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Abstract. In this paper we define the interval overlapping relation and
develop a parallel hardware unit for its realization. As one application we
consider the interval comparisons. It is shown that a detailed classifica-
tion of the interval overlapping relation leads to a reduction of floating-
point comparisons in common applications.
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1 Introduction

Detection of overlapping intervals is a problem that occurs in many application
areas. The detection of overlapping boxes in computer graphics, overlapping time
slots in scheduling problems, containment or membership tests, or enclosure tests
in self-verifying scientific computing algorithms are some examples. In most of
the applications, like in scheduling, the information whether 2 intervals overlap
or not is not sufficient, but we also like to know how they overlap: completely
contained in the interior vs. touching one bound, e.g. In this paper we, hence,
define a general relation that describes the kind of overlapping between two
one-dimensional intervals, and develop a hardware unit for its evaluation. As
our intended first application of this unit we discuss the comparison relations in
interval arithmetic.

An interval is a connected, closed, not necessarily bounded subset of the
reals. It can be represented by its two bounds.

X := [x , x] = {x ∈ R | x ≤ x ≤ x} (1)

In this definition x can be−∞, x can be +∞, but the infinities never are members
of an interval. The set of all intervals including the empty set is denoted as IR.
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2 Definition

The interval overlapping relation is not a boolean relation but delivers 14 dif-
ferent states describing all the possible situations that occur when the relative
positions of 2 intervals are regarded with respect to overlapping. Table 1 illus-
trates the meaning of the relation. Each row represents a different state. The
columns 2 through 5 contain sketches of the scene with the interval A at the
bottom and B on the top. Singleton or point intervals are denoted as dots where
appropriate. As usual numbers grow from left to right. Let Q be the set of the
13 cases for non-empty intervals [1] listed in Tab. 1.

Definition 1 (Interval Overlapping). The overlapping relation for two non-
empty intervals is defined by the mapping

◦◦1 : (IR \ ∅)× (IR \ ∅) → Q (2)

A ◦◦1B 7→ qi ∈ Q , i = 1 . . . 13 (3)

State 14, not in the table, characterises that one of the operands is empty.
Then there is no overlapping at all.

Remark 1. Note that all possible situations are considered.

We represent the states by 4-bit strings resulting from specific comparisons
of the bounds of the input intervals.

Definition 2 (Interval Overlapping Representation). The interval over-
lapping relation

◦◦ : (IR \ ∅)× (IR \ ∅) → {0, 1}4 (4)

A ◦◦B 7→ (r1, r2, r3, r4) (5)

for two non-empty intervals A = [a , a], B = [b , b] ∈ IR \ ∅ is defined by:

r1 := ((a 6= b)⊕ (((a ≤ b) ∨ (a > b))

∧ ((a 6= b) ∧ (a 6= b))))
(6)

r2 := ((a 6= b)⊕ (((a < b) ∨ (a ≥ b))

∧ ((a 6= b) ∧ (a 6= b))))
(7)

r3 := (a ≥ b) (8)

r4 := (a ≤ b) (9)

The function ◦◦ can be written as a composition of

◦◦ = ξ ◦ ◦◦1

where ξ : Q → {0, 1}4 maps the state into a representation as defined in
Tab. 1 columns 1 and 6. The 6th column of the table shows the state of overlap-
ping coded into 4 bits.
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Table 1. The 13 different cases of the interval overlapping relation for non-empty
intervals

A ◦◦1 B A ◦◦ B A ⊆ B A ⊇ B A = B A ∩B = ∅

q1 b b

a a a a

b
B b b

b
A

b
B

b
A

0001 •

q2 b b

a a

0101

q3 b b

a a

1101

q4 b b

a a

b b

b
A

0111 •

q5 b b

a a

b b

b
A

1111 •

q6 b b

a a

b b

b
A

1011 •

q7 b b

a a

1110

q8 b b

a a

1010

q9 b b

a a

b b

b
A

b
B

a a

b
B

b
A

0010 •

q10 b b

a a

b
B

a a

1001 •

q11 b b

a a

b
B

a a

1100 •

q12 b b

a a

b
B

a a

0110 •

q13 b b

a a

b
B

b
A

0011 • • •
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In principle, each result bit refers to one comparison of the bounds.

r1 := (a 6= b)

r2 := (a 6= b)

r3 := (a ≥ b)

r4 := (a ≤ b)

With these simple definitions we could not separate the states q1, q2, q3 or q7, q8, q9,
respectively. Therefore we developed the comparisons (6) and (7).

