
Parallel Interval Newton Method on CUDA

Philip-Daniel Beck and Marco Nehmeier

Institute of Computer Science, University of Würzburg
Am Hubland, D 97074 Würzburg, Germany
nehmeier@informatik.uni-wuerzburg.de

Abstract. In this paper we discuss a parallel variant of the interval
Newton method for root finding of non linear continuously differentiable
functions on the CUDA architecture. For this purpose we have inves-
tigated different dynamic load balancing methods to get an evenly bal-
anced workload during the parallel computation. We tested the function-
ality, correctness and performance of our implementation in different case
studies and compared it with other implementations.

Keywords: Interval arithmetic, Interval Newton method, Parallel com-
puting, Load balancing, CUDA, GPGPU

1 Introduction

In the last years the GPU has come into focus for general purpose computing by
the introduction of CUDA (Compute Unified Device Architecture) [12] as well
as the open standard OpenCL (Open Computing Language) [9] to exploit the
tremendous performance of highly parallel graphic devices.

Both technologies, CUDA as well as OpenCL, have a huge impact onto the
world of scientific computing and therefore it is a matter of importance for the
interval community to offer their algorithms and methods on these systems. One
of the famous algorithms using interval arithmetic is the interval Newton method
for which a parallel implementation on CUDA is discussed in this paper.

2 Interval Arithmetic

Interval arithmetic is set arithmetic working on intervals defined as connected,
closed and not necessarily bounded subsets of the reals

X = [x, x] = {x ∈ R | x ≤ x ≤ x} (1)

where x = −∞ and x = +∞ are allowed. The set of all possible intervals together
with the empty set is denoted IR. The basic arithmetic operations on intervals

Preprint. The final publication is available at link.springer.com
http://dx.doi.org/10.1007/978-3-642-36803-5_34

2 Philip-Daniel Beck and Marco Nehmeier

are based on powerset operations:

X ◦ Y = [min
x∈X,y∈Y

(

△

(x ◦ y)), max
x∈X,y∈Y

(△(x ◦ y))] (2)

With floating point numbers the value of the lower bound is rounded toward−∞
(symbol

△

) and the upper bound is rounded toward +∞ (symbol △) to include
all possible results of the powerset operation on the real numbers1. Continuous
functions could be defined in a similar manner [8].

The enclosure of all real results of a basic operation or a function is the
fundamental property of interval arithmetic and is called inclusion property.

Definition 1 (Inclusion property). If the corresponding interval extension
F : IR → IR to a real (continuous) function f : R → R is defined on an interval
X it follows:

f(X) ⊆ F (X)

2.1 Interval Newton Method

The interval Newton method in Algorithm 1 is one of the famous applications
based upon interval arithmetic. Likewise the well known Newton method, it is an
iterative method to compute the roots of a function. But it has the benefit that
it can — for some functions — compute all zeros of a non linear continuously
differentiable function f : R → R in the start interval X0 with guaranteed error
bounds and it can provide information about the existence and uniqueness of
the roots2 [5].

The iterative computation of the enclosing interval of a root is defined as

Xn+1 := Xn ∩N(Xn), n = 0, 1, 2, . . . (3)

N(Xn) := mid(Xn)−
F (mid(Xn))

F ′(Xn)
(4)

where F and F ′ are the corresponding interval extension and derivative to
the function f . In this paper we use an extended form of the interval New-
ton method [5] which will return two distinct intervals for the case 0 ∈ F ′(Xn)
in (4) for which the computation is performed recursively, see Algorithm 1 line 7
et seq. This has the advantage that we can use the algorithm for non monotonic
functions.

With the mean value theorem it can be easily shown that each root of the
function f in Xn also lies in Xn+1 [5] and therefore we have a sequence of nested
intervals3 which means that the algorithm will always converge.

1 Note that monotonicity properties could be used to define the result of an interval
operation or function only using the bounds of the input intervals.

2 Note that for the reason of readability the check for the uniqueness of the roots is
not included in Algorithm 1 but is included in our implementation. Basically it is a
test if N(Xn) is an inner inclusion of Xn, see [5] for more details.

