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Abstract

Virtualization allows the creation of virtual instances of physical devices, such as
network and processing units. In a virtualized system, governed by a hypervisor,
resources are shared among virtual machines (VMs). Virtualization has been receiving
increasing interest as a way to reduce costs through server consolidation and to enhance
the flexibility of physical infrastructures. Although virtualization provides many
benefits, it introduces new security challenges; that is, the introduction of a hypervisor
introduces threats since hypervisors expose new attack surfaces.

Intrusion detection is a common cyber security mechanism whose task is to detect
malicious activities in host and/or network environments. This enables timely reaction
in order to stop an on-going attack, or to mitigate the impact of a security breach. The
wide adoption of virtualization has resulted in the increasingly common practice of
deploying conventional intrusion detection systems (IDSs), for example, hardware IDS
appliances or common software-based IDSs, in designated VMs as virtual network
functions (VNFs). In addition, the research and industrial communities have developed
IDSs specifically designed to operate in virtualized environments (i.e., hypervisor-
based IDSs), with components both inside the hypervisor and in a designated VM.
The latter are becoming increasingly common with the growing proliferation of vir-
tualized data centers and the adoption of the cloud computing paradigm, for which
virtualization is as a key enabling technology.

To minimize the risk of security breaches, methods and techniques for evaluating
IDSs in an accurate manner are essential. For instance, one may compare different IDSs
in terms of their attack detection accuracy in order to identify and deploy the IDS that
operates optimally in a given environment, thereby reducing the risks of a security
breach. However, methods and techniques for realistic and accurate evaluation of the
attack detection accuracy of IDSs in virtualized environments (i.e., IDSs deployed as
VNFs or hypervisor-based IDSs) are lacking. That is, workloads that exercise the sen-
sors of an evaluated IDS and contain attacks targeting hypervisors are needed. Attacks
targeting hypervisors are of high severity since they may result in, for example, altering
the hypervisors’s memory and thus enabling the execution of malicious code with hy-
pervisor privileges. In addition, there are no metrics and measurement methodologies
for accurately quantifying the attack detection accuracy of IDSs in virtualized environ-
ments with elastic resource provisioning (i.e., on-demand allocation or deallocation of
virtualized hardware resources to VMs). Modern hypervisors allow for hotplugging
virtual CPUs and memory on the designated VM where the intrusion detection engine
of hypervisor-based IDSs, as well as of IDSs deployed as VNFs, typically operates.
Resource hotplugging may have a significant impact on the attack detection accuracy
of an evaluated IDS, which is not taken into account by existing metrics for quantifying
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Abstract

IDS attack detection accuracy. This may lead to inaccurate measurements, which, in
turn, may result in the deployment of misconfigured or ill-performing IDSs, increasing
the risk of security breaches.

This thesis presents contributions that span the standard components of any sys-
tem evaluation scenario: workloads, metrics, and measurement methodologies. The
scientific contributions of this thesis are:

Xiv

* A comprehensive systematization of the common practices and the state-of-the-

art on IDS evaluation. This includes: (i) a definition of an IDS evaluation design
space allowing to put existing practical and theoretical work into a common
context in a systematic manner; (ii) an overview of common practices in 1IDS
evaluation reviewing evaluation approaches and methods related to each part of
the design space; (iii) and a set of case studies demonstrating how different IDS
evaluation approaches are applied in practice. Given the significant amount of
existing practical and theoretical work related to IDS evaluation, the presented
systematization is beneficial for improving the general understanding of the
topic by providing an overview of the current state of the field. In addition, it
is beneficial for identifying and contrasting advantages and disadvantages of
different IDS evaluation methods and practices, while also helping to identify
specific requirements and best practices for evaluating current and future IDSs.

An in-depth analysis of common vulnerabilities of modern hypervisors as well
as a set of attack models capturing the activities of attackers triggering these
vulnerabilities. The analysis includes 35 representative vulnerabilities of hy-
percall handlers (i.e., hypercall vulnerabilities). Hypercalls are software traps
from a kernel of a VM to the hypervisor. The hypercall interface of hypervisors,
among device drivers and VM exit events, is one of the attack surfaces that hy-
pervisors expose. Triggering a hypercall vulnerability may lead to a crash of
the hypervisor or to altering the hypervisor’s memory. We analyze the origins
of the considered hypercall vulnerabilities, demonstrate and analyze possible
attacks that trigger them (i.e., hypercall attacks), develop hypercall attack models
(i.e., systematized activities of attackers targeting the hypercall interface), and
discuss future research directions focusing on approaches for securing hypercall
interfaces.

A novel approach for evaluating IDSs enabling the generation of workloads that
contain attacks targeting hypervisors, that is, hypercall attacks. We propose an
approach for evaluating IDSs using attack injection (i.e., controlled execution of
attacks during regular operation of the environment where an IDS under test
is deployed). The injection of attacks is performed based on attack models that
capture realistic attack scenarios. We use the hypercall attack models developed
as part of this thesis for injecting hypercall attacks.

A novel metric and measurement methodology for quantifying the attack detec-
tion accuracy of IDSs in virtualized environments that feature elastic resource
provisioning. We demonstrate how the elasticity of resource allocations in such
environments may impact the IDS attack detection accuracy and show that using



existing metrics in such environments may lead to practically challenging and
inaccurate measurements. We also demonstrate the practical use of the metric we
propose through a set of case studies, where we evaluate common conventional
IDSs deployed as VNFs.

In summary, this thesis presents the first systematization of the state-of-the-art on
IDS evaluation, considering workloads, metrics and measurement methodologies as
integral parts of every IDS evaluation approach. In addition, we are the first to examine
the hypercall attack surface of hypervisors in detail and to propose an approach using
attack injection for evaluating IDSs in virtualized environments. Finally, this thesis
presents the first metric and measurement methodology for quantifying the attack
detection accuracy of IDSs in virtualized environments that feature elastic resource
provisioning.

From a technical perspective, as part of the proposed approach for evaluating IDSs,
this thesis presents hlnjector, a tool for injecting hypercall attacks. We designed hIn-
jector to enable the rigorous, representative, and practically feasible evaluation of
IDSs using attack injection. We demonstrate the application and practical useful-
ness of hlnjector, as well as of the proposed approach, by evaluating a representative
hypervisor-based IDS designed to detect hypercall attacks. While we focus on evaluat-
ing the capabilities of IDSs to detect hypercall attacks, the proposed IDS evaluation
approach can be generalized and applied in a broader context. For example, it may be
directly used to also evaluate security mechanisms of hypervisors, such as hypercall
access control (AC) mechanisms. It may also be applied to evaluate the capabilities
of IDSs to detect attacks involving operations that are functionally similar to hyper-
calls, for example, the input/output control (ioctl) calls that the Kernel-based Virtual
Machine (KVM) hypervisor supports.

For IDSs in virtualized environments featuring elastic resource provisioning, our
approach for injecting hypercall attacks can be applied in combination with the attack
detection accuracy metric and measurement methodology we propose. Our approach
for injecting hypercall attacks, and our metric and measurement methodology, can
also be applied independently beyond the scenarios considered in this thesis. The
wide spectrum of security mechanisms in virtualized environments whose evaluation
can directly benefit from the contributions of this thesis (e.g., hypervisor-based IDSs,
IDSs deployed as VNFs, and AC mechanisms) reflects the practical implication of the
thesis.
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Zusammenfassung

Virtualisierung ermoglicht die Erstellung virtueller Instanzen physikalischer Geréte,
wie z.B. Netzwerkgeriten und Prozessoren. In einem virtualisierten System (welches
von einem Hypervisor kontrolliert wird), wird von virtuellen Maschinen (engl. virtual
machine - VM) gemeinsam auf Ressourcen zugegriffen. Die Virtualisierung wird
zunehmend als technische Moglichkeit in Betracht gezogen, um durch Serverkonsoli-
dierung Kosten zu reduzieren und die Flexibilitdt physikalischer Infrastrukturen zu
erhohen. Auch wenn die Virtualisierung viele Vorteile bietet, so ergeben sich doch
neue Herausforderungen im Bereich der IT-Sicherheit — ein Hypervisor bietet ndmlich
neuartige Angriffsflachen.

Bei der Angriffserkennung handelt es sich um einen weitverbreiteten IT-Sicherheits-
mechanismus, mit welchem bosartige Aktivitdten in Rechnern oder Netzwerken iden-
tifiziert werden. So konnen Angriffe rechtzeitig gestoppt oder Sicherheitsverletzungen
in ithrer Schwere gemindert werden. Als Folge der weiten Verbreitung von Virtual-
isierung ergibt sich der verstirkte Einsatz konventioneller, hard- oder softwarebasierter
Angriffserkennungssysteme (engl. intrusion detection system - IDS) im Rahmen von
dedizierten VMs als virtuelle Netzwerkfunktionen (engl. virtual network function
- VNF). Zusétzlich wurden im Forschungs- und Industrieumfeld IDSs konkret fiir
die Verwendung in virtualisierten Umgebungen entwickelt (d.h. hypervisor-basierte
IDSs), die in Virtualisierungsebenen mit Komponenten innerhalb des Hypervisors bzw.
innerhalb einer dedizierten VM eingesetzt werden. Letztere werden immer tiblicher,
weil sich die Anzahl der virtualisierten Rechenzentren kontinuierlich vermehrt und
im Paradigma des Cloud-Computings die Virtualisierung eine Schliisseltechnologie
darstellt.

Um die Risiken durch Sicherheitsverletzungen zu minimieren, sind Methoden und
Verfahren zur Bewertung eines IDS von zentraler Bedeutung. Zum Beispiel kénnen
unterschiedliche IDSs hinsichtlich ihrer Angriffserkennungsgenauigkeit verglichen
werden. Dies hilft um das IDS zu identifizieren und einzusetzen, dessen Leistung als
optimal zu bewerten ist. So vermindert sich das Risiko einer Sicherheitsverletzung.
Jedoch fehlen Methoden bzw. Verfahren zur realistischen und prazisen Bewertung der
Angriffserkennungsgenauigkeit von IDSs in virtualisierten Umgebungen (d.h. IDSs
eingesetzt als VNFs oder hypervisor-basierte IDSs). Hierfiir sind Arbeitslasten fiir
die Sensoren von zu evaluierenden IDSs notwendig, die Angriffe auf den Hypervisor
enthalten. Angriffe auf den Hypervisor sind sehr kritisch, weil sie z.B. Speicherinhalte
eines Hypervisors so verdndern konnen, dass dieser schddlichen Code mit erhéhten
Privilegien ausfiihrt. Ebenfalls existieren keine Metriken und Messmethodiken, mit
denen die Angriffserkennungsgenauigkeit von IDSs in elastischen Umgebungen (d.h.
bedarfsgerechte Zuweisungen von Hardware-Ressourcen zu VMs) prézise quantifiziert
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Zusammenfassung

werden kann. Bei modernen Hypervisoren kénnen virtuelle CPUs sowie Speichere-
inheiten wihrend des Betriebs an die dedizierte VM zugewiesen werden, in welcher
die Angriffserkennung des IDSs ausgefiihrt wird. Die Zuweisung von Ressourcen
im laufenden Betrieb (“Hotplugging”) kann sich betrachtlich auf die Angriffserken-
nungsgenauigkeit von zu evaluierenden IDSs auswirken, was jedoch von existierenden
Metriken nicht beriicksichtigt wird. Dies hat ggf. ungenaue Messungen zur Folge, was
sich entsprechend im Einsatz von fehlerhaft konfigurierten oder méngelbehafteten
IDSs widerspiegelt und so das Risiko von Sicherheitsverletzungen erhoht.

Diese Arbeit prasentiert Beitrdge, die die Standardkomponenten eines jeden Szenar-
ios zur Systembewertung umfassen: Arbeitslasten, Metriken und Messmethodiken.
Die wissenschaftlichen Beitrdge dieser Arbeit sind:

¢ Eine umfassende Systematisierung der verwendeten Praktiken und des aktuelles
Standes bei der Bewertung von IDSs. Die Systematisierung enthalt: (i) die Defini-
tion eines Entwurfraumes fiir die IDS-Bewertung, welches praktische und theo-
retische Arbeiten im Bereich IDS-Bewertung systematisch in einen einheitlichen
Kontext stellt; (ii) einen Uberblick iiber verwendete Praktiken im Bereich IDS-
Bewertung, der Ansédtze und Methodiken jedes Teils des Entwurfraumes bein-
haltet; (iii)) und eine Sammlung an Fallstudien, die demonstriert, wie unter-
schiedliche IDS-Bewertungsansétze in der Praxis angewendet werden. Vor dem
Hintergrund der betrdchtlichen Menge bestehender praktischer und theoretis-
cher Arbeiten im Bereich IDS-Bewertung erweist sich die Systematisierung als
vorteilhaft zur Verbesserung des allgemeinen Themenverstiandnisses, indem ein
Uberblick zur aktuellen Sachlage des Themengebietes geliefert wird. Zusatzlich
ist dies vorteilhaft bei der Identifizierung und Gegentiberstellung von Vor- und
Nachteilen unterschiedlicher IDS-Bewertungsmethodiken und -praktiken. Es
hilft ebenfalls Vorgaben und Empfehlungen fiir die Bewertung gegenwirtiger
wie auch zukiinftiger IDSs zu identifizieren.

¢ Eine detaillierte Analyse von Schwachstellen von Hypervisoren wird prasentiert,
sowie eine Menge von Angriffsmodellen, die die Aktivitdten eines Angreifers
umfassen, der diese Schwachstellen auslost. Diese Analyse umfasst 35 Schwach-
stellen in Hypercall-Routinen, sogenannte Hypercall-Schwachstellen. Hypercalls
sind an den Hypervisor gerichtete ,Software-Traps” aus dem Betriebssystemkern
einer VM. Die Hypercall-Schnittstelle von Hypervisoren ist — neben Gerite-
treibern und ,VM exit”-Ereignissen — eine ihrer Angriffsflichen. Wird die
gegeniiber einem Hypercall bestehende Schwachstelle ausgenutzt, kann dies zu
einem Absturz des Hypervisors oder zu einer Anderung seines Speicherinhalts
fithren. Wir analysieren die Griinde der betrachteten Hypercall-Schwachstellen,
demonstrieren und analysieren Angriffe, die solche Schwachstellen ausnutzen
(d.h. Hypercall-Angriffe), entwickeln Hypercall-Angriffsmodelle (ndmlich sys-
tematisierte, auf die Schnittstelle der Hypercalls gerichtete Aktivitdten der An-
greifer) und diskutieren zukiinftige Forschungsrichtungen, die Ansétze betra-
chten, um die Schnittstellen von Hypercalls abzusichern.

¢ Ein neuartiger Ansatz zur Bewertung von IDSs, der die Generierung von Ar-
beitslasten ermoglichen, die Hypercall-Angriffe enthalten. Wir schlagen einen
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Ansatz zur Bewertung von IDSs durch die Injektion von Angriffen (d.h. Hypercall-
Angriffen) vor. Es handelt sich hier um die kontrollierte Ausfithrung von An-
griffen in einer reguldren Systemumgebung, in welcher das betrachtete IDS
eingesetzt wird. Die Injektion von Angriffen folgt Angriffsmodellen, die durch
Analyse realistischer Angriffe erstellt wurden. Wir verwenden die als Teil dieser
Arbeit dargestellten Hypercall-Angriffsmodelle zur Injektion von Hypercall-
Angriffen.

