the case that the host has multiple processors, our
approach uses the average of the utilizations as Ur.

Note that we assume that each internal action is dominated
by a single resource. If this is not the case, we have to follow
the solution proposed by Brosig et al., to measure processing
times of individual execution fragments, so that the measured
times of these fragments are dominated by a single resource
[5]. To differ between the CPU demands and disk demands, we
suggest detecting the disk-based services in the first activity of
CIPM using specific notation or based on the used libraries.

B. Ops-time calibration

The task of the Ops-time calibration is to update the usage
models as well as the deployment model according to the
run-time measurements. To achieve that, we use the iObserve
approach, which analyzes the measurements and aggregates

them to detect changes concerning the deployments and the
user behavior. For this, we extended our monitoring records
so that all information required by iObserve is available. This
allows us to integrate the usage model extraction and the
identification of deployments from iObserve. We do not need
the RAC from iObserve, because the mapping information is
implicitly presented in our monitoring records, e.g., the records
that track the execution of a service include explicitly the ID
of the associated service in the architectural model.

VIII. PARAMETRIC DEPENDENCIES

This work estimates how PMPs depend on input data and
their properties (such as number of elements in a list or the
size of a file). We begin by estimating the dependencies of
branches and loops, because the incremental RDE require
traversing the SEFF control flow to estimate the utilization
of NMIAs. Currently, we investigate a linear, quadratic, cubic
and square root relations using Weka library [15]. However,
we are working on optimizing our estimation using genetic
algorithms. The following sections explain the analysis that
we follow to estimate the parametric dependencies of PMPs.

A. Resource demands

To learn the parametric dependency between the resource
demand of an internal action i and input parameters P , we
first estimate the resource demand on resource r for each
combination of the input parameters (Di,r(P )) using the
proposed incremental RDE as described in Section VII-A.

Second, we adjust the estimated RDs of an internal action
using the processing rate of the resource, where it is executed,
to extract the resource demand independently of the resource’
processing rate Di(p).

Third, if the input parameters include enumerations, we
perform additional analysis to test the relation between RDs
and enumeration values using decision tree. If a relation
is found, we build a data set for each enumeration value.
Subsequently, we perform the regression analysis as it will
be described in the following paragraph. Otherwise, we create
one data set for each internal action that includes the estimated
RDs and their related numeric parameters. The goal is to find
the potential significant relations by the regression analysis of
the following equation:

Di(P ) = (a ∗ p0 + b ∗ p1 + · · ·+ z ∗ pn+
a1 ∗ p20 + b1 ∗ p21 + · · ·+ z1 ∗ p2n+
a2 ∗ p30 + b2 ∗ p31 + · · ·+ z2 ∗ p3n+
a3 ∗

√
P0 + b3 ∗

√
p1 + · · ·+ z3 ∗

√
pn + C)

p0, p1.. pn are the numeric input parameters and the numeric
attributes of objects that are input parameters.
a... z, a1... z1, a2... z2 and a3... z3 are the weights of the

input parameters and their transformations using quadratic,
cubic and square root functions. C is a constant value.

Fourth, we perform the regression analysis algorithm to find
the weights of the significant relations and the constant C.

Fifth, we replace the constant value C with a stochastic
expression that describes the empirical distribution of C value



instead of the mean value delivered by the regression analysis.
This step is particularly important when no relations to the
input parameters are found. In that case, the distribution
function will represent the RD of internal action better than a
constant value. To achieve that, we iterate on the resulting
equation that includes the significant parameters and their
weights, to recalculate the value of C for each RD value and
their relevant parameters. Then, we build a distribution that
represents all measured values and their frequency.

Finally, we build the stochastic expression of RD that may
include the input parameters and the distribution of C.
B. Loop iterations count

To estimate how the number of loop iterations depends on
input parameters, we need both the loop iterations’ count and
the input parameters for each service call. To achieve that, we
use our loop records that log the loop iterations’ count, every
time a loop finishes (see Section VI). These records refer to
the service call record that contains the input parameters.

The reason why we use additional records to count loop
iterations instead of counting the total amount of enclosing
service calls, is that the loop may have a nested branch or
loop, which does not allow one to infer the correct count of
loop iterations [23].