3 In the case of Xn+1 = Xn the interval is bisected and the computation is performed
on both distinct intervals recursively, see Algorithm 1 line 13 et seq.

Parallel Interval Newton Method on CUDA 3

Algorithm 1: INewton

Input:
F : function
X : interval
ǫ : accuracy of enclosing intervals
zeros : list of enclosing intervals
Output: zeros

1 begin

2 /* Use Definition 1 to check possible existence of a root */

3 if 0 6∈ F (X) then
4 return zeros;
5 c← mid(X);
6 /* Newton step with extended division; formula (3) and (4) */

7 (N1, N2)← F (c)/F ′(X);
8 N1 ← c−N1;
9 N2 ← c−N2;

10 X1 ← X ∩N1;
11 X2 ← X ∩N2;
12 /* Bisection in case of no improvement */

13 if X1 = X then

14 X1 ← [x, c];
15 X2 ← [c, x];

16 foreach i = 1, 2 do

17 /* No root */

18 if Xi = ∅ then
19 continue;
20 /* Suitable enclosure of a root */

21 if width(Xi) < ǫ then

22 zeros.append(Xi);
23 /* Recursive call */

24 else

25 INewton(F,Xi, ǫ, zeros);

26 return zeros;

4 Philip-Daniel Beck and Marco Nehmeier

Additionally a verification step could be performed after the computation of
Algorithm 1 to check the uniqueness of the enclosed roots, see [5] for details.

3 Dynamic Load Balancing

The main challenge in the parallelization of the interval Newton method is a
good utilization of all parallel processes during the computation. As described
in Sec. 2, we can have a bisection of the workload for the cases Xn+1 = Xn in (3)
or 0 ∈ F ′(Xn) in (4). On the other hand, a thread will become idle in the case
Xn+1 = ∅ which means that no root exists in Xn. Hence, static load balancing
is probably not the best way to precompute a good distribution of the workload.

Therefore we have investigated an implementation of the parallel interval
Newton method on CUDA with four different dynamic load balancing methods
to get an evenly balanced workload during the computation.

Blocking Queue [3] is a dynamic load balancing method which uses one queue
in the global memory for the distribution of the tasks. The access to the queue
is organized by mutual exclusion using the atomic operations atomicCAS and
atomicExch on an int-value to realize the lock and unlock functionality, see [6]
for more details.

__device__ void lock (void) {

while(atomicCAS (mutex , 0, 1) != 0);

}

__device__ void unlock(void) {

atomicExch (mutex , 0);

}

Listing 1. Lock and unlock functionality

Task Stealing [1, 4] is a lock-free dynamic load balancing method which uses
a unique global queue for each CUDA thread block [12]. In the case of an empty
queue, the thread block will steal tasks from other thread blocks to avoid idleness.
To ensure a consistent dequeue functionality with atomic operations, the CUDA
function threadfence system is used during the enqueue.

__device__ void pushBottom (T const & v) {

int localBot = bot;

buf[localBot] = v;

__threadfence_system ();

localBot += 1;

bot = localBot ;

return;

}

Listing 2. Enqueue functionality

Parallel Interval Newton Method on CUDA 5

Distributed Stacks is a lock-free load balancing method using local stacks in
shared memory for each thread block and is almost similar to distributed queu-
ing [13]. Dynamic load balancing is only realized between threads of a thread
block. In the case of storing an element onto the stack, the atomic operation
atomicAdd is used to increase the stack pointer. Reading from the stack is real-
ized simultaneously without atomic operations using the thread id threadIdx.x

to access the elements of the stack. The workload for the thread blocks is stati-
cally distributed at the beginning of the parallel computation.

Static Task List [3] is a lock-free method which uses two arrays, the in-array
and the out-array, for the dynamic load balancing. In an iteration the in-array
is a read-only data-structure containing the tasks. For each task in the in-array
a thread is started writing their results in the out-array. After each iteration the
in-array and the out-array are swapped4, see Fig. 1 for more details.