Corollary 1. For two non-empty intervals A = [a , a], B = [b , b] ∈ IR \ ∅ the
states with bitset “0000”, “0100” or “1000” do not occur as a result of the
interval overlapping relation A ◦◦B.

Proof.

(A 6= ∅) ∧ (B 6= ∅) ∧ (¬r3 ∧ ¬r4)

(8, 9)
⇒ (a < b) ∧ (a > b)

⇒ (a 6= b) ∧ (a 6= b) ∧ (a > b) ∧ (a < b)

(6, 7)
⇒ r1 ∧ r2

⊓⊔

3 Comparisons in Interval Arithmetic

Interval arithmetic is currently being standardized. Our definition of intervals
as connected, closed, not necessarily bounded subsets of the reals in section 1
follows the presumable standard P1788 [3]. Various competing sets of interval
comparisons are under discussion. Nearly every combination of operator symbol
and quantifier is proposed in the Vienna proposal [7]. That includes the so called
“certainly” and “possibly” operations where the relation holds for some or all
members of an interval, respectively. A smaller set of comparisons is given in the
book [5].

There is, however, consensus that the subset-relation, either interior or proper
or equal, the membership of a point in an interval, and the test for disjointness
are mandatory.

In the following propositions we show that all these comparisons can easily
be obtained from the interval overlapping relation.

Proposition 1 (Set Relations). For two non-empty intervals A = [a , a],
B = [b , b] ∈ IR\∅ the three relations =,⊆ and ⊇ as well the test for disjointness
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are implied by the interval overlapping relation A ◦◦B as follows:

A ⊆ B ⇔ r3 ∧ r4 (10)

A ⊇ B ⇔ (r1 ⊕ r3) ∧ (r2 ⊕ r4) (11)

A = B ⇔ ¬r1 ∧ ¬r2 ∧ r3 ∧ r4 (12)

A ∩B = ∅ ⇔ ¬r1 ∧ ¬r2 ∧ ¬(r3 ∧ r4) (13)

Proof.

(10):

A ⊆ B ⇔ (b ≤ a) ∧ (a ≤ b)

(8,9)
⇔ r3 ∧ r4

(11):

A ⊇ B ⇔ (a ≤ b) ∧ (b ≤ a)

⇔ ¬(a > b) ∧ ¬(b > a)

⇔ ((¬(a ≥ b) ∧ (a 6= b)) ∨ ((a ≥ b) ∧ ¬(a 6= b)))

∧ ((¬(a ≤ b) ∧ (a 6= b)) ∨ ((a ≤ b) ∧ ¬(a 6= b)))

Def. 2
⇔ (r1 ⊕ r3) ∧ (r2 ⊕ r4)

(12):

A = B ⇔ (A ⊆ B) ∧ (A ⊇ B)

(10,11)
⇔ r3 ∧ r4 ∧ (r1 ⊕ r3) ∧ (r2 ⊕ r4)

⇔ ¬r1 ∧ ¬r2 ∧ r3 ∧ r4

(13):

A ∩B = ∅ ⇔ (a < b) ∨ (a > b)

⇔ (((a 6= b) ∧ (a 6= b)) ∧ (a ≤ b) ∧ (a < b)

∧ ¬(a ≥ b) ∧ (a ≤ b))

∨ (((a 6= b) ∧ (a 6= b)) ∧ (a ≥ b) ∧ (a > b)

∧ (a ≥ b) ∧ ¬(a ≤ b))

Def. 2
⇔ ¬r1 ∧ ¬r2 ∧ (r3 ⊕ r4)

⊓⊔

Besides the formal proofs given in this section the formulas can be verified
with the help of Tab. 1.
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Corollary 2 (Set Membership). The set membership a ∈ B with a ∈ R,

B ∈ IR \ ∅ can be deduced to

[a , a] ◦◦B = (r1, r2, 1, 1) (14)

with r1, r2 ∈ {0, 1}.

Proof.

a ∈ B ⇔ [a , a] ⊆ B
(10)
⇔ [a , a] ◦◦B = (r1, r2, 1, 1)

⊓⊔

Up to now we only have considered non-empty intervals. In many realizations
of interval arithmetic the empty interval is represented as a pair of NaNs.