¢ Eine neuartige Metrik und Messmethodik zur prizisen Quantifizierung der
Angriffserkennungsgenauigkeit von IDSs in virtualisierten elastischen Umge-
bungen. Wir demonstrieren, wie die Elastizitit virtualisierter Umgebungen sich
auf die Angriffserkennungsgenauigkeit von IDSs auswirkt und zeigen, dass die
Verwendung existierender Metriken zu schwierigen und ungenauen Messungen
bei der Bewertung von IDSs in virtualisierten elastischen Umgebungen fiihren.
Ausserdem zeigen wir den praktischen Nutzen der von uns vorgeschlagenen
Metrik in mehreren Fallstudien.

Zusammenfassend présentiert diese Arbeit die erste Systematisierung des Stands
der Technik bei der Bewertung von IDSs unter Beachtung der Arbeitslasten, Metriken
und Messmethodiken als integraler Teil eines jeden Ansatzes zur IDS Bewertung.
Auflerdem sind wir die ersten, die Hypercall-Angriffsflichen im Detail untersuchen
und die einen Ansatz zur Bewertung von IDSs in virtualisierten Umgebungen durch die
Injektion von Angriffen vorschlagen. Abschliefiend présentiert diese Arbeit die erste
Metrik und Messmethodik zur Quantifizierung der Angriffserkennungsgenauigkeit
von IDSs in virtualisierten elastischen Umgebungen.

Aus technischer Sicht prasentieren wir in dieser Arbeit, als Teil des vorgeschlagenen
Ansatzes zur Bewertung von IDSs, ein Werkzeug mit der Bezeichnung , hInjector”,
welches zur Injektion von Hypercall-Angriffen dient. Dieses Werkzeug wurde entwor-
fen, um die griindliche, représentative und praktisch umsetzbare Bewertung von IDSs
per Injektion von Angriffen zu erméglichen. Wir demonstrieren die Anwendung und
den praktischen Wert sowohl von hlnjector als auch des vorgeschlagenen Ansatzes
durch die Bewertung eines reprasentativen, hypervisor-basierten IDS, das zur Erken-
nung von Hypercall-Angriffen konzipiert ist. Wahrend wir uns auf die Bewertung
der Fahigkeiten von IDSs zur Erkennung von Hypercall-Angriffen fokusieren, kann
der vorgeschlagene Ansatz verallgemeinert und in einem breiteren Kontext angewen-
det werden. Zum Beispiel kann er direkt verwendet werden, um auch Hypervisor-
Sicherheitsmechanismen, ndmlich etwa Hypercall-Zugangskontrollmechanismen, zu
bewerten. Der Ansatz kann auch angewendet werden fiir die Bewertung von IDSs, die
der Erkennung von Angriffen basierend auf Operationen dienen, die eine funktionelle
Ahnlichkeit zu Hypercalls aufweisen. Solche Operationen sind z.B. die “input/output
control (ioctl)” Aufrufe, die vom “Kernel-based Virtual Machine (KVM)”-Hypervisor
unterstiitzt werden.

Fiir IDSs, die in elastischen virtualisierten Umgebungen eingesetzt werden, kann
unser Ansatz zur Injektion von Hypercall-Angriffen in Verbindung mit der von uns
vorgeschlagenen Metrik und Messmethodik angewendet werden. Beide kénnen auch
unabhingig von den in dieser Arbeit betrachteten Szenarien angewendet werden. Das
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Zusammenfassung

breite Spektrum von Sicherheitsmechanismen (z.B. hypervisor-basierte IDSs, IDSs
eingesetzt als VNFs und Zugangskontrollmechanismen), deren Bewertung von den
Beitrdgen dieser Arbeit profitieren, spiegelt ihre Praktikabilitdt wider.

XX



Chapter 1
Introduction

1.1 Motivation

Virtualization is a concept of the 1960’s allowing the creation of logical (“virtual”)
instances of physical devices, such as networks, storage or processing units. In recent
years, virtualization has received increasing interest, both from industry and academia,
as a way to reduce costs through server consolidation and to enhance the flexibility of
physical infrastructures. In a virtualized system, governed by a hypervisor, resources
such as processor time, disk capacity, and network bandwidth are shared among|virtual|
Each VM accesses the physical resources of the infrastructure through
the hypervisor and is entitled to a predefined fraction of capacity. Modern hypervisors
also provide mechanisms for elastic resource provisioning allowing to adapt the system
to workload variations such as load spikes. Under elastic resource provisioning (which
we also refer to as elasticity), we understand on-demand provisioning (i.e., allocation
or deallocation) of virtualized hardware resources to VMs.

While server consolidation through virtualization provides many benefits, it also
introduces some new challenges; that is, the introduction of a hypervisor and the
allocation of potentially multiple VMs on a single physical server are additional critical
aspects introducing new potential threats and vulnerabilities [Abh15], [PBSL13]. For
instance, Gens et al. [GMV™10] report that security is a major concern for users of
modern virtualized service infrastructures, followed by availability and performance.
Some critical security issues include data integrity, authentication, application security,
and so on [SK11]. In addition, attackers are actively exploring virtualization-specific
attack surfaces such as hypervisors.

A common defensive instrument against security threats are [intrusion detection|
They monitor on-going activities in the protected network(s) and
host(s), detecting potentially malicious activities. The detection of malicious activities
enables the timely reaction in order to stop an on-going attack, or to mitigate the impact
of a security breach.

The adoption of virtualization technology has lead to the emergence of novel IDSs
specifically designed to operate in virtualized environments (i.e., hypervisor-based 1DSs)
such as AdjointVM [Kon11], VMFence [JXZ"11], and |Advanced Cloud Protection|
[LDP11]. Such IDSs typically perform host intrusion detection and are

deployed in the virtualization layer, with components both inside the hypervisor and
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in a designated VM, which has several benefits [MKA "13]. Hypervisor-based IDSs
can monitor the network and/or host activities of all guest VMs at the same timeﬂ
Further, they are isolated from, and transparent to, malicious users of the guest VMs
since they do not operate inside the guest VMs, but instead leverage functionalities of
the underlying hypervisor. In addition, some hypervisor-based IDSs can also detect
attacks specifically targeted at the hypervisor. Hypervisor-based IDSs are becoming
increasingly common with the growing proliferation of virtualized data centers and
the advent of the cloud computing paradigm, for which virtualization is as a key
enabling technology. Intrusion detection in cloud environments has been recently
receiving increasing attention, given that security concerns are still one of the greatest
showstoppers for the wide adoption of cloud computing [GMV10].

The increasing adoption of virtualization has resulted in the practice of deploying
conventional IDSs (e.g., hardware IDS appliances or common software-based IDSs)
in designated VMs as [virtual network functions (VNFs)| For instance, a network-
based IDS (e.g., Snort [Roe99]) may be deployed in a designated VM and configured
to tap into the physical network interface card used by all VMs. Thus, the IDS can
monitor the network activities of all VMs at the same time while being isolated from,
and transparent to, their users. Further, in comparison to deploying hardware IDS
appliances, which are expensive and challenging to manage, deploying IDSs as VNFs is
cost-effective and the management of such IDSs is easier. It is important to emphasize
that the network function virtualization technology introduces new security risks
that have not yet been investigated in detail. We refer the reader to [Ale16] for more
information.

To minimize the risk of security breaches, methods and techniques for evaluating
the performance of IDSs in a realistic and reliable manner are needed. The benefits of
IDS evaluation are manyfold. For instance, one may compare different IDSs in terms of
their attack detection accuracy in order to deploy an IDS that operates optimally in a
given environment, thus reducing the risks of a security breach. Further, one may tune
an already deployed IDS by varying its configuration parameters and investigating
their influence through evaluation tests. This enables comparison of the evaluation
results with respect to the configuration space of the IDS and can help to identify an
optimal configuration. IDS evaluation is of interest to many different types of users and
professionals in the field of communication systems and information security. This
includes researchers, who typically evaluate novel IDS algorithms and architectures
with respect to specific IDS properties that are subject of research; industrial software
architects, who typically evaluate IDSs by carrying out internationally standardized
large scale tests; and IT security officers, who evaluate IDSs in order to select an IDS
that is optimal for protecting a given environment, or to optimize the configuration of
an already deployed IDS. We discuss more on application scenarios of IDS evaluation
in Section 22,11

IDS evaluation, in general, has proven to be a challenging task riddled with many

n this thesis, we use the terms guest VM and VM interchangeably. We use the term host VM to explicitly
refer to a VM that has higher privileges than the other VMs co-located with it and is used for managing (i.e.,
administering) the virtualized environment where it resides.



1.2 Problem Statement: Shortcomings of Existing Approaches

difficulties, such as the lack of realistic evaluation data, flawed methodologies, and
many more. Many of these challenges have been subject of existing work in the research
community, e.g., [SYB04], [Ran01], [McHOO0]. However, to the best of our knowledge, no
approaches, methods, and tools for the evaluation of IDSs in virtualized environments
(i.e., hypervisor-based IDSs or IDSs deployed as VNFs) currently exist. We argue that
conventional approaches to IDS evaluation do not satisfy the requirements to enable
rigorous and representative evaluation of IDSs in virtualized environments.

In this thesis, we focus on IDS evaluation requirements in the context of virtualized
environments, considering the following requirements with respect to the standard
components — workloads, metrics, and measurement methodologies — that comprise any
system evaluation scenario:

¢ the use of workloads that contain virtualization-specific attacks, that is, attacks
initiated from malicious guest VMs and targeting the underlying hypervisors — we
argue that such workloads are needed for testing IDSs that have the functionality
to detect attacks targeting hypervisors;

¢ the use of metrics and measurement methodologies for measuring the attack
detection accuracy of IDSs taking elasticity, a feature of modern virtualized
infrastructures, into account — we argue that such metrics and methodologies
are needed for the accurate measurement of the attack detection accuracy of IDSs
in virtualized environments (i.e., hypervisor-based IDSs or IDSs deployed as
VNFs).

1.2 Problem Statement: Shortcomings of Existing
Approaches

1.2.1 Workloads

As we mentioned in Section [I.1, workloads that contain virtualization-specific attacks,
that is, attacks initiated from malicious VMs and targeting the underlying hypervisors,
are needed. Such workloads are used to exercise the sensors of evaluated IDSs that
have the functionality to detect attacks targeting hypervisors. Many hypervisor-based
IDSs, such as Collabra [BSNS11a] and Xenini [MM11]], and some conventional IDSs
deployed as VNFs, such as{Open Source Security (OSSEC)|[oss|], have the functionality
to detect attacks targeting hypervisors; that is, OSSEC can be configured to analyze
log files produced by a hypervisor (e.g., by Xen [xenal]) and detect attacks targeting the
hypervisor.

Attacks targeting hypervisors are of high severity since they may result in crashing a
hypervisor including all VMs running on top of it. They may also result in altering the
hypervisors’s memory, which enables the execution of malicious code with hypervisor
privileges. The lack of appropriate workloads for the evaluation of IDSs that have the
functionality to detect attacks targeting hypervisors can lead to the deployment of
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IDSs that do not operate optimally (e.g., exhibit low attack detection accuracy). This
increases the risk of severe security breaches in virtualized environments.

When it comes to evaluating an IDS, one needs malicious workloads (i.e., workloads
that contain attacks) and benign (regular, normal) workloads (i.e., workloads that do not
contain attacks). Malicious workloads are used to subject an IDS under test to attack
scenarios (as done by Reeves et al. [RRL™12] and Gornitz et al. [GKRB09]). Benign
workloads are used, for example, to evaluate the monitoring performance overhead or
the capacity of an IDS (as done by Bharadwaja et al. [BSNS11a]). Workloads normally
take an executable form or a trace form (traces generated by recording the execution of
activities for later replay). We now review approaches for the evaluation of IDSs using
malicious workloads, which are in the focus of this thesis (see Section|[1.1).

Malicious workloads in executable form can be obtained from exploit databases con-
taining attack scripts. One has a choice of assembling an exploit database by himself or
using a readily available one. A major disadvantage of the manual assembly is the high
cost of the attack script collection process. Locating the attack scripts needed for trigger-
ing specific vulnerabilities and obtaining the required vulnerable software is normally
time-consuming. In addition, once the needed attack scripts are found, they typically
have to be customized for the specific target environment. To assemble an exploit
database, IDS evaluators normally obtain attack scripts from public exploit repositories,
such as 1337day [inj]], Exploit database [exp], Packetstorm [pst], SecuriTeam [secal], and
Securityfocus [secb]. Alternatively, IDS evaluators may employ a penetration testing
tool as a readily available exploit database. The Metasploit framework [PtsM] has
been extensively used for evaluating IDSs (see, for example, Gornitz et al. [GKRB09|
and Nasr et al. [NKF12]]). At the time of writing, the popular exploit repositories and
penetration testing tools do not contain, or contain a very small number of, attacks
targeting hypervisors. This makes them unsuitable for evaluating IDSs that have the
functionality to detect such attacks.

As an alternative approach to using an exploit database, one can use the attack
injection technique to generate malicious workloads in executable form. Attack injection
is the controlled execution of attacks during regular operation of the environment
where an IDS under test is deployed. This technique enables IDS testing by attacking
the target platform with respect to attack models or by executing vulnerable code
injected in the platform (see, for example, Fonseca et al. [FVMO09]). Attack injection
is typically used in cases where the collection of attack scripts is unfeasible. The
application of this technique for generating workloads that contain attacks targeting
hypervisors has not been investigated.

Malicious workloads in trace form can be generated by acquiring or generating traces.
Real-world production traces can be acquired from proprietary organizations. Such
traces subject an IDS under test to a workload as observed during operation in a real
production environment. However, they are usually very difficult to obtain mainly
due to the unwillingness of industrial organizations to share operational traces.

In contrast to proprietary traces, one can acquire publicly available traces without
any legal constraints. However, publicly available traces often contain errors and
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they quickly become outdated after their public release since the recorded attacks
have limited shelf-life. The most frequently used publicly available traces (see, for
example, Alserhani et al. [AAAT10], Yu et al. [YD11], and Raja et al. [RAR12])) are the
Defense Advanced Research Projects Agency (DARPA)|[LHFT00] [IDE] and the derived
Knowledge Discovery and Data Mining (KDD)|Cup 99 [UoC]|| datasets. IDS evaluators
may also use publicly available traces from trace repositories such as [Cooperative]
Association for Internet Data Analysis (CAIDA )|[cai], [Defense Readiness Condition]
(DEFCON)|[CtCtF], [Internet Traffic Archive (ITA)|[ita], and|Lawrence Berkeley National
Laboratory /International Computer Science Institute (LBNL/ISCI)|[Ibn]. None of the
commonly used publicly available traces contain attacks targeting hypervisors.

IDS evaluators may generate traces in a testbed environment or deploy a honeypot
in order to capture malicious activities. Generating traces in a testbed environment
may be done by using the previously mentioned methods to generate workloads in
executable form whereby the executed workloads are captured and stored in trace
files. The generation of traces in a testbed environment is challenging since the costs
of building a testbed that scales to realistic production environments may be high and
the used trace generation method may produce faulty workloads.

Honeypots enable the recording of host and /or network malicious activities per-
formed by an attacker without revealing their purpose. By mimicking real systems
and vulnerable services, honeypots record the interaction between the attack target
and the attack itself. Security researchers often use the honeyd [hon] honeypot, which
is equipped with many logging and log processing utilities. We are not aware of
honeypots that are able to record the interaction between a VM and the underlying
hypervisor, that is, of honeypots that are able to record attacks targeting hypervisors.