B
lo

c
k
1

Thread1 Thread2

B
lo

c
k
2

Thread1 Thread2

In-array

Out-array

W1 W2 W3 W4

W5 W6 W7

Parallel step

In-array

Out-array

W1 W2 W3 W4

W5 W6 W7

Sequential Step

Start

1.

In-array

Out-array

W1 W2 W3 W4

W5 W6 W7

2.

empty?

No

End

Yes

GPU

CPU

Fig. 1. Static task list

4 This means that the kernel is called with swapped pointers for the in-array and the
out-array.

6 Philip-Daniel Beck and Marco Nehmeier

4 Implementation

In our parallel implementation of the interval Newton method on CUDA it was
first of all necessary to have interval arithmetic on CUDA. For this purpose we
have implemented the required data structures, interval operations, and standard
functions in CUDA C.

For the CUDA C implementation of the interval Newton method we sim-
ulated the recursive Algoritm 1 by an iterative CUDA kernel which uses two
different concepts depending on the different load balancing methods.

Static task list is the only one of our four used load balancing methods which
almost meets the common concept of lightweight threads in CUDA. In our case,
this means that the threads are created at the start of the kernel and then
only compute one iteration of the parallel interval Newton method. After this
iteration all threads are terminated and a new kernel with new threads is started
for the next iteration, see Fig. 1 for more details.

For the other three load balancing methods we use so called persistent threads
[13] which means that all required threads are started at the beginning of the
interval Newton method and keep alive until the algorithm terminates.

The initialization and execution of the CUDA kernels is wrapped in a C++
function which handle the data transfer between the host and the GPU. The
specification of the function, which should be analyzed, and their corresponding
derivative is done by functors.

5 Performance Tests

We tested our implementation on a Nvidia Tesla C2070 GPU with CUDA com-
pute capability 2.0 hosted on a Linux Debian 64 Bit System with an Intel Xeon
E5504 2.0 GHz CPU and 8 GB Memory.

For all four different implementations we have analyzed the performance for
the following functions

f1(x) = sinhx

f2(x) = sinx−
x

100

f3(x) = sinx−
x

10000

f4(x) = sin
1

x

f5(x) = (3x3 − 5x+ 2) · sin2 x+ (x3 + 5 · x) · sinx− 2x2 − x− 2

f6(x) = x14 − 539.25 · x12 + 60033.8 · x10 − 1.77574e6 · x8

+ 1.70316e7 · x6 − 5.50378e7 · x4 + 4.87225e7 · x2 − 9.0e6

Parallel Interval Newton Method on CUDA 7

with different thread and block configurations. Additionally we have com-
pared our implementations with a parallel bisection algorithm on CUDA as well
as with filib++ [10] and Boost [2] implementations on the CPU.

(a) Function f1 (b) Function f2 (c) Function f4 (d) Function f5

Fig. 2. Sketches of some used functions for the performance tests

Prior to the performance tests it was necessary to analyze the best block-grid-
ratio of the four different implementations on a GPU to ensure the best possible
performance of each implementation. This means that we have measured the
runtime with a variable number of threads per block as well as a variable number
of blocks per grid on the GPU, see [7].

For our measurements we used configurations with 1 up to 56 blocks using 32,
64, or 128 threads. Thereby the number of 56 blocks is an upper bound which
could be computed out of the used memory of our implementations. Table 1
shows the used memory information provided by the nvcc compiler using option
-ptxas-options=-v. Note that for static task list there is no shared memory
used due to the fact that there is no communication between the threads.

Table 1. Used memory

Method Register per thread Shared memory per Block

BlockingQueue 63 8240 Byte
TaskStealing 63 8240 Byte
DistributedStacks 63 32784 Byte
StaticTaskList 59 0 Byte

For our runtime tests we used the maximum of 128 threads per block. Ad-
ditionally, a multiprocessor of a NVIDIA GPU with CUDA compute capability
2.0 is specified with 32768 registers and 48 KB shared memory [12]. Hence we
can easily compute

⌊

32768[registers/multiprocessor]

128[threads/block] ∗ 63[registers/thread]

⌋

= 4[blocks/multiprocessor]

8 Philip-Daniel Beck and Marco Nehmeier

which leads to the upper bound of 56 blocks for a Nvidia Tesla C2070 GPU with
14 multiprocessors.