To estimate the dependency of the loop iteration count on
input parameters, we combine the monitored loop iterations
with the integer input parameter into one data set. To do so,
we filter out all non-integer parameters and take into account
their integer properties like number of list elements or size of
files. Then, we add transformations (quadratic and cubic) of
parameters to the data set to test more relations. Finally, we use
regression analysis to estimate the weights of the influencing
parameters. Due to the restriction that the loop iterations count
is an integer number, we have to ensure, that the output value
is always an integer value, which is not always the case.
Therefore, we have to approximate the non-integer weights or
express them as a distribution of integer values. For instance,
we can express the value 1.6 using a Palladio distribution
function of an integer variable which takes the value 1 in 40%
of all cases and the value 2 in 60% of cases. Similar to the
fifth step of parametrized RDE in Section VIII-A, we replace
the constant value of the resulting stochastic expression with
an integer distribution function. This will be especially useful,
when no relation to the input parameters is found.
C. Branch transitions

To estimate the parameterized branch transitions, we use
the predefined branch monitoring records that log which
branch transitions are chosen in addition to a reference to the
enclosing service call.

We monitor each branch instead of predicting the selected
transition according to the external call execution enclosed in
the branch due to potential nested control flows (e.g., nested
branches), where we cannot infer the selected transition [23].

The used monitoring records allow us to build a data set
for each branch, which includes the branch transitions and the
input parameters. To estimate the potential relations, we use

the J48 decision tree of the Weka library, an implementation of
the C4.5 decision tree [41]. We filter out the non-significant
parameters based on cross-validation. Finally, we transform
the resulting tree into a boolean stochastic expressions for each
branch transition. If no relation is found, the resulting stochas-
tic expression will be a boolean distribution representing the
probability of selecting a branch transition.
D. External call arguments

This step predicts the parameters of an external call in
relation to the input parameters of the calling service.

For each parameter of an external call, we check whether it
is constant, identical to one of input parameters, or depend
on some of them. To identify the dependencies, we apply
linear regression in the case of numeric parameter and build a
decision tree in the case of boolean/ enumeration one. For the
remaining types of parameters, we build a discrete distribution.

Because the relation between input parameters and external
calls parameters may be more complex, we are working on
optimizing our estimation using a genetic search similar to
the work of Krogmann et al. [30].

IX. EVALUATION

This section introduces the evaluation goals, setup, environ-
ment and the results of the evaluation:
A. Evaluation Goals

The goal is to evaluate the following three aspects of the
approach and answer the Evaluation-Questions (EQs):
• Accuracy of the incremental calibration:

EQ1.1: How accurate are the incremental calibrated PMs?
EQ1.2: Is the accuracy of the incremental calibrated PM
stable over the incremental evolution?

• Accuracy of the parametric dependencies:
EQ2: Does the estimation of parametric dependencies im-
prove the accuracy of PMs?

• Performance of the calibration pipeline:
EQ3: How long does the pipeline need to update PMs?

• Monitoring overhead:
EQ4.1: How much is the required monitoring overhead?
EQ4.2: How much can the adaptive instrumentation reduce
the monitoring overhead?

B. Experiment Setup

The evaluation is structured as follows:
1. We monitor the application over a defined period of time
(e.g., 60 minutes) and perform a load test at the same time to
artificially simulate user interactions.
2. We run the monitoring in combination with the load
test two times. First, we apply a fine-grained monitoring,
pass the results to the calibration pipeline for adjusting the
architecture model (training set). Second, we only observe
service calls (coarse-grained monitoring). These data is used
to estimate the accuracy of the calibrated model (validation
set). This procedure prevents the monitoring overhead from
falsifying the evaluation results. We also record the execution
times (overhead) of the pipeline parts.3. We adjust the usage
model according to the validation set and perform a fixed
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Fig. 3: SEFF of CoCoME’s ”bookSale” service

number of simulations of the updated architecture model (100
repetitions). Repetitions are necessary, as the simulation sam-
ples from stochastic distributions may not be representative.
Afterward, we compare the results of the simulations with
the validation set. Both are distributions, therefore we use
the Kolmogorov-Smirnov-Test (KS-Test) [25], the Wasserstein
metric [35], and conventional statistical measures to determine
the similarity. The lower the KS-Test value, the higher is
the accuracy of the updated architecture model. In order to
limit the dependence on a single metric, we also included the
Wasserstein distance to confirm the results. The Wasserstein
metric is distance measure that quantifies the effort needed
to transfer one distribution into the other. If we want to
compare the accuracy of two simulation distributions (using
real monitoring as reference), this metric is well suited, but
reports absolute numbers that are difficult to interpret. We
therefore combined both metrics in our analysis.
C. Evaluation Environments

We evaluated our approach using two case studies: Common
Component Modeling Example (CoCoME) [18] and TeaStore
[24]. CoCoME is a trading system which is designed for the
use in supermarkets. It supports several processes like scanning
products at a cash desk or processing sales using a credit card.
We used a cloud-based implementation of CoCoME where the
enterprise server and the database run in the cloud.