To summarize, the application of the above approaches for the generation of work-
loads that contain attacks targeting hypervisors has not been investigated. Given the
potential severity of these attacks, the lack of appropriate workloads for the evaluation
of IDSs that have the functionality to detect attacks targeting hypervisors is a critical
issue — it can lead to the deployment of IDSs that do not operate optimally, which
increases the risk of severe security breaches in virtualized environments.

1.2.2 Metrics and Measurement Methodologies

We distinguish between two categories of IDS evaluation metrics: performance-related
and security-related metrics. Performance-related metrics are metrics that quantify non-
functional properties of an IDS under test, such as capacity, performance overhead, and
resource consumption. For instance, Meng et al. [ML12] consider workload processing
throughput, Lombardi et al. [LDP11] consider performance overhead, Mohammed et
al. [MOL"11] consider power consumption, and Sinha et al. [SJP06] consider mem-
ory consumption. Security-related metrics are metrics that quantify attack detection
properties of an IDS under test (e.g., attack detection accuracy). Next, we focus on
security-related metrics, which are in the focus of this thesis (see Section .

A common aspect of all existing security-related metrics is that they are defined with
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respect to a fixed set of hardware resources available to the IDS under test [MK12]. Mell
et al. [MHL"03] and Hall et al. [HWO02] confirm that the values of existing IDS evalua-
tion metrics express the attack detection accuracy of an IDS only for a specific hardware
environment in which the IDS is expected to reside during operation. However, many
virtualized infrastructures support elastic resource provisioning; that is, resources can
be provisioned and used by the IDS on-demand during operation [HKR13]. For instance,
the Xen and VMware virtualization platforms allow for hotplugging
and memory on the designated VM where the intrusion detection engine of
hypervisor-based IDSs, or conventional IDSs deployed as VNFs, typically operates (see
Section[I.I). This may have a significant impact on many properties of the evaluated
IDS, including its attack detection accuracy.

Based on the above, we argue that the use of conventional metrics (i.e., existing IDS
attack detection accuracy metrics that do not take elasticity of virtualized environments
into account) may lead to inaccurate measurements in cases where the on-demand
provisioning of resources to an IDS under test has significant impact on its attack
detection accuracy. This, in turn, may result in the deployment of misconfigured
or ill-performing IDSs in production environments, increasing the risk of security
breaches. We argue that novel metrics and measurement methodologies for measuring
the attack detection accuracy of IDSs in virtualized environments featuring elasticity
are needed. Such metrics and methodologies should take into account the behavior of
the IDS under test as its operational environment changes. Next, we provide a compact
overview of conventional security-related metrics commonly used in practice.

We distinguish between basic and composite security-related metrics. Basic metrics
are the true positive rate, the false positive rate, the positive predictive value, and the
negative predictive value. These metrics quantify various individual attack detection
properties. The true positive rate quantifies the probability that an alert generated
by an IDS is really an intrusion. The false positive rate quantifies the probability that
an alert generated by an IDS is not an intrusion, but a regular benign activity. The
respective complementary metrics (i.e., the true negative rate and the false negative
rate) are also relevant. The|positive predictive value (PPV)|quantifies the probability
that there is an intrusion when an IDS generates an alert. The jnegative predictive|
quantifies the probability that there is no intrusion when an IDS does not
generate an alert.

Although the above IDS properties are quantified individually, they need to be
analyzed together in order to accurately characterize the attack detection accuracy of
a given IDS. In order to analyze relationships between basic metrics, IDS evaluators
typically combine basic metrics into composite metrics. Such an analysis is typically
used to discover an optimal IDS operating point — an IDS configuration that yields
optimal values of both the true and false positive detection rate — or to compare
multiple IDSs. It is a common practice to use [Receiver Operating Characteristic (ROC)|
curve to investigate the relationship between the measured true positive and false
positive detection rates of an IDS. A ROC curve is a two-dimensional depiction of the
accuracy of a detector as it plots the true positive rate against the corresponding false
positive rate [MRO4].
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Figure 1.1: Focus and contributions of this thesis.

Security researchers have proposed metrics that are more accurate and expressive
than ROC curves. They can be classified into two main categories: metrics that use
cost-based measurement methodologies and metrics that use information-theory mea-
surement methodologies. Two of the most prominent metrics that belong to these
categories are the expected cost metric proposed by Gaffney et al. [GUO1|] and the
intrusion detection capability metric proposed by Gu et al. [GFD™06]. The expected
cost metric uses a cost model to quantify the cost of the operation of an IDS under
test. The intrusion detection capability metric aims to quantify the attack detection
accuracy of an IDS in an objective manner by modeling the input to, and output of, the
evaluated IDS as a stream of random variables. The latter enables the quantification of
the attack detection accuracy as the reduction of the uncertainty of the IDS input after
the IDS output is known.

To summarize, all of the basic and composite security-related metrics discussed
above are defined with respect to a fixed set of hardware resources available to
the IDS under test, that is, they do not take elastic resource provisioning into ac-
count [MHL " 03], [HWO02]. Therefore, using these metrics for evaluating IDSs deployed
in virtualized environments may lead to inaccurate measurements. We argue that
novel metrics and measurement methodologies, which take into account the behav-
ior of an IDS as its operational environment changes, are needed. Such metrics and
methodologies would allow to quantify the attack detection accuracy of IDSs deployed
in virtualized environments in an accurate manner. In addition, they would allow to
quantify the ability of the IDS to scale its attack detection efficiency as resources are
allocated to it, or deallocated from it, during operation.

1.3 Contributions of this Thesis

In Figure we depict an overview of the focus and contributions of this thesis. The
contributions (marked in bold in Figure [1.T) can be classified according to the standard
components of any system evaluation scenario: workloads, metrics, and measurement
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methodologies. They can be further divided into scientific and technical contributions.
The scientific contributions are:

(i) Contribution 1 (C1, see Figure[I.1): a comprehensive systematization of the common
practices and the state-of-the-art on IDS evaluation including:

e definition of an IDS evaluation design space allowing to put existing practical and
theoretical work into a common context in a systematic manner;

* overview of common practices in IDS evaluation reviewing existing evaluation
approaches and methods related to each part of the design space;

e a set of case studies demonstrating how different IDS evaluation approaches are
applied in practice.

Given the significant amount of existing practical and theoretical work related to
IDS evaluation, the presented systematization is benefitial for improving the gen-
eral understanding of the topic by providing an overview of the current state of the
field. In addition, it is beneficial for identifying and contrasting advantages and dis-
advantages of different IDS evaluation methods and practices, while also helping to
identify specific requirements and best practices for evaluating current and future IDSs.

(ii) Contribution 2 (C2, see Figure[L.1): anovel approach for evaluating IDSs enabling the
generation of workloads that contain attacks targeting hypervisors, that is, hypercall
attacks. Hypercalls are software traps from a kernel of a semi- or fully paravirtualized
guest VM to the hypervisor. They can, for example, enable intrusion into a vulnerable
hypervisor, initiated from a malicious VM kernel, through the hypervisor’s hypercall
interface. The triggering of a vulnerability of a hypercall handler (i.e., a hypercall
vulnerability) may crash the hypervisor or lead to altering the hypervisor’s memory.
This enables the execution of malicious code with hypervisor privileges (see the work
of Rutkowska et al. [RW])). In the context of this thesis, under hypercall attack, we
understand any malicious hypercall activity.

In this thesis, we propose an approach for evaluating IDSs using attack injection
(i.e., injection of hypercall attacks, see Section[I.2.1). We focus on attack injection as an
approach for generating malicious workloads that contain hypercall attacks since the
collection of attack scripts that demonstrate such attacks is unfeasible, that is, publicly
available scripts that demonstrate hypercall attacks are very rare [MPA™14], [HLO09].

Workloads that contain hypercall attacks are a key requirement for evaluating the
attack detection accuracy of IDSs designed to detect hypercall attacks. Such work-
loads are needed to exercise the sensors of an IDS monitoring the hypercall interface
of a hypervisor. The research and industrial communities have developed security
mechanisms that can detect hypercall attacks. These include IDSs that can be config-
ured to analyze in real-time log files with information on executed hypercalls, such
as Xenini [MM11]] and the de-facto standard host-based IDS OSSEC [oss], as well as
access control (AC)|systems, such as[Xen Security Modules - Flux Advanced Security]
Kernel (XSM-FLASK)|distributed with the Xen hypervisor. Given the potential sever-
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ity of hypercall attacks, the rigorous evaluation of IDSs designed to detect hypercall
attacks using workloads that contain such attacks is crucial for preventing high-impact
breaches in virtualized environments.

The approach we propose may be applied conceptually not only for evaluating
IDSs designed to detect hypercall attacks, but also attacks involving the execution
of operations that are functionally similar to hypercalls. Such operations are, for
example, the [input/output control (ioctl)|calls that the [Kernel-based Virtual Machine|
[KVM)]| hypervisor supports. By enabling the generation of workloads that contain
hypercall attacks, this thesis contributes towards addressing the issue of the lack of IDS
evaluation workloads that contain virtualization-specific attacks (see Section [1.2.1).

For the injection of realistic hypercall attacks, representative hypercall attack models
are required (see Section[1.2.1). Note that the injection of attacks is performed with
respect to attack models constructed by analysing realistic attacks. Attack models are
systematized activities of attackers targeting a given attack surface. Publicly disclosed
reports describing hypercall vulnerabilities (e.g., CVE-2013-4494, CVE-2013-3898) are
currently the only available source of information, however, they only provide high-
level descriptions. As a result, the characterization of hypercall vulnerabilities and
hypercall attacks is challenging. It warrants a detailed investigation of existing vul-
nerabilities, which can only be done by reverse-engineering released patches fixing
the vulnerabilities. The latter is crucial for the construction of representative attack
models, which, in turn, are a prerequisite for the injection of realistic hypercall attacks.
This brings us to the next contribution of this thesis.

(i) Contribution 3 (C3, see Figure[L.1): an in-depth analysis of common vulnerabilities
of modern hypervisors, as well as a set of attack models capturing the activities of
attackers triggering these vulnerabilities. The analysis includes 35 representative vul-
nerabilities of hypercall handlers discovered by searching major vulnerability report
databases (e.g., cvedetails [CVEj|]). We discuss issues, challenges, and gaps that apply
specifically to securing hypercall interfaces. Our analysis is based on information
obtained by reverse engineering released patches fixing the considered vulnerabilities.
More specifically, this thesis contributes:

¢ a comprehensive analysis and systematization of the origins of the considered
hypercall vulnerabilities,

* a demonstration of possible attacks triggering the hypercall vulnerabilities and
evaluation of their effects,

¢ aset of hypercall attack models based on an in-depth analysis of the activities
for executing hypercall attacks, and

¢ adiscussion of future research directions focusing on both proactive and reactive
approaches for securing hypercall interfaces.

To the best of our knowledge, there is no previous work examining the hypercall
attack surface in detail.

(iv) Contribution 4 (C4, see Figure[l.1): a novel metric and measurement methodology
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for quantifying the attack detection accuracy of IDSs in virtualized environments that
feature elastic resource provisioning; that is, a metric and measurement methodol-
ogy that take the elasticity aspects of virtualized environments into account. More
specifically, this thesis:

¢ demonstrates how the elasticity of resource allocations in virtualized environ-
ments may impact the IDS attack detection accuracy;

¢ shows that using conventional IDS evaluation metrics in such environments may
lead to practically challenging and inaccurate measurements;

e proposes and demonstrates the practical use of a novel metric and measurement
methodology that allow for quantifying the impact of elasticity on the IDS attack
detection accuracy.

We designed the new metric with respect to a set of specific criteria for accurate and
practically feasible IDS evaluation. Our metric is meant to complement conventional
metrics — it is specifically designed for evaluating IDSs that perform run-time moni-
toring and operate in virtualized environments with elastic resource provisioning. The
metric can be used to quantify the attack detection accuracy of such IDSs. This enables
the identification and deployment of optimally performing IDSs, thus reducing the
risk of security breaches in virtualized environments.

From a technical perspective, as part of the proposed approach for evaluating IDSs in
virtualized environments, this thesis presents hinjector, an open-source tool for injecting
hypercall attacks. We designed hlnjector to achieve the challenging goal of satisfying
the following key requirements for the rigorous, representative, and practically feasible
evaluation of IDSs in virtualized environments: injection of realistic attacks, during
regular system operation, and in a non-disruptive manner (e.g., prevention of potential
crashes due to the injected attacks).

We demonstrate in this thesis the application of the proposed approach for eval-
uating IDSs and the practical usefulness of hlnjector by evaluating Xenini [MM11]],
a representative IDS designed to detect hypercall attacks. We inject realistic attacks
triggering publicly disclosed hypercall vulnerabilities (e.g., CVE-2012-5525 [CVEg],
CVE-2012-3495 [CVED], and CVE-2012-5513 [CVEf]) as well as specifically crafted
evasive attacks — attacks specifically crafted to not be easily detectable by an IDS. We
extensively evaluate Xenini considering multiple alternative configurations of the IDS,
that is, varying the sensitiveness of the IDS for labeling a given activity as malicious.
We calculate values of attack detection accuracy metrics, such as true and false positive
rate, and plot ROC curves (see Section[I.2.2). The obtained results match the expected
behavior of Xenini (e.g., the more sensitive the IDS, the higher true and false positive
rates it exhibits), which shows the practical usefulness of the approach we propose.
Our approach is the first to enable an extensive evaluation at this level of detail and
accuracy.

While we focus on evaluating the capabilities of IDSs to detect hypercall attacks,
the proposed IDS evaluation approach can be generalized and applied in a broader
context. For example, it may be directly used to also evaluate security mechanisms of
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hypervisors, such as hypercall access control (AC) mechanisms. It may also be applied
to evaluate the capabilities of IDSs to detect attacks involving operations that are
functionally similar to hypercalls, for example, the ioctl calls that the KVM hypervisor
supports.

We also demonstrate in this thesis the practical use of the metric and measurement
methodology we propose by evaluating two conventional IDSs (i.e., Snort [Roe99] and
Suricata [sur]) deployed as VNFs running on top of the Xen hypervisor. We consider
15 different configurations of the IDSs and the hypervisor performing elastic resource
provisioning. The obtained metric values match the expected behavior of the metric
with respect to the criteria according to which we designed the metric. This shows the
accuracy and practical usefulness of the metric and measurement methodology we
propose.

For IDSs in virtualized environments featuring elastic resource provisioning, our
approach for injecting hypercall attacks can be applied in combination with the attack
detection accuracy metric and measurement methodology we propose. Our approach
for injecting hypercall attacks, and our metric and measurement methodology, can
also be applied independently beyond the scenarios considered in this thesis. The
wide spectrum of security mechanisms in virtualized environments whose evaluation
can directly benefit from the contributions of this thesis (e.g., hypervisor-based IDSs,
IDSs deployed as VNFs, and AC mechanisms) reflects the practical implication of the
thesis.

1.4 Outline

This thesis is structured into seven main chapters, including the introductory chapter
(Chapter [I), and one appendix chapter.