∅ := [NaN , NaN] (15)

Corollary 3 (Empty Interval). For two intervals A,B ∈ IR where at least
one of them is empty, the following equation

A ◦◦B = (0, 0, 0, 0) (16)

holds if the empty interval is represented by two NaNs.

Proof. As defined in the IEEE standard for floating-point arithmetic [4], com-
parisons to NaN always return false. ⊓⊔

Hence, state 14 happens to be “0000” which was an unused bit combination
so far.

Remark 2. With this definition of the empty set we can omit the assumption of
non-empty intervals in Prop. 1 and Cor. 2.

Proposition 2 (Order Relations). The order relations A ≤ B,A ≺ B,

A ≥ B and A ≻ B with A = [a , a], B = [b , b] ∈ IR \ ∅ follow from the in-
terval overlapping relation A ◦◦B by

A ≤ B :⇔ (a ≤ b) ∧ (a ≤ b) ⇔ (¬r1 ∨ ¬r3) ∧ r4 (17)

A ≺ B :⇔ (a < b) ⇔ ¬r1 ∧ ¬r2 ∧ ¬r3 ∧ r4 (18)

A ≥ B :⇔ (a ≥ b) ∧ (a ≥ b) ⇔ (¬r2 ∨ ¬r4) ∧ r3 (19)

A ≻ B :⇔ (a > b) ⇔ ¬r1 ∧ ¬r2 ∧ r3 ∧ ¬r4 (20)

Proof.
(17):

(a ≤ b) ∧ (a ≤ b) ⇔ ((a = b) ∨ ¬(a ≥ b)) ∧ (a ≤ b)

(6,8,9)
⇔ (¬r1 ∨ ¬r3) ∧ r4
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(18):

(a < b) ⇔ (a 6= b) ∧ (a 6= b) ∧ (a < b) ∧ ¬(a ≥ b) ∧ (a ≤ b)

Def. 2
⇔ ¬r1 ∧ ¬r2 ∧ ¬r3 ∧ r4

Proof of (19) and (20) analogous to (17) and (18). ⊓⊔

Closely related with comparisons are the lattice operations like interval hull or
intersection. They also can exploit the information obtained by one computation
of the overlapping relation.

Proposition 3 (Intersection). The intersection A ∩ B with A = [a , a],
B = [b , b] ∈ IR follows from the interval overlapping relation A ◦◦B by

A ∩B :=























[a , a] if (r3 ∧ r4)
∅ otherwise if (¬r1 ∧ ¬r2)
[a , b] otherwise if (r3)
[b , a] otherwise if (r4)

[b , b] otherwise

(21)

Proof.
if (r3 ∧ r4):

r3 ∧ r4
(10)
⇒ A ⊆ B

⇒ A ∩B = [a , a]

otherwise if (¬r1 ∧ ¬r2):

¬r1 ∧ ¬r2 ∧ ¬(r3 ∧ r4)
(13), Cor. 3

⇒ A ∩B = ∅

otherwise if (r3):

(r1 ∨ r2) ∧ r3 ∧ ¬r4
(8,9,13)
⇒ (a ≥ b) ∧ (a > b) ∧ (A ∩B 6= ∅)

⇒ A ∩B = [a , b]

otherwise if (r4):

(r1 ∨ r2) ∧ ¬r3 ∧ r4
(8,9,13)
⇒ (a < b) ∧ (a ≤ b) ∧ (A ∩B 6= ∅)

⇒ A ∩B = [b , a]

otherwise:

(r1 ∨ r2) ∧ ¬r3 ∧ ¬r4
Cor. 1
⇒ r1 ∧ r2 ∧ ¬r3 ∧ ¬r4
(11)
⇒ A ⊇ B

⇒ A ∩B = [b , b]

⊓⊔
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4 Hardware Unit

Remark 3. We realize that 8 independent floating-point comparisons are needed.
The hardware unit given in Fig. 1 thus consist of 8 comparators. They all work
in parallel followed by at most 3 gates to obtain the result.