Additionally, we evaluated our approach using the afore-
mentioned running example of the TeaStore case study (cf.
Section III). Compared to the original, we modified the ap-
plication so that the ”train” service is executed when a user
places an order. This causes the number of users to have a
direct impact on the service response times.

Because CoCoME and TeaStore are not implemented using
the VITRUVIUS platform, we instrument the changed parts of
the source code manually. In future work, we will use ap-
proaches for importing existing source code into VITRUVIUS
[34], which allows the automatic adaptive instrumentation.
D. Evaluation of the Incremental Calibration

This section evaluates the accuracy of our calibration for
the following incremental evolution scenarios.

1) BookSale Calibration: The “bookSale” service of Co-
CoMe case study is responsible for processing a sale after a
user submitted his payment. As input, this service receives a
list of the purchased products including all information related
to the purchase. The service consists of several internal and ex-
ternal actions and two loops. Figure 3 visualizes the structure

of the calibrated ”bookSale” service of CoCoME. For reasons
of simplification, we focused on the structure and omitted
certain details. In this evaluation scenario, we supposed that
the “bookSale” service is newly added. According to our
assumption, we instrumented this service and all services that
are subsequently called by it. We performed a load test which
simulates user purchases. We used the resulting monitoring
data to calibrate our architecture model.

Results: Table I shows the quartiles for both the monitor-
ing and the simulation results for a single example execution.
Besides, a KS test value of 0.1321 and a Wasserstein dis-
tance of 13.7726 were obtained by comparing the monitoring
and the simulation distributions. It is well visible that these
distributions are very close to each for the first, second and
third quartile. The discrepancy in the minimum and maximum
values of the distributions arises because we limited the time
spent for simulation. The KS tests average over all 100
simulation runs is approximately 0.1467 (min 0.1248, max
0.1774). These results confirm the PM accuracy (EQ1.1).

TABLE I: Quartiles for the probability distributions of a single
simulation and the monitoring for the ”bookSale” service

Distribution Min Q1 Q2 Q3 Max Avg

Monitoring 31ms 101ms 130ms 187ms 461ms 143ms

Simulation 56ms 95ms 124ms 163ms 338ms 133ms

2) Train Calibration: Similar to ”BookSale” evaluation
scenario, we assumed that ’train’ service (cf. Section III)
was newly added. Therefore, we instrumented and monitored
the statements of all SEFF elements shown in Fig. 1 in
two cases: (1) for the first implementation of ’train’ and (2)
after adding an enumeration parameter that refers to the used
implementation of ’train’ to represent the four implementations
in one SEFF (cf. Sec. IX-E). Then we calibrated the SEFFs
of these two cases. Due to lack of space we show only the
accuracy results of the second case in (Table III, 2nd column)1.

3) TrainForRecommender Calibration: To evaluate that the
accuracy of PM is stable (EQ1.2), we simulated an evolu-
tion scenario that assumes that the developers change the
implementation of the ’train’ service to examine the four
implementation alternatives (cf. Section III) in four subsequent
source code commits c1, ..., c4. According to our assumption,
except of the ”trainForRecommender” internal action, the
behavior of ’train’ (Figure 1) stays the same. To evaluate this

1See https://sdqweb.ipd.kit.edu/wiki/CIPM for more detail on evaluation.

https://sdqweb.ipd.kit.edu/wiki/CIPM


scenario, we instrumented only the ”trainForRecommender”
internal action for the first implementation of ’train’ (c1). We
performed 15 minutes of fine-granular monitoring and used
the resulting data to calibrate the model. Next, we monitored
the ’train’ service for another 15 minutes of coarse granular.
The coarse granular monitoring data was used as reference
for the estimation of the accuracy of PM. In the next step,
we instrumented the ”trainForRecommender” internal action
for the second implementation of ’train’ (c2) and performed a
fine granular and a coarse granular monitoring for 15 minutes
each. We repeated the same procedure for commits c3 and c4.

To simulate additional commits, we changed the train im-
plementation by randomly replacing the strategy with another
one. We repeated this procedure six more times to simulate
six additional iterations and calculate the accuracy of the
calibrated model for each iteration. In addition, the database
filled up over time, which leads to increasing response times,
increasing the difficulty for the calibration process.