In Chapter [2, we provide the background that is essential for understanding the
topic of IDS evaluation. We discuss several types of attacks that we refer to throughout
the thesis, and the role of intrusion detection in relation to other security mechanisms.
In addition, we define and discuss different types of IDSs. Further, we provide an
overview of major developments in the area of IDS evaluation in a chronological
manner. Finally, we demonstrate the wide applicability and relevance of IDS evaluation
by discussing various application scenarios.

In Chapter 3} we analyze the current state of IDS evaluation. To this end, we define
an IDS evaluation design space structured into three parts — workloads, metrics, and
measurement methodology — which are considered as the standard components of any
evaluation experiment. We systematize and review different approaches for generating
or obtaining workloads for evaluating IDSs. Further, we systematize and review IDS
evaluation metrics, and we demonstrate the use of these metrics for comparing IDSs.
In addition, we systematize IDS properties that are typically evaluated in practice. We
also discuss and practically demonstrate the respective measurement methodologies.
Finally, we discuss challenges that apply to evaluating IDSs specifically designed for
deployment and operation in virtualized environments (i.e., hypervisor-based IDSs)
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and we present guidelines for planning IDS evaluation studies based on the lessons
learned.

In Chapter[4} we characterize the hypercall attack surface based on analyzing a set of
vulnerabilities of hypercall handlers. We systematize and discuss the errors that caused
the considered vulnerabilities, and activities for executing attacks triggering them.
We also demonstrate attacks triggering the considered vulnerabilities and analyze
their effects. Finally, we suggest an action plan for improving the security of hypercall
interfaces.

In Chapter|5, we propose a novel approach for the rigorous evaluation of IDSs in
virtualized environments, with a focus on IDSs designed to detect attacks leveraging
or targeting the hypervisor via its hypercall interface. We present hlnjector, a tool
for generating IDS evaluation workloads by injecting such attacks during regular
operation. We demonstrate the application of our approach and show its practical
usefulness by evaluating a representative hypervisor-based IDS designed to detect
hypercall attacks. The virtualized environment of the industry-standard benchmark
SPECvirt_sc2013 [spea] is used as a testbed, whose drivers generate workloads repre-
sentative of real-life workloads.

In Chapter[f} we demonstrate the impact of elasticity on IDS attack detection accuracy.
In addition, we propose a novel metric and measurement methodology for accurately
quantifying the accuracy of IDSs in virtualized environments featuring elasticity. We
demonstrate their practical use through case studies involving commonly used IDSs.

Chapter [7] concludes this thesis by summarizing its contributions and gives an
outlook on future research.

In Chapter |A} we provide in-depth technical information on publicly disclosed
vulnerabilities of hypercall handlers, that is, on a selected representative subset of
the vulnerabilities we consider in Chapter @l Our vulnerability analysis is based
on reverse engineering the released patches that fix the considered vulnerabilities.
For each analyzed vulnerability, we provide background information essential for
understanding the vulnerability, and information on the vulnerable hypercall handler
and the error causing the vulnerability. We also show how the vulnerability can be
triggered and discuss the state of the targeted hypervisor after the vulnerability has
been triggered.
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Chapter 2
Foundations

2.1 Intrusion Detection Systems

2.1.1 Attacks and Common Security Mechanisms

A given system (i.e., a host) is considered as secure if it has the properties of confiden-
tiality, integrity, and availability of its data and services [Sta02], commonly known as
the CIA triad. Under confidentiality, we understand the protection of data against its
release to unauthorized parties. Under integrity, we understand the protection of data
and/or services against modifications by unauthorized parties. Under availability,
we understand the protection of services such that they are ready to be used when
needed.

Attacks are deliberate attempts to violate the previously mentioned security prop-
erties [Shi99]. There are many different types of attacks with respect to various at-
tack properties. Security researchers have developed many attack categorization
schemes (i.e., attack taxonomies) designed for different purposes. For instance, Nasr
et al. [NAEKF11]] propose an attack taxonomy useful for classifying attacks used in
intrusion detection system evaluation studies, while Hansman et al. [HHO5|
define an attack taxonomy for general use.

In this section, for the sake of completeness, we discuss only the types of attacks
that we refer to in the rest of the thesis when discussing IDS evaluation approaches.
We stress that we do not aim to provide an extensive coverage of attack types as that is
out of the scope of this thesis. We also stress that some attack types, although relevant,
are out of the scope of IDSs, as confirmed by international standards (see
[Institute of Standards and Technology (NIST)[s guide to IDSs [SMO07])). Such are, for
example, spamming and information fishing attacks.

According to the source of execution of an attack from the perspective of the targeted
system, we distinguish between remote and local attacks. A remote attack is an attack that
targets a service of a system available over a network and is carried out over a network
connection, i.e., the Internet or a|local area network (LAN)|connection, between the
attacker and the targeted service. An example of a remote attack is an[Standard Query]
[Language (SQL)|injection attack. When executing such an attack, an attacker normally
inserts a malicious SQL query into an entry field of a database-driven web application
and executes it. This leads to, for example, obtaining access to sensitive data stored

13



Chapter 2: Foundations

in the database (e.g., passwords), deleting or adding database records, and so on.
For detailed information on SQL injection attacks, we refer the reader to the work of
Halfond et al. [HVOO06]. In Figure we depict a scenario where an SQL injection
attack is executed against a database-driven web application with the goal of obtaining
sensitive data.

__Malicious SQL Web server Sensitive data_’ Database server
query / request

Network connection )— Web application —( Network connection

Attacker <€—Sensitive data: —Sensitive data—
(@
Host
Malicious user L
° Log file Application
In‘ reads@
User mode records
Regular
Kernel mode u%er
Keylogger '—intcrcepts% pressed key [)
Deployed in the kernel by the \—7 Inl
malicious user. It modifies
kernel functions to intercept and
record pressed keyboard keys.

(b)

Figure 2.1: An example of a (a) remote attack - SQL injection attack, and (b) local attack -
deployment of a keylogger.

Local attacks are executed by users of the targeted system itself, which results, for
example, in privilege escalation or unauthorized access to sensitive files. An example
of a local attack is the kernel attack. Such an attack violates the integrity of the targeted
system’s kernel by altering its regular behavior to the benefit of the attacker. For
instance, specific kernel functions may be modified in order to record activities of the
users of a given system, such as the pressing of keyboard keys. The real-time recording
of pressed keyboard keys is a feature of a specific class of malicious software known
as keyloggers. In Figure we depict a scenario where a malicious user deploys a
keylogger in a host’s kernel, an action that violates its integrity by modifying specific
kernel functions in order to intercept and record pressed keys.

Besides intrusion detection, there are many other security mechanisms used to
enforce the properties of confidentiality, integrity, and availability of system data and

14



2.1 Intrusion Detection Systems

services. Kruegel et al. [KVV05] classify security mechanisms by taking an attack-
centric approach distinguishing between attack prevention, attack avoidance, and attack
detection mechanisms. Based on this classification, we put intrusion detection into a
common context with other security mechanisms, as depicted in Figure

Confidentiality

Integrity

Availability

Attack avoidanc®

Data encryption

Figure 2.2: Intrusion detection in relation to other common security mechanisms.

The attack prevention class includes security mechanisms that prevent attackers from
reaching, or gaining access to, the targeted system. A representative mechanism that
belongs to this class is access control, which uses the concept of identity to distinguish
between authorized and unauthorized parties. For instance, firewalls distinguish
between different parties trying to reach a given system over a network connection
based, for example, on their [Internet Protocol (IP)|addresses. According to access
control policies, firewalls may allow or deny access to the system.

The attack avoidance class includes security mechanisms that modify the data stored
in the targeted system such that it would be of no use to an attacker in case of an
intrusion. A representative mechanism that belongs to this class is data encryption,

which is typically implemented using encryption algorithms such as
|Adleman (RSA)} |Data Encryption Standard (DES)} and so on.

The attack detection class includes security mechanisms that detect on-going attacks
under the assumption that an attacker can reach, or gain access to, the targeted system
and interact with it. A representative security mechanism that belongs to this class is
intrusion detection.
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2.1.2 Intrusion Detection Systems: A Systematization

According to Scarfone et al. [SMO07] from NIST, intrusion detection is “the process of
monitoring the events occurring in a computer system or network and analyzing them for signs
of possible incidents, which are violations or imminent threats of violation of computer security
policies, acceptable use policies, or standard security practices.” Given the above definition,
an IDS can be defined as the software that automates the intrusion detection process.

Intrusion DetTction Systems

Monitored platform  Attack detection method Monitoring method  Deployment architecture

Host-based Misuse-based Real-time Non-distributed
Network-based Anomaly-based Polling Distributed
Hybrid Hybrid

Figure 2.3: Different types of IDSs.

IDSs can be categorized according to many different properties. In the rest of this
section, we present a categorization of IDSs with respect to the properties that we
consider relevant for evaluating and comparing different systems. We refer the reader
to [DDW99] for an in-depth categorization of IDSs. In Figure we depict an IDS
categorization scheme that we constructed by considering the following properties of
IDSs:

(i) Monitored platform: According to the target platform that IDSs monitor, they can be
categorized into host-based, network-based, or hybrid IDSs.

Host-based IDSs monitor the activities of the users of the host where they are deployed,
which often includes the behavior of applications running on the host, in order to
detect local attacks. Host-based IDSs are typically able to detect a variety of local
attacks such as unauthorized modifications of sensitive files or abnormal execution
behaviors of applications. Open Source Security [oss] and Tripwire [tri] are
among the most popular host-based IDSs at the time of writing.

Network-based IDSs monitor the network traffic that is destined for, and/or originates
from, a single host or a set of hosts that constitute a network environment, in order
to detect remote attacks. A network-based IDS is typically deployed at the perimeter
of a network such that it can monitor all incoming and/or outgoing network traffic.
Snort [Roe99], Bro [TBNSM]|, and Suricata [sur] are among the most popular network-
based IDSs at the time of writing.

Hybrid IDSs are a combination of host-based and network-based IDSs. A typical
hybrid IDS is deployed in the host that it monitors as a host-based IDS. An example of
a hybrid IDS is VMFence [JXZ*09].
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In Figure we depict a typical IDS deployment scenario where a network-based
IDS is deployed at the perimeter of a LAN (i.e., in the LAN’s gateway used to connect
it with a public network) in order to monitor all incoming and outgoing traffic. Further,
a host-based IDS, monitoring filesystem changes and application behavior, is deployed
in each of the hosts connected to the LAN.

(ii) Attack detection method: According to the employed attack detection method, IDSs
can be categorized into misuse-based, anomaly-based, or hybrid IDSs.
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Applications _ Filesystem Applications  Filesystem Applications _ Filesystem
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Public network/ Network-based IDS LAN
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Host Host
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Figure 2.4: Deployment scenario of a network-based IDS and multiple host-based IDSs.
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Misuse-based IDSs evaluate system and/or network activities against a set of signa-
tures of known attacks. An attack signature is a unique arrangement of information
used to identify attack attempts exploiting known vulnerabilities. For instance, the
popular network-based IDS Snort [Roe99] is a misuse-based IDS that matches the con-
tent of network packets against a set of signatures and issues an alert if it finds a match.
Given that misuse-based IDSs use signatures of known attacks for detecting attacks,
they are not able to detect zero-day attacks. Under zero-day attack, we understand
an attack that exploits a vulnerability that has not been publicly disclosed before the
execution of the attack. The notion “zero-day” indicates that such an attack occurs on
“day zero” of public awareness of the exploited vulnerability.

Anomaly-based IDSs use a profile of normal (i.e., regular) network and/or system
activities as a reference to distinguish between regular activities and anomalous activi-
ties, the latter being treated as attacks. Anomaly-based IDSs must be initially trained by
monitoring regular activities in order to construct regular activity profiles. In contrast
to misuse-based IDSs, anomaly-based IDSs are able to detect zero-day attacks as well as
known attacks, since both typically manifest themselves through anomalies. However,
depending on the quality of their training and the sensitivity of the employed attack
detection algorithms, anomaly-based IDSs may often mislabel regular activities as
anomalous, which is their major disadvantage. Under sensitivity of an attack detection
algorithm, we understand the smallest deviation of monitored system or network
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activities from a regular activity profile, for which the algorithm labels the activities as
anomalous.

Hybrid IDSs use both misuse-based and anomaly-based attack detection methods.

(iii) Monitoring method: According to the employed monitoring method, IDSs can
be categorized into real-time monitoring or polling IDSs.

Real-time monitoring IDSs, also known as event-driven IDSs, analyze system and/or
network activities as they occur. An example of a real-time monitoring IDS is the
network-based IDS Snort [Roe99], which intercepts and analyzes network packets in
order to detect attacks. Another example is the file integrity monitoring component
of the host-based IDS OSSEC [oss||, which performs real-time monitoring in order to
inspect occuring filesystem activities (e.g., file write and read operations).

In contrast to real-time monitoring IDSs, polling IDSs do not intercept executed activ-
ities in order to obtain input data for analysis, but rather obtain such data periodically
in an asynchronous manner. Some polling IDSs, known as log analysis IDSs, obtain
input data in the form of log files where system and/or network activities that have
already occurred are stored. Alternatively, polling IDSs periodically inspect relevant
system components, for example, content of memory regions allocated to the kernel
in order to detect kernel attacks. The vast majority of the IDSs that use polling as a
monitoring method are host-based IDSs, such as Wizard [GR03] and OSSEC [oss].

(iv) Deployment architecture: According to their deployment architecture, IDSs can
be categorized into non-distributed or distributed IDSs.

Non-distributed IDSs, also known as centralized IDSs, perform the same functions and
are deployed in an identical manner to hybrid, host-, or network-based IDSs, which
we discussed in detail earlier. In the following, we focus on distributed IDSs, which
have distinct characteristics due to their specific deployment architecture.

Distributed IDSs consist of multiple intrusion detection sub-systems (also known as
nodes or agents) that communicate and/or exchange intrusion detection-relevant data
(e.g., attack alerts, records of monitored activities). The communication is between the
agents themselves or with a centralized server that aggregates information obtained
from the agents and/or performs tasks such as management of the agents, analysis of
the data provided by them, and so on.

Because of its architecture, a distributed IDS maintains a global view of the network
and/or host activities occuring at multiple sites which may even be sparsely geograph-
ically distributed. In addition to attacks targeting individual hosts, the latter also
enables the detection of coordinated attacks. Under coordinated attack, we understand
carefully orchestrated attack that targets multiple hosts at specific moments in time
towards achieving a given malicious goal. However, the benefits of using a distributed
IDS come at the cost of network overhead caused by the communication required for
its operation. Example of a distributed IDS is the host-based IDS OSSEC [oss], which
may be configured to operate in a distributed manner.

In Table we summarize the categorization of IDSs presented above.
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Table 2.1: Categorization of intrusion detection systems.

Property

IDS type

Description

Monitored
platform

Host-based

Network-based

Hybrid

An IDS that monitors the activities on the system (i.e., the host) where
it is deployed in order to detect local attacks — attacks executed by
users of the targeted system itself (e.g., OSSEC [oss]).

An IDS that monitors network traffic in order to detect remote attacks
— attacks carried out over a network connection (e.g., Snort [Roe99]).

An IDS that is a combination of host and network-based IDSs
(see [JXZT09]).

Attack
detection
method

Misuse-based

Anomaly-
based

Hybrid

An IDS that evaluates system and/or network activities against a set
of signatures of known attacks (e.g., Snort [Roe99]); therefore, it is not
able to detect zero-day attacks — attacks that exploit vulnerabilities
that have not been publicly disclosed before the execution of the
attacks.