Figure 3 shows some sketches of the performed runtime tests with a variable
number of blocks and Tab. 2 shows the best configurations for our test cases.

Note that for static task list we have not measured any difference between 32,
64, or 128 threads per block. Hence, we used 32 threads per block for the other
performance tests. Furthermore, the number of blocks per grid is not specified
for static task list in Tab. 2 due to the fact that the number of blocks depend
on the current workload of each iteration and is adjusted automatically.

100

101

102

0 10 20 30 40 50

blocks per grid

t
im

e
in

m
s

b 32 threads per block
b 64 threads per block
b 128 threads per block

(a) Distributed stacks

100

101

102

0 10 20 30 40 50

blocks per grid

t
im

e
in

m
s

b 32 threads per block
b 64 threads per block
b 128 threads per block

(b) Task stealing

Fig. 3. Sketches of the runtime measurements for function f3 with a variable number
of blocks

Table 2. Block-grid-ratio

Method Blocks per grid Threads per block

BlockingQueue 14 64
TaskStealing 28 64
DistributedStacks 14 128
StaticTaskList - 32

Figure 4 shows the average runtime of 1000 runs for our test cases with
double precision and an accuracy of ǫ = 10−12 for the enclosing intervals. It
is easily visible that the additional expenses for the computation on the GPU
are not worth it for simple functions like f1 or f2. In these cases the GPU is
outperformed by filib++ or Boost on a CPU. But for harder problems like f3
or f4 the GPU, especially with static task list or distributed stacks, dominates
filib++ and Boost.

Additional performance tests have shown that there is no significant dif-
ference between the runtime with single or double precision, see Fig. 5. This

Parallel Interval Newton Method on CUDA 9

BlockingQueue

TaskStealing

DistributedStacks

StaticTaskList

boost

filib++

1.61ms

0.81ms

1.21ms

1.64ms

0.06ms

0.002ms

(a) Function f1, X0 = [−1, 1]

BlockingQueue

TaskStealing

DistributedStacks

StaticTaskList

boost

filib++

1.37ms

1.28ms

1.04ms

2.55ms

3.78ms

0.18ms

(b) Function f2, X0 = [0, 100]

BlockingQueue

TaskStealing

DistributedStacks

StaticTaskList

boost

filib++

16.48ms

8.02ms

1.74ms

4.4ms

372.8ms

41.0ms

(c) Function f3, X0 = [0, 10000]

BlockingQueue

TaskStealing

DistributedStacks

StaticTaskList

boost

filib++

1237.43ms

734.03ms

95.38ms

13.18ms

1876.0ms

3054.0ms

(d) Function f4, X0 = [0.00001, 15]

BlockingQueue

TaskStealing

DistributedStacks

StaticTaskList

boost

filib++

2.09ms

1.41ms

1.35ms

3.69ms

5.68ms

0.64ms

(e) Function f5, X0 = [−10, 10]

BlockingQueue

TaskStealing

DistributedStacks

StaticTaskList

boost

filib++

1.81ms

1.33ms

1.3ms

3.71ms

2.84ms

5.83ms

(f) Function f6, X0 = [−20, 20]

Fig. 4. Average runtime with double precision

10 Philip-Daniel Beck and Marco Nehmeier

results in the assumption that our implementation is mainly limited by the load
balancing and not by the interval arithmetic on the GPU.

BlockingQueue

TaskStealing

DistributedStacks

StaticTaskList

9.88ms
8.38ms

5.05ms
4.21ms

1.68ms
1.43ms

3.82ms
3.48ms

b double b float

(a) Function f3

BlockingQueue

TaskStealing

DistributedStacks

StaticTaskList

1.34ms
1.22ms

1.37ms
1.18ms

1.28ms
1.17ms

3.22ms
2.94ms

b float b double

(b) Function f5

Fig. 5. Runtime float vs. double

Finally we compared a bisection algorithm 5 on a GPU using the same load
balancing methods with our interval Newton method. Figure 6 shows some mea-
surements which reflect our observation that the bisection algorithm is outper-
formed by the interval Newton method for all our test cases.