TABLE II: Aggregated metrics of the evolution scenario

Metric Min Median Max Avg St.Dev
KS Test 0.222 0.257 0.317 0.256 0.028
WS Distance 24.56 33.74 38.96 33.76 4.01

Results: Table II lists the aggregated results. The values
are slightly higher than without applying changes to the
application. However, it can be seen that the accuracy of the
models is almost constant throughout the evolutionary steps.
From this, we conclude that the automated calibration is able
to handle changes of the observed services.
E. Evaluation of the Estimation of Parametric Dependencies

This scenario evaluates the recognition of the parametric
dependencies and compares the accuracy of the AbPP using
the parameterized model (i.e., calibrated with our approach)
with the non-parameterized model (i.e., calibrated ignoring
parametric dependencies). For this goal, we extended the SEFF
shown in Figure 1 and added an enumeration input parameter
that refers to the recommender type and determines which
implementation is used within the ”trainForRecommender”
internal action. This allowed us to represent all different
implementations in one SEFF. This means the RD of ”train-
ForRecommender” can be related to the recommender type.
Then, we calibrated the SEFF and predicted the performance
for increasing the load from 20 to 40 concurrent users. First,
we monitored the service fine granular (F1) and subsequently
coarse granular (C1) by applying the load of 20 users. We only
used the resulting monitoring data (F1) to calibrate a param-
eterized model using our approach and the non-parameterized
model using the distributions of the observed values. Then,
we compared the simulation results of both models with the
monitoring data (C1). Then, we performed AbPP for the higher
load (40 users). As baseline, we measured the performance
using coarse granular monitoring and applying the load of 40
users (C2). Finally, we compared the AbPP results of both
models with the monitoring data (C2).

Results: The results confirmed that our calibration was
able to detect the parametric dependencies. Hence, the RD of

trainForRecommender is related to the type of recommenda-
tion implementation and the number of elements.

Table III shows the comparison of the KS tests and the
Wasserstein distances between the parameterized and the non-
parameterized model. It can be seen that both models are very
accurate for the standard load of 20 users. However, the non-
parametric model loses significantly more accuracy than the
parameterized model, when the load changes to 40 users. This
confirms that the estimation of the parametric dependencies
improves the accuracy of PMs (EQ1.1, EQ2).

TABLE III: Comparison between the accuracy of the param-
eterized (PM) and the non-parameterized (NPM) model.

Metric
PM

(20 Users)
NPM

(20 Users)
PM

(40 Users)
NPM

(40 Users)

KS Q1 0.1024 0.1023 0.1378 0.2352

KS Avg. 0.1267 0.1239 0.1609 0.2575

KS Q3 0.1431 0.1441 0.1810 0.2834

WS Q1 15.4911 11.2484 33.0235 43.5959

WS Avg. 19.1764 16.2669 39.6138 51.3531

WS Q3 22.2654 18.2179 46.8370 59.9197

F. Evaluation of the MbDevOps Pipeline

This section evaluates the performance of the implemented
part of MbDevOps Pipeline (monitoring, incremental cali-
bration and self-validation) and answers EQ3. For that, we
computed how long the individual pipeline parts took to
complete. We used the three evolution scenarios described in
Section IX-D. The results are shown in Table IV.

TABLE IV: Execution times of the pipeline parts

Measure bookSale train trainForRecommender
Record Count 220706 294237 27085
Load Records 4.664s 5.142s 0.774s

PM Calibration 9.168s 4.996s 0.789s
UM Adjustment 2.365s 0.194s 0.165s
Self-Validation 1.729s 1.440s 1.327s

Total 17.926s 11.772s 3.055s

We can see that the required time strongly depends on
the number of monitoring records and the complexity of the
observed service. Except for the self-validation, the execution
time of all parts of the pipeline depends on the number of
records (see Table V). In all considered cases, the execution
of the whole pipeline took less than 20 seconds.

We observe that adaptive monitoring limits the number
of monitoring records. Accordingly, the second iteration of
TeaStore monitoring produces far fewer records, which results
in significantly lower execution times. To gain detailed insights
about the performance of the pipeline, we also examined the
behavior for an increasing number of monitoring records. For
this purpose, we generated monitoring data using CoCoME
and the load test that we also used before. Thereafter, we
executed the pipeline several times, with an increasing number
of monitoring records as input. The results in Table V showed
that the execution time of the pipeline scales linearly with the
number of monitoring records in this case.



TABLE V: Detailed performance information for an increasing
number of monitoring records

Number of
records

Loading
Records

PM
Calibration

UM
Adjustment

Sum

100000 1.570s 6.899s 1.158s 9.627s
200000 3.018s 7.229s 1.860s 12.107s
500000 6.290s 7.899s 1.802s 15.991s
700000 9.972s 8.194s 1.942s 20.108s
1000000 14.780s 9.160s 1.917s 25.857s

G. Evaluation of Monitoring Overhead

To answer the EQ4.1 and EQ4.2, we measured the overhead
caused by the monitoring for the incremental calibration
scenarios in Section IX-D.