An IDS that uses a baseline profile of regular network and /or system
activities as a reference to distinguish between regular and anomalous
activities, the latter being treated as attacks (see [AT]T10]); therefore,
it is able to detect zero-day as well as known attacks, however, it
may often mislabel regular activities as anomalous, which is its major
disadvantage. An anomaly-based IDS must be trained by monitoring
regular activities in order to construct baseline activity profiles.

An IDS that uses both misuse-based and anomaly-based attack detec-
tion methods (see [MP13]).

Monitoring
method

Real-time

Polling

An IDS that analyzes system and/or network activities as they occur
(e.g., Snort [Roe99]).

An IDS that does not analyze system and/or network activities as
they occur, but obtains input data for analysis periodically in an
asynchronous manner (e.g., OSSEC [oss]).

Deployment
architecture

Non-
distributed

Distributed

A non-compound IDS that can be deployed only at a single location
(e.g., Snort [Roe99]).

A compound IDS that consists of multiple intrusion detection sub-
systems that can be deployed at different locations and communicate
to exchange intrusion detection-relevant data, for example, attack
alerts (e.g., OSSEC [oss|, which can be configured to operate in a
distributed manner). Distributed IDSs can detect coordinated attacks
targeting multiple sites in a given time order.

2.2 Evaluation of Intrusion Detection Systems

2.2.1 Application Scenarios

As we mentioned in Section[1.T} IDS evaluation helps in answering two main high-level
questions: How well an IDS performs?, and How well an IDS performs when compared to
other IDSs? The answers to these questions are of interest to many different types of
professionals in the field of communications and information security. This includes
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IDS designers, both researchers and industrial software architects, as well as IDS users,
such as IT security officers. In this section, we demonstrate the broad relevance of IDS
evaluation by discussing its relevance in the context of the mentioned professions.

Researchers advance the field of intrusion detection by designing novel intrusion
detection methods and/or IDS architectures. They typically focus on designing IDSs
that are superior in terms of given IDS properties that are subject of research, for
example, attack detection accuracy or workload processing capacity. To demonstrate
the value of the research outcome, researchers typically perform small-scale evaluation
studies comparing the proposed IDS with other IDSs in terms of the considered IDS
properties. For instance, Meng et al. [ML12] measure workload processing throughput,
Mohammed et al. [MOL™11] measure power consumption, and Sinha et al. [SJP06]
measure memory consumption. Further, in order to demonstrate that the proposed
IDSs are practically useful, researchers also evaluate IDS properties that are not neces-
sarily in the focus of their research, but are relevant from a practical perspective. For
example, Lombardi et al. [LDP11] measure the performance overhead incurred by the
IDS they propose.

Industrial software architects design IDSs with an extensive set of features according
to their demand on the market. IDSs, in this context, are typically evaluated by carrying
out tests of a large scale. The latter are part of regular quality assurance procedures
before releasing a product for sale. They normally use internationally standardized
tests for evaluating IDSs in a standard and comprehensive manner. For instance, Mi-
crosoft’s|Internet Security and Acceleration (ISA)|Server 2006 [ISA[, which features
intrusion detection, has been evaluated according to the international standard Com-
mon Criteria framework for evaluating IT security products [mic|]. Standardized IDS
tests are performed in strictly controlled environments and normally by independent
testing laboratories, such as NSS Labs [nssal, to ensure credibility of the results.

In contrast to IDS evaluation studies performed by researchers, evaluation studies
in industry normally include the evaluation of IDS properties that are relevant from a
marketing perspective. An example of such a property is the financial cost of deploying
and maintaining an IDS, which is evaluated as part of the IDS tests performed by NSS
Labs.

IT security officers use IDSs to protect environments they are in charge of from
malicious activities. They may evaluate IDSs, for example, when designing security
architectures, in order to select an IDS that is considered as optimal for protecting a
given environment. Further, if a security architecture is already in place, an IT security
officer may evaluate the performance of the selected IDS for different configurations
in order to find an optimal configuration. The performance is typically very sensitive
to the way the IDS is configured.

In addition to security and performance-related aspects, as part of IDS evaluation
studies, further usability-related aspects may also be considered. This is to be expected
since IT security officers deal with IDSs on a daily basis. For instance, security officers
in charge of protecting large-scale environments may be cognitively overloaded by the
output produced by the deployed IDS(s), an issue acknowledged by many researchers
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(e.g., Komlodi et al. [KGLO4]]). Thus, the ability to produce structured output that can
be analyzed in an efficient manner is an important property often considered when
evaluating IDSs.

2.2.2 Historical Overview

In Figure 2.5} we depict chronologically ordered dates that mark major developments
in the area of IDS evaluation from its inception until the present date.

The earliest effort on evaluating IDSs in a systematic manner is the work of Puketza
et al. [PZC796], [PCOM97]. They presented an approach for evaluating IDSs based
on principles of the field of software systems testing. Puketza et al. were the first to
develop a framework for evaluating IDSs, which they describe in detail in their work
from 1997 [PCOMY97]. They used the framework to evaluate a network-based IDS in
terms of attack detection accuracy, resource consumption, and performance under
stress.

The years of 1998, 1999, and 2000 mark a major accomplishment in the area of
IDS evaluation. The Lincoln Laboratory at [Massachusetts Institute of Technology]
sponsored by Defense Advanced Research Projects Agency (DARPA), evaluated
multiple IDSs using generated trace files that contain host and network activities of
benign and malicious nature. The latter are commonly known as the DARPA datasets.
Cunningham et al. [CLF"99] describe in detail the approach taken to generate the
DARPA datasets. The DARPA datasets are still extensively used in IDS evaluation
studies.

In 1998, Debar et al. [DDWL9S] from the International Business Machines Corpora
Zurich Research Laboratory developed a workbench for evaluating IDSs.
The workbench enabled the execution of attack scripts stored in a database maintained
internally at IBM and the generation of regular workloads for training anomaly-based
IDSs. Debar et al. demonstrated the use of the workbench by evaluating multiple
host-based IDSs.

A recent effort to support the rigorous evaluation of IDSs is being driven by Symantec.
Dumitras et al. [DS11] presented the Symantec’s [Worldwide Intelligence Network|
[Environment (WINE)| datasets [Wor], which contain local and remote attacks (see
Table[2.1). They also presented an evaluation platform that makes use of the datasets
and is available for use by researchers for evaluating security mechanisms. However,
since the datasets are captured from real network infrastructures and systems, and
therefore contain private user data, they can only be accessed on-site at Symantec in
order to avoid legal issues. The large scale of this project is indicated by the fact that
Symantec continuously monitors and records malicious activities using more than
240,000 sensors deployed in 200 countries.

In addition to attacks, which can be used for evaluating IDSs, the WINE datasets con-
tain samples of malware (i.e., malicious software, such as trojans or viruses), which can
be used for evaluating malware detection systems (e.g., anti-virus systems). In contrast
to IDSs, which are designed to detect on-going attacks, malware detection systems are
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designed to detect malware running on a given host, whose installation normally takes
place after an intrusion (i.e., a successful attack) has occurred. Evaluation of malware
detection systems is outside of the scope of this work.

There have been many small-scale IDS evaluation efforts between 2000 and today.
Articles reviewing and comparing IDSs occasionally appear in trade magazines, such
as the IDS evaluation studies presented in the SC magazine in 2011 [SC . Following
the rising interest of researchers in intrusion detection since 2000, many IDS evaluation
studies have been presented as part of publications proposing novel intrusion detection
techniques or IDS evaluation methods.

Several works published between 2000 and today have had long-term impact on the
IDS evaluation area: Ranum [Ran01] and Mell et al. [MHL" 03] proposed approaches
and gave recommendations towards addressing enduring issues in IDS evaluation
(e.g., use of faulty or unrepresentative workloads, inaccurate interpretation of results
from IDS evaluation studies); Gaffney et al. [GUO1] and Gu et al. [GFD " 06] were the
first to propose metrics for quantifying IDS attack detection accuracy that use specific
measurement methods in order to address issues in using the conventional metrics
at the time, such as the Receiver Operating Characteristic (ROC) curve; focusing on
the issue of using unrepresentative workloads, Shiravi et al. [SSTG12] and Fonesca et
al. [FVM14] developed methods for the customizable generation of IDS evaluation
workloads that closely resemble real-world workloads at the time they are generated.

In 2010, the [Measurement and Analysis on the WIDE Internet (MAWI)| Working
Group of the|Widely Integrated Distributed Environment (WIDE)| project announced
MAWILab, a repository of publicly available traces intended for use in IDS evaluation
studies [FBAF10], [MAW]|. This is a significant effort to enable the representative
evaluation of modern network-based IDSs. The trace files in MAWILab contain network
traffic captured from a trans-Pacific 150 Mbps link between Japan and the United States.
They contain regular network traffic as well as attacks, which are labeled before the
public release of the traces using a variety of attack labeling methods. MAWILab has
been updated daily since its release until the present date.

In 1999, NSS Labs, an information security research and testing organization, pio-
neered third party testing of IDSs with the publication of the first systematic, criteria-
driven methodology for IDS testing. From 1999 until the present date, NSS Labs has
been continuously supplying methodologies for testing IDSs to the public following
trends in IDS design. These methodologies may serve as guidelines for the rigorous
testing of IDSs. For instance, in 2015, NSS Labs published a methodology for testing
next-generation IDSs [NGI], that is, IDSs designed to detect novel threats, such as
[advanced persistent threats (APTs)|and social media threats.

2.3 Summary

In this chapter, we provided the background knowledge essential for understanding
the topic of intrusion detection and IDS evaluation. We discussed different types
of attacks and put intrusion detection into a common context with other security
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mechanisms. We also defined different types of IDSs. We systematized the latter
according to the monitored platform, the attack detection method, the monitoring
method, and the deployment architecture. In addition, we demonstrated the wide
applicability of IDS evaluation by discussing its relevance to researchers, industrial
software architects, and IT security officers. Finally, we provided a historical overview
of major developments in the area of IDS evaluation ordering them chronologically.
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Chapter 3

IDS Evaluation Design Space: A
Survey of Common Practices

In this chapter, we present an IDS evaluation design space structured into three parts

— workloads (Section [3.2), metrics (SectionB.3), and measurement methodology (Sec-
tion [3.4), which are in the focus of this thesis (see Section[I.1). The systematization
presented in this chapter includes 124 references out of which 65 are peer-reviewed
research publications and technical reports, and 59 are links to specific tool information
sites, relevant data, and similar.

Although they have a lot in common when it comes to evaluation, different types
of IDSs also pose challenges and requirements that apply specifically for each IDS
type. When a given category or part of the design space relates closely to a particular
IDS type, we stress such a relation in our discussions. We do so especially when
considering evaluation methodologies in Section 3.4} where we round up and finalize
the IDS evaluation design space.

The work presented in this chapter has been published in [MVK™15].

3.1 Related Work

There are only a few previous efforts that provide an overview of the existing work
on IDS evaluation. However, they do not cover developments until the current date
and/or are focusing on specific aspects, as opposed to providing a broad overview of
the field as presented in this chapter.

Athanasiades et al. [AAL"03] focus on IDS evaluation methodologies analyzing sev-
eral existing IDS evaluation tools and environments at the time of writing (i.e., 2003). In
particular, they analyze the Defense Advanced Research Projects Agency (DARPA) en-
vironment [IDE] and the|Lincoln Adaptable Real-time Information Assurance Testbed|
environment [RCFT01]]. Further, they evaluate the usability of multiple tools
used in IDS evaluation experiments such as the test suite Nidsbench [nid]. Finally, they
describe several conducted IDS evaluation studies, including IDS evaluation studies
performed by trade magazines.

Zanero [Zan06] identifies IDS evaluation requirements with respect to different
types of IDSs and intrusion detection techniques. He also provides a brief overview
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of the employed IDS evaluation workloads and environments at the time of writing
(i.e., 2006). This includes the Neohapsis [Open Security Evaluation Criteria (OSEC)|
environment [neo], the DARPA datasets [LHF"00], and similar. Finally, he concludes
that the evaluation of IDSs is an open research area riddled with many challenges.

Some researchers are focusing on specific aspects in the context of their own work
analyzing, for example, the existing work on IDS evaluation related to one particular
evaluation component, that is, either workloads, metrics or methodology. For instance,
Debar et al. [DMO02] provide an overview of several IDS evaluation methodologies
considering both approaches followed by research institutes (e.g., the IDS evaluation
platform at(University of California (UC)| Davis [PCOM97]) and by commercial organi-
zations [MS01]. Further, Gu et al. [GFD"06] provide a brief overview of various IDS
evaluation metrics.

In summary, to the best of our knowledge, no global and broad overview of the
IDS evaluation field has been published so far, systematizing existing knowledge, best
practices, and experiences in a comprehensive and up-to-date manner. To the best
of our knowledge, we are the first to systematically consider workloads, metrics and
measurement methodologies as integral parts of every IDS evaluation approach. In this
chapter, we track the development of relevant practical and research work in the field
of IDS evaluation until the current date and we identify milestone accomplishments.
We mention commonly used tools and we provide references to technical manuals
and related information sources. We also discuss topics that have been, and still are,
actively debated in the IDS evaluation community.

3.2 Workloads

In Figure 3.1} we depict the workload part of the IDS evaluation design space. In order
to evaluate an IDS, we need both malicious and benign workloads. These can be used
separately (e.g., as pure malicious or pure benign workloads) to measure the capacity
of an IDS as in [BSNS11a] and [JXZ"11], or its attack coverage as in [RRL™12]. Pure
benign workloads are workloads that do not contain attacks, whereas pure malicious
workloads are workloads that contain only attacks. Alternatively, one can use mixed
workloads (i.e., workloads that are a mixture of pure benign and pure malicious work-
loads) to subject an IDS under test to realistic attack scenarios as in [YD11], [AT] " 10],
and [SJP06].

IDS evaluation workloads normally take an executable form for live testing of an
IDS, or a trace form, generated by recording a live execution of workloads for later
replay. The trace replay is performed with tools designed to process trace files — a
common combination is the use of the tool tcpdump [PR] for capturing network traces
for subsequent replay by tcpreplay [Tcpb]. A major advantage of using workloads
in executable form is that they closely resemble a real workload as monitored by an
IDS during operation. However, a malicious workload in executable form requires
a specific victim environment which can be expensive and time-consuming to setup
(see [DDWLIS]). In contrast, such an environment is not always required for replaying
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Workload
‘ [content] ‘
Pure beni Pure Mixed
ure benign —‘ malicious ’7 1xe
|
‘ [form] ‘
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Manual Vulnerability and
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Figure 3.1: IDS evaluation design space: Workloads [There are three types of workloads with
respect to workload content: pure benign (workloads that do not contain attacks), pure malicious
(workloads that contain only attacks), and mixed e There are two types of pure benign, pure
malicious, or mixed workloads with respect to their form: executable and trace ® There are two
methods for generating pure benign executable workloads: use of workload drivers (Section[3.2.1)
and manual generation (Section [3.2.2) e There are two methods for generating pure malicious
executable workloads: use of an exploit database (Section3.2.3), and vulnerability and attack injection
(Section o There are two methods for generating pure benign, pure malicious, or mixed
workloads in trace form: acquisition (Section and generation (Section ].

workload traces. Further, multiple evaluation runs are typically required to ensure
statistical significance of the observed system behavior. However, replicating evalua-
tion experiments when using executable malicious workloads is usually challenging
since the execution of attacks might crash the victim environment or render it in an
unstable state. Moreover, the process of restoring the environment to an identical state
as before the execution of the attacks may be very time-consuming.