&

&

= 1

&

≥ 1

= 1

a a bb

≥ 1

≤ > 6= 6= < ≥ ≥ ≤

r1 r2 r3 r4

Fig. 1. Logic circuit of the interval overlapping relation
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Algorithm 1: INewton (classi-
cal)

Input:
f : function
Y : interval
ǫ : epsilon
yUnique : flag
Zero : list of enclosing intervals
Info : flag vector
N : number
Output: [Zero, Info,N ]
begin

if 0 6∈ f(Y ) then
return (Zero,Info,N)

c← µ(Y );
/* extended division */

[Z1, Z2]← f(c)/f ′(Y );
[Z1, Z2]← c− [Z1, Z2];
V1 ← Y ∩ Z1;
V2 ← Y ∩ Z2;
if V1 = Y then

V1 ← [y , c];

V2 ← [c , y];

if V1 6= ∅ and V2 = ∅ then
yUnique← yUnique or

V1 ⊂ Y ;

foreach i = 1, 2 do

if Vi = ∅ then
continue;

if drel(Vi) < ǫ then
N = N + 1;
Zero[N ] = Vi;
Info[N ] = yUnique;

else
INewton(f, Vi, ǫ,
yUnique, Zero, Info,N);

return (Zero,Info,N);

Algorithm 2: INewtonRel (rela-
tional)

Input:
f : function
Y : interval
ǫ : epsilon
yUnique : flag
Zero : list of enclosing intervals
Info : flag vector
N : number
Output: [Zero, Info, N ]
begin

if 0 6∈ f(Y ) then
return (Zero,Info,N)

c← µ(Y );
/* extended division */

[Z1, Z2]← f(c)/f ′(Y );
[Z1, Z2]← c− [Z1, Z2];
R1 ← Y ◦◦ Z1;
R2 ← Y ◦◦ Z2;
if R1.subseteq() then

V1 ← [y , c];

V2 ← [c , y];
bisected← true;

else if not R1.disjoint() and

R2.disjoint() then
yUnique← yUnique or

R1.state() == containedBy;

foreach i = 1, 2 do

if not bisected then

if Ri.disjoint() then

continue;
Ri ← Y ◦◦ Zi;
Vi ← Ri.intersect();

if drel(Vi) < ǫ then

N = N + 1;
Zero[N ] = Vi;
Info[N ] = yUnique;

else
INewtonRel(f, Vi, ǫ,
yUnique, Zero, Info, N);

return (Zero,Info,N);
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In this paper we represent the states with 4 bits to have a compact numbering.
We then need 8 comparisons to separate all states.

One may argue that specific relations like A ⊆ B or A = B can already be
checked by 2 (parallel) floating-point comparisons. But the benefit of our general
interval overlapping relation is that, if all 8 comparisons have been computed (in
one parallel step), we have enough information to perform dependent interval
comparisons only by bit-operations. The same holds for intersection that usually
needs 3 floating-point comparisons. See the discussion of the interval Newton
method in section 5.

5 Example

As an example for the use of the interval overlapping relation we discuss the
extended interval Newton method [2]. In the usual formulation in Alg. 1 up to 6
interval comparisons and 2 intersections are used. We observe, however, that the
same intervals are compared several times. Hence, the bitsets R1 and R2 gather
all information with 2 calls of the interval overlapping relation in Alg. 2.

This reduction of the use of interval comparisons and intersections is done by
replacing the 2 intersections by 2 calls of the interval overlapping relation storing
the precise information about the relative positions of the interval operands.
Then we can deduce all the necessery interval comparisons depending on the
results and operands of the replaced intersections by applying the rules of Prop. 1
to the precomputed states R1 and R2. That means that the interval comparisons
are replaced by bitset operations.

Additionally we introduce a flag bisected to determine, if a bisection of the
input interval was performed. Otherwise we can use the stored information R1

and R2 to catch up the replaced intersection for an recursive call of the algorithm
by applying the rules of Prop. 3.

6 Future Work

A companion paper [6] concerning interval comparisons has been submitted to
the IEEE interval standard working group P1788. In this paper we emphasize
the theoretical influence of the interval overlapping relation as a foundation for
interval comparisons. An abstract datatype for the specification of the interval
overlapping relation has been introduced. We further want to study its interface
in an object oriented environment.

We plan to explore other applications in the area of computer graphics and
time scheduling.

The hardware unit will be extended and optimized. Its collaboration with
other hardware units for interval arithmetic will be discussed.
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