DistributedStacks

StaticTaskList
2.55ms

7.83ms

1.04ms
1.54ms

b Bisection b INewton

(a) Function f2

DistributedStacks

StaticTaskList
13.18ms

36.67ms

95.38ms
419.01ms

b Bisection b INewton

(b) Function f4

Fig. 6. Runtime Bisection vs. INewton

6 Related Work

In [3] dynamic load balancing on a GPU is discussed for the task of creating an
octree partitioning of a set of particles.

Furthermore, in [4] dynamic load balancing for an interval Newton method
is analyzed for an implementation on a cluster of workstations using message
passing [11].

7 Conclusion

In this paper we have discussed a parallel implementation of an interval Newton
method on CUDA and especially different load balancing concepts to utilize the
highly parallel CUDA architecture.

5 Simply it is a branch-and-prune algortihm [8] which only uses the function value and
bisection.

Parallel Interval Newton Method on CUDA 11

Performance analyzations of our approach showed promising results for some
hard problems. Especially the two load balancing methods — static task list
and distributed stacks — are well suited for complicated functions. Thereby
distributed stacks should be preferred for functions with “evenly” distributed
roots whereas static task list is more preferable for functions with “unevenly”
distributed roots.

Further investigations in the area of parallel interval arithmetic on the GPU
as well as on multicore CPU’s are planned.

References

1. N. S. Arora, R. D. Blumofe, and C. G. Plaxton. Thread scheduling for multipro-
grammed multiprocessors. In Proceedings of the tenth annual ACM symposium on
Parallel algorithms and architectures, SPAA ’98, pages 119–129, New York, NY,
USA, 1998. ACM.

2. Boost Interval Arithmetic Library, November 2012. http://www.boost.org/doc/
libs/1_52_0/libs/numeric/interval/doc/interval.htm.

3. D. Cederman and P. Tsigas. On dynamic load balancing on graphics processors.
In Proceedings of the 23rd ACM SIGGRAPH/EUROGRAPHICS symposium on
Graphics hardware, GH ’08, pages 57–64, Aire-la-Ville, Switzerland, Switzerland,
2008. Eurographics Association.

4. C.-Y. Gau and M. A. Stadtherr. Parallel interval-newton using message passing:
dynamic load balancing strategies. In Proceedings of the 2001 ACM/IEEE confer-
ence on Supercomputing (CDROM), Supercomputing ’01, pages 23–23, New York,
NY, USA, 2001. ACM.

5. R. Hammer, M. Hocks, U. Kulisch, and D. Ratz. C++ Toolbox for Verified Com-
puting I: Basic Numerical Problems. Springer. Berlin, 1995.

6. E. K. Jason Sanders. CUDA by Example: An Introduction to General-Purpose
GPU Programming. Addison-Wesley Longman, Amsterdam, 2010.

7. E. K. Jason Sanders. CUDA by Example: An Introduction to General-Purpose
GPU Programming. Addison-Wesley Longman, Amsterdam, 2010.

8. L. Jaulin, M. Kieffer, O. Didrit, and E. Walter. Applied Interval Analysis. Springer,
1 edition, Sept. 2001.

9. Khronos OpenCL Working Group. The OpenCL Specification, version 1.1.44, June
2011.

10. M. Lerch, G. Tischler, J. Wolff von Gudenberg, W. Hofschuster, and W. Krämer.
Filib++, a fast interval library supporting containment computations. ACM Trans.
Math. Softw., 32(2):299–324, 2006.

11. Message Passing Interface Forum. Mpi: A message-passing interface standard,
version 2.2. Specification, September 2009.

12. NVIDIA. NVIDIA CUDA reference manual, version 3.2 Beta, August 2010.
13. S. Tzeng, A. Patney, and J. D. Owens. Task management for irregular-parallel

workloads on the gpu. In M. Doggett, S. Laine, and W. Hunt, editors, High Per-
formance Graphics, pages 29–37. Eurographics Association, 2010.