In the following, we first discuss different methods for the generation of benign and
malicious workloads in executable form (see Figure[3.T). We discuss the use of workload
drivers and manual generation approaches for generating pure benign workloads. We
also discuss the use of an exploit database and vulnerability and attack injection techniques
for generating pure malicious workloads. We note that mixed workloads in executable
form can be generated by using in combination the previously mentioned methods
for generating pure benign and pure malicious workloads. Finally, we discuss meth-
ods for obtaining pure benign, pure malicious or mixed workloads in a trace form,
distinguishing between trace acquisition and trace generation.

3.2.1 Pure Benign — Executable Form — Workload Drivers

For the purpose of live IDS testing, a common practice is to use benign workload
drivers to generate artificial pure benign workloads with different characteristics.

27



Chapter 3: IDS Evaluation Design Space: A Survey of Common Practices

Some of the commonly used workload drivers are: SPEC CPU2000 [SPEb]| for CPU-
intensive workloads; iozone [IFB] and Postmark [Kat97] for file input/output (I/O)
intensive workloads; httpbench [Htt], dkftpbench [Dkf], and ApacheBench [aAHSBT
for network-intensive workloads; and UnixBench [Uni] for system-wide workloads that
exercise not only the hardware, but also the operating system. Experiments using the
mentioned tools were performed in [GPB™ 03], [PKSZ04], [CMO6], [R]X08], [ZWGWO08],
[IXZ709], [LDP11], [JXZ"11], and [RRL™12]. As expected, the CPU- and file I/O-
intensive drivers have been employed mainly for evaluating host-based IDSs, while
the network-intensive drivers for evaluating network-based IDSs. We look at the IDS
properties typically quantified using these drivers when we discuss IDS evaluation
methodologies in Section 3.4}

A major advantage of using benign workload drivers is the ability to customize
the workload in terms of its temporal and intensity characteristics. For instance, one
may configure a workload driver to gradually increase the workload intensity over
time, as typically done when evaluating the workload processing capacity of an IDS.
A disadvantage is that the workloads generated by such drivers often do not closely
resemble real-life workloads. In the case when realistic benign workloads are needed
(e.g., to be used as background activities mixed with attacks), a reasonable alternative
is the manual generation of benign workloads.

3.2.2 Pure Benign — Executable Form — Manual Generation

Under manual generation of workloads, we understand the execution of real system
users’ tasks known to exercise specific system resources, which is typically applied
in the context of evaluating host-based IDSs. For example, a common approach is
to use: file encoding or tracing tasks to emulate CPU-intensive tasks (e.g., Dunlap et
al. [DKC"02] perform ray-tracing, Srivastava et al. [SSG08|] perform video transcoding,
Lombardi et al. [LDP11] perform mp3 file encoding); file conversion and copying
of large files to emulate file I/O-intensive tasks (e.g., Lombardi et al. [LDP11] and
Allalouf et al. [ABYSS10] use the UNIX command dd to perform file copy operations);
kernel compilation to emulate mixed (i.e., both CPU- and file I/O-intensive) tasks (e.g.,
performed by Wright et al. [IWCS™02], Dunlap et al. [DKC™02], Riley et al. [R]X08],
Lombard et al. [LDP11], and Reeves et al. [RRL"12]).

Provided that it is based on a realistic activity model, this approach of benign
workload generation enables the generation of workloads with a behavior similar
to the one observed by an IDS during regular system operation. Thus, it is suitable
when realistic benign workloads are required (e.g., for training and evaluation of
anomaly-based IDSs). Also, it is suitable for generation of workload traces capturing
realistic workloads executed in a recording testbed, a topic that we discuss later in
Section However, the manual benign workload generation does not support
workload customization as workload drivers do, and might require a substantial
amount of manpower.

In Table we provide an overview of the use of the discussed methods for gen-
erating pure benign workloads in practice. We also provide stepwise guidelines (see
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Table section ‘Selection guidelines’) for selecting an approach from those presented
in Table3.1{to apply in a given IDS evaluation study, that is, to evaluate a given IDS
property (e.g., workload processing capacity or performance overhead, see Section 3.4).

3.2.3 Pure Malicious — Executable Form — Exploit Database

Pure malicious workloads in executable form are used for evaluating the attack de-
tection coverage of IDSs (see Section[3.4). As pure malicious workloads in executable
form, security researchers typically use an exploit (i.e., an attack script) database. They
can assemble an exploit database by themselves, or use a readily available one.

Exploit Database — Manual Assembly

A major disadvantage of the manual assembly is the high cost of the attack script
collection process. Locating the attack scripts needed for exploiting specific vulnerabil-
ities and obtaining the required vulnerable software is typically time-consuming. In
addition, once the needed attack scripts are found, they typically have to be adapted to
exploit the vulnerabilities of the victim environments, especially when the attack scripts
exploit local system vulnerabilities for evaluating host-based IDSs. This includes, for
example, time-consuming adaptation of employed exploitation techniques.

Depending on the size of a manually assembled exploit database, the previously
mentioned activities might require a considerable amount of manpower in order to
be completed in a reasonable time frame. For instance, Mell et al. [MHL" 03] report
that based on previous experiences, a single attack script requires approximately
one person-week to modify the script’s code, to test it, and to integrate it in an IDS
evaluation environment. Mell et al. [MHL" 03] also report that in 2001 the average
number of attack scripts used for evaluating IDSs was in the range of 9 to 66. We
observe that some recent works, such as [LDP11], use as low as 4 attack scripts.

To assemble an exploit database, IDS evaluators normally obtain attack scripts
from public exploit repositories. In Table we list popular exploit repositories
characterized according to the criteria ‘exploit verification’, “vulnerable software’, and
‘vulnerability identifiers’ (see Table[3.2] section ‘Categorization criteria’). Given that an
exploit repository hosts a limited number of attack scripts, an IDS evaluator normally
does not search only a single repository, but as many as it takes until the desired number
of attack scripts is obtained. In this process, we recommend that an IDS evaluator
prioritizes the exploit repository ‘Exploit database” (marked in bold in Table since
it fulfills more criteria than any other repository presented in Table [3.2| (see Table
section ‘Categorization criteria’, for an overview of the benefits of a repository fulfilling
the criteria ‘exploit verification’, ‘vulnerable software’, and ‘vulnerability identifiers’).

Publicly available attack scripts normally do not feature techniques for evaluating the
ability of an IDS to detect evasive attacks. Adapting publicly available attack scripts to
feature techniques for evaluating the ability of an IDS to detect evasive attacks normally
requires an in-depth knowledge of the architecture and inner working mechanisms
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Table 3.1: Practices for generating pure benign workloads in executable form [W: workload
drivers, M: manual generation].

Reference Method / Workload type / [Approach / Workload driver]

[ABYSS10] M / I/O-intensive / Creating, deleting and truncating files, appending data to
files; M / Mixed / Compilation of libraries

[CPX*13] M / CPU-intensive / Compiling Java code; M / Network-intensive / Web surf-
ing, Telnet sessions; M / I/O-intensive / Reading PDF files; W/ CPU-intensive
/ SPEC CPU2000

[DKC02] M / CPU-intensive / Ray tracing; M / Mixed / Kernel compilation; W /
Network-intensive / SPECweb99 [SPEc]

[GPBt03]| M / CPU-intensive / Building SSH server; W / I/O-intensive / Postmark

[IXz+11] W / I/O-intensive / iozone; W / Network-intensive / Apachebench, dkftp-
bench

[FJIGS*00] M / Network-intensive / Executing traceroute

[LMJO07] M / CPU-intensive / Executing Linux commands (ps, who); M / Mixed /
Executing Linux commands (find, 1s); M / Network-intensive / Downloading
files

[ML12| M / Network-intensive / Web surfing, transmitting files

[PKSZ04] M / 1I/O-intensive / File read operations; W / CPU-intensive / Am-utils [TBA{
SoU|; W / I/O-intensive / Postmark

[RRL*12] M / Mixed / Server and kernel compilation; W / CPU-intensive / SPEC
CPU2000; W / Mixed / Imbench [LTtPA]

[RTX08] M / Mixed / Kernel compilation, executing insmod; W / Mixed / Unixbench;
W / Network-intensive / Apachebench

[SSGo8] M / CPU-intensive / Encoding files; M / I/O-intensive / Copying files; M /
Mixed / Video file compression and decompression, kernel compilation

[wWcsto2| M / Mixed / Kernel compilation; W / Network-intensive / Webstone [MWBI];
W / Mixed / Imbench

[ZWGWO08] W / 1/O-intensive / iozone

Selection guidelines

1) Select a method for generating workloads, that is, use of workload drivers (‘workload drivers’ in Table@l)
or manual generation, by taking the advantages and disadvantages of the different methods into account (see
Section[3.2.T)and Section[3.2.2). In Section 3.4} in the context of IDS evaluation methodologies, we present
IDS evaluation scenarios where the different methods are applied for evaluating various IDS properties.

2) Select the type of workloads (e.g., CPU- or I/ O-intensive) that is required for evaluating the considered IDS
property. For instance, CPU- and/or I/O-intensive workloads are required for evaluating the performance
overhead of a host-based IDS, and network-intensive workloads are required for evaluating any property of
a network-based IDS. In Section 3.4} we present IDS evaluation scenarios where workloads of the different
types are used for evaluating IDS properties.

3) Depending on the selection made in step 1), select an approach for manually generating workloads or a
workload driver. This is normally done based on subjective criteria (e.g., prior experience with using a given
workload driver). In an effort to provide general recommendations for selecting an approach for manually
generating workloads / a workload driver, we mark the most popular approaches / workload drivers in
bold. Based on what is reported in the surveyed work, we argue that the popularity of the workload drivers
marked in bold is due to high configurability, representativeness of the workloads they generate, and ease of
use.
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Table 3.2: Popular exploit repositories.

. Exploit Vulnerable  Vulnerability
Exploit database verification software identifiers
o
&
)
> 0
o o &
1337day X
(http://0day.today/)
Exploit database X X X X
(http://wuw.exploit-db.com/)
Packetstorm X X
(http://packetstormsecurity.com/)
SecuriTeam x X
(http://www.securiteam.com/exploits/)
Securityfocus S X X

(http://www.securityfocus.com/)

Categorization criteria

Criteria

Description

Exploit
verification

Vulnerable
software

Vulnerability
identifiers

An exploit repository that fulfills this criterion maintains a record for each hosted attack
script indicating whether the script has been empirically verified to successfully exploit
a specific vulnerability. This helps IDS evaluators to identify attack scripts that they can
easily adapt to their specific requirements.

An exploit repository that fulfills this criterion provides a download link to the specific
vulnerable software that can be exploited by different attack scripts. This helps IDS
evaluators to quickly obtain this software and use it to experiment with the scripts.

o marks partial fulfillment of this criteiron — an exploit repository that partially fulfills
this criterion provides a link to the website of the vendor of the vulnerable software
instead of a download link to the software, due to which it takes more time for an IDS
evaluator to obtain the vulnerable software.

An exploit repository that fulfills this criterion can be searched based on standard vul-
nerability identifiers. This enables IDS evaluators to quickly locate an attack script that
exploits a given vulnerability. [Common Vulnerabilities and Exposures (CVE)|[CVEC],
[Open Sourced Vulnerability Database (OSVDB)[[OSVDQ], and BugTraq [Bug] are the
de-facto standard vulnerability enumeration systems.

of the IDS, a topic that we discuss in detail in Section[3.4.1} Such a knowledge may
be challenging to obtain if the evaluated IDS is closed source. Thus, IDS evaluators
use third-party tools when executing attack scripts, such as Nikto [Nik]. Cheng et
al. [CLLL12|] provide an overview of IDS evasion techniques and discuss the use of the
previously mentioned and similar tools for evaluating IDSs.

Exploit Database — Readily Available Exploit Database

To alleviate the above mentioned issues, many researchers employ penetration testing
tools as a readily available exploit database. We discuss in detail the Metasploit
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framework [PtsM], since it is the most popular penetration testing tool used extensively
in both past and recent IDS evaluation experiments (e.g., by Nasr et al. [NKF12]).
Some other penetration testing tools are Nikto, w3af [w3a], and Nessus [Nes|]. The
interest in Metasploit is not surprising, given that Metasploit enables a customizable
and automated platform exploitation by using an exploit database that is maintained
up-to-date and is freely available. However, although convenient, penetration testing
frameworks have some critical limitations. Gadelrab [GEROS] analyzes the Metasploit’s
database showing that most of the exploits are executed from remote sources, and
therefore, they are most useful when evaluating network-based IDSs and are of limited
use for evaluating host-based IDSs.

In order to provide an up-to-date characterization of Metasploit’s exploit database,
we analyzed the exploit database of Metasploit version 4.7, the most recent release
at the time of writing. In Table we categorize Metasploit’s exploits according
to the criteria ‘execution source’, ‘target platforms’, and ‘exploit rank’ [MFER] (see
Table section ‘Categorization criteria’). Similarly to Gadelrab [GEROS8]|, we observe
that Metasploit’s exploit database contains mostly remote exploits, which makes it
most useful for evaluating network-based IDSs. We also observe that a big portion
of the exploits in the Metasploit’s database have a ‘great” and ‘excellent” rank. This
indicates that an IDS evaluator can use many attack scripts from Metasploit’s database
without crashing the victim platform(s). Finally, as we can see in Table most of the
remote and local exploits exploit vulnerabilities of Windows platforms.

3.2.4 Pure Malicious — Executable Form — Vulnerability and
Attack Injection

An alternative approach to the use of an exploit database is the use of the vulnerability
and attack injection technique. Vulnerability and attack injection enables live IDS
testing by first artificially injecting exploitable vulnerable code in a target platform
and then attacking the platform. Although not yet mature, this technique is useful
in cases where collection of attack scripts that exploit vulnerabilities is unfeasible.
As the injected vulnerable code may be exploitable remotely or locally, vulnerability
and attack injection is useful for evaluating both host-based and network-based IDSs.
However, injecting attacks such that the sensors of an IDS under test are exercised may
require in-depth knowledge of the architecure and inner working mechanisms of the
IDS.

Vulnerability and attack injection relies on the principles of the more general research
area of fault injection. Fault injection is an approach for validating specific fault
handling mechanisms and assessing the impact of faults in actual systems. In recent
years, the interest in software fault injection has increased providing a basis for many
research works on emulation of software faults. A specific application of software fault
injection is injection of software faults that represent security vulnerabilities. Fonesca
et al. [FVM14] proposed an approach that enables the automated vulnerability and
attack injection of web applications, which is suitable for evaluating network-based
IDSs.
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Table 3.3: Characterization of Metasploit’s exploit database.

Execution source
Remote Local
o 2 T 8 2 = B
Xma.z%s §§X'§'§§§ éxégg
o tpltoms |2 0BS5St EES2835: 3 B 58528
Manual 4 3 1 5 2 15 0
Low 10 10 0
Average 1 4 1 8 1 1203 139 2 2
Normal 7 2 251 6 268 | 2 2
Good 2 14 1 159 9 185 0
Great 2 1 1 3 8 1 3 147 17 183 | 2 2 4
Excellent 1 70 1 1 30 2 5 89 84 283 2 8 1 11
Total (per platform) 2 3 1 784 1 1 662 14 9 781 121 4 2 121
Total 1083 19
Categorization criteria
Criteria Description

Execution source

Target platforms

Exploit rank

An exploit can be executed from a remote (i.e., a remote exploit), or a local source
(i.e., a local exploit). Remote exploits are used for evaluating network-based IDSs,
whereas local exploits are used for evaluating host-based IDSs. The amount of
remote and local exploits in an exploit database indicates its suitability for evaluating
network- and host-based IDSs.

Each exploit is designed to exploit a vulnerability of a single or multiple target
platforms (i.e., multi-platform exploits), such as Linux, Solaris, or Windows. An
exploit database covering a wide range of platforms is beneficial since, for example,
it can be used to evaluate a variety of IDSs for different target platforms.

Each exploit in Metasploit’s database is ranked according to its impact on the target

platform as shown below. The use of attack scripts that do not crash the target

platform (e.g., scripts ranked as ‘excellent’) significantly reduces the time spent on
restoring it (see Section.

Manual: An exploit of this rank almost never successfully exploits a vulnerability
and nearly always crashes the target platform.

Low: An exploit of this rank almost never successfully exploits a vulnerability or
successfully exploits a vulnerability in under 50% of the cases if the target
platform is popular.

Average: An exploit of this rank is unreliable and rarely successfully exploits a
vulnerability.

Normal: An exploit of this rank successfully exploits a vulnerability, but only a
vulnerability of a specific version of the target platform and cannot reliably
auto-detect a vulnerable platform.

Good: An exploit of this rank has a default target platform (i.e., a platform that the
exploit almost always successfully exploits), which is widely used.

Great: An exploit of this rank has a default target platform and detects a vulnerable
platform.

Excellent: An exploit of this rank almost always successfully exploits a vulnerability
and never crashes the target platform.
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Figure 3.2: Use of vulnerability and attack injection to evaluate a network-based IDS.

We discuss a scenario where the approach of Fonesca et al. [FVM14] is applied for
evaluating a network-based IDS that monitors network traffic to a database, which com-
municates with a web application, in order to detect Standard Query Language
injection attacks. Fonesca et al. [FVM14] built a Vulnerability Injector, a mechanism that
injects vulnerabilities in the source code of web applications, and an Attack Injector, a
mechanism that exploits the injected vulnerabilities. In order to inject vulnerabilities,
the Vulnerability Injector first analyzes the application source code searching for lo-
cations where realistic vulnerabilities can be injected by code mutation. The Attack
Injector then interacts with the web application in order to deliver attack payloads.

In Figure 8.2} we depict the approach of Fonesca et al. [FVM14] First, the Vulnerability
Injector injects a vulnerability in the web application (“1. Inject vulnerability” in
Figure[3.2), followed by the Attack Injector which delivers an attack payload with a
given signature, that is, an attack identifier (“2. Attack” in Figure[3.2). The attack
payload is targeted at the database (“Attack” in Figure[3.2). Fonesca et al. [FVM14]
developed a database proxy that monitors the communication between the application
and the database in order to identify the presence of attack signatures. When the
proxy identifies the signature of the delivered attack payload (“3. Identify signature”
in Figure 3.2), it notifies the Attack Injector that the attack payload has reached the
database (“4. Notify” in Figure[3.2). In this way, the Attack Injector builds a “ground
truth” knowledge. “Ground truth” is information about the attacks used as malicious
workloads in a given IDS evaluation study (e.g., time of execution of the attacks). The
output of an IDS under test is compared with “ground truth” information in order to
quantify the attack detection accuracy of the IDS, a topic that we discuss in detail in
Section B3

3.2.5 Pure Malicious/Pure Benign/Mixed — Trace Form — Trace
Acquisition

Under trace acquisition, we understand the process of obtaining real-world production
traces from an organization (i.e., non-public, proprietary traces), or obtaining publicly
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available traces that are intended for use in security research.

Trace Acquisition — Real-world Production Traces

Real-world production traces subject an IDS under test to a workload as observed
during operation in a real production environment. However, they are usually very
difficult to obtain mainly due to the unwilligness of industrial organizations to share
operational traces because of privacy concerns. Thus, real-world traces are usually
anonymized by using tools for that purpose. Such is the tool tcpmkpub [tcpal], which
anonymizes network traces by modifying recorded network packets at multiple layers
of the [Iransport Control Protocol/Internet Protocol (TCP/IP)|network stack.

Some organizations are reluctant even towards trace anonymization due to the
possibility of information leakages. For instance, trace files may be deanonymized
to reveal sensitive internal information (e.g., Internet Protocol addresses, port
numbers, network topologies). Coull et al. [CWM™07] demonstrate the severity of
trace deanonymization by revealing anonymized information with 66% - 100% ac-
curacy based on the traces provided by the Lawrence Berkeley National Laboratory

(LBNL/ISCI) [lbn].

When it comes to the use of anonymization techniques on traces for IDS evalua-
tion, Seeberg et al. [SP07] identify the following challenging requirements: (i) during
anonymization, the smallest possible amount of intrusion detection relevant data
should be removed, and (ii) assurance needs to be attained that no private and other
sensitive information remains in the trace files after anonymization. For an IDS evalua-
tor, the first requirement is of greatest concern since an anonymizer might remove data
that is relevant for a given IDS under test. Therefore, the provisioning of extensive and
accurate metadata on how a given trace file has been anonymized is crucial.

Another challenge is that attacks in real-world production traces are usually not
labeled and traces may contain unknown attacks making the construction of the
“ground truth" time-consuming since attacks have to be labeled manually. Lack of
“ground truth” information severely limits the usability of trace files in IDS evaluation.
For instance, it might be impossible to quantify the false negative detection rate of an
IDS under test (see Section 3.3).

Trace Acquisition — Publicly Available Traces

In contrast to real-world traces, one can obtain publicly available traces without any
legal constraints. However, the use of such traces has certain risks. For instance,
publicly available traces often contain errors and quickly become outdated after their
release since the recorded attacks have limited shelf-life. Consequently, claims on the
generalizability of results from IDS evaluation studies based on publicly available
traces can often be questioned. An in-depth knowledge about the characteristics of
recorded activities in publicly available traces (e.g., types and distributions of recorded
attacks) is a requirement for the accurate interpretation of results from IDS evaluation
studies based on such traces.
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The[DARPA|[IDE] and the derived Knowledge Discovery and Data Mining Cup 1999
99) [UoC] datasets are the result of one of the most notable efforts up-to-date to
provide publicly available data for security research. In three consecutive years (i.e.,
1998, 1999, and 2000), three separate editions of the DARPA datasets have been made
available. Since they contain local and remote attacks, the DARPA datasets are suitable
for evaluating host- and network-based IDSs. They also contain training data, which
makes them useful for evaluating anomaly-based IDSs. However, the DARPA and
the KDD’99 datasets are currently considered outdated and have been often criticized
(see [SP10] and [McHOO]). Despite the criticism, these traces are still used in many
recent IDS evaluation experiments (e.g., by Yu et al. [YD11] and Raja et al. [RAR12]).

In Table we provide an overview of popular repositories of publicly available
traces categorized according to multiple criteria (see Table 3.4} section ‘Categorization
criteria’): the Cooperative Association for Internet Data Analysis [cail], the
Defense Readiness Condition [CtCtF], the DARPA /KDD’99 ( [IDE], [UoC]),
the Internet Traffic Archive [ita]], the Lawrence Berkeley National Laboratory
[bn], and the Measurement and Analysis on the WIDE Internet (MAW-
ILab) trace repositories [FBAF10]. We also provide stepwise guidelines (see Table
section ‘Selection guidelines’) for selecting a trace repository from those presented
in Table to use in a given IDS evaluation study, that is, to evaluate a given IDS

property (see Section 3.4).

3.2.6 Pure Malicious/Pure Benign/Mixed — Trace Form — Trace
Generation

Under trace generation, we understand the process of generating traces by the IDS eval-
uator himself. To avoid the issues with acquiring traces (see Section , researchers
generate traces in a testbed environment, or deploy a honeypot in order to capture
malicious activities.

Trace Generation — Testbed Environment

Different ways to generate traces that contain benign and malicious workloads in a
testbed environment include using the previously mentioned methods for generating
workloads in executable form (e.g., use of workload drivers, manual generation) and
capturing and storing the executed workloads in trace files. The generation of traces in
a testbed environment is challenging due to several concerns. For instance, the costs
of building a testbed that scales to realistic production environments may be high.
Further, the method for trace generation may produce faulty or simplistic workloads.
Sommer et al. [SP10] warn that activities captured in small testbed environments differ
fundamentaly from activities in a real-life environment. Finally, the methods used to
generate traces are not flexible enough to timely follow the attack and benign activity
trends.
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A common approach to alleviate the previously mentioned issue of generating faulty
and unrealistic workloads is to observe the network and/or host activities in a real-life
production environment in order to construct a realistic activity model. The latter can
then be used as a basis for the generation of live workloads that closely resemble the
real observed workloads for the purpose of recording trace files.

The previously mentioned DARPA datasets were generated according to the above
approach. More specifically, Cunningham et al. [CLF"99] observed the network ac-
tivities in an Air Force base by deploying network traffic sniffers to record types and
amounts of used network services. They also identified representative workstation
users (e.g., programmers, secretaries, system administrators) and associated host work-
loads, so that they could recreate the activity of these users. As malicious workloads,
besides surveillance/probing attacks, they used scripted and real attackers to execute
a set of exploits against the testbed environment. Overall, Cunningham et al. [CLET99]
demonstrated the use of manual benign workload generation (Section [3.2.2) based on
a realistic activity model to generate and record benign workloads, and live execution
of attacks from an exploit database (Section [3.2.3) to generate and record malicious
workloads.

Although useful, the use of the above mentioned approach for the generation of
realistic traces results in one-time datasets, that is, datasets that resemble the real-
world only for a given (short) time period after the trace generation. Given that the
characteristics of intrusions and of benign workloads are rapidly changing over time,
one-time datasets are considered as inappropriate for a representative IDS evaluation.

The above issue has motivated a major current research direction focusing on the
generation of traces in a testbed environment, in a customizable and scientifically
rigorous manner. To this end, Shiravi et al. [SSTG12] in 2012 proposed the use of
workload profiles enabling the specification and customization of malicious and benign
network traffic that can be captured in trace files for evaluating network-based IDSs.
Shiravi et al. [SSTG12] introduced a-profiles for the specification of attack scenarios
with attack description languages, and 3-profiles for the specification of mathematical
distributions or behaviors of certain entities (e.g., distribution of network packet sizes,
payload sizes, and similar).

According to Shiravi et al. [SSTG12], the a— and S—profiles support the generation
of datasets that can be modified, extended, and reproduced, so that they remain up-
to-date as network usage trends change over time. Using the specifications defined
in the profiles, one can generate both malicious and benign workloads in a testbed
environment for recording. We refer the reader to [SSTG12] for further information on
the practical use of such profiles.

In Figure[3.3aland Figure3.3b] we depict distributions of[Hyper Text Transfer Protocol|
(HT'1P)| requests made over a period of 24 hours by a real user browsing websites
and by an agent using — profiles, respectively. The distributions were observed by
Shiravi et al. [SSTG12] who showed that the measurement data can be best modeled
using a Beta distribution as shown in Figure Given the great similarity between
the histograms depicted in Figure and Figure one can conclude that the
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Figure 3.3: Histogram of HTTP requests made by (a) a real user, and (b) an agent using 5 —profiles

cf. BSTC1Z)

B—profiles proposed by Shiravi et al. [SSTG12] can be used for generating benign
workloads that closely resemble real workloads.

Trace Generation — Honeypots

By mimicking real systems and/or vulnerable services, honeypots enable the inter-
action and recording of host and/or network malicious activities performed by an
attacker without revealing their purpose. Since honeypots are usually isolated from
production platforms, most of the interactions that they observe are malicious, making
honeypots ideal for generation of pure malicious traces. However, given that honeypots
interact with real attackers, the outcome of a trace generation campaign performed
by using a honeypot (e.g., amount and types of recorded attacks) is uncertain since it
cannot be planned in advance and controlled.
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Pure Production systems

Sebek (http://projects.honeynet.org/sebek)

Argos (http://www.few.vu.nl/argos/)

Capture-HPC (https://projects.honeynet.org/capture-hpc/wiki)
High-interaction HoneyClient (http://www.honeyclient.org/)

honeybrid (http://honeybrid.sourceforge.net/)
Hybrid HoneySpider (http://www.honeyspider.net/)

honeyd (http://www.honeyd.org/)

nepenthes (http://nepenthes.carnivore.it/)

honeytrap (http://honeytrap.carnivore.it/)
Low-interaction HoneyC (https://projects.honeynet.org/honeyc)

Level of interaction

Figure 3.4: Honeypots of different levels of interaction.

Based on their level of interaction with attackers, honeypots can be categorized into
low-interaction, high-interaction, and pure honeypots. Low-interaction honeypots
mimic only specific vulnerable services by using scripts, high-interaction honeypots
mimic production systems by using actual operating systems, and pure honeypots are
full-fledged production systems equipped with logging tools.

Low-interaction honeypots are not flexible, can be easily detected by attackers,
and cannot interact with zero-day attacks (see Section 2.1.2). However, they are not
expensive to maintain and are useful for recording malicious activities that can be
easily labeled. High-interaction and pure honeypots are flexible, can interact with
zero-day attacks, and are not easily detectable, however, they are expensive to maintain
and require time-consuming analysis of recorded activities for the purpose of labeling
recorded attacks in order to construct “ground truth”. There are also hybrid honeypots,
which combine the advantages of low- and high-interaction honeypots. In Figure
we present commonly used honeypots of the previously mentioned levels of interaction.

3.3 Metrics

In Figure (3.5 we depict the metrics part of the IDS evaluation design space. We distin-
quish between two metric categories: (i) performance-related metrics, and (ii) security-
related metrics (see Section [1.2.2). Under performance-related metrics, we consider
metrics that quantify the non-functional properties of an IDS under test, such as capac-
ity (see, for example, [ML12]]) and resource consumption (see, for example, [SJP06]). In
this chapter, we focus on security-related metrics. Under security-related metrics, we
consider metrics that quantify the attack detection accuracy of an IDS.

We distinguish between basic and composite security-related metrics. We provide in
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Metrics

’— [asp‘ect] —‘
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Figure 3.5: IDS evaluation design space: Metrics [There are two types of metrics with respect to
the aspect of IDS behavior they quantify: security-related (quantify IDS attack detection accuracy)
and performance-related (quantify non-functional IDS properties) e There are two types of security-
related metrics with respect to metric form: basic (Section[3.3.1) and composite (metrics derived
from basic metrics, Section o There are two types of composite metrics with respect to
used measurement method (Section[3.3.2): cost-based and information-theoretic].

Table[3.5/an overview of the most commonly used basic and composite security-related
metrics. We also show the notation, formulas, and value domains of used symbols
(including variables). In Table P and p denote a probability, R denotes the set of
real numbers, R* denotes the set of positive real numbers excluding zero, and Ry
denotes the set of positive real numbers including zero.

3.3.1 Security-related — Basic

The basic metrics quantify various individual attack detection properties. Although
they are quantified individually, these properties need to be analyzed together in
order to accurately characterize the attack detection efficiency of an IDS. For instance,
the false negative rate § = P(—A|I) quantifies the probability that an IDS does not
generate an alert when an intrusion occurs; therefore, the true positive rate 1 — 5 =
1 — P(=A|I) = P(A|I) quantifies the probability that an alert generated by an IDS
is really an intrusion. The false positive rate @ = P(A|-I) quantifies the probability
that an alert generated by an IDS is not an intrusion, but a regular benign activity;
therefore, the true negative rate 1 — a = 1 — P(A|-I) = P(—A|-I) quantifies the
probability that an IDS does not generate an alert when an intrusion does not occur.
In IDS evaluation experiments, the output of the IDS under test is compared with
“ground truth” information in order to calculate the basic metrics (see Section [3.2.4).

Other basic metrics are the positive predictive value (PPV) and the negative predic-
tive value (NPV). The first quantifies the probability that there is an intrusion when
an IDS generates an alert whereas the latter quantifies the probability that there is no
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Table 3.5: Common metrics for quantifying IDS attack detection accuracy.

Metric form  Metric Annotation/Formula
False negative rate B8 = P(—-A|I)
True positive rate 1-p8=1-— P(—A|I) = P(A|])
Basic False positive rate a = P(A|-I)
True negative rate 1—a=1-P(A|-I) = P(—A|-I)
o - P(I)P(A|I
Positive predictive value P(I|1A) = P(I)P(A‘})j_},(hll))P(Alﬂ)
i icti P(-I)P(-A|-I
Negative predictive value g(—\]\—u‘]l\; = (ggg?(liAll)Iéfpl(B%hA}\?- o
Expected cost exp = MM (L=l = B))+ Min h
Composite P B)B,a(1 — B))
. . s _ I(X5Y)
Intrusion detection capability Cip = HX)
Notations and properties of used symbols
Symbol Meaning Formula/Value domain
A Alert event: An IDS generates an attack alert n/a
1 Intrusion event: An attack is performed n/a
Ca Cost of an IDS generating an alert when an intrusion ~ Co € R0+
has not occured
Cp Cost of an IDS failing to detect an intrusion Csg e RT
C Cost ratio: The ratio between the costs C, and Cpg Cp/Ca:C € Rg
B Base rate: Prior probability that an intrusion event P(I): B € R — [0;1]
occurs
X IDS input: Discrete random variable used tomodel X =0V X =1
input to an IDS such that X = 0 represents a benign
activity and X = 1 represents a malicious activity
(i.e., an intrusion)
Y IDS output: Discrete random variable used tomodel Y =0VY =1
the generation of alerts by an IDS such that Y = 0
represents no alert and Y = 1 represents an alert
H(X) Uncertainty of X: Entropy measure quantifying the —3"_ p(z)logp(z) : ¢ = 0V =
uncertainty of the IDS input X 1,p(z) € R — [0;1]
. ; ion: i ; p(z,y) . —
I(X;Y) Mutual information: The amount of information -, > p(z, y)logp(z)p(w x o=

shared between the random variables X and Y (i.e.,
the amount of reduction of the uncertainty of the IDS
input (X) after the IDS output (Y') is known)

Ove=1y=0Vy =1,p(x)A
p(y) Ap(z,y) € R — [0;1],0 <
I(X;Y) < H(X)

intrusion when an IDS does not generate an alert. These metrics are calculated by using
the Bayesian theorem for calculating a conditional probability (see Table[3.5). PPV and
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NPV are interesting from a usability perspective, for example, in situations when an
intrusion alert triggers an attack response. In such situations, low values of PPV and
NPV indicate that the considered IDS is not optimal for deployment. For example, a
low value of PPV (therefore a high value of its complement 1 — P(I|A) = P(—I|A))
indicates that the considered IDS may often cause the triggering of attack response
actions when no real attacks have actually occured.

3.3.2 Security-related — Composite

Security researchers often combine the basic metrics in order to analyze relationships
between them. Such an analysis is used to discover an optimal IDS operating point (i.e.,
an IDS configuration which yields optimal values of both the true and false positive
detection rate) or to compare multiple IDSs. In this section, we focus on comparing
the applicability of composite security-related metrics for the purpose of comparing
IDSs, which includes the identification of optimal IDS operating points.

A Receiver Operating Characteristic curve plots true positive rate against the
corresponding false positive rate exhibited by a detector. In the context of IDSs, a ROC
curve depicts multiple IDS operating points of an IDS under test and, as such, it is
useful for identifying an optimal operating point or for comparing multiple IDSs.

An open issue is how to determine a proper unit and measurement granularity
for the false positive and true positive rates based on which a ROC curve is plotted.
Different units of measurement might yield different rates and therefore, the selection
of a proper unit is considered as a task that needs to be performed with care. Gu et
al. [GFD ™ 06] acknowledge the importance and scope of the above issue by referring to
it as: “general problem for all the existing [IDS] evaluation metrics”. Gu et al. [GFD™06]
discuss this issue in the context of the evaluation of network-based IDSs. They state that
depending on the unit of analysis in a network-based IDS, at least two different units
of measurement exist (i.e., a unit of packet and flow), which makes the comparison
of IDSs with these units of analysis challenging. Gu et al. [GFD " 06] recommend the
conversion of different units of measurement to the same unit when possible for a
fair and meaningful IDS comparison (e.g., conversion of a packet-level to a flow-level
unit by defining a flow as malicious when it contains a malicious packet). Next, we
analyze and demonstrate the use of ROC curves and related metrics through a case
study scenario.

Case study #1: Let’s consider the comparison of two IDSs, IDS; and IDS5, and
analyze the relationship between the true positive (1 — /) and the false positive («)
detection rate. We assume that for /DS, 1 — 3 is related to oo with a power function
(i.e., 1 — B = a*) such that k = 0.002182. We assume that for IDS5, 1 — 3 is related to «
with an exponential function (i.e.,, 1 — 8 = 1 — 0.00765¢~208:32%), We obtain the values
of k, o, and the coefficients of the exponential function from [GUO1]. We calculate the
values of 1 — 3 for IDS; and I DS, for oo = {0.005,0.010,0.015}. The respective values
are shown in Table[3.6l

In Figure we depict the ROC curves that express the relationship between 1 — 3
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Table 3.6: Values of 1 — 8, PPVip, Cezp, Crec, and Crp for IDS; and IDSs.

IDSl IDS2
a PPVzrc| 1-8 PPVip Ceypjrec CID 1-5 PPVip Ceppjrec CiD
0.005 0,9569 0.9885 0,9565 0.016 0.9159 0.973 0,9558 0.032 0.8867
0.010 0,9174 0.99 0,9167 0.019 0.8807 0.99047 09167 0.019 0.8817
0.015 0,8811 0.9909 0,8801 0.022 0.8509 0.99664  0,8807 0.017 0.8635

and « for IDS; and IDS,. The ROC curves intersect approximately at 1 — 3 = 0.99
and o = 0.01. Thus, the better IDS cannot be identified in a straightforward manner.
An IDS is considered as better if it features a higher true positive detection rate (1 — 55)
at all operating points along the ROC curve.

An intuitive solution to the above problem, as suggested by Durst et al. [DCW™99],

is to compare the area under the ROC curves (i.e.,, AUC; : f;:o%oolss 00021824 and

AUCS : f;joo_'oools (1—0.00765e~208-320)d). However, Gu et al. [GFD*06|] consider such
a comparison as unfair, since it is based on all operating points of the compared IDSs,

while in reality a given IDS is always configured according to a single operating point.

The ROC curves depicted in Figure do not express the impact of the rate of
occurence of intrusion events (B = P(I)), known as base rate, on o and 1 — 3. The attack
detection performance of an IDS should be assessed with respect to a base rate measure
in order for such an assessment to be accurate (see [Axe00]]). The error occurring when
aand 1 — J are assessed without taking the base rate into account is known as the base
rate fallacy.

In order to address the above issue, Nasr et al. [NKF12] propose a metric called
intrusion detection effectiveness (Erp). Erp is calculated based on comparing the ideal
and actual performance of an IDS depicted in the form of IDS operation curves
called [zero reference curve (ZRC)|and actual IDS operation curve, respectively. An
IDS operation curve plots PPV, which contains measure of the base rate B (see Ta-
ble [3.5), against . Given a specific value of B, the ZRC plots PPV (denoted by
PPVzrc) calculated assuming an ideal operation of the tested IDS; that is, the IDS
does not miss attacks (1 — 8 = 1). The actual IDS operation curve plots the actual
PPV (denoted by PPV;p) exhibited by the IDS. The value of E;p is the normal-
ized variance between the ZRC and the actual IDS operation curve over the inter-
val [0, Trp], where Trp is the maximum acceptable « exhibited by the IDS; that is,

Erp = m( JyFP PPVgpeda — [[*F PPVipda), Erp € [0;1], such that
: :

the lesser E;p the better the performance of the IDS under test.

In Table we present PPVzrc and PPV;p for IDS, and IDSs, calculated as-
suming that B = 0.1. In Figure and Figure (the axes are in logarithmic scale),
we depict the ZRC and the actual IDS operation curve for IDS; and IDS,. These
curves are very similar due to the high PPVs (i.e., close to the ideal PPV — PPV )
exhibited by /DS, and 1DS5. We calculate E;p of 0.0004 for /DS, and E;p of 0.0011
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Figure 3.6: IDS comparison with (a) ROC curves, (b) — (c) intrusion detection effectiveness
metric.

for IDS, (Trp = 0.01), based on which we conclude that 1D S; performs better.

Although E;p expresses the impact of the base rate on o and 1 — j, it suffers from

the same issue as the metric proposed by Durst et al. [DCWT99]; that is, a comparison
of IDSs based on E;p may be misguiding, since it is based on multiple operating points

of the compared IDSs (see [GFD™06]).

Cost-based and Information-theoretic Metrics

Due to the above mentioned issues, researchers have proposed novel metrics that can
be classified into two main categories: (i) metrics that use cost-based measurement
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methods, and (ii) metrics that use information-theory measurement methods (see
Figure[3.5). In the following, we discuss metrics that belong to these categories focusing
on the expected cost and intrusion detection capability metrics described in the seminal
works of Gaffney et al. [GUO1] and Gu et al. [GFD™06].

Cost-based metrics Gaffney et al. [GUO1] propose the measure of cost as an IDS
evaluation parameter. They combine ROC curve analysis with cost estimation by
associating an estimated cost with each IDS operating point. The measure of cost is
relevant in scenarios where a response that may be costly is taken (e.g., stopping a
network service) when an IDS generates an attack alert. Gaffney et al. [GUO1] introduce
a cost ratio C' = Cp/C,, where C, is the cost of an IDS alert when an intrusion has
not occured, and Cj is the cost of not detecting an intrusion when it has occurred.
Gaffney et al. [GUO1] use the cost ratio to calculate the expected cost C,,, of an IDS
operating at a given operating point (see Table3.5). Using C.,, one can compare IDSs
by comparing the estimated costs when each IDS operates at its optimal operating
point. The IDS that has lower C.,, associated with its optimal operating point is
considered as better. An IDS operating point is considered as optimal if it has the
lowest C.,, associated with it compared to the other operating points.

The formula of C,,,, (see Table can be obtained by analyzing the decision tree
depicted in Figure The decision tree shows the costs that may be incurred by an
IDS (e.g., C,, and Cz) with respect to the operation of the IDS (i.e., generation of alerts)
and the responses that can be taken; uncertain events (e.g., the generation of an alert)
are depicted by circles and actions are depicted by squares. In Figure[3.7a} we depict
the probabilities p; = P(A), p, = P(I|A) = PPV, and p3 = P(I|-A) (see Table[3.5).
The formula of C.;, is obtained by “rolling back” the tree depicted in Figure
that is, from right to left, the expected cost at an event node is the sum of products of
probabilities and costs for each branch, and the expected cost at an action node is the
minimum of expected costs on its branches. The formula of C.;, shown in Table
can be derived using the basic algebra of probability theory (see [GUO1]).

A recent work proposing a cost-based IDS evaluation metric is [Men12|]. Meng et
al. [Men12] propose a metric called relative expected cost (Cr.). This metric is intended
for comparing modern IDSs that use false alert filters (see, for example, [CLC10]). A
false alert filter detects false alerts generated by an IDS. The response taken when a
false alert filter labels an alert as false is filtering out the alert before it is reported by
the IDS. C.. is based on the previously discussed expected cost metric. In contrast to
Cezp, Crec measures cost associated with the accuracy of an IDS’s false alert filter at
classifying alerts as true or false, which can be used as an IDS comparison parameter.
Cec can be associated with each IDS operating point on a ROC curve and can be used
for comparing IDSs same as Ceyp.

The formula of Cy.. (Crec = CSB + a(1 — B)) can be obtained in a way similar to
obtaining the formula of C,,,, that is, by “rolling back” the decision tree depicted
in Figure (see [Men12]). This tree is a modified version of the tree depicted in
Figure In Figure p1 denotes the probability that the false alert filter reports
a true alert, p, denotes the conditional probability of true alert given that the filter
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Figure 3.7: Decision tree for calculating (a) expected cost, and (b) relative expected cost.

|_False
alert

reports a true alert, and ps denotes the conditional probability of true alert given that
the filter reports a false alert. In the context of the work of Meng et al. [Men12], «
and 3 denote the false positive and false negative rate exhibited by a false alert filter.
Further, B denotes the prior probability of a false alert, and C, and Cs denote the cost
of classifying a false alert as a true alert, and the cost of classifying and filtering out a
true alert as a false alert, respectively. C is the cost ratio Cg/Cl,.
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Although the discussed cost-based metrics enable straightforward comparison of
IDSs, they depend on the cost ratio C. To calculate the cost ratio, one would need a
cost-analysis model that can estimate C,, and Cs, which might be difficult to construct
in reality. Cost-analysis models take parameters into consideration that might not be
easy to measure, or might not be measurable at all (e.g., man-hours, system down-
time). Further, Ccsp, and C,... enable the comparison of IDSs based on a subjective
measure making the metrics unsuitable for objective comparisons [GFD ™ 06]. However,
cost-based metrics may be of value when the relationships between the different attack
detection costs (e.g., cost of missing an attack, cost of a false alert) can be estimated and
when such estimations would be considered as sufficently accurate. For instance, given
a statement such as “a false alert is twice as costly as a missed attack”, a cost-based metric
would be crucial to identify an optimal IDS operating point. Next, we demonstrate the
use of the expected cost metric (C.z,) and the relative expected cost metric (Ci..) for
comparing IDSs through a case study scenario.

\ —+—IDS, = IDS, \ —+ IDS, = IDS,

[Ceap/rec = 0.017]

0.95
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Figure 3.8: IDS comparison with (a) expected cost and relative expected cost metric, (b) intrusion
detection capability metric.

Case study #2: First, we compare IDS; and DS, (see Case study #1) using Ce,.
The IDS that has lower C.,,, associated with its optimal operating point (i.e., the point
that has the lowest C.,, associated with it) is considered as better. To determine the
optimal operating points of /DS, and IDS,, we calculate C.,;, for each operating
point of the two IDSs. To calculate C.;,, we assume that C' = 10 (i.e., the cost of not
responding to an attack is 10 times higher than the cost of responding to a false alert)
and B = 0.10. We present the values of C.., in Table[3.6} The optimal operating point
of IDS; is (0.005,0.9885), and of I DS, is (0.015,0.99664). Since the minimal C,), of
I1DS;