The average monitoring overhead for bookSale was 1.31ms
(fine-grained), 252µs (coarse-grained) and for train 1.81ms
(fine-grained), 88µs (coarse-grained). We note that the coarse-
grained monitoring has a negligible influence. The fine-grained
monitoring overhead scales with the complexity of the service.
In our case, the overhead of around 1ms had no drastic impact
on the performance, since the execution times of the services
are significantly higher.

The evolution of TrainForRecommender calibration sce-
nario (cf. Section IX-D3) shows very well that the adap-
tive monitoring helps to significantly reduce the monitoring
overhead. Comparing to train (cf. Section IX-D2) where all
SEFF elements are instrumented, we saved at least 75% of
the monitoring overhead by instrumenting only the changed
internal action. This is reflected in the calibration times, which
are considerably lower compared to the first iteration (see
Table IV) (EQ4.2). In general, there is a trade off between the
monitoring overhead and the accuracy of the model. However,
our approach tries to balance them by using the incremental
calibration in combination with the adaptive monitoring in
order to minimize calibration time and monitoring overhead.

X. RELATED WORK

A number of approaches for constructing the architectural
model based on static (e.g., [2]), dynamic, or hybrid anal-
ysis exist. Walter et al. [48] propose a tool to extract an
architectural PM as well as performance annotation based on
analysing monitoring traces. Similarly, other works [3, 44,
10] extract PM based on dynamic analysis. Krogmann et al.
[30, 29] extract parametrized PCM based on hybrid analysis.
Langhammer et al. introduce two reverse engineering tools
[31, P. 140] [33] that extract the behavior of the underlying
source code. The above-mentioned approaches do not support
the iterative extraction of PMs as well as the consistency
preservation between PMs and source code. If they were used
in an iterative development, they would re-extract the whole
model by monitoring and analysing the whole system after
each iteration. In addition to the monitoring overhead, this
process ignores potential manual changes that may be formerly
applied to the architectural PM.

In addition to the work of Krogmann et al. [30, 29], the
works of Ackermann et al. [1] and Curtois et al. [13] also

consider the characterization of parametric dependencies in
performance models, while Grohmann et al. [14] focus on the
identification of those from monitoring data. However, only
our work considers the parametric dependencies during the
incremental calibration.

Model extraction approaches derive the resource demands
either based on coarse-grained monitoring data [45, 46] or
fine-grained data [5, 50]. The latter approaches give a higher
accuracy by estimating PMPs but have a downside effect
because of the overhead of instrumentation and the monitoring.
Our approach reduces the overhead by the automatic adaptive
instrumentation and monitoring.

Spinner et al. [47] propose an agent-based approach to
updated architectural performance models. In contrast to our
work, they focus on model updates at run-time.

Declarative Performance Engineering (DPE) [49] techni-
cally enables to answer concerns based on measurement-
based performance evaluation and model-based performance
predictions. However, existing solutions do not provide a
technical integration into the build pipeline. Also, DPE does
not answer how to keep PMs updated.

XI. CONCLUSION AND FUTURE WORKS

Applying AbPP in the agile and DevOps process promises
to detect performance problems by simulation instead of the
execution in a production environment. We presented the
continuous integration of the architectural performance model
in the development process based on the static and dynamic
analysis of the changed code. Our approach keeps the PM
continuously up-to-date. We also presented the MbDevOps
pipeline which automates the incremental calibration process.

Our calibration estimates the parametrized PMPs incremen-
tally and uses a novel incremental resource demand estimation
based on adaptive monitoring. Moreover, our calibration up-
dates both the usage and deployment models to support model-
based run-time performance management like auto-scaling.

We tested the functionality using two case studies. The eval-
uation showed the ability to calibrate the PM incrementally.
We evaluated the accuracy of our calibration by comparing
the simulation results with the monitoring data. In these
case studies, the incrementally calibrated models and their
parametric dependencies were accurate and the used adaptive
monitoring significantly reduced the monitoring overhead and
the calibration effort.

In this work, we have automated only the part of the
proposed MbDevOps pipeline that is responsible for testing,
incremental calibration and self-validation.

In future work, we aim to automate the whole pipeline to
integrate the continuous integration (CI) process with VITRU-
VIUS. Moreover, we will extend the available approaches to
integrate existing source code and models into VITRUVIUS
platform [34, 38].

Besides, we will extend our parametrized calibration to test
for more complex dependencies of external call parameters. It
is also planned to extend the monitoring records to update the
system model (composition of the components) automatically.